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A new finite volume algorithm for computing elastic-creep stress distributions within 
pressure components that have axisymmetric geometries and subjected to axisymmetric 
loading is presented. The formulation of a system of simultaneous equations from 
equilibrium, constitutive and boundary equations of the finite volume elements that are 
used to model the component is described in details. An iterative technique is used to 
solve the resulted simultaneous equations and compute the displacement fields at various 
time points from which the strain and stress fields are computed. The method is verified 
against analytical solutions and applied to internally corroded/eroded tubes. It is also 
shown that the proposed finite volume method is more accurate than the finite element 
method that is formulated on the similar bases. 
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Abstract 

NOMENCLATURE 

|/'l 

-t 

II 

k 

Linear coefficients used in equations (12) 
Creep functions used in equations (14) 
A factor defined in equation (16) 
Half of the boiler tube length 
Creep stress index 
Radial coordinate 
Time 
Radial and axial displacement components respectively 
Axial coordinate 
Creep stress coefficient 
Coefficients used in equations (14) 
Elasticity matrix 
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Ε Young's modulus 
F von Mises Potential function 
P Uniform internal pressure 
pe Axial traction 
pext Radial traction 

Non-dimensional hoop stress 
Pext 

aha2 Factors defined in equations (15) and (17) respectively 
β Angle that an element side on the bounday makes with the 

radial axis 
{ε0} Creep strain components 

{ε6} Elastic strain components 

Total strain components 

{£'} = {ε'Γ,ε'θ,ε'2,γ'η}τ Strain components 

{έ°} Creep strain rate components 
von Mises creep effective strain rate 

{σ} = {σΓ .σ0 ,σ : . τ , -} τ Stress components 
aeff von Mises effective stress 

ν Poisson ratio 

r = Ep^yh Non-dimensional time 
o Hoop coordinate 

I N T R O D U C T I O N 

The finite e lement method (FEM) has dominated the field of numerical pressure vessel 
stress analysis for the past 30 years or more. However, an alternative approach based 
upon the finite vo lume method (FVM), originally developed by the computat ional fluid 
dynamics community , is now being applied to certain specific problems in design and 
analysis of pressurised components such as internally thinned boiler tubes. Unlike FEM, 
in which the relevant conservation principle, equilibrium of forces, is only satisfied in a 
global sense, F V M is conservative in that it guarantees that the elements used to model 
the component are themselves in equil ibrium and tractions are cont inuous across inter 
element boundaries. 

Recently, a number of FVMs have been developed. Ivankovic and Wil l iams (1995) 
have applied F V M to study the elastic behaviour of cracked components subjected to 
dynamic loading. Onate et al (1993) have suggested a formulation for two-dimensional 
elastic problems. Zarrabi and Basu (1999) have developed a new FVM for axisymmetric 
components when materials restricted to elastic deformation There are a number of other 
finite volume formulations as well. 

326 



Κ. Zarrabi and A. Basu Journal of the Mechanical Behavior of Materials 

This paper presents a n e w finite vo lume formulat ion for elastic-creep analysis of pressure 
componen t s with axisymmetr ic geometr ies and loading. To the authors knowledge no 
such formulat ion has been developed before. T h e verification of p roposed formulat ion, 
its compar ison with a simialar f inite e lement formulation and its appl ica t ion to boi ler 
tubes are also presented. 

AXISYMMETRIC FINITE VOLUME FORMULATION FOR ELASTIC-CREEP 
STRESS ANALYSIS 

It is a ssumed that the material temperature is constant and uniform. Al though the 
fol lowing formulat ion is general and can be applied to any axisymmetr ic problem that is 
subjected to elast ic-creep deformat ion, it is specifically deve loped to apply to internally 
corroded/eroded boiler tubes (Figure 1). 

Figure 1 - Finite vo lume model of internally eroded/corroded tube subject to a uniform internal 
pressure (p) and end pressure (pe) 

Constitutive Relationships 

For an elast ic-creep material, the total strain components , {t'}, is the s u m of the elastic, 

{εβ), and creep {εc) strain components : 

> 

Point C -

Point A 

(1) 
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where {&-'} = {ε'Γ.ε'0.ε':,γ'η)τ with i-t,e,c and r,o and ζ refer to the radial, hoop and axial 

directions respectively. Using Hooke's law: 

{a} = [D](ie} (2) 

where {σ} = {σ,-,σ^,σ-,ζ,-} is the stress vector, and [£>] is the elasticity matrix, i.e.. 

[ D ] = 
(l + vXI-2v) 

(I - ν) ν ν 
V (l-v) V 

V (l-v) 
0 0 0 

0 
0 
0 

0-2v) 
(3) 

with Κ and ν are Young ' s modulus and Poisson 's ratio respectively. Combin ing Eqs (1 
to (3) gives: 

fo-} = | / ' | ( u·'} -{4'c}) (4) 

Creep strain components can be determined from: 

(5) 

where ι is time and the creep strain rate components are derived from: 

{/;*·'} = ieff 
dF 

δ{σ) 
(6) 

with F is the von Mises potential funct ion and bc
eff- = Βσ"^ is the effective von Mises 

creep strain rate. Note that Β and « are material parameters and is the von Mises 
effective stress. Note that, we have assumed material deforms according to secondary 
creep only. The extension of the present formulation to include primary and tertiary creep 
will be reported in the future publications. 

Equilibrium Equations and Discretisation 

Figure 2 shows an axisymmetric finite volume element (i.e., FV1) together with some 
of its surrounding elements (i.e., FV2, . . . , FV4). The differential equil ibrium equat ions 

dar ^ÖTr.- , ~σθ _ 
• + ^ + -

cr cz r 
or,, da, τ^ 

= 0 

(7) 

er cz r 
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Point A —E— Point Β — i r - Point C 

'Ilnie (hrs) 

Figure 2 - An axisymmetric finite volume element ( F V I ) anil 
its surrounding elements: FV2, FV3, FV-1, FV5. 

Integrating equat ions (7) over the vo lume of e lement FVI will give: 

f f 1 π ,• ̂ J L d r d z + f f 1π r g l s . drdz + Γ f In r " ^ dr dz = 0 
JJ dr JJ dz JJ r ^ 

j j 2/T r ^ Λ + JJ 2π r drdz + j j 2π r dr dz = 0 

Using the d ivergence theorem, equat ions (8) can be rewritten in the fo l lowing form 

r I σ r dz +1 r τΓ. dr - J J σ0 dr dz = 0 

r J rr. dz +1 /· σ. dr = 0 
(9) 

N o w consider ing equat ions (9), the first and second terms in the first equat ion and the 
terms in the second equat ions represent integrals around the boundary of F V I and the last 
term in the first equat ion represents the sum of hoop stresses over the face of F V I . T o 
integrate equat ions (9), one needs to k n o w the variations of various stress c o m p o n e n t s 
with r and ζ. T h e present formulat ion assumes that the stress c o m p o n e n t s a long each 
e lement s ide remain constant and are allocated to mid-posi t ion on each side. This a l lows 
equat ions (9) to be integrated to obtain: 
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r, + /•·, r, r-, + r, r-, +r, 
( z 2 - Z l ) ( - L - ± ) a r l +( η - ^ ( J — L ) ^ , +(z3 _ Z 2 ) (_L_A ) e r r 2 + ( r , 

+e r ö 2 +σ β 3 +σ β 4 ) = 0 ^ 

(Ί + (ζ2 + (,·, - , 3 ) ( ^ l ) C T r 2 + (ζ3 - ζ 2 ) A p L ) ^ 

+ ('3 + +(Γ4 - η ) ( ^ 1 ) σ ; 4 +(ζ, - z 4 ) ( ^ - ) r r , 4 =0 

where /·, and ζ, with / = 1.2,3,4 are the radial and axial coordinates of each corner node of 
element FV1, σα, ση, σu , and r m are the stress components at the mid-position of 
each side of element FV1, and A is the face area of element FV1. By combining 
equations (4) with equations (10), the equilibrium equations will be expressed in terms of 
strain components. But the strain components at the mid-side position are related to the 
radial and axial displacements {it ,vr) and their gradients; for example, assuming small 
strain conditions, for side 1: 

4 = ( " ) . (11) 
J , dw. 

' dz' 

Similar equations to equations (11) can be written for sides 2, 3, and 4 of element FV1. 
Now, the present formulation assumes that u and »• vary bilinearly between the centroids 
of adjacent element faces so that: 

[ II = (i) + Cijr + iifZ + a^rz (1 ? ) 
|η· = ή + bjr + b^z + b^rz 

where a, and />, with / = 1.2.3.4 are constants that can be determined in terms of the 
coordinates of the centroids of four adjacent elements. Equations (12) are then 
differentiated to obtain the displacement gradients. Therefore, by combining equations 
(4) and (1 0) to (12), the equilibrium equations can be written in terms of the unknown 
displacements at the centroids of the element faces. Note that for each centroid there are 
two equilibrium equations with two unknown displacement components, u, and »·,. 

330 



Κ. Zarrabi and A. Basu Journal of the Mechanical Behavior of Materials 

Boundary Conditions 

On the boundary, the unknowns are the radial and axial d isplacement componen t s (u b l , 
wbl) at the mid-posit ion of each element side. The following boundary condi t ions are 

considered. For free surfaces: ubi * ο,wbi * ο . For symmetry about the r -axis: 
ub, ,wbl =o,rfer-, =0 where tbni is the shear stress component with respect to the rz axes 
acting at the mid-side boundary node <. For sides subjected to pressure P l : 

km = <*bziCoslß + °briSinlß - xbrziSinO-ß) = Ρ, 
1 2 2 Ο 3 ) τι = --(Vbn ~ <Tb:i )S'"(2ß) ~ τ0Γζι (Cos ß ~ Sin ß) = 0 

where β is the angle that the loaded side makes with the r-axis , ση,,τ, are the normal 
and shear stresses at the mid-side of each loaded side respectively, and ab2i ^ b n , z b n i are 
the axial, radial, and shear stress components at the mid-side of each loaded side 
respectively. Equat ions (13) are obtained using the well-known stress t ransformations or 
Mohr ' s circle. It is assumed that the stress comonents are constant a long the e lement 
sides that are posit ioned on the boundary. This assumption is consistant with previously 
stated assumptions for elements sides that are not located on the boundary. The above 
boundary condit ions produce two equat ions for each mid-side node that is pbsi t ioned on 
the boundary together with two unknown displacement components . 

Assembly 

By combining equilibrium, constitutive and boundary equations as explained above, the 
following set of s imultaneous equations will be obtained: 

N\ N\ Λ ' | 

I Β, II, + Σ c, Μ·, = ι /i(G,U"c}) 
/=1 1=1 i=l 
N-. Ν-, Ν-, Λ\ 
Σ A + Σ ^ = Σ ' ) + Σ" f2(/i,{cc}) 
(=1 (=1 (=1 (=1 

(14) 

where /Vj is the total number of elements, lv2 is the total number of e lement sides that are 
on the boundary, / , and f2 are funct ions that include creep strain components . The 
coefficients Β,,ϋ,.Ο,.Ι',.Ο,ΊΙ, and Pt will depend on the element geometry, material 
properties at operating temperature and applied pressure. Equat ions (14) represent 
2(.V| +Λ'2) s imultaneous non-linear equations; the sources of non-linearity are funct ions f\ 
and f2. Note that equations (14) have less equations than those obtained f rom an 
assembly of a similar mesh consisting of 4-node axisymmetric finite elements. This is 
because while in the present formulation there are two equilibrium equat ions for the 
centroid of each element face, in a displacement-based finite e lement formulat ion there 
are eight equilibrium equations (2 for each corner node). The boundary equat ions for the 
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present formulation are also less than those for a counterpart finite e lement mesh. 
Equations (14) have, however, the same degree of sparsity as those obtained from 
assembly of 4-node axisymmetric finite elements. Therefore, the CPU-t ime required to 
solve equations (14) and the computer storage requirements for the present finite vo lume 
formulation are expected to be less than those required for the similar finite e lement 
formulation. 

Solution Algorithm 

There are a number of solution techniques available to solve a set of non-l inear 
simultaneous equat ions system such as that defined by equations (14). For the sake of 
simplicity, the present study employs a fully explicit algorithm and it is as fol lows. 
Initially when t = ο, there is no creep strain and therefore equations (14) becomes linear 
( / i(<f c}) = 0, f2({e°)) = ο ) and they will be solved as an elastic problem to obtain 
displacements, stresses and total strains. Note that at t ime zero, elastic and total strains 
are equal. Then the computed stresses are used in equation (6) to compute the creep strain 
rates at time zero. Then creep strains at the end of a small time interval are computed 
using equation (5). It is assumed that the time interval is sufficiently small so that during 
this time interval the creep strain rates remain constant. Knowing the creep strains at the 
end of the time interval (/i({fc>) = Com tan/, f2{{ec}) = Constant), equations (14), that again 
become linear, are solved to compute new displacements and stresses and total strains at 
the end of the t ime interval. Then the new stresses are used again to compute creep strain 
rates for the next small t ime interval. The algorithm is continued until a specified time is 
reached. The success of this algorithm depends on the proper selection of the t ime 
interval (At,) for each iteration / so it merits brief description. 

Time Interval 

It is well known that a fully explicit t ime integration scheme is conditionally stable 
(Taylor et al, 1995 and Owen and Hinton, 1980). Therefore, in order to achieve a valid 
solution, limits must be placed on the time interval. During the initial, or transient, states 
of creep, the stresses change rapidly. It is necessary to choose exceptionally small time 
intervals in this region. As the solution approaches its steady-state, larger t ime intervals 
may be applied. 

A combination of the several schemes has been employed to ensure stability and 
solution accuracy (Zarrabi and Hosseini-Toudeshky, 1995). Firstly, the magni tude of the 
time interval in each iteration ( At,) is controlled by a user-defined factor g, according to: 

An initial estimate of the value of the time interval is made by evaluating the above 
expression for the mid-point of each element side throughout the mesh and selecting the 

(15) 
n u n 
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minimum value. Numerical experimentation suggests that for explicit procedures 
0.01 < a, <0.1. 

A second scheme limits the change in t ime intervals between any two intervals 
according to 

where A: is a user-defined constant and usually has values in the range \ <k<\.5. 
The final s cheme controls the t ime interval by a factor a2. This factor limits the 

maximum effect ive creep strain increment ( Α ε ^ (.) as a fraction of the effect ive elastic 

strain ( < # ; ) , implying that: 

Once again, equat ion (17) is evaluated for each element side throughout the mesh and the 
minimum is taken. Numerical experimentation suggests that: 0 < a 2 < 1 . 0 . The final value 
of the t ime interval must satisfy equations (15) to (17). 

V E R I F I C A T I O N 

Three problems have been used to verify the model and algorithm described above. 
These are descr ibed below. 

Axially Loaded Bar 

The bar is depicted in Figure 3 and had a solid circular cross-sectional area with a 
radius of r = 100 mm and a length of / = 500 mm. The uniform axial traction was Pe = loo MPa . 

The material properties were: Ε = 0.200.tl06 MPa, ν = 0.3, Β = 3.125.tl0-14 and « = 5. The 
/Hr 

finite volume model of the bar had a 4x4 mesh. Figure 4 shows the variation of the 
effective total strain at a point in the bar with t ime computed using FVM. Figure 4 also 
depicts the analytical solution. It is apparent that any differences between the two 
solutions are negligible. 

Disk with a Circular Hole Subjected to Uniform Radial External Tract ion 

The disk containing a circular hole is shown in Figure 5 with: <1 = 16 mm, 

/•: = 0.200.rιo6 MPa, ν = 0.3. η = 3. Β = ΐ-ητ^· and was loaded externally by a uniform 
A lr 

traction, pcxl = ι MPa, in the radial direction. Taking into account the axial symmetry of 

Δ/,+1 < k M, (16) 

(17) 
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. 2 r . r—ι 
P,=lOOMPa 

/ 

/ / / / / / / ~ 
Figure 3 - Axiallv loaded bar. 
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Figure 4 — Comparison of finite vo lume and analytical solutions for effective total strain 
obtained for axiallv loaded bar. 
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the problem, a typical finite vo lume mesh of the disk is shown in Figure 6. T h e hoop 
stress at the edge of the hole (Point A in Figure 6) computed using three di f ferent meshes 
are compared with the analytical solution in Figure 7. The non-d imens iona l h o o p stress 

and t ime depic ted in Figure 7 are def ined as Se and τ = Ε t respect ively. T h e 
Pext 

results depic ted in Figure 7 show that as the mesh became finer, the c o m p u t e d results 
became closer to the analytical results so that for 32x8 mesh (i.e., C u r v e 3 in Figure 7) 
the m a x i m u m error was 8.5%. 

Point A-

r 
: Pext 

Figure 6 - Finite volume mesh of a disk subjected to a uniform radial external traction. 

N o n - d i m e n s i o n a l t i m e 

Figure 7 — Variation of non-dimensional hoop stress at the hole edge with time; Curv e 1 - 8 \ 2 mesh, 
Curve 2 - 16x4 mesh, Curve 3 - 32x8 mesh. 
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Steady-State Solution for a Uniform Thick-wall Tube 

The finite volume model of the thick-wall tube is shown in Figure 8. It was subjected to 
a uniform internal pressure of ρ = 20 MPa and end pressure of pe = 13.875 MPa. The material 

properties where: Ε = 0.200*106 MPa, ν = 0.3, Β = 3.125 jtio-14
 n = 5 . The computed 
/Hr 

elastic and steady-state stresses in the hoop and radial directions are compared with the 
corresponding analytical solutions in Figure 9. Figure 9 shows that the differences 
between the two stress values were negligible. 

r0-25mm ^ 

Ρ * 

r{ = l 6mm . .. » 

1 1 1 t i l l 
Ρ * 

r{ = l 6mm . .. » 

Ρ * 

r{ = l 6mm . .. » 

Ρ * 

r{ = l 6mm . .. » 
1 I 

Ρ * 

r{ = l 6mm . .. » 

Figure 8 - Finite volume mesh of a thick-wall tube subjected to uniform internal pressure ρ and end 
pressure pe-

60 

-30 

Radial distance (mm) 

Figure 9 - Comparison of finite volume and analytical solutions for various stress components 
obtained for uniform thick-wall tube. 
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APPLICATION TO INTERNALLY ERODED/CORRODED BOILER TUBE 

The internally eroded/corroded tube shown in Figure 1 was model led using 728 
axisymmetric finite vo lume elements. It was assumed that the eroded/corroded area had a 
rectangular cross-sectional area. Because of symmetry about the centre-l ine of the 
eroded/corroded area, only half of the length of the tube was model led. T h e loading and 
material properties were the same as those for the thick-wall tube descr ibed above. The 
variation of computed von Mises stresses at strategic Points A, B, and C (Figure 1) with 
time are shown in Figure 10. At t ime zero, due to stress concentration, the elastic stress at 
Point C is higher than those at Points A and B. Stresses redistribute and after a short 
period of time, stresses at Points A and Β become less than that at Point C with Point C 
having the smallest stress. 

-•—Point A —B— Point Β A Point c l 

«3 
.o«L 

so , ; 
0 100 200 300 400 300 600 

Time (hrs) 

Figure 10 -Variation ofVon-Mises Stress at Point A, Point Β and Point C 
with time for internally eroded/corroded tube. 

COMPARISON OF FINITE VOLUME AND FINITE ELEMENT METHODS 

The three problems that were used to verify o u r F V M above were also employed below 
to compare our F V M with a similarly formulated F E M (Zarrabi and Hosseini -Toudeshky, 
1995). That is, similar to our FVM, the F E M used 4-node quadilateral e lements with time 
stepping and integration algoriuthms similar to those of our FVM. 

Axially Loaded Bar 

The material properties, dimensions and loading for the bar were as before (Figure 3). 
The coarsest possible mesh for the F V M was a 2x2 mesh Therefore, it was decided to 
generate 2x2 meshes for both FVM and FEM. The computed axial stresses by F V M and 
FEM were equal to the analytical solution (100 \ti\i) everywhere, i.e., no error was 
detected. 
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Disk with a Circular Hole Subjected to Uniform Radial External Traction 

The material properties, dimensions and loading for the disk containing a circular hole 
were as before (Figure 5). Taking into account the axial symmetry of the problem, 32x8 
meshes were generated for both F V M and FEM (Figure 6). The non-dimensional hoop 

stress at the edge of the hole (Point A in Figure 6), s0 = , computed using FVM and 
Pext 

FEM are compared with the analytical solution in Figure 11. The results depicted in 
Figure 11 show that: (1) the computed stresses by FVM and FEM have the same 
distribution as that predicted by the analytical solution, (2) for the same level of mesh 
density, F V M maximum error (8.5%) was less than that for FEM (39.6%). 

Variat ion of Non-d imens iona l Hoop Stress at the hole edge with t ime 

Non-d imens iona l T i m e 

Analytical 

* FY - 3 2 x 8 

i FE - 32x8 

Figure 11 - Comparison of computed stresses using FVM and FEM for disk. 

Steady-State Solution for a Uniform Thick-wall Tube 

The material properties, dimensions and loading were the same as before. A 4x4 mesh 
that was used for both FVM and FEM is shown in Figure 8. The computed steady-state 
stresses in the hoop direction are compared with the corresponding analytical solution in 
Figure 12. The maximum error in computed hoop stress using FVM was 4.0% whereas 
that in using FEM was 5.4%. 

338 



Κ. Zarrabi and A. Basu Journal of the Mechanical Behavior of Materials 

Steady State Hoop Stress vs Radial Distance 

R a d i a l Di s t ance ( m m ) 

Analytical 

• FV - 4x4 
L FE - 4x4 

Figure 12 - Comparison of computed hoop stresses using F V M and F E M for 
uniform thick-walled tube. 

C O N C L U S I O N S 

A very accurate finite volume formulation and algorithm were described for elastic-
creep analysis of axisymmetric components . Its verification and application to an 
internally corroded/eroded boiler tube were demonstrated. It was also shown that for the 
same level of mesh density, the present finite volume formulation was more accurate than 
a similarly formulated finite element method. 
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