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Abstract

A new finite volume algorithm for computing elastic-creep stress distributions within
pressure components that have axisymmetric geometries and subjected to axisymmetric
loading is presented. The formulation of a system of simultaneous equations from
equilibrium, constitutive and boundary equations of the finite volume elements that are
used to model the component is described in details. An iterative technique is used to
solve the resulted simultaneous equations and compute the displacement fields at various
time points from which the strain and stress fields are computed. The method is verified
against analytical solutions and applied to internally corroded/eroded tubes. It is also
shown that the proposed finite volume method is more accurate than the finite element
method that is formulated on the similar bases.
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NOMENCLATURE

a.h; Linear coefficients used in equations (12)
fiof> Creep functions used in equations (14)

k A factor defined in equation (16)

! Half of the boiler tube length

" Creep stress index

", Radial coordinate

t Time

ww Radial and axial displacement components respectively
:, Axial coordinate

B Creep stress coefficient

B,.CLDy b G, Coefficients used in equations (14)

) Elasticity matrix
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E Young's modulus
5 von Mises Potential function
P Uniform internal pressure
P, Axial traction
£ Radial traction
Sy = ;9 Non-dimensional hoop stress
ext
ay,az Factors defined in equations (15) and (17) respectively
Y Angle that an element side on the bounday makes with the
radial axis
(%) Creep strain components
%) Elastic strain components
(e'y Total strain components
(') = tel . ey eh iy Strain components
(&) Creep strain rate components
éoyr von Mises creep effective strain rate
{0} ={o,.00.0-.1-} Stress components
Oof von Mises effective stress
v Poisson ratio
r=Eph Non-dimensional time
0 Hoop coordinate
INTRODUCTION

The finite element method (FEM) has dominated the field of numerical pressure vessel
stress analysis for the past 30 years or more. However, an alternative approach based
upon the finite volume method (FVM), originally developed by the computational fluid
dynamics community, 1s now being applied to certain specific problems in design and
analysis of pressurised components such as internally thinned boiler tubes. Unlike FEM,
in which the relevant conservation principle, equilibrium of forces, is only satisfied in a
global sense, FVM is conservative in that it guarantees that the elements used to model
the component are themselves in equilibrium and tractions are continuous across inter
element boundaries.

Recently, a number of FVMs have been developed. Ivankovic and Williams (1995)
have applied FVM to study the elastic behaviour of cracked components subjected to
dynamic loading. Onate et al (1993) have suggested a formulation for two-dimensional
elastic problems. Zarrabi and Basu (1999) have developed a new FVM for axisymmetric
components when materials restricted to elastic deformation There are a number of other
finite volume formulations as well.
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This paper presents a new finite volume formulation for elastic-creep analysis of pressure
components with axisymmetric geometries and loading. To the authors knowledge no
such formulation has been developed before. The verification ofiproposed formulation,
its comparison with a simialar finite element formulation and its application to boiler
tubes are also presented.

AXISYMMETRIC FINITE VOLUME FORMULATION FOR ELASTIC-CREEP
STRESS ANALYSIS

It is assumed that the material temperature is constant and uniform. Although the
following formulation is general and can be applied to any axisymmetric problem that is
subjected to elastic-creep deformation, it is specifically developed to apply to internally
corroded/eroded boiler tubes (Figure 1).
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Figure 1 — Finite volume model of internally eroded/corroded tube subject to a uniform internal
pressure (p) and end pressure (p.)

Constitutive Relationships

For an elastic-creep material, the total strain components, {¢'}, 1s the sum of the elastic,

(%}, and creep {¢°} strain components:

(&'} = (%) +{£5) (1)
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where (&'} = {eﬁ.e(’,.ef.,y,':}r with i =1 e,c and r, 6 and z refer to the radial, hoop and axial

directions respectively. Using Hooke's law:
{o} = [D}ic} (2)

where {0} = {0,.09.0-.7-}" 1s the stress vector, and (D] is the elasticity matrix, i.e.,

(I-v) v v 0
i v (I-v) v 0
l/)]=m v v (=) 0 3)
0 0 0 (L—Z_v)

with /< and v are Young's modulus and Poisson’s ratio respectively. Combining Eqs (1)
to (3) gives:

fo} = IDI (") 65D 4)

Creep strain components can be determined from:

S
N—

(e = [{e dt (:

where 1 1s time and the creep strain rate components are derived from:

¢ o
o 6

{£5) = ¢
with 7 is the von Mises potential function and égr =Boy is the effective von Mises

creep strain rate. Note that 8 and » are material parameters and o, is the von Mises

effective stress. Note that, we have assumed material deforms according to secondary
creep only. The extension of the present formulation to include primary and tertiary creep
will be reported in the future publications.

Equilibrium Equations and Discretisation

Figure 2 shows an axisymmetric finite volume element (i.e., FV1) together with some
of 1ts surrounding elements (i.e., FV2, ..., FV4) The differential equilibrium equations

are:

= A - o =0
cr C: r
. : (7)
7 s G
= ==Toap —_= O
Cr cz »
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{—%— Point A —B Point B —dr— Point C

Stress (MPa)

"Time (bry) _J

Figure 2 — An axisymmetric finite volume element (FV 1) and
its surrounding clements: FV2, FV3, FV4, FVS.

Integrating equations (7) over the volume of element FV1 will give:

Gl drdz+j 2z r 2t ~9e drdz=0
1574

T (8)
' drdz=0

14

(f 2rr
JJ

[[27r

Using the divergence theorem, equations (8) can be rewritten in the following form:

5:7, drdz+JT27rr
cr J

r,._. drdz +J.J. 2z r

¢ %
&

; drdz +“ 2z r

r§a, dz+§rr,.. dr—ﬂao drdz=0

r§r,7 dz+§r0': dr=0

(9)

Now considering equations (9), the first and second terms in the first equation and the
terms in the second equations represent integrals around the boundary of FV1 and the last
term in the first equation represents the sum of hoop stresses over the face of FV1. To
integrate equations (9), one needs to know the variations of various stress components
with r and z. The present formulation assumes that the stress components along each
element side remain constant and are allocated to mid-position on each side. This allows

equations (9) to be integrated to obtain:

329



Vol. 10, Nos. 5-6,1999 An Axisymmetric Finite Volume Formulation For Creep Analysis

ro+r nEr v tr r+n
(z; -2 )('1”7-2—) e =i 5 )T +(23 —25)( S )T, +(r —r3)( )%
r o+ "+ Fy+r ¥+
My =B = = 32 N G o (R s Pl
"1( +0 g +0g3 +055)=0
— a‘ - —
4 a1 a2 a3 84 (10)
no+r »n o+ ry Pl ¥yt
Gl et e I e S 2= )02 +(23 —25)( )T,n
z Z 2 2
rotr r ot ry +H ry +
+(’3 ""4)( = )Uz3 +(_Z.'—23H n )r:':?. +(I‘4 —rl)( )0:4 +(Zl_z4)( 2 )Tr:J:O

where r, and z, with i=1.23.4 are the radial and axial coordinates of each corner node of
elementFVI1, o,, 0,, 0,,and 7, are the stress components at the mid-position of
each side of element FV1, and A is the face area of element FV1. By combining
equations (4) with equations (10), the equilibrium equations will be expressed in terms of
strain components. But the strain components at the mid-side position are related to the
radial and axial displacements (u,w) and their gradients; for example, assuming small
strain conditions, for side 1:

t du
e = (—)
S dr .
u
egl)l = (; )l
dw (1 : )
a1 ° '\’(_jz_,']
¢ du dw
Yoy =(—) +(—)
rel dz h+ dr )}

Similar equations to equations (11) can be written for sides 2, 3, and 4 of element FV1.
Now, the present formulation assumes that » and w vary bilinearly between the centroids
of adjacent element faces so that:

[0 =a +ayr+ayz+ayz (12)
lu'zh +hor +inz +byrz B

where o, and 5, with =12.34 are constants that can be determined in terms of the
coordinates of the centroids of four adjacent elements. Equations (12) are then
differentiated to obtain the displacement gradients. Therefore, by combining equations
(4) and (10) to (12), the equilibrium equations can be written in terms of the unknown
displacements at the centroids of the element faces. Note that for each centroid there are
two equilibrium equations with two unknown displacement components, », and , .
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Boundary Conditions

On the boundary, the unknowns are the radial and axial displacement components (u, ,
wy, ) at the mid-position of each element side. The following boundary conditions are
considered. For free surfaces: u,; = 0,w,; = 0. For symmetry about the r -axis:
up; = ©.wp, =0,75-, =0 where z,,,; 1s the shear stress component with respect to the rz axes
acting at the mid-side boundary node :. For sides subjected to pressure p, :

’Um = o’bz,COSZﬂ + UbriSinzﬂ - 1prSin(28) = p, (1 3)

1
i = _—Z'(Ubrl = 0pz)8in(2P) — Thpzy (Coszﬂ . Si"zﬂ) =0

where g is the angle that the loaded side makes with the r-axis, o,,,7, are the normal
and shear stresses at the mid-side of each loaded side respectively, and oy,; .04, .75 are
the axial, radial, and shear stress components at the mid-side of each loaded side
respectively. Equations (13) are obtained using the well-known stress transformations or
Mohr’s circle. It 1s assumed that the stress comonents are constant along the element
sides that are positioned on the boundary. This assumption is consistant with previously
stated assumptions for elements sides that are not located on the boundary. The above
boundary conditions produce two equations for each mid-side node that is positioned on
the boundary together with two unknown displacement components.

Assembly

By combining equilibrium, constitutive and boundary equations as explained above, the
following set of simultaneous equations will be obtained:

Ny N N) z

Y Bu+ LCw =3 N(GLe™))

=1 =1 =] 14
N- N N~ N> ( )

—

=1 =1 =1 =1

S D+ L Fiwpy = S P+ S fo(H %))

where v, is the total number of elements, », is the total number of element sides that are
on the boundary, £ and s, are functions that include creep strain components. The
coefficients B,.C,.D,.F; .G,.H, and F, will depend on the element geometry, material
properties at operating temperature and applied pressure. Equations (14) represent

2(N, +N,) simultaneous non-linear equations; the sources of non-linearity are functions
and s, . Note that equations (14) have less equations than those obtained from an

assembly of a similar mesh consisting of 4-node axisymmetric finite elements. This is
because while in the present formulation there are two equilibrium equations for the
centroid of each element face, 1n a displacement-based finite element formulation there
are eight equilibrium equations (2 for each corner node). The boundary equations for the

331



Vol. 10, Nos. 5-6,1999 An Axisymmetric Finite Volume Formulation For Creep Analysis

present formulation are also less than those for a counterpart finite element mesh.
:quations (14) have, however, the same degree of sparsity as those obtained from
assembly of 4-node axisymmetric finite elements. Therefore, the CPU-time required to
solve equations (14) and the computer storage requirements for the present finite volume
formulation are expected to be less than those required for the similar finite element
formulation.

Solution Algorithm

There are a number of solution techniques available to solve a set of non-linear
simultaneous equations system such as that defined by equations (14). For the sake of
simplicity, the present study employs a fully explicit algorithm and it i1s as follows.
Initially when ¢ =0, there is no creep strain and therefore equations (14) becomes linear
(/e =0, /(461 = 0 ) and they will be solved as an elastic problem to obtain
displacements, stresses and total strains. Note that at time zero, elastic and total strains
are equal. Then the computed stresses are used in equation (6) to compute the creep strain
rates at time zero. Then creep strains at the end of a small time interval are computed
using equation (5). It 1s assumed that the time interval 1s sufficiently small so that during
this time interval the creep strain rates remain constant. Knowing the creep strains at the
end of the time interval ( fj({£°}) = Constant, f5({¢°}) = Constant ), equations (14), that again
become linear, are solved to compute new displacements and stresses and total strains at
the end of the time interval. Then the new stresses are used again to compute creep strain
rates for the next small time interval. The algorithm is continued until a specified time is
reached. The success of this algorithm depends on the proper selection of the time
interval (A, ) for each iteration i so it merits brief description.

Time Interval

It 1s well known that a fully explicit time integration scheme is conditionally stable
(Taylor etal, 1995 and Owen and Hinton, 1980). Therefore, in order to achieve a valid
solution, limits must be placed on the time interval. During the initial, or transient, states
of creep, the stresses change rapidly. It 1s necessary to choose exceptionally small time
intervals in this region. As the solution approaches its steady-state, larger time intervals
may be applied.

A combination of the several schemes has been employed to ensure stability and
solution accuracy (Zarrabi and Hosseini-Toudeshky, 1995). Firstly, the magnitude of the
time interval in each iteration (v, ) is controlled by a user-defined factor «, according to:

4
&g,
N, S | 0L (15)

min

An initial estimate of the value of the time interval is made by evaluating the above
expression for the mid-point of each element side throughout the mesh and selecting the
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minimum value. Numerical experimentation suggests that for explicit procedures
0.0l<a, <0.1.

A second scheme limits the change in time intervals between any two intervals
according to

Ay <k AL (16)

where k is a user-defined constant and usually has values in the range 1<k<1.5.
The final scheme controls the time interval by a factor «,. This factor limits the

maximum effective creep strain increment (Al ) as a fraction of the effective elastic

strain (.5, ), implying that:

€

£
A S ap .‘iff"

eej]‘,l

(17

'min

Once again, equation (17) is evaluated for each element side throughout the mesh and the
minimum is taken. Numerical experimentation suggests that:0 < a, <1.0. The final value
of the time interval must satisfy equations (15) to (17).

VERIFICATION

Three problems have been used to verify the model and algorithm described above.
These are described below.

Axially Loaded Bar

The bar is depicted in Figure 3 and had a solid circular cross-sectional area with a
radius of =100 mm and a length of /=500 mm. The uniform axial traction was P, =100 AfPa .
The material properties were: E =0.200x106 APa, v =0.3, B =3.125x107% 222 and »=5. The

/Hr
finite volume model of the bar had a 4x4 mesh. Figure 4 shows the variation of the
effective total strain at a point in the bar with time computed using FVM. Figure 4 also
depicts the analytical solution. It is apparent that any differences between the two
solutions are negligible.

Disk with a Circular Hole Subjected to Uniform Radial External Traction

The disk containing a circular hole is shown in Figure 5 with: a =16 mm,

M
E=0200x10%AfPa, v =03, n=3 B=l-—m

) %Ir

traction, p,.., =14/« , in the radial direction. Taking into account the axial symmetry of

and was loaded externally by a uniform
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Figure 3 — Axially loaded bar.
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Figure 4 — Comparison of finite volume and analytical solutions for effective total strain
obtained for axially loaded bar.
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Figure 5 — Disk subjected to uniform radial external traction.
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the problem, a typical finite volume mesh of the disk is shown in Figure 6. The hoop
stress at the edge of the hole (Point A in Figure 6) computed using three different meshes
are compared with the analytical solution in Figure 7. The non-dimensional hoop stress

Tn
v

and time depicted in Figure 7 are defined as Sy = and r=Ep{"™V, respectively. The

Pext
results depicted in Figure 7 show that as the mesh became finer, the computed results
became closer to the analytical results so that for 32x8 mesh (i.e., Curve 3 in Figure 7)
the maximum error was 8.5%.

A pext

]
]
1
:
]
Point A :
i
:
[}
¥

Sa

Figure 6 — Finite volume mesh of a disk subjected to a uniform radial external traction.

k 1

Analytical \

3

Non-dimensional hoop stress at hole edge

a 0.2 04 0.6 0.8 ] 1.2 (B

Non-dimensional time

Figure 7 — Variation of non-dimensional hoop stress at the hole edge with time; Curve 1 — 8x2 mesh,
Cunrve 2 - 16x4 mesh, Curve 3 — 32x8 mesh.
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Steady-State Solution for a Uniform Thick-wall Tube

The finite volume model of the thick-wall tube is shown in Figure 8. It was subjected to
a uniform internal pressure of p =20MPa and end pressure of p, =13.875MPa . The material
_14 vira

properties where: E =0200x10% MPa, v=03, B=3.125x10 . n=5.The computed

1/

/Hr
elastic and steady-state stresses in the hoop and radial directions are compared with the
corresponding analytical solutions in Figure 9. Figure 9 shows that the differences
between the two stress values were negligible.

Figure 8 - Finite volume mesh of a thick-wall tube subjected to uniform internal pressure p and end
pressure p..
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Figure Y — Comparison of finitec volume and analytical solutions for various stress components
obtained for uniform thick-wall tube.
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APPLICATION TO INTERNALLY ERODED/CORRODED BOILER TUBE

The internally eroded/corroded tube shown in Figure 1 was modelled using 728
axisymmetric finite volume elements. It was assumed that the eroded/corroded area had a
rectangular cross-sectional area. Because of symmetry about the centre-line of the
eroded/corroded area, only half of the length of the tube was modelled. The loading and
material properties were the same as those for the thick-wall tube described above. The
variation of computed von Mises stresses at strategic Points A, B, and C (Figure 1) with
time are shown in Figure 10. At time zero, due to stress concentration, the elastic stress at
Point C 1s higher than those at Points A and B. Stresses redistribute and after a short
period of time, stresses at Points A and B become less than that at Point C with Point C
having the smallest stress.

[+ Point A —8— Point B —&— Point C |

o
o4

5

2

=
S

Stress (MPa)

“ @ o
- s @
’
> J
3

-
e

Time (hrs)

Figure 10 -Variation of Von-Mises Stress at Point A, Point B and Point C
with time for internally eroded/corroded tube.

COMPARISON OF FINITE VOLUME AND FINITE ELEMENT METHODS

The three problems that were used to verify our FVM above were also employed below
to compare our FVM with a similarly formulated FEM (Zarrabi and Hosseini-Toudeshky,
1995). That is, similar to our FVM, the FEM used 4-node quadilateral elements with time
stepping and integration algoriuthms similar to those of our FVM.

Axially Loaded Bar

The material properties, dimensions and loading for the bar were as before (Figure 3).
The coarsest possible mesh for the FVM was a 2x2 mesh. Therefore, it was decided to
generate 2x2 meshes for both FVM and FEM. The computed axial stresses by FVM and
FEM were equal to the analytical solution (100 A/« ) everywhere, 1.e., no error was
detected.
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Disk with a Circular Hole Subjected to Uniform Radial External Traction

The matenal properties, dimensions and loading for the disk containing a circular hole
were as before (Figure 5). Taking into account the axial symmetry of the problem, 32x8
meshes were generated for both FVM and FEM (Figure 6). The non-dimensional hoop

gn

stress at the edge of the hole (Point A in Figure 6), Sy = , computed using FVM and

ext
FEM are compared with the analytical solution in Figure 11. The results depicted in
Figure 11 show that (1) the computed stresses by FVM and FEM have the same
distribution as that predicted by the analytical solution, (2) for the same level of mesh
density, FVM maximum error (8.5%) was less than that for FEM (39.6%).

Variation of Non-dimensional Hoop Stress at the hole edge with time
< 25
=
= 4
: 2 £ A A A A & -+
2 LS a A F A A
1 ~. O :
% ® 1.5 “‘——-._ - - » L w L] ] { g Analytical
£ % % FV-32x8
£ 1 Ao FE-32x8
‘z
g
£ 05
=
3
=0k :
0 0.2 0.4 0.6 0.8 1 152 14
Non-dimensional Time

Figure 11 — Comparison of computed stresses using FVYM and FEM for disk.

Steady-State Solution for a Uniform Thick-wall Tube

The material properties, dimensions and loading were the same as before. A 4x4 mesh
that was used for both FVM and FEM is shown in Figure 8. The computed steady-state
stresses in the hoop direction are compared with the corresponding analytical solution in
Figure 12. The maximum error in computed hoop stress using FVM was 4.0% whereas
that in using FEM was 5.4%.
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Steady State Hoop Stress vs Radial Distance
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Figure 12 — Comparison of computed hoop stresses using FVM and FEM for
uniform thick-walled tube.

CONCLUSIONS

A very accurate finite volume formulation and algorithm were described for elastic-
creep analysis of axisymmetric components. Its verification and application to an
internally corroded/eroded boiler tube were demonstrated. It was also shown that for the
same level ofimesh density, the present finite volume formulation was more accurate than
a similarly formulated finite element method.
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