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ABSTRACT 

Phase modulations of periodic dislocation patterns, observed in transmission electron 
microscopy(TEM) studies of some single crystalline metals, are analyzed using the methods of 
nonlinear dynamics. The Ginzburg-Landau (GL) equation for the soft mode instability in the weakly 
nonlinear regime is derived for the Walgraef-Aifantis (WA) model for a coupled system of two 
populations of dislocations. The bulk of results is obtained using the GL equation rather than the WA 
model itself. We demonstrate that phase modulations of dislocation patterns can be described using the 
concept of the Eckhaus instability which describes one of the most fundamental "generic" mechanisms 
of wavelength-changing and which was successfully used before for the analysis of nonlinear systems 
of different physico-chemical nature. The timescale of wavelength-changing processes in dislocation 
systems can be very large when the system is close to the Eckhaus stability limit, i.e., the metastable 
phase modulations of dislocation pattern can survive nearly unchanged for a long time. The results of 
numerical simulations for realistic values of the parameters show that the Eckhaus instability could be 
the underlying physical reason for modulated ladder structures of PSBs in cyclically deformed metallic 
alloys. 

L INTRODUCTION 

The collective behavior of dislocation ensembles plays a crucial role in many practically important 
phenomena, such as work hardening, dislocation patterning in plastically deformed metals, and the 
Portevin-Le Chatelier effect in monotonically or cyclically loaded metals. In particular, the formation 
of Persistent Slip Bands (PSBs) is thought of as a material instability at the mesoscale resulting in the 
formation of regular arrays of dislocation walls /1-9/. The wavelength of the PSBs (they are called 
persistent because, being removed by surface polishing they reappear at the same locations if the 
cyclic stress is continued) and the average distance between two adjacent walls are determined by the 
intrinsic length scales introduced via generalized dislocation mobilities coefficients. 
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In spite of the fact that many properties of an individual dislocation were successfully studied 
theoretically /10,11/ as well as in atomistic simulations /12-15/, it is still not an easy task to make a 
connection between an atomistic scale and a mesoscopic level on which dislocation patterning 
develops. A successful attempt at establishing such a connection was made recently by Bulatov et cd. 
/16/ who performed both atomistic and mesoscopic (by using the Peach-Koehler equation) simulations 
of dislocation junctions (Lomer-Cottrell locks) in a Lennard-Jones system Nevertheless, such "success 
stories" are still relatively rare, and more typically mesoscopic simulations are performed in order to 
probe collective properties of dislocation patterning /17-20/. 

Dislocation patterning in deformed metals is intimately connected with thermodynamically 
irreversible plastic phenomena /21/. This irreversibility makes it impossible to obtain these structures 
by minimizing some appropriate potential functions, i.e., one cannot simply transfer the principles of 
equilibrium thermodynamics to plastic instabilities /17,22/. 

An alternative approach is based on a continuum description, i.e., on the study of nonlinear systems 
of governing equations for dislocation densities. This "self-organizational" approach considers the 
formation of dislocation structures as a bifurcation phenomenon leading to solutions which do not 
belong to the thermodynamic branch /l,2,23-25/. At the present moment there is no general way to 
derive these equations starting from individual dislocations and their interactions. Usually the analysis 
of these equations is limited to studying their linear stability, which describes only primary bifurcations 
corresponding, e.g., to spatially homogeneous oscillations in time (Hopf instability), or to the formation 
of steady-state spatial waves of dislocation densities (Turing instability). It is also important to mention 
the recent interesting attempts to apply the methods of stochastic dynamics to dislocation ensembles in 
order to describe the formations of PSBs and matrix structures /26-28/. 

In many cases linear stability analysis is not sufficient to describe how an emerging dislocation 
pattern will react to spatio-temporal perturbations on different length and time scales. This means that 
one has to consider some nonlinear instabilities too. This fact has been understood for the first time in a 
series of papers of Aifantis and coworkers (see, e.g., Refs. /7,29,30/ and references therein). They 
proposed to consider the slow mode dynamics in a weakly nonlinear regime. In this case the slow or 
unstable modes should play a role of an "order parameter", and their dynamics is described by the 
time-dependent amplitude GL equation The typical examples of nonlinear instabilities include the 
Benjamin-Fair instability which can cause the growth of the phase fluctuations in time and phase 
turbulence /31/, and the Eckhaus instability which generates phase modulations of periodic spatial 
patterns with a subsequent change of the pattern wavenumber /32/. 

In this work we present the results of our study of the Eckhaus instability in dislocation systems 
which can generate structure modulations in dislocation patterns. Such modulations and irregularities 
have been observed many times before in the TEM studies (the TEM image exhibits the dislocation-
rich and dislocation-poor regions of the sample). Figure 1 shows an experimental TEM image from 
Ref. 133/. It can be clearly seen that the ladder structure of PSBs in a copper single crystal is indeed 
modulated, and the PSB wavelength increases and decreases in a systematic way. Later, similar results 
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Fig. 1: The ladder structure of PSBs in a copper single crystal cycled at a strain amplitude in the 
plateau (the [121]-slice is shown, the crystal is pinned in the loaded state by neutron 
irradiation, after Laird et al. /33/). 

were observed in numerical simulations of Glazov and Laird /34/ within the framework of the one-
dimensional "reaction + diflusion" approach and the finite-size analog of the WA-model (Figure 2). 
Veiy impressive results highlighting the dynamical evolution of dislocation structures have been 
recently obtained by Holzwarth and Essmann /35/ who considered the transformation of irregular, 
amoeba-shaped matrix dislocation structures into PSBs during the fatigue in copper single crystals /3 6/. 
It was found that a sudden change in the amplitude of cyclic deformation generates ladder structures 
similar to those shown in Fig. 1, and the aperiodicity of the ladder (with dislocation-rich walls and 
dislocation-poor channels) diminishes if one waits for a long enough time. This means that at last an 
aperiodic ladder structure relaxes to a periodic one. 

All these modulated structures are unobtainable from the linear stability analysis. However, we 
show that they can be reasonably well described using the concept of the Eckhaus instability which was 
successfully applied earlier in the theory of convection, in the studies of current-carrying states in 
narrow superconducting channels, and in hydrodynamics. The Eckhaus instability is connected with the 
dynamics of the wavelength-changing process. In one of the stages of this process, aperiodic long-
living transients (which appear via nonlinear interactions) relax to a periodic structure. This is exactly 
what one observes in the TEM experiments. At present we consider only quasi-one-dimensional 
systems. Such a simplified approach is justified by the TEM observations which show that the 
evolution of quasi-one-dimensional PSBs is nearly independent of changes in the surrounding matrix 
structure /35 /. 

We start with the WA-model for a coupled system of two populations of dislocations (mobile and 
relatively immobile). The Eckhaus instability then is studied by using the nonlinear amplitude 

9 
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Fig. 2: The density of immobile dislocations, X, as a function of scaled length, x/L, for a one-
dimensional "grain" (grain size L = 13 μιη) obtained in numerical simulations by Glazov and 
Laird /34/. The final-size analog of the WA-model was used, the modulated structure persists 
for a very long time. 

(Ginzburg-Landau) equation which can be derived from the WA-model in the vicinity of a continuous 
pattern-forming instability, i.e., in the regime of weak nonlinearity. Recently, the same approach based 
on the GL equation was adopted by Salazar et al. /37/ for the analysis of spatio-temporal dislocation 
patterns. They found "unexpected solutions" in the form of spiral waves and concluded, on this basis, 
that an approach based on the GL equations is limited. In this paper we are not going to analyze all 
possible spatio-temporal patterns which can be obtained within the framework of the GL approach. 
Instead, we concentrate on looking for the steady-state spatial waves of dislocation densities. For this 
purpose we use the GL equation for the soft mode instability which describes the formation of 
dislocation patterns and their spatial modulations, instead of the GL equation for the hard mode (which 
describes unstable modes rapidly changing with time) used in Ref. 1211. Thus the GL equation obtained 
for the soft mode does not contain any "unphysical" solutions. 

The paper is organized as follows. The WA-model for a coupled system of two dislocation 
populations and its linear stability analysis are briefly reviewed in Sec. Π. Section ΙΠ contains the 
derivation of the GL equation for the soft mode which describes steady-state spatial patterns (see also 
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Appendix A). We show that the values of all the coefficients of the GL equation for the soft mode are 

real. We estimate these coefficients for the values of parameters describing a realistic dislocation 

system. Sec. IV contains a qualitative description of the process of the Eckhaus instability formation 

and development 

A detailed analysis of the dynamics of the wavelength-changing process and the relation between 

the Eckhaus instability and experimentally observed modulated dislocation patterns are discussed in 

Sec. V. In general, the wavelength-changing process is very complicated, especially in the case where 

an unstable initial wave vector is close to the Eckhaus stability limit However, the hierarchy of 

relaxation rates for different modes can generate a metastable phase modulated pattern which survives 

for a long time before transition into the final (Eckhaus stable) pattern occurs. We discuss the scenario 

of appearance of metastable modulated patterns in real experimental conditions. 

A conclusion and summary of the results are presented in Sec. VI. 

II. THE WALGRAEF-AIFANTIS MODEL AND ITS LINEAR STABILITY 

Following the WA-model /1,2/ we have a system of two coupled equations for the densities of 
mobile (n2) and immobile («0 dislocations in the following form: 

Here D\ and D2 are the "generalized mobility" coefficients of the immobile and mobile dislocations (D, 

« D2), respectively, b and γ characterize the freeing of immobile dislocations and the nonlinear 

interaction between dislocations. g(«i) = a-ßnf is the source function which describes the multi-

plication of dislocations, e.g., by means of the Frank-Read proeess /10,11/ (and represented by the 

constant term a ) , and the annihilation of dislocations with opposite Burgers vectors (parameter ß, all 

the constants are real and positive). 

Of course, such a description is very approximate and ignores several important factors. First, the 

multiplication term α which represents the Frank-Read process is assumed to be a constant. However, 

it must obviously depend on the coordinates and on time and also contain information about the 

reaction of the system on the local stress state, i.e., to be fluctuating. Second, the constants b and γ 

describe the "local" interactions between dislocations only and ignore any long-range forces between 

dislocations. Third, the diffusion ("generalized mobility") process may also depend on the local 

environment of a given dislocation, i.e., the model of diffusion in a homogeneous medium with a 

constant diffusion coefficient may be inadequate (the diffusive nature of dislocation mobility can be 

strictly justified only for some special mechanisms such as, e.g., double cross-slip mechanism). Also, 

dt 
dn2 

Ί)Γ 

>1 
= θ{η·ι) - bni + jn\n2 + Dx 

= brii — 771 \n-2 + D 2 (1) 
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the cubic nonlinearity in the governing equations has been critically discussed in the literature (see, 

e.g., Ref. Ill/). Therefore, this model is approximate and qualitative. Nevertheless, it is its simplicity 

which allows us to understand analytically some features of dislocation patterning, and this feature 

makes the model particularly attractive. 

Using the standard procedure described, for example, in Ref. /38/, we represent the densities n\ and 

«2 as 

n , = n\ + <h, 

n-2 - n 2 + <72, (2) 

where n]
0 and n° are the steady-state solutions of Eq. (1), 

1/2 

n0 = — 
b (β 1/2 

7 γ α , 

Eq. (1) then can be rewritten as 

q = Lq + f (q) , 

(3) 

(4) 

where q is the vector, 

q = 
^ qi(x,t) ^ 

\ / 
q2{x,t) 

L is the linear operator, 

( 
L = 

(b-b0) + Dl£i 

-b -a + D2 iL ΈΡ y 

and the vector f(q) contains all the nonlinear terms, 

(5) 

(6) 

f(q) = 
' λ ο μ Λ 1 

\ h(x,t) 

{<1 - ß)q? + cqxq2 + W1Q2 

\ ~dq\ - c*m2 - Ί<ΐ\<ΐ2 ) 
(7) 
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The parameters a, b, c, d are defined as 

α = 7 ( n ? r = f -

b0 = 2\Jaß, 

c = 27 ri[ = 27./-, 

η L l ß d = in2 = b^j- (8) 

The difference between the WA-model and the classical "brusselator" model used for studying the 

kinetics of chemical reactions (see, e.g., Refs. /38-40/) is the presence of an additional quadratic non-

linear term describing the annihilation process of two dislocations with opposite Burgers vectors. 

We start with linear stability analysis and assume the solution to have the form 

q(x, t) = q0 exp (Xkt) exp (ikx). (9) 

Using Eq. (4) we find 

λ = I ± - 43. (10) 

where 

q = -D\ - Dk
2 + (b - bo) - a, 

β = (Df - (b - bo)) • (D\ + a) + ab, (11) 

and =D] -k2,Dk
2 =D2-k2. 

There are several control parameters which can create instability in the system. Below it is assumed 

that we change the freeing parameter b and consider all other parameters as constants. Instability occurs 

when one of the two eigenvalues of Eq. (10) becomes positive at some wave vector k. We are interested 

in steady-state spatial patterning, i.e., in the case where the discriminant in Eq. (10) is not negative. 

One can easily check that the soft mode instability first occurs at a nonzero wave vector, 

when the freeing parameter b becomes equal to its critical value, 

1 
b = bc= „ 

D2 
(.Dob0 + D.n) + 2^(D2b0) • (D,a) (13) 

13 
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Defining a new parameter, μ = / D2 « 1 , one gets 

bc = ( v ^ + Mv'a)2· (14) 

Most of these derivations are standard and not original (see, e.g., Refs. /1,2,39/ for a similar 

analysis). They are presented here in order to facilitate understanding of the following material. 

We derive the Ginzburg-Landau equation for the soft mode using the standard procedure (see, e.g., 
Refs. /38,41/). It is assumed that the solution q(x/) has the form 

where the summation is made over all the wave vectors k and over the number of eigenvector j at a 
given k. ξ is supposed to be a slowly varying function of coordinate (in comparison with expO'/y:)). 
Because the undamped modes (with λ > 0) may grow unlimited provided the nonlinear terms in Eq. 4 
are ignored, the amplitudes of these modes are bigger than those of the damped modes. On the other 
hand, near the "phase transition" point the relaxation time for the undamped modes tends to infinity, 
i.e., the damped modes must adiabatically follow the undamped ones. Although the amplitudes of the 
damped modes are small, they must not be neglected completely. The equations for the damped modes 
which follow from such a "slaving principle" are usually just algebraic equations that can be easily 
solved. (Here we discuss the case of the soft mode instability only. For the hard mode one has to take 
into account time oscillations of the unstable modes.) Inserting q(jc,/) from Eq. (15) into Eq. (4) and 
dividing all the modes (j,k) into stable and unstable ones, we get the GL equation for the soft mode (a 
detailed derivation is presented in Appendix A): 

where ξ(χ,ή describes the unstable mode with λ > 0 (at the wave vector k = kc), and the coefficients λο, 
λ2, and Β are defined as 

III. GINZBURG-LANDAU EQUATION FOR THE SOFT MODE 

q(x, t) = Σ t)qjtk exp {ikx), 
hk 

(15) 

ξ = (Χ0 + \2·ν2)ξ-Β\ξ\2ξ, (16) 

λο = (b - bc) be) 7= 
(1 - ß2)(\/b0a + αμ) 

+ 0[(b- b c f } 

8μ(00α) 
(1 - μ2){ν^ + αμ)^ 

(17) 
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The coefficient λο disappears at b = bn defining the point of the "phase transition", i.e., the value of b 
at which the bifurcation occurs, and a spatial periodic structure develops. The coefficients λο and λ^ 
were calculated exactly, i.e., taking into account all the orders of the parameter μ. When calculating the 
coefficient Β we kept only the term of the order of l/μ which dominates in the only case interesting to 
us ( μ « 1 ) . 

We notice that the values of all the coefficients in the GL equation are real. This result coincides 
with those obtained earlier for a similar "brusselator" model (see, e.g., Ref. /38/). Analogous results 
were obtained in Ref. /42/ where the formation of spatial patterns on planar continua was considered, 
and real values of the coefficients in the GL equations followed from the necessity for the dynamics to 
commute with some symmetry operations. The GL equation with real coefficients cannot exhibit 
solutions in the form of spiral waves studied in Ref. /37/, where the GL equation with complex 
coefficients describing the hard mode instability (the unstable mode is oscillating in time) was used. 
We were rather interested in spatial patterning only, i.e., we used the equation for the soft mode. We 
would like to emphasize that the analysis of all possible spatio-temporal patterns in dislocation systems 
was not the goal of the present publication, and for studies of steady-state spatial patterns the GL 
equation for the soft mode seems to be completely adequate. 

The next interesting feature of Eq. (16) is a critical dependence of the coefficient Β on the 
parameter γ which describes the cubic nonlinearity in the WA-model. When γ < γΛ 

the coefficient Β becomes negative, and a nonzero space- and time-independent solution of the GL 
equation disappears. In a general case, the change of the sign of the cubic term means that the cubic GL 
equation is not sufficient, and higher order terms must be properly taken into account (i.e., one gets a 
transition from a supercritical to a subcritical bifurcation regime). The detailed analysis of different 
bifurcational behavior could be performed using the power series expansion approach described, e.g., 
in Ref. /41/, and recently used in Ref. /43/ for analysis of limit cycle solutions in a model similar to 
ours (it is based on equations for three different types of dislocation densities but considers only the 
time-dependent part and neglects the spatial coupling). We are not doing such a general analysis here 
because for realistic values of the parameters we always have γ » γ„ (see below), the coefficient Β is 
large and positive, and we do expect that the bifurcation forming the onset of the periodic pattern is 
supercritical. 

For farther study of a continuous pattern-forming instability in the vicinity of the threshold, it is 
convenient to change the units and variables (see, e.g., Refs. /44,45/), namely, the part of the sum of 
Eq. (15) which corresponds to the undamped modes can be written as 

(18) 

q(.r, t) = ει/2 • χ • [qu>,c · A{X,T)eik<* + c.c.j = ε1'2 • χ · [qu,fcc · Φ + c.c.], (19) 

15 
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where ε = (b - bc)/bc measures the distance from the threshold. X = -ι/εχ/ξ0 and T= εί/to are slow 

space and time variables, and c.c. denotes the complex conjugate, q ^ is the eigenvector for the 

unstable mode (see Appendix A); the function Φ - Α (Χ,Τ)· exp(ik^x) describes a slow modulation of 

the periodic basic solution. This function defines all the spatial and temporal changes of the order 

parameter q(x,/). Following Ref. /44/ we generated the real valued order parameter q for steady-state 

pattern (for which the instability happens simultaneously on both the wave vectors kc and -kc). χ is an 

additional parameter, 

X \ 
9 ß\/böa 

w r ^ r ( 2 0 ) 

which formally contains a singularity at γ = yc. Actually, this singularity does not create any real 

problem because one always has γ » y c for a realistic set of parameters of the system (see below), ξο 

and to are the relaxation time and the coherence length, 

l 

το ~ τ-, 

2 8 y/b^a μ ξ ο = ~bT¥c- W 

The amplitude Α (Χ, Τ) satisfies the standard dimensionless GL equation, 

= ν | - . 4 + / 1 ( 1 - μ | 2 ) . (22) 

It can be seen that q(x, f) is proportional to -/μ at small values of μ. This means that the patterning 

formation process does not develop in a dislocation system where "immobile" dislocations cannot 

diffuse at all (μ =0). 

The periodic stationary solutions of Eq. (22) above the threshold exist only for Q2 < l, 

A = a0eiQX,a0= (23) 

and the solution with a given Q corresponds to the wavenun\ber 

k = k c + i ψ . ι . ^ , ν ^ . ή . ( 2 4 ) 

For further numerical estimations we use the set of parameters recommended by Schiller and 

Walgraef/46/ and used in Ref. /34/: time was measured in fatigue cycles, cy (this is a natural time unit 

for cyclic mechanical testing; further we assume that the frequency of cyclic testing is of the order of 

one cycle per second, which is quite realistic); 5 = 6 cy"1; b = 30 cy"1; c=200 cy"1; £>ι=3χ10"15 m2-cy"'; 

16 
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D2 = 4 χ 10"11 m 2 - c y H e r e a, b , and c are related to our parameters as 

ä = 2ßn\ - b0 

c = 7 « ) 2 = α 

n° 
6 = c · = 6, (25) 

n i 

and μ = / D2 ~ 10"2, i.e., μ « 1 . We obtain Xc = 2n/kc = 0.7 μιη, which seems in agreement with 
experiment (see, e.g., Refs. /34,35/ and Figure 1); yjy = ά /4c « 1 , i.e., we can neglect the parameter 
yc in comparison with γ in Eq. (20). For this set of parameters, Eq. (24) can be rewritten as 

k = kc-{l + 1.7c 1 / 2Q). (26) 

The parameter χ in Eq. (19) is small (χ ~ 0.05 · n,°), which is much smaller than the density of im-
mobile dislocations at the stationary point This means that our approach based on the GL equation 
describes the behavior of the system only in the vicinity of the bifurcation point 

In this work we chose the parameter b as a control parameter of the system, i.e., we considered the 
behavior of the system just above the critical value of this parameter, bc & b0= a = 6 cy"1. If we 
compare this value with b = b = 30 cy'1, chosen in Ref. /34/ for numerical simulations, we see that the 
realistic system is very far from the bifurcation point, i.e., our present consideration of a weakly non-
linear system is quite qualitative. However, it provides a clear physical interpretation of spatial 
aperiodicity of dislocation patterns observed experimentally. 

IV. THE ECKHAUS INSTABILITY AND APERIODICITY OF PATTERNS 

Continuous systems with spatially periodic stationary solutions are of interest in various physical 
and chemical systems /47,48/. From Eqs. (23) and (24) one can easily see that the onset of periodic 
patterning is defined by the neutral curve ε = (k-kc)2 (which corresponds to \Q\ = 1). Below this 
curve a periodic solution with an infinitesimally small amplitude will decay, i.e., this curve defines the 
linear stability region. However, inside the linear stability curve, the periodic pattern can become 
unstable through the development of slow spatial modulations of the periodic structure if the vector Q 
is larger than the so-called Eckhaus stability limit (Q,.: = 1 / ^ 3 «0.5574 for small ε) 1171. After some 
evolutional period, the system ends at the periodic state with the new wavenumber Q < Qe- The 
Eckhaus instability is a very important mechanism of patterns selection which can significantly change 
the wavenumber of the pattern Experimentally it can be observed, e.g., by quenching the system into 
an unstable wavenumber and observing its subsequent transition into a stable <2-state (see, e.g., Ref. 
/49/, where the onset of thermal convection in a thin fluid was experimentally observed). 

17 
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The modulations of the periodic structure can be described by introducing the "longitudinal phase 

diffusion coefficient" which becomes negative for an unstable solution, thus defining a wavenumber-

changing process. The total set of nonlinear equations for a slowly varying phase in a one-dimensional 

reaction-diffusion system (in the fully nonlinear region) was obtained by Kramer and Zimmerman /44/. 

However, this general approach is not very convenient for practical simulations, and the physics of the 

wavelength-changing process can be better understood in the weakly nonlinear regime, i.e., near the 

GL threshold. 

There exist two general approaches to qualitative description of the Eckhaus instability. The first of 

them is based on an analysis of the static solutions of Eq. (22) which can be obtained by writing A(X, T) 

in terms of real amplitude R(X, T) and phase ©(X, T) functions /44,50-52/, 

Λ = i?exp ( ί θ ) . (27) 

Then the stationary solutions satisfy the condition J = const, where J = R2d^ß is the integral of motion, 

and the equation for R can be written in a form analogous to Newton's equation of motion for the 

particle in some potential U(R), which is monotonic for J2 > J2 = 4/27, and has a maximum and a 

minimum (i.e., a bounded solution can exist) for J2 < J 2 . The spatially periodic solutions are stable for 

wave vectors Q2 < Q\ = 1/3, and unstable for Q2> Ql-

In addition to the periodic solutions one gets a class of solutions with periodically modulated R (and 

9χΘ). They correspond to saddle-points of the Ginzburg-Landau functional, can be expressed in terms 

of elliptic integrals, and are unstable (see, e.g., Refs. /51,52/). These solutions correspond to the most 

interesting case of a wavelength-changing process. However, they can be expressed in tractable form 

only when the two roots of the cubic polynomial in the denominator of the elliptic integral coincide 

(i.e., the modulation vector Κ is zero) /44,51,52/. This situation has been discussed earlier for current-

carrying superconductors 152/ and for systems with Rayleigh-Benard instability /51/. 

An alternative way of considering the Eckhaus instability is the secondary linear stability analysis 

of the solution of Eq. (22) with an unstable wave vector Q (g2 > 1/3) /50/. The maximal growth rate 

(amax) of the destabilizing "Eckhaus modes" is exhibited at the modulation vector K ^ (the new wave-

numbers of the system are Q ± K^), 

Numerical simulations for a system which consists of a single mode with an Eckhaus-unstable Q and 

an additional broad band random noise of small amplitude /50/ show that, in general, this scenario is 

true, and after competition between different modes only one Fourier component with the wave vector 

near Q - Kmax survives in the final state. If the system is very close to the Eckhaus stability limit, the 

< W = (3Q2 - 1) '/4Q2, 

A ' L x = W 2 - 1)(Q'2 + 1)/4Q~. max 
(28) 
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wavenumber-changing process becomes veiy complicated, and the system ends up at some stage with 
Q - VKMAX, where 0 < α < 1. 

Before the system gets into the final state with an Eckhaus stable wavelength, it goes through 
intermediate states containing many harmonics, and the instantaneous spatial shape of the pattern at 
these moments should be studied numerically. 

V. NUMERICAL RESULTS AND DISCUSSION 

Following Ref. /50/ we do numerical simulations for the system which is initialized in a state with 
several periodic modes of the form 

Ν max 

A(X,0) = a0(0)elQX + £ am( 0)elX{Q+mK\ (29) 

where NMIN and N^ are the minimal and the maximal numbers of modes considered, Q is the initial 
(Eckhaus unstable) wave vector, Κ is the vector characterizing the change of the wavelength. If the 
initial vector Q is far from the Eckhaus stability limit, QE, the vector AT can be taken near the value of 
KMAX for a given Q (see previous section), and the number of modes that should be taken into account is 
small. If the wave vector Q is close to Qe, the process becomes very complicated and includes many 
harmonics. In such a case one has to perform numerical simulation with a small value of Κ and a large 
number of modes, and the coefficients am(0) should be considered as small random perturbations. 

The time evolution of the coefficients am(T) is given by the GL equation 

dra,n = ftmam — Σ ak(liak+l-mi 
k.l 

= 1 - {Q + niK)2. (30) 

The coefficients am can be taken as real, and A(X, T) is an almost periodic function ofXat a fixed T. 
The evolution of the system consists of two main stages. In the first one (the "branching stage"), 

modes with wavenumbers Q and mK appear and grow via nonlinear interactions. In the second 
("selection") stage, all the side branches disappear, except the only final mode. These processes are 
illustrated in Fig. 3 for two different sets of am(0)'s. The initial unstable wave vector (Q = 0.6) was 
close to the Eckhaus stability limit, the value Κ = 0.025 was taken for both examples, 41 modes were 
taken into account (NMIN = -20, NMAX = +20), and o0(0) = - J l -Q 2 + 0.1. Eq. (30) was integrated 

numerically using the fourth-order Runge-Kutta method. Further increase in the number of modes does 
not change the result significantly. For each set of the initial conditions, the system develops slowly 
and smoothly ("branching") before a certain moment where many harmonics start to grow fast, and 
after an intermediate stage of intensive competition between several modes, the system selects one 
mode which saturates in time, while others die out However, evolution of the system is complicated 
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T(103 c.u.) 

Fig. 3: Time evolution of the coefficients am(T) (only a few modes with largest amplitude are drawn). 
Q = 0.6, Κ = 0.025, 41 modes, o0(0) = (1 - β2)0 5 + 0.1. The perturbation at the moment Τ = 0 
was taken in the form om(0) = 0.01 -(-l)"*1 where m = - 5 -1, for the (a) - part of the Figure 

and m = - 4 . . . . - 1 for the (b) - part. All the other coefficients am(0) were equal to zero. Time Τ 

is measured in the conventional units (c.u.) used in the standard dimensionless GL equation 

(see previous sections). 

and is defined by a number of separatrices /50/. The initial conditions for Fig. 3a) and b) are very 

similar but the evolution processes (and the final saturated mode) are different Here we are not going 

to perform any detailed investigation of separatrices and regions of attraction for this system. 
Most important for our consideration is the fact that, in both cases, in addition to the saturated mode 

(m = -5, for the upper part of Figure 3), there are two "satellites" (m = - 6 and m = -4) which are dying 
very slowly in time and, therefore, can generate the modulated structure of the pattern in the real space 
which persists for a long time. Here we considered the case where the "selection stage" takes a long 
time, which is quite usual if 6 is close enough to QE- In some cases we observed a long "branching 
stage" where several modes with comparable amplitudes develop slowly in time due to nonlinear 

20 



S.N. Rashkeev et al. Journal of the Mechanical Behavior of Materials 

τ 

1 -

- 1 -

i I I 
0 20 40 

Fig. 4: The "order parameter" Φ(χ) at a certain moment during the "selection stage" as a function of a 
"dimensionless coordinate", kjc/2π, for the system with Q = 0.6, Κ = 0.01, 101 modes, and 
a0(0) = (1 - Q2)0 5 + 0.1. The initial values of the other coefficients am(0) were taken randomly 
from the interval between -0.01 and 0.01, ε = 0.3. 

interactions. However, this is rather an exception than a typical behavior. Figure 4 provides an example 
of a typical behavior of the function Φ(χ) (see Eq. (19)) which contains all the information about spatial 
and temporal changes of the order parameter q(x, t) (we consider only the real part of the function Φ 
which we will call the "order parameter"). The behavior of Φ obviously exhibits an amplitude 
modulation of the undisturbed periodic function (with the wave vector kc). A fragment of the same 

Figure drawn in another scale shows that phase modulation also takes place in the system (Fig. 5). In 
the presence of phase modulation, the distance between the neighboring maxima of the dislocation 
density changes with the spatial coordinate (Figure 7). Note that the distance between the maxima is 
not chaotic - it exhibits a nearly periodic behavior with the period much larger than unity (the unity 
corresponds to the main period of the undisturbed system, 2 n!kc). The shape of the curve is quite 
universal - a simple linear transformation of coordinates makes any two curves (which correspond to 
different values of ε) equivalent Such a behavior is also obvious from Eq. (26). 

In Figure 6 we show a two-dimensional plot of the order parameter (one coordinate is a dummy) 
which is similar to the experimentally observed ladder structure of PSBs shown in Fig. 1. The absolute 
values of the phase modulation in our simulations for a weakly nonlinear system are somewhat smaller 

21 



Vol. 10, No. 1, 1999 Irregularities and Modulated Dislocation Patterns in Plastically 
Deformed Materials: The Eckhaus Instability 

1 . 0 -

θ 

0.8 -

10 20 
Ι<εχ/2π 

Fig. 5: The fragment of the curve of Fig. 4 shown in other coordinates. 

than the experimental ones. The direct numerical calculations of dislocation densities in the fully 
nonlinear system (far from the bifurcation threshold) by Glazov and Laird /34/ give the values of 
modulation which are closer to experiment (Fig. 2). However, the theoretical analysis of the results 
obtained from numerical simulations in Ref. /34/ was restricted to linear stability analysis, and the 
reason for the appearance of these modulations has not been highlighted. 

In the examples considered above, the time Τ was measured in conventional units (c.u.) used in the 
dimensionless GL equation. Let us assume that the lifetime of a metastable modulated structure 
(AT, the time interval during which we can consider the structure nearly unchanged) is of the order of 
3000 c.u. (which is quite realistic for Q = 0.6, see Figure 3). This corresponds to AT/ebc = 6000 cy ~ 
6000 seconds ~ 1.5 hour, for ε = 0.1 (we assumed as before that the frequency of the cyclic testing is of 
the order of one cycle per second). This means that modulated structures for a given Q can persist at 
least for hours. When Q approaches QE> the lifetime of the metastable modulated structure grows as 
1 I(Q-QE)2, i.e., it has no upper bound 

From the above analysis one can easily imagine the scenario of appearance of such modulated 
structures in fatigued crystals. If there exists some pattern with the wave vector Q which is stable for a 
given set of the parameters of the system, this pattern can become unstable at the next moment when 
some of the parameters suddenly change their values. The pattern starts to change its wavelength and, if 
Q is close to QE, this process can generate a long-living metastable structure. In the numerical examples 

22 



S.N. Rashkeev et al. Journal of the Mechanical Behavior of Materials 

Fig. 6: The two-dimensional plot of Φ(χ, >>)• The coordinate y is a "dummy", and the x-dependence of 
Φ(χ, y) corresponds to Φ(χ) shown in Figure 5. 

considered above, we illustrated how such a wavelength-changing process can produce modulated 
structures in a weakly nonlinear system. 

A qualitatively similar behavior has been observed in recent very accurate studies of the TEM 
images, where the time evolution of the distance between the dislocation-rich walls in PSBs has been 
statistically analyzed /35/. It was shown that the statistical distribution of the distance between the two 
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Fig. 7: The distance between the nearest maxima as a function of the number of maximum for the 
order parameter Φ(χ) shown in Figure 4 (for different values of ε). 

nearest walls is very asymmetric at the moment when the PSBs have just been generated from the 

initial matrix structure by a sudden change in the cyclic loading amplitude (actually, the asymmetric 

PSBs appear very fast; this corresponds to the fast "branching stage" when different modes develop via 

nonlinear interactions). If the cyclic loading regime is no longer changing, this aperiodic structure 

exhibits the tendency to become periodic, i.e., the distribution function of the dislocation wall spacings 

becomes narrower in time. This means that the wavelength-changing process evolves in time to some 

final periodic structure through certain stages that contain intermediate long-living transients. Such a 

behavior is very similar to that for the Eckhaus instability. 

The real experimental situation is, of course, much more complicated than that described by the 

WA-model. The only justification for application of this model to dislocation dynamics is based on 

some similarities of the behavior of densed dislocation systems and the kinetics of chemical reactions. 

Then, the evolution of the real system takes place under the cyclic loading conditions. The effects of 

the cyclically changed applied stress are not taken directly into account in the WA-equations, and the 
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dislocation structures in a real crystal will not evolve without the presence of stress in the system (the 
diffusion motion is closely connected with fluctuations of the local stress). 

However, the experiment shows that the most important period of evolution coincides with the first 
quarter of the first cycle with a suddenly increased amplitude. The flow stress at this moment reaches 
its maximal high value, and the density of mobile dislocations grows fast because of decoupling of the 
edge dislocation dipoles β 5/. This means that the amplitude of the cyclic deformation plays the role of 
the freeing parameter b in the WA-model which controls the transformation of immobile dislocations 
into mobile ones. Also, our model assumes that the permanent presence of an external cyclic loading 
generates a fluctuating stress field inside the sample, and this field supports the diffusive motion of 
dislocations. The sudden change of the parameter b in the system can also initiate a possible 
wavelength-changing process. Therefore, the experimental situation is quite similar to the evolutional 
behavior of the Eckhaus instability, namely, (i) after a change in the control parameter, the system 
makes a fast transition into a very aperiodic pattern ("branching"); (ii) this pattern evolves to the new 
stable periodic state through an intermediate long-living transient ("selection"). 

This similarity makes it possible to consider the Eckhaus instability as a "generic" mechanism that 
plays an important role in real dislocation systems. This mechanism might be one of the fundamental 
processes that "probes" the topological stability of a given dislocation pattern and may result in its 
modulations and subsequent structural rearrangements (e.g., vein structure -> ladder structure of PSBs 
-> mazes -> cells, etc.). 

VL CONCLUSIONS 

In this paper we made an attempt to understand qualitatively the nature of modulated dislocation 
structures in fatigued metals which were observed in TEM experiments (see Refs. /33,35/). We demon-
strated that these modulations can be qualitatively explained using the concept of the Eckhaus 
instability /32,44,45,50/. A detailed quantitative theory which describes the dynamics of the 
wavelength-changing process does not yet exist, and one has to do computer simulations for every 
particular system. We tried to illustrate how such simulations can help to understand modulated ladder 
dislocation patterns and some universality of their behavior. 

We considered quasi-periodic one-dimensional ladder structures in cyclically deformed metals. The 
question of application of the Eckhaus instability theory to more realistic two- or three-dimensional 
systems is still open. At least we know that in the two-dimensional extended anisotropic systems the 
nature of Eckhaus instability remains essentially unchanged /49,53/. However, during the 
wavelength-changing process some defects may appear /54/. Also, an approach based on the Ginzburg-
Landau equations and analysis of their instabilities in the parametric space seems to be a powerful tool 
for studying the spatial patterns and their transformations in continuous planar systems /42/. We 
believe that the concepts of Eckhaus instability, phase modulations and wavenumber-changing 
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processes, represent one of the fundamental mechanisms of dynamic dislocation structure rearrange-
ments which governs the topological stability of dislocation patterns. 

Also, it would be a great challenge to understand whether the presence of random and periodic 
external forces in the system can change the stable solutions of the GL equations, i.e., how the presence 
of "white" or "colored" noise in the system changes the pattern selection mechanisms. Random forces 
are always present in dislocation systems, and if the pattern selection process depends on noise, the 
behavior of the system should be similar to those numerous physical, chemical, and biological systems 
where noise-induced transitions were predicted theoretically and observed experimentally /26-28,38,40, 
55,56/. The presence of an external periodic force corresponds to taking of the cyclic loading into direct 
consideration (i.e., a more exact model than those considered above). This study would be extremely 
important for practical applications. Recent numerical simulations of different regimes of cyclic 
deformation in metallic alloys based on nonlinear dynamics show that the cyclic loading can generate a 
variety of different temporal dissipative structures /57/. However, to the best of our knowledge, the 
effects of spatial coupling in such a system have never been studied theoretically or by means of 
numerical simulations. 

ACKNOWLEDGMENTS 

This work was supported by the Alcoa Foundation Grant, and this support is gratefully 
acknowledged. 

APPENDIX A: DERIVATION OF THE GL EQUATION 

In this Appendix we derive Eq. (16). Following the recommendations of Refe. /38,41/, we divide all 
the modes of Eq. (15) into stable (s) and unstable (u) modes, 

q(x, t) = Σ ?«,*(*> f)qu,* exp {ikx) + £ ξ,Λ{χ, t)qsJc exp (ikx). (Al) 
«Λ s,k 

In the one-dimensional case there are only two possible unstable modes, (u, kc) and (u , -kc). They 
correspond to instabilities at the two wave vectors with the same absolute value but opposite directions. 

The linear term in Eq. (16) describes the bifurcation behavior of the order parameter for unstable 
modes when the value of b exceeds bc. Taking into account Eq. (10) for the eigenvalue of the unstable 
mode, and considering φ - bc) as a small parameter, one easily gets the result for λο in Eq. (17). 

The term containing the spatial gradient appears from the separation of slow and fast varying spatial 
variables. Namely, we suppose that ξ*. tc (x, 0 is varying in space much slower than exp (/Ayr). Then all 
the gradient terms can be extracted from the ^-dependence of λ near the point k = kc. Assuming that k = 

26 



S.N. Rashkeev et al. Journal of the Mechanical Behavior of Materials 

kc + q(q is small), we are looking for the coefficients λ] and λ'2 of the expression 

\(q) = A0 + Χι • q + X2 · q2 
(A2) 

where 

Αι = 0, 

y = Μ fr0 a) 
2 (1 + (A3) 

In the real space, q corresponds to l/i-d/dx, i.e., we get λ<> = -λ'2, for λ2 in Eq. (16). 

For the contributions from nonlinear terms we have to substitute q(x, f ) into Eq. (7). Following Ref. 

/38/, we suppose that the stable modes (s, k) are at least of the order of the square of (u, k). At first, we 

notice that in the equation for the unstable mode (e.g., (u, k) = (u, kc)) there will be no contribution 

from the nonlinearity of the type (« ' k) -(u" k"). Each term of that type must be multiplied by the 

factor S(k' + k"- k), which is obtained from the integral of the product of three exponents. Each of the 

wave vectors k, k\ and fc"must have the value +ka or -kc, i.e., the δ-function is always zero except for 

the non-interesting case of kc = 0. Therefore, one has to keep only terms of the type (κ ' k) -(s" k") 

(further we denote the collection of these terms by the symbol or (« ' k') ·(«" k') (u'", k'") 

(denoted as F0^. Both F™ and are of the cubic order of (u, k). 

Simple calculations show that 

Ύ 
F(3) = - / άχώ1{χ)φν{χ)φν'{χ)φν··{χ) • 

L J-L/2 

x γΐιι,ΐα Qu,k) 
( n [ l ) «C1) π{2) \ (lu'.klClu",k"1u'",k'" 

-a{l) n{1) a{2) 
(A4) 

where the length L is considered to be large in comparison with 1 !kn but small in comparison with the 

characteristic length scale of the change in ξ, q and q are the right and left eigenvectors (the column 

and the line) of the linear operator given by Eq. (6), = exp(ikx). This immediately gives 

= 3 7 · (<7i - <72) · q\qi • |ξ|2ξ, (A5) 

where we denote k = k0 ξ = q, = q^k, and qt = q^k (/' = 1,2) for brevity. 

For calculations of F™ we use the slaving principle which gives simple equations for We easily 

see that only the stable modes with vectors k = 0 and k=2kc have to be taken into account, i.e., 
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F<2> = ( - 2 ) • ( & , & ) 
1 (d- ß)qi + \cq2, \cqx ^ ^ 

\ -dqx - \cq2, -\cqx j \ 

(d - ß)qx + cq2 

-dqi - cq2 

\ 
•qx x 

/ 
1 

s,2kc 

(A6) 

where Äsß and Ä̂  2kc are both negative. 
The right and left eigenvectors for the unstable mode can be chosen, e.g., in the form 

i'luQ'i) 

/ \ 

μ 
(A7) 

The resulting equations for and can be significantly simplified in the most interesting case 
of μ « 1 . Then = Ο {μ), and in Eq. (A6) one has to keep only the eigenvalue at k = 2-kc (which is of 
the order of μ, others are 0(1)). Then for the coefficient Β in Eq. (16) we get: 

Β = 
9μ\/00 a 

( d - ß ) 2 cd 
Τ 

- 1 (Α8) 
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ABSTRACT 

The paper develops a theory of cyclic hardening and formation of persistent slip bands in fatigue 

based on simultaneous and coupled self-organization processes of dislocations and intrinsic atomic 

defects (vacant lattice sites and atoms in lattice interstices). The relationships between three 

dichotomies, viz. thermodynamic reversibility-irreversibility, and inversive-non-inversive and 

conservative-non-conservative dislocation motion, as well as their roles in the structure formation by 

self-organization are discussed in detail. An "abstract" model for the hardening in cyclic deformation is 

presented. It postulates the existence of two distinct hardening mechanisms, one of them (called 

"obstacle mechanism") being strongly strain-rate and temperature dependent and building up gradually 

with increasing cumulative plastic strain. This model accounts well not only for the cyclic hardening but 

also for the main features of the cyclic stress-strain curve and of the persistent slip bands, including the 

stability properties of the microstructure under changes of the temperature of deformation. 

A "realization" of the abstract hardening model in terms of mechanisms is proposed. It involves the 

generation of atomic defects by the moving dislocations, the clustering of atomic defects as a result of 

generalizations of the Lück-Sizmann mechanism, and the destruction and dispersion of the clusters (the 

"obstacles" of the abstract theory) when cut by moving dislocations. 

In an Appendix it is shown that not only are the dependences of the residual electrical resistivity of 

fatigued copper crystals on the cumulative plastic strain and on the annealing temperature in full accord 

with the proposed hardening mechanisms but that they can provide complementary information in 

addition. The relevance of annealing data for the understanding of the properties of self-interstitials in 

fee metals is discussed. 

1. INTRODUCTION 

Face-centred cubic (fee) metals undergoing fatigue, i.e., being subjected to large numbers of 

small-amplitude stress-strain cycles, are perfect examples of highly dissipative systems capable of 

* Permanent address: Max-Planck-Institut für Metallforschung, Heisenbergstraße I, D-70569 Stuttgart, 
Germany. 
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self-organization1. For definiteness let us consider an fee single crystal, say of copper, orientated for 
single glide in a <110> {111} glide system and subjected to alternating uniaxial strain ("push-pull"). 
The resolved shear stress in the glide system is denoted by σ, the corresponding total shear strain 
(elastic plus plastic) by ε, the resolved plastic shear strain by %i, the resolved plastic shear-strain rate 
by έρ , , and the amplitude of the resolved cyclic plastic shear strain by ερι. As a measure of the total 
glide undergone by the specimen the so-called cumulative plastic strain 

epi,cmn : = 4 Λ ^ ρ 1 (1) 

is used, where Ν denotes the number of cycles. (Here and later, the symbol := means "defined as".) 
The area enclosed by a loop in the σ-ε plane, 

w, = <jads = < jo (s p l )de p , , (2) 

is the net mechanical work per unit volume done on the specimen during one cycle. 
A particularly well-defined way to perform cyclic deformation experiments is to keep | έ ρι|, ε pi, 

and the temperature Τ fixed /2,3/. The mean of the absolute values of the external resolved shear 
stresses reached in two consecutive half cycles, 

σ:=[σ(έρ 1)-σ(-έρ 1)]/2, (3) 

is denoted as peak stress. The relationship between σ and the cumulative plastic strain [defined by 
(1)], σ = σ ( ε | C u m ) , is called the cyclic-hardening curve. In the context of hardening, σ is often 

referred to as flow stress in order to emphasize the close relationship to the flow stress in uniaxial 
plastic deformation 2. 

The shape of the σ - ε , loops changes gradually with increasing Ν (dwJdN > 0) until, under the 

conditions just mentioned, it remains constant within experimental accuracy (see, e.g., 111). This 
corresponds to a plateau in the cyclic-hardening curve (cf. Fig. Al in the Appendix). The peak stress 
in this "saturation regime" is called the saturation stress and is denoted by σ ^ . As the cyclic 
deformation continues, on a time scale large compared to the inverse cycling frequency the fatigue 
specimen is in a quasi-stationary state. In the saturation regime it constitutes an open system in which 
virtually the entire free energy supplied from outside (the mechanical work performed by the push-

' For a general discussion of the röle of self-organization processes and of irreversible thermodynamics 
in crystal plasticity the reader is referred to "Thermodynamics of Open Systems, Self-organization, and 
Crystal Plasticity" /1/. According to the classification given there, the irreversible processes responsible 
for the self-organization in crystal plasticity have to be classified as "evolutionary". 
2 The peak stress has been defined by (3) rather than by σ ( ε ρ | ) in order to eliminate or at least 

minimize the effects of asymmetries in tension and compression. These may have their origin in a push -
pull asymmetry of the experimental set-up or in an asymmetry of the glide mechanism (as, e.g., in the 
case of glide on {211} planes in body-centred cubic (bcc) metals /4/). 
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pull machine) is dissipated. The qualification "virtually" alludes to the fact that although within 

experimental accuracy the shape of the σ - ε ρ | loops and thus wE remain constant, there must be 

structural changes going on (a tiny fraction of wE presumably being stored in the specimen in the form 

of additional lattice defects) as evidenced by the fact that with increasing Ν fatigue cracks begin to 

develop, whose growth eventually results in the rupture of the specimen. 

According to the seminal work of llja Prigogine on "dissipative structures", the conditions in the 

saturation regime of cyclic deformation described in the preceding paragraph are ideal for 

self-organization to occur or, rather, for such structures to be the outcome of self-organization 

processes. This suggests strongly that the most prominent microstructural feature in the saturation 

regime, the so-called persistent slip bands 3 (PSBs), are formed by self-organization processes. As the 

electron micrograph Fig. 1 shows by way of example, in the microstructure of the saturation regime of 

cyclically deformed fee metals there is indeed considerable order, particularly inside the PSBs, which 

exhibit a ladder-like arrangement of screw dislocations. We shall return to the topic of self-organization 

after considering the relationship between the so-called cyclic stress-strain curve and PSB formation. 

The cyclic stress-strain curve is the relationship between the saturation stress, a s a l , and the 

plastic-strain amplitude, ε ρ ) . In fee metals it has a very characteristic shape (Fig. 2), in which three 

regimes may be discerned, conventionally denoted by A, B, C 111. The clarification of the relationship 

between PSB formation and the three regimes of the cyclic stress-strain curve is mainly due to Winter 

/5,6/. In regime A there are no PSBs at all, in Β matrix (as the PSB-free part of the crystal will be 

called) and PSBs coexist (cf. Fig. 1), while in C the crystal is completely filled with PSBs. Winter 151 

discovered that in regime Β the volume fraction occupied by PSBS,_/PSB, varied linearly with the strain 

amplitude ε ρ | , a result that was subsequently verified by Mughrabi 121 with greater accuracy. From this 

result it was deduced that once PSBs are formed, the cyclic plastic deformation is essentially confined 

to them (in other words: PSBs are soft, the matrix is hard, the strain amplitude in the PSBs being by 

about a factor of 102 larger than in the matrix) and that under given conditions of temperature and strain 

rate the cyclic deformation in the PSBs takes place with a fairly well-defined strain amplitude s P S B . 

According to this interpretation, s p S B can be read off from the cyclic stress-strain curve at the 

transition between the regimes Β and C (see Fig.2). The corresponding stress amplitude, oPSB, coincides 

with the saturation stress σ sat in regime B. 

Winter 15/ noted that the relationship between the saturation stress, σ 5 3 | , and the strain amplitude, 

ε ρ 1 , is, to some extent, analogous to that between pressure and density of a fluid. At low pressures the 

fluid is in the vapour state. When the fluid is compressed, at a certain pressure (in the analogy 

corresponding to σ ρ 5 Β ) the pressure ceases to increase. A second phase, the liquid, is formed. Only 

3 The name "persistent slip bands" has its origin in the fact that in optical microscopy of polished 
surfaces the PSBs look like "ordinary" slip bands. Whereas these are steps generated by dislocations 
that have left the crystal and that can therefore be removed by polishing, the persistent slip bands are 
bulk features that "persist" when the crystal surface is polished after the cyclic deformation. 
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Fig. 1: Transmission electron micrograph of a (121) section of a copper single crystal cyclically 
A. —'X 

deformed at 300 Κ to saturation (ε ρ ) = 2 . 2 1 0 ). Before the preparation of the section the 

crystal was irradiated with fast neutrons in order to fix the dislocation pattern. bp = ( 1 0 1 ) 

denotes the Burgers vector of the primary glide system; the diffraction vector was (202). The 

regions with the quasi-regular ladder structure are persistent slip bands; the faint lines parallel 

to bp between the rungs are screw dislocations. A, B, C denote incipient persistent slip bands 

developing inside the matrix. The letter a denotes regions of low dislocation densities that have 

developed inside the matrix at approximately constant separations. Examples of regions of 

higher-than-average dislocation density developing with approximately constant separations 

are indicated by the letter b. (Courtesy of U. Holzwarth /3/.) 
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Fig. 2: Cyclic stress-strain curve of Cu single crystals orientated for single glide. The numerical 

values pertain to room-temperature deformation 111. 

when, upon further compression, the entire fluid has been transformed into liquid does the pressure 

rise again. In Winter's analogy the density at which this occurs corresponds to eP S B . 

The analogy between Winter's "two-phase model" of low-amplitude fatigue and the vapour-liquid 

transition is incomplete in several respects, however, and should therefore be used with prudence. The 

most important deviation was noted by Winter himself 151: Whereas the vapour-liquid transition is 

reversible (i.e., essentially the same pressure-density relationship is followed during compression and 

dilation), the σ53,(έρ1) relationship is not. When ε ρ | is reduced, only a small fraction of the PSBs 

become inactive, contrary to what is expected from the analogy 151. Furthermore, the roles of the soft 

(PSBs, vapour) and hard (matrix, liquid) phases are interchanged in the two cases. With regard to the 

influence of temperature the analogy does hold: The density at which vapour and liquid coexist and 

eP S B have in common that with increasing temperature they decrease until above a certain 

temperatme (the critical temperature of the liquid; in the case of fatigue a "critical temperatme" that 

is presumably determined by the frequency of cross-slip, as will be argued below) there is only one 

"phase" left. 
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About a decade ago, Seeger and Frank 111 proposed a model for the formation of persistent slip 

bands based on the concept that the PSBs are indeed dissipative structures resulting from the 

self-organization of dislocations. The present paper describes an extension of this model. It follows 

closely a lecture course given by the author at the Universität Stuttgart during the winter term 

1989/90. The main ingredients of the model to be presented are the following: 

(/') Dislocations and atomic defects (vacancies and self-interstitials) 4 undergo simultaneous and 

coupled self-organization processes. 

(//) The structure formation in cyclic deformation is mainly due to what may be called generalized 
Liick-Sizmann effect. They involve the mutual annihilation of defects (dislocations or atomic defects) 

of opposite sign and the clustering of defects of the same sign. (Self-interstitials and vacancies are 

considered to be defects of opposite sign; so are dislocations with opposite Burgers vectors.) 

(in) The coupling between the self-organization processes of dislocations and atomic defects comes 

about, on the one hand, by the clusters of atomic defects (later on simply called defect clusters) acting 

as obstacles for the dislocation movement and, on the other hand, by the participation of dislocations 

in both the build-up and the destruction of the defect clusters. 

(/v) The dislocation motion is restricted to essentially two dimensions (glide on one of the {111} glide 

planes, plus occasional climb accompanied by the emission or absorption of vacancies or 

self-interstitials). This is analogous to the röle played by the one-dimensional migration of crowdions in 

the formation of void lattices during the radiation damage of metals at elevated temperatures /8/. 

According to (iv), cross-slip of screw dislocations, which permits the dislocations to move in three 
dimensions, opposes the formation of persistent slip bands. In fee metal crystals orientated for single 

glide, the onset of extensive cross-slip is presumably the reason why the formation of persistent slip 

bands ceases at elevated temperatures 111. (In ciystals orientated for double glide, additional 

mechanisms may play a role 191.) Since in the fee structure there is an intimate relationship between 

stacking-fault energy and cross-slip /10/, this suggestion may be tested by systematic experiments on the 

temperature dependence of the formation of persistent slip bands in fee metals 5. 

The present paper is organized as follows. Sect. 2 deals with general aspects of dislocation motion 

and their relationships to thermodynamic irreversibility. In the discussion of the dislocation motion 

4 We prefer the denotation "atomic defects" to the widespread expression "point defects" used in the 
title of this paper, since the most important feature of "point defects" is that they are not 'points' but 
have properties such as volume or ciystallographic symmetry incompatible with 'points', and that 
often they may take up different crystallographic orientations. 
5 The hypothesis that cross-slip prevents the formation of PSBs explains immediately why PSBs and 
the mechanical properties going with them are not found in body-centred cubic metals 111. Here the 
onsets of cross-slip and of extensive plastic deformation coincide / l l / . The fact that the softening 
phenomena associated with PSBs, to be discussed in Sect. 3, are absent in bcc metals is the 
experimental basis for the so-called cyclic-deformation technique (also known as Mughrabi-Ackermann 
technique) for determining the strain-rate and temperature dependence of the flow-stress of bcc metals 
/4,12/. 
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the dichotomies "inversive-non-inversive" and "conservative-non-conservative" will be emphasized. 
Sect. 3 considers the hardening associated with low-amplitude plastic deformation of fee metals in 
terms of phenomenological concepts. In Sect. 4 the discussion of cyclic hardening is carried further, 
now considering specific mechanisms. It will be seen that the interplay between dislocation motion on 
the one hand and the nucleation, growth, and destruction of clusters of atomic defects forming 
obstacles for the dislocation motion on the other hand is crucial for the understanding of cyclic 
hardening. The information gained in this respect from studies of the residual electrical resistivity, 
which in metals is a sensitive measure of dispersed (in contradistinction to clustered) atomic defects, 
is treated in the Appendix. The main conclusions of the paper are summarized in Sect. 5. As the 
reader will notice, the presentation maintains to some extent the pedagogical style of the lecture 
course referred to above. It is emphasized that the present paper is not meant to be a review of the 
literature on the subject. 

2. CLASSIFICATIONS OF DISLOCATION MOTIONS 

By definition, plastic deformation of a solid requires that, after removing the load, a permanent 
deformation (usually somewhat smaller than the plastic deformation under load) will remain on the 
time scale of observation. From the point of view of thermodynamics, plastic deformation is a highly 
irreversible process. Only rarely remains more than a few percent of the net mechanical work done 
during plastic deformation stored in the deformed samples in the form of lattice defects, such as 
dislocations, twin boundaries, or atomic defects. Most of the free energy supplied from outside 
through the deformation equipment is transformed into heat. If during the plastic deformation 
isothermal conditions are maintained, the dissipated free energy is transferred to the heat bath. It is 
the large "entropy export" connected with this that allows self-organization processes during plastic 
deformation to take place 11,11 6. As mentioned in Sect. 1, in the saturation regime of fatigue the 
fraction of mechanical free energy not dissipated is, in fact, immeasurably small. 

Let us now look at permanent deformations from the point of view of dislocation movements. (We 
exclude, for the time being, cases in which the plastic deformation is not due to dislocation motion.) A 
permanent deformation can result only if the locations of the dislocations after unloading are not the 
same as before the loading. This implies that the unloading paths (in a two-dimensional sense, 
meaning the areas swept out by the dislocations) have to be different from the loading paths. It is 

6 Self-organization processes play indeed a major role in all modes of plastic deformation involving 
high densities of dislocations. This is in contrast to the view that the dislocation patterns resulting 
from plastic deformation may be understood in terms of "minimal energy". Trivially, the energy of the 
dislocation arrangements found after unloading is a local minimum with respect to small glide 
movements, but the absolute minimum is, of course, the dislocation-free crystal. 
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tempting to call "kinematically reversible" those cyclic deformations in which the loading and 
unloading paths of the dislocation coincide, and "kinematically irreversible" those in which they 
differ. However, since - as we shall see presently - "kinematic reversibility" implies thermodynamic 
reversibility only rarely, it was felt that a different nomenclature should be used. It is proposed that 
dislocation movements in which loading and unloading path are the same be called 'inversive\ those 
in which this is not the case inon-inversive\ 

As a simple example illustrating the preceding, consider Fig. 3. A dislocation line anchored in its 
glide plane vibrates under the action of a small alternating shear stress. The area swept out by the 
dislocation, indicated by hatching, is the same in both directions of motion; hence the motion is 
inversive. Whether it is reversible (in the sense of thermodynamics) or not depends on the 
circumstances. If the motion is frictionless and in phase with the cyclic external stress, there is no 
energy dissipation, hence the process (which under these conditions is quasi-static) is 
thermodynamically reversible. In this case the σ-ε diagram is a line passing through the origin. 
Experimentally, this is a limiting situation which may be approximately realized in highly perfect 
crystals if both the amplitude and the frequency of the applied stress are small. In general, however, 
the dislocation motion is not frictionless, e.g., owing to electron and/or phonon drag. This leads to 
energy dissipation. In the stationary state of cyclic straining the σ-ε diagram then is a closed loop 
with finite opening, and the integral (2) becomes positive (cf. the right-hand side of Fig. 3). Note that 
electron and phonon drag are just two of quite a number of processes that make inversive dislocation 
motion thermodynamically irreversible. In the terminology introduced by Zener /13/, in all these cases 
the deformations resulting from inversive dislocation motion have to be classified as "anelastic" 7. 

If in the situation pictured on the left-hand side of Fig. 3 the stress amplitude is more and more 
increased, the Frank-Read mechanism of sending out dislocation loops will begin to operate /14/. The 
loops will reach the crystal surface (forming slip lines and slip bands), react with other dislocations 
(e.g., by mutual annihilation), undergo cross-slip, leave their glide-planes by climb, etc. It is therefore 

Fig. 3: Dislocation line vibrating between two anchoring points, with stress-strain diagram. 

7 In his classical work, Zener /13/ did not consider dislocations, however. 

a 
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extremely unlikely that after unloading the original dislocation pattern will be restored even 

approximately; hence the crystal has now undergone permanent ("plastic") deformation 8. 

The preceding example shows the importance of non-inversive dislocation motion for achieving 

permanent deformation. We now consider some of these non-inversive processes in more detail. 

, If dislocations of opposite sign meet on the same glide plane, they will attract each other and 

annihilate. This process is clearly non-inversive, since the dislocations disappear. It is also highly 

non-reversible, since both the potential (— elastic) energy and the kinetic energy of the dislocations 

will be dissipated. 

Fig. 4 illustrates the situation when two groups of edge dislocations encounter each other on 

neighbouring parallel glide planes. If the glide planes are sufficiently close together, the dislocations 

will annihilate pairwise, too, but now leaving behind intrinsic atomic defects. If the 'inserted planes' of 

the edge dislocations face each other, as in Fig. 4a, these defects will be self-interstitials (or clusters of 

self-interstitials). If the inserted planes point in opposite directions, the atomic defects generated will be 

vacancies or vacancy clusters. Analogous arguments hold if the encountering dislocations have mixed 

character, i.e., if they are neither pure edge nor pure screw dislocations. 

The annihilation process of pairs of edge dislocations or of dislocations with large edge components 

may be looked upon as involving dislocation climb (= dislocation motion perpendicular to their glide 

planes). Depending on the climb direction, such processes create either self-interstitials or vacancies. 

Since this type of motion changes the local density of matter in the region through which the 

dislocations climb, it is termed non-conservative. By contrast, glide motions of dislocations preserve 

the local density of matter; they are therefore called conservative. 

The preceding considerations apply also to jogs, i.e. the dislocation segments effecting the transition 

of a dislocation line between two neighbouring glide planes. Since a jog, although its length may be as 

short as the interatomic distance, is part of a dislocation line with a definite Burgers vector, a glide 

plane may be ascribed to it. Hence, the distinction between conservative and non-conservative motions 

applies to jogs as well. The motion of a jog in a screw dislocation is conservative if it occurs along a 

stationary dislocation line, and non-conservative if the jog is dragged along by the gliding dislocation. 

For jogs in edge dislocations the opposite is true. In general, the jog motion during plastic deformation 

consists of sequences of conservative and non-conservative movements. 

8 The minimum stress required to achieve permanent ("plastic") deformation is called the critical shear 
stress and usually denoted by <x0. The above discussion aims at illustrating the various theoretical 
concepts and is not meant to imply that the critical shear stress of crystals is determined by the stress 
required to operate Frank-Read sources. On the contrary, crystals appear always to contain such a wide 
distribution of the distances between the anchoring points of grown-in dislocations that a variety of 
other obstacles to long-range dislocation motion are more important than the Frank-Read source 
"lengths", which determine the stress that must act on a dislocation in an otherwise perfect environment 
for the Frank-Read mechanism to start. In fact, electron, X-ray, or optical micrographs in which one 
sees unequivocal evidence for this mechanism are still rarities. 
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Fig. 4: Formation of interstitial (a) or vacancy (b) clusters by the annihilation of groups of edge 

dislocations of opposite sign on neigh-bouring glide planes. Full circles indicate 

self-interstitials, open squares vacancies. The numbering denotes successive stages of the 

encountering + annihilation processes. 

Table 1 summarizes the three dichotomies that have been discussed in this section. 

The annihilation of screw dislocations of opposite sign by cross-slip referred to above is a 

conservative process and, by itself, does not create atomic defects. However, since cross-slip invariably 

occurs only over limited lengths of the dislocations, dislocation segments with large edge 

components are left behind. These may climb by the absorption or emission of vacancies and 

interstitials and arrange themselves in energetically favourable patterns of dislocations of the same 

sign that are similar to small-angle grain boundaries /10/. This is one of the mechanisms by which the 
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Table 1: 
The thermodynamic and kinematic dichotomies of dislocation movement. 

Thermodynamics 

reversible 

mechanical work expended during 

loading is recovered completely 

during unloading (elastic behaviour) 

irreversible 

mechanical work is partly transformed 

into heat (in anelasticity to a small 

degree, in plastic deformation to a 

large degree) 

dislocation (jog) 

movement 

(kinematics) 

inversive 

dislocations follow the same paths 

during loading and unloading 

non-inversive 

dislocations follow different paths 

during loading and unloading dislocation (jog) 

movement 

(kinematics) 
conservative 

no generation of vacancies or 

interstitial atoms (local density 

conserved) 

non-conservative 

generation of vacancies and/or 

interstitial atoms and of vacancy and/ 

or interstitial clusters 

annihilation of dislocations of opposite sign, a strongly dissipative process, may lead to ordered 
arrangements of dislocations of the same sign. Similarly, if groups of dislocations with large edge 

components of the same sign meet on parallel glide planes, they may reduce their energy by taking up 

ordered structures by moving non-conservatively. 

The self-organization processes described in the preceding paragraph are generalizations of the 

Liick-Sizmann effect. More than 30 years ago, Liick and Sizmann /15/ pointed out that even if 

vacancies and self-interstitials are generated randomly in radiation-damage experiments, there will be 

a tendency for them to form clusters of defects of the same sign. The reason for this is that interstitials 

deposited near vacancies during continuing irradiation (or vacancies created close to pre-existing 

interstitials) annihilate, whereas atomic defects created close to defects of the same kind tend to 

"survive" even at high defect densities. This is a self-organization process that may lead to ordered 

structures observable by transmission electron microscopy /16,17/. 

Further generalizations of the Liick-Sizmann effect, associated with the dislocation reactions 

discussed above as well as with defect clusters, are of great importance in prolonged cyclic 

deformation. They will be treated in Sect. 4. 

3. CYCLIC HARDENING OF FCC METALS 

In this section we outline an 'abstract' theory of cyclic hardening, based on a few simple 
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hypotheses, and discuss its main predictions. Its 'realization' in terms of specific mechanisms will be 

the subject of Sect. 4. 

The basic hypotheses of the theory are as follows: 

(0 The flow stress of fatigue-hardened fee metals may be described by the superposition of two 

hardening mechanics, one of which is specific for cyclic deformation. 

(»') One of the mechanisms has (essentially) the properties of the Stage-I work-hardening of 

unidirectional deformation of single crystals orientated for glide on a single glide system /10/. Its 

contribution to the flow stress, σΜ, is independent of the strain rate | έ pi| and depends only weakly on 

temperature. This weak ^-dependence is considered to be a consequence of the temperature 

dependence of the elastic moduli; whence the notation σΜ. 

(Hi) To the second hardening mechanism (the one specific for cyclic deformation) the following 

properties are attributed: 

(a) Its contribution to the flow stress is strongly έρι- and Γ-dependent. The underlying physical 

picture is that the second hardening mechanism involves short-range interactions of the glide 

dislocations with fairly localized 'obstacles', which may be overcome with the assistance of thermal 

fluctuations. This contribution to the flow stress will be denoted as obstacle contribution cj0b5; hence 

the total flow stress is written as 

σ = σ Μ + cr0bs (4) 

(b) Nucleation and growth of the obstacles referred to in item (a) are self-organization processes. 

(c) The dislocation movement during cyclic plastic deformation may accelerate the formation and 

growth of the obstacles as well as destroy them or, at least, reduce their strength. 

(iv) In low-amplitude cyclic deformation the a0b,-contribution to the flow stress builds up gradually 

after the first half-cycle. (The first half-cycle corresponds, as a matter of course, to deformation in 

Stage I of the unidirectional work-hardening curve and subsequent unloading - cf. (//).) The fraction 

a o b J a increases monotonically with increasing 8pi>cum (and increasing d). Except at and close to 

saturation, for fixed values of the "external" parameters T, e p l , and | ε ρ 1 1 , there is a unique 

relationship between a a n d cr0bj. 

(v) The two "phases" in regime Β of the cyclic stress-strain curve differ in the subdivision of a M t into 

o m and crob3, such that σ ^ is larger in the ' h i g h - s p l phase' than in the ' l o w - e p l phase'. 

Once the coexistence in mechanical equilibrium of the two phases in regime Β of the cyclic stress-

strain curve of the saturated state is accepted as an experimental fact, hypothesis (v) may be deduced 

from the other hypotheses by physical reasoning as follows. Since the only 'internal' parameters of the 

present description are Om and aobs, and since the coexistence of the two phases at the temperature of 

the cyclic deformation implies that both phases have the same flow stress, they must differ in their 
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c0bs/crsat -ratios 9. During the cyclic hardening, the specimen passed through all CTobs/o values from zero 

to a o b s / a s a t . In view of the uniqueness of the CTobs=aobs(cr) relationship (for fixed Τ, ε ρ , , and | ε ρ 1 | 

during cyclic hardening it would be very hard to imagine a second, radically different state with the 

same a o b s / a s a t ratio. From this it follows that a o b s / σ 5 3 | must indeed be larger in the high-s p i phase 

than in the low-8p , phase and, by the arguments of footnote 9, that it must be so by a finite amount. 

It will now be shown that the above hypotheses can account for the most salient features of cyclic 

plastic deformation, in some cases in a non-trivial manner. 

(7) The dependence of the saturation stress on the temperature of deformation /18, 19/ is much larger 

than that of the flow stress of uniaxially deformed fee single crystals. An analogous statement holds for 

the strain-rate sensitivity of a s a l /19/. These observations (on Cu single crystals) are accounted for by 

the obstacle contribution to the flow stress. 

(2) The cyclic hardening curves as measured at different temperatures show a cross-over phenomenon 

[18, 19]. Whereas in the saturation regime the temperature dependence is "normal" (da s a l IdT > 0, 

d 2 a s a t IdT1 > 0), at intermediate ερι>α]ΙΤ1 the a ( s p | c u m ) -curves measured at intermediate temperatures 

may lie below those measured at higher temperatures. This would be hard to understand if only one 

mechanism contributed to the cyclic hardening. It does find a simple explanation if there are two 

contributions to the flow stress such that the gradual build-up of the one with the stronger temperature 

dependence (i.e., of σοΙ)5) depends on the temperature at which the cyclic deformation is performed. In 

terms of the hypotheses listed above what is required in order to account for the observations on Cu is 

that the build-up of the "obstacles" proceeds faster at higher temperatures at least up to 305 K, the 

highest temperature investigated in the above-mentioned work /19/. 

(5) If after reaching the saturation state the cyclic deformation is continued at a lower temperature, the 

deformation remains essentially confined to the pre-existing PSBs, whereas continuation at a higher 

temperature leads to the formation of new PSBs at the expense of the matrix /18/. This behaviour 

follows immediately from Fig. 5, in which the temperature dependence of the flow-stress of a crystal 

cycled to saturation at the temperature T0 and its subdivision into σ Μ and a o b s is shown separately for 

9 It might be argued that the system should be described by an additional parameter that is zero in the 
low-sp l phase and positive in the high-sp l phase in such a way that it starts out from zero when 
saturation begins. Such a parameter would behave like a scalar order parameter in a second-order phase 
transition in the Ehrenfest nomenclature or in a critical phase transition in the modern terminology. 
However, this would not explain the regime Β of Fig. 2 with the coexistence of both "phases" in 
equilibrium, which requires the "phase transition" to be of first order. By the same argument we may 
exclude the possibility that the high-sp l phase starts out with the same CTobs/CT-ratio as the low-s p | 

phase when it begins to appear upon reaching saturation, since in the critical region <xobs/cr would 
behave like an order parameter in a second-order phase transition, again in conflict with the 
observations. 
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persistent slip bands matrix 

Γ, < TQ: softer 
PSBs than matrix 

T2 > Γ 0 : harder 

Fig. 5: Temperature dependence of flow stress after cyclic deformation to saturation at temperature 
T0, with different subdivisions into the long-range stress σ Μ (interrupted line) and the 
obstacle contribution CTobs (dotted line) in the persistent slip bands and in the matrix. 

the PSBs and the matrix. The argument runs as follows. As explained above, the "equilibrium 
coexistence" of matrix and PSBs implies that at T0 the flow stress is the same in both phases, namely 
equal to σ5 3 , (Γ0) . The different subdivisions of the flow stress into σ Μ and aobs have the consequence 

that at temperatures below 7o the flow stress in the PSBs is lower than that in the matrix, whereas the 

reverse is true if the temperature is raised above 7o (cf. Fig. 5). Therefore, after lowering the 

temperature, the deformation is expected to be concentrated entirely in the pre-existing PSBs. If, 

however, the temperature is raised above 7o, the matrix is softer than the PSBs, so that now the 

contribution of the matrix to the average strain is larger than it was at 7b. This will result in the 

formation of additional slip bands or the extension of the pre-existing ones at the expense of the 

matrix. 

The perpendicular arrows in Fig. 5 indicate the instantaneous changes of the flow stress when the 

temperature of deformation is lowered or increased. From the above discussion it follows that changes 

to lower temperatures or higher strain rates allow us to study the temperature and strain-rate 

dependence of the flow stress in the slip bands (see, e.g., /191). Under changes to higher temperatures 

or lower strain rates, however, the microstructure in the saturation regime is unstable against the 
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transformation "matrix => PSBs" (cf. Table 2). This has the consequence that studies of the flow stress 
in the matrix by change-in-temperature or change-in-strain-rate test must be performed either well 
before saturation or in the regime A of the cyclic stress-strain curve. 

Table 2: 
Effects of changes of temperature or plastic strain-rate on the microstructure of cyclically deformed 

crystals with matrix and persistent slip bands coexisting (regime Β of the cyclic stress-strain curve. 

lowering increasing 

the temperature of deformation, and/or 

increasing decreasing 

the plastic strain-rate | ε pI | 

makes the persistent slip bands 

softer harder 

than the matrix. The further deformation will therefore tend to take place in the 

slip bands matrix. 

Thus the microstructure of fatigued crystals with coexisting matrix and PSBs is 

stable 

if the temperature is lowered or | ε p[ | is increased, but 

unstable 

if the temperature is raised or | ε pi| is decreased. 

4. SELF-ORGANIZATION PROCESSES AND THE INTERACTION BETWEEN 
DISLOCATIONS AND INTRINSIC ATOMIC DEFECTS 

In this section it will be shown that a model satisfying the hypotheses (/)-(v) of Sect. 3 may be 
developed on the basis of the known properties of dislocations and atomic defects and of the general 
considerations of Sect. 2. 

Let us first consider a dislocation line containing well-separated short jogs of opposite sign. In 
Fig. 6 the jogs are marked by circles with + or - signs, the + signs corresponding to vacancy 
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Fig. 6: Generation of vacancies and self-interstitials (both isolated and as clusters) by the movement 
of jogs in dislocations. 
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production when the jogs perform non-conservative movements from left to right. The successive 

positions of the dislocation line in its glide plane as well as the location of its jogs during its 

movement from left to right are indicated by the numbering 1-5. Jogs on the same dislocation line but 

of opposite sign will annihilate when they encounter each other. (In the example of Fig. 6, this has 

occurred between positions 2 and 3.) The movement of jogs perpendicular to the Burgers vector b of 

the dislocation creates vacancies (open squares) or self-interstitials (full circles), depending on the 

sign and direction of motion of the jogs. If a jog moves approximately perpendicularly to b over 

several interatomic distances (this may happen for jogs in screw dislocations), rows of atomic defects 

are created. An example of this is shown between positions 4 and 5. 

During its glide movement a dislocation may intersect dislocations threading its glide plane. In 

Fig. 6 locations of such dislocations are marked by full triangles. Each intersection process generates a 

jog in the gliding dislocation unless the Burgers vector of the threading dislocation happens to lie in 

the glide plane of the moving dislocations. In Fig. 6 such intersection processes had taken place just 

before position 4 was reached. The sign of the jogs created depends on the sign of the scalar product 

of the Burgers vector and the glide-plane normal of the intersected dislocations. 

The lower half of Fig. 6 illustrates what may occur when, after reversing the force acting on it, a 

dislocation passes once more over the same area it had swept out before. Jogs that produced 

vacancies during the motion from left to right will now produce interstitials. If during unloading the 

jogs follow approximately the same paths as during the loading (in the nomenclature of Sect. 2: if 

their motion is approximately inversive) the atomic defects created during the return movement will 

annihilate those created during the first passage. (In Fig. 6 annihilation of atomic defects is indicated 

by crosses.) Since the energy that had been stored in the atomic defects will be dissipated as heat, this 

is an example of an inversive dislocation motion that is strongly irreversible even in the absence of 

frictional forces or potential barriers. On the other hand, it may happen that a + jog creates defects in 

an area in which during the opposite motion a - jog has left behind defects of the same sign. This will 

contribute to the formation of defect clusters. If in cyclic deformation many dislocations carrying jogs 

pass through a certain area, the processes just described will produce spatially separated clusters of 

vacancies and interstitials, in close analogy to the Lück-Sizmann effect in radiation damage 

experiments. Therefore, it appears justified to refer to these processes as resulting from a generalized 

Lück-Sizmann effect (cf. Sect. 2). 

So far, there has been no reference to the temperature of deformation. As they stand, the preceding 

considerations apply to sufficiently low temperatures. Since the energy stored in the atomic defects is 

supplied almost entirely by the external load and not by temperature fluctuations, in the temperature 

range with a pronounced regime Β of the cyclic stress-strain curve and therefore little cross-slip, 

temperature plays only a minor role in the defect production. However, there is a veiy strong 

influence of the temperature of deformation through the temperature dependence of the mobility of the 

atomic defects, which increases rapidly with increasing temperature. Because of this, at high 
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temperatures the defect clusters will be more compact than at low temperatures and may even be 

converted into dislocation loops or stacking-fault tetrahedra10. Above the so-called Stage-Ill 

temperature 11 isolated self-interstitials are no longer present; they will either have annihilated 

instantaneously with vacancies or will have formed clusters together with other interstitials. In the fee 

metals, divacancies (= pairs of vacant neighbour sites) generated by the cyclic deformation will anneal 

out instantaneously at about the same temperature as the self-interstitials. Isolated vacancies will 

disappear during deformation at somewhat higher temperatures either by joining vacancy clusters or 

by being absorbed by interstitial clusters or dislocations. 

We identify the "obstacles" of Sect. 2 with the vacancy and interstitial clusters. Their efficiency 

as obstacles to the dislocation motion depends on their size, compactness, and nature (vacancy or 

interstitial type). E.g., isolated atomic defects and very small clusters impede the dislocation motion 

only at very low temperatures. Therefore, the disappearance of isolated interstitials and small 

interstitial clusters at intermediate temperatures does not directly affect the flow stress at these 

temperatures whereas the increase in size and compactness of the clusters does. Analogous arguments 

hold for vacancy clusters formed by the agglomeration processes described above as well as for the 

clusters generated by the annihilation of dislocations of opposite sign to be discussed presently. 

10 At temperatures high enough for major rearrangements within the clusters to occur, interstitials and 
vacancies behave very differently. According to the evidence from transmission electron microscopy in 
fee metals, self-interstitials tend to form dislocation loops of the Frank type (i.e., their Burgers vectors 
do not lie in the planes of the loops). They may or may not contain a stacking fault. Vacancies may 
form voids, stacking-fault tetrahedra, or Frank-type dislocation loops. For energetic reasons, the first 
two tend to prevail as long as the number of vacancies per cluster is small; large clusters will form 
loops, as in the case of interstitials. An apparent exception to this rule of thumb occurs when the voids 
are stabilized by gaseous impurities. Such "bubbles" may grow very large. Near-surface bubbles are 
presumably responsible for the formation of fatigue cracks. It is indeed a long-established experimental 
fact that the fatigue life depends strongly-on the atmosphere in which the fatigue tests are performed. -
Since in the present paper the questions of crack formation and fatigue life are not treated, we shall 
continue to speak of "defect clusters" without regard to their configurations. 
11 This nomenclature is not to be confused with the stages of the unidirectional work-hardening curve 
/10/. It refers to the recovery of the residual electrical resistivity of metals after low-temperature 
irradiation with energetic particle (so-called radiation damage), which in isochronal annealing 
experiments (fixed annealing times at successively higher temperatures) recovers in fairly well-defined 
"stages" at characteristic temperatures (see, e.g., [20] and the Appendix). - In typical isochronal 
annealing experiments [annealing time (0.5-2) • 103 s] Stage III is observed in Cu between 210 Κ and 
240 K, depending on the concentration of atomic defects involved. However, since typical cyclic 
deformation experiments last about a factor of 10 longer than typical annealing experiments and since 
the defect concentrations in the saturation regime are very high, the temperatures of the recovery stage 
III are shifted to lower temperatures compared with typical electron-irradiation studies. In typical 
cyclic-deformation experiments on Cu we may expect the Stage-Ill temperature to lie between 205 Κ 
and 215 K. These matters will be taken up in the Appendix in a discussion of the electrical resistivity 
work of Basinski and Basinski /21/. 
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As discussed in Sect. 2, when two dislocations of opposite sign annihilate, a large number of 
atomic defects may be created, the more the closer the character of the annihilating dislocations is to 
edge dislocations. Two edge dislocations annihilating gradually by climb leave behind a platelet of 
interstitials or vacancies. Annihilating dislocations of mixed character generate looser clusters which, 
however, at elevated temperatures may become compact by diffusion. If the annihilating dislocations 
are members of two trains of dislocations sent out by Frank-Read sources located on neighbouring 
glide planes, the processes just described will be repeated every time two dislocations meet, so that 
quite large clusters may result from their annihilation. 

In addition to the mechanisms so far discussed there is the "normal" hardening due to the 
long-range stresses of the dislocations. Averaged over the entire sample, the stresses originating from 
the dislocations are, of course, zero. The flow stress is determined by those obstacles which are located 
where the long-range internal stresses are large and opposite to the applied stress. This means that the 
present model meets the requirements of the hypotheses (/') and (//) of Sect. 3. 

It is easy to see that the model is in accord with the requirements of items (a) and (b) of hypothesis 
(///) and of hypothesis (z'v), too. Item (v) has already been dealt with in Sect. 3. The remaining item 
(Hi, c), which in the present writer's opinion is crucial for the understanding of cyclic deformation but 
has so far found insufficient attention in the literature, will be discussed in the next paragraph. 

At temperatures and stresses at which neither cross-slip nor climb of isolated dislocations is 
significant (in contrast to the climb of close pairs of dislocations of opposite sign, so-called dislocation 
dipoles), the only alternatives for mobile dislocations encountering a cluster obstacle are to get stuck 
at it until the stress direction is reversed or to cut through it. The second possibility is illustrated in 
Fig. 7. For the sake of the argument it is assumed that a group of edge dislocations on the same glide 
plane has cut a large cluster into two halves and has shifted them with respect to each other by the 
total Burgers vector of the dislocation group. What happens when the load is reversed depends 
critically on whether the dislocation motion between the cutting and the return was inversive or 
non-inversive. In the first case (top half of Fig. 7) the cut cluster is restored; hence the cutting was 
without any permanent effect other than the dissipation of energy. The second case is illustrated in the 

α 
bottom half of Fig. 7. Here it is assumed that after having bisected the cluster, the dislocation group 
annihilates with a group of opposite sign, giving rise to a new cluster. Since now there are no 
dislocations that might return following the loading path, the first cluster stays bisected. Its two halves 
may be too small to have a significant effect on the flow stress or - if the temperature is high enough -
disperse altogether. We thus see that the proposed model meets the requirements of item (///, c), too. 

A further important feature of the cutting-and-shifting mechanism results from the fact that the 
large-amplitude cyclic dislocation motion, as it occurs in the PSBs, causes the cluster segments to be 
shifted around slowly but quite significantly. If in this process a segment happens to meet one of the 
opposite sign, it annihilates partially or even totally, which means that it becomes smaller or even 
vanishes. On the other hand, if a cluster segment encounters a cluster of the same sign, a larger 
cluster will result. Thus we see that, in a further kind of a generalized Lück-Sizmann effect, the 
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Fig. 7: Cutting of obstacles (hatched circles) by groups of dislocations. Top: The inversive return 
•ι 

motion of the dislocations restores the obstacles. Bottom: After cutting the obstacles, the 
dislocations annihilate with dislocations of opposite sign. The return motion does not restore 
the original obstacles. The dislocation annihilation has generated new obstacles (indicated by 
different hatching). 

large-amplitude to-and-fro motion of the dislocations in the PSBs contributes to the coarsening of the 
cluster distributions. 

The remainder of the section will be devoted to a discussion of the saturation of the flow stress, of 
the origin of the instability that leads to PSB formation, and of the mechanisms that determine £p S B , 

the strain amplitude in the PSBs. 
The saturation of the cyclic hardening curve clearly indicates that the fatigued specimen has now 
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reached a state of quasi-equilibrium, in which no further hardening occurs. The quasi-equilibrium 
must be a dynamic one, as may be seen from the fact that in this state the energy dissipation is very 
high indeed. Since the σ - ε loops in the saturation regime are almost rectangular, the energy 
dissipated per cycle and unit volume, ννε, is only slightly less than 4ε ρ 1 σ^ . From the experiments on 

Cu crystals by Basinski and Basinski /19/ at 4.2 Κ we obtain the estimate 

we« 4 · 2 · ΙΟ"3 · 85 · 106 J/m3 = 6.8 · 105 J/m3, (5a) 

whereas at room temperature the corresponding quantity is 

we« 4 · 2 · ΙΟ"3 · 28 · 106 J/m3 = 2.2 · 105 J/m3. (5b) 

These are quite large values, indicating that the annihilation of dislocations of opposite sign is a major 
if not the main contributor to the energy dissipation 111. 

In the saturation state we have presumably not only dynamic equilibrium between the 
multiplication and the annihilation of dislocations but also distributions of the obstacle sizes that 
approach states of dynamic equilibrium. Since this involves the rather slow shifting around of the 
cluster segments discussed above, the approach to the quasi-equilibrium distributions of defect clusters 
is expected to take much longer than the establishing of the dynamic equilibrium of the dislocations. 
This expectation is supported by the following two observations of Basinski and Basinski /19/. (7) For 
Cu crystals cycled with ερ1 = 2 · 10"3 at various temperatures between 230 Κ and 305 Κ a 

cumulative strain of 10 to 20 suffices to reach saturation, whereas at 4.2 Κ saturation sets in only at 
Spi.cum ~ 102. Since the fairly strong monotonic temperature dependence of the flow stress 
characteristic of σ ω Ι (cf. Sect. 3) develops only at ε pi>cum £ 10 and since this temperature dependence 

is attributed to the presence of a wide distribution of obstacle strengths, we may conclude that to 
achieve dynamic quasi-equilibrium takes indeed much longer for the cluster distribution than for the 
dislocations. (2) At temperatures from 60 Κ upwards the cyclic hardening curve "overshoots" before 
CTsat is reached; i.e., there is a regime with σ >σ Μ ( . This can be understood if during the build-up of 

the obstacles an intermediate distribution develops that gives a larger σ obl contribution than the final 

distribution, whose establishment takes longer than that of the quasi-equilibrium distribution of the 

dislocations. Both observations just mentioned fit into the present model since, even when the 

dislocation distribution has become stationary on the scale of many cycles, the generalized 

Lück-Sizmann effect resulting from the cutting and shifting of the obstacles may continue for a large 

number of cycles. 

It is now relatively easy to understand the formation of persistent slip bands. According to the 
deductions of the preceding paragraphs, in the final stage of the approach to saturation it is mainly the 

contribution that is responsible for the increase of the flow stress with increasing ερ] c u m . 
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However, if ερ1 and therefore the amplitude of the dislocation motion is sufficiently large, the peak 

stress, increasing with a o b s / a , may become large enough for the dislocations to cut through a 

sufficiently large number of neighbouring obstacles to allow them to suddenly move over substantially 
larger distances than before. About half of these dislocations will encounter dislocations of the 
opposite sign and annihilate them before they are held up again. Because of the dislocation 
annihilation, such a limited "breakthrough" may locally reduce σΜ. If this happens, at peak stress 
there will be an increase of the "pressure" on adjacent obstacles that up to then were still capable of 
holding up dislocations. The yielding of some of these obstacles will lead to an avalanche-type 
breakdown. By a percolation process these avalanches may combine to destroy the matrix 
microstructure over macroscopic distances. We believe that the persistent slip bands develop along 
such percolation paths. 

As discussed above, in the persistent slip bands the subdivision of cTgâ  into ο ^ and is 

different from that in the matrix, a o b s being larger and σ Μ being smaller than in the matrix. The 

direction of these changes is a consequence of the breakdown mechanism just described. In the first 

stage of the breakdown the dislocation density, responsible for σ Μ , is reduced by the annihilation 

processes. Dislocation movements with much larger amplitudes than in the matrix become possible. 

This results in drastically increased rates of production of atomic defects and defect clusters as well as 

in an enhancement of the generalized Liick-Sizmann effect discussed above. In agreement with the 

observations /3, 5/, the change-over from the microstructure of the matrix to that of the PSBs is 

therefore predicted to proceed within quite a small number of cycles. 

The fact that under given external conditions the strain amplitudes in the persistent slip bands, 
8 P S B , assume fairly well defined values can be understood as the outcome of a balance between the 
work-hardening associated with the build-up of long-range stresses and the destruction of obstacles by 
the dislocation movement. If the strain amplitude is less than the destruction of obstacles 
required for the PSB formation is too slow to reach a quasi-stationary state. On the other hand, if the 
strain amplitude is higher than £p S B , additional hardening takes place due to increasing long-range 
stresses. In either case, balance with the σ ^ value prescribed by the matrix microstructure cannot be 

achieved, hence the strain amplitude "settles" for a definite value that gives the same flow stress in the 
PSBs as in the matrix. 

Seeger and Frank IH have shown that the macroscopic data on regime Β of the cyclic stress-strain 
curve can be reconciled with the electron-microscopy observations on dislocation densities etc. in the 
PSBs only if the lifetime of a dislocation segment in a PSB is distinctly shorter than the cycling 
period. This means that in the persistent slip bands there must be a strong activity in dislocation 
multiplication and annihilation during each cycle. Transmission electron microscopy shows that the 
dislocations participating in these processes have predominantly screw character. Hence they 
annihilate with little atomic-defect generation. This led Seeger and Frank 111 to suggest that an 
approximate relationship between f p s B and a s a t might be derived by considering the dislocation 
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processes only. In this way they obtained the relationship 

ε D S D — 
P S B ~ - Ο s a t 8a M s 

σ Η (6) w n n i 1 

where nann/n ( « 1) denotes the ratio of two dislocation densities, namely that of the dislocations 
annihilating during one cycle and that of the screw dislocations in the PSBs. The parameter α 
characterizes the aM-contribution to the saturation stress according to 

o ™ = a M M ' 2 • (7) 

In (7), Ms is the relevant shear modulus (for screw dislocations in an elastically isotropic medium 
given by the shear modulus) and b the dislocation strength. With λ ^ / « values compatible with the 
electron microscopy observations and the plausible value α = 0.3, Eq. (6) accounts for e p s B and 

a s a t in Cu at room temperature, where is presumably not much less than /3,7/. In the 

case of Cu, Eq. (6) might be tested by measurements above room temperature although, of course, it 
will fail as the "critical temperature" of the two-phase model will be approached, since there e p s B 

goes to zero whereas a s a t does not. 

5. CONCLUSIONS 

The theory 12 of hardening by cyclic plastic deformation and of the formation at persistent slip 

bands (PSBs) presented in the present paper explains the persistent slip bands observed in 

face-centred cubic metals and other crystal structures (but not in body-centred cubic metals) as 

long-lived (thermodynamically metastable) quasistationary dissipative structures. According to the 

theory, PSBs are formed by coupled self-organization processes of dislocations and intrinsic atomic 

defects (lattice vacancies and self-interstitials). The main mechanism of the dislocation 
self-organization is the annihilation of dislocations of opposite sign and the accumulation of 

dislocations of the same sign with predominant edge character. The self-organization of the atomic 
defects comes about by the annihilation of vacancies and self-interstitials that are generated as 

neighbours. By the so-called Lück-Sizmann effect, well established in radiation damage studies, this 

leads to an agglomeration of defects of the same sign, i.e. to the formation of interstitial and vacancy 

clusters. 

12 Here "theory" is meant in the original greek meaning of θεωρία, viz. "a looking at, viewing, 
contemplation" 1221. 
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The coupling between the self-organization processes of dislocations and those of intrinsic atomic 
defects is effected predominantly by two mechanisms: (/) The generation of atomic defects (isolated or 
clustered) by the non-conservative movements of jogs in dislocations and the annihilation of 
dislocations of non-screw character. (//) The cutting and dispersing of the clusters of atomic defects by 
the cyclic motion of the dislocations, which, however, has to be non-inversive. The shifting around of 
the cluster segments brought about by this leads to a generalized Liick-Sizmann effect: Clusters or 
cluster segments of the opposite sign that encounter each other annihilate partially or totally, whereas 
the meeting of clusters of the same sign will result in larger clusters. In this way a quasi-stationary 
distribution of defect clusters of different sizes is built up during the cyclic deformation. The clusters 
act as obstacles to the dislocation motion. Unless they can be circumvented by cross-slip (in materials 
such as Cu with intermediate stacking-fault energies this happens only at elevated temperatures and 
stresses), the dislocations get either stuck at the larger obstacles or cut through them under the 
combined action of stress and temperature. At sufficiently large plastic strain amplitudes, the 
destruction of the obstacles by the moving dislocations gives rise to an instability of the obstacle-
dislocation pattern built up during the early cycles of fatigue tests. By a percolation process, this 
instability leads to the formation of persistent slip bands (PSBs), in agreement with the two-phase 
picture of Winter. 

The coupled self-organization mechanisms account well for the main features of both the 
cyclic-hardening curve and the cyclic stress-strain curve of face-centred cubic metals, including such 
details as the temperature dependence of the flow stress, the influence of the temperature of 
deformation, the absence of persisted slip-bands in high-temperature fatigue, and the stability/ 
instability of the matrix-PSBs microstructure of fatigued metals when the cyclic deformation is 
continued at lower/higher temperatures. 

APPENDIX 
ELECTRICAL RESISTIVITY STUDIES OF FATIGUE IN METALS 

In footnote 11 brief reference has been made to the study of the cyclic deformation of metals by 
means of measurements of the residual electrical resistance. The residual electrical resistivity of 
metals is very sensitive against the presence of atomic defects, the physical reasons for this being, on 
the one hand, that even in a non-superconducting defect-free metal the electrical resistivity goes to 
zero as the absolute zero of temperature is approached and, on the other hand, that the disturbance of 
the perfect crystal structure by atomic defects extends at most over a few wavelengths of the electrons 
at the Fermi surfaces. Atomic defects, therefore, scatter these electrons very efficiently and dominate, 
in the form of impurities, the low-temperature resistivity even of 'pure' metals. The decrease of the 
ratio of the electron wavelengths to the extension of the scattering potential with increasing cluster 
size causes the resistivity per vacancy or self-interstitial to decrease as larger and larger clusters are 
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formed by the Lilck-Sizmann mechanism discussed in Sect. 4. Resistivity measurements are thus 
complementary to measurements of the flow stress, whose temperature dependence is predominantly 
determined by the large defect clusters. 

It is surprising that relatively little use has been made of electrical-resistance measurements as a 
tool for studying the role of intrinsic atomic defects in the low-amplitude cyclic deformation of metals. 
The following discussion will be based on the work of Basinski and Basinski /21/ on Cu single 
crystals fatigued at low temperatures. These authors correlated their resistivity measurements 
particularly well with the mechanical and microstructural properties. Since, as will be seen, some of 
their results are significant beyond the field of cyclic deformation, we discuss them separately from 
the main body of the paper. As a fringe benefit, this separation makes it evident that the line of 
reasoning in the main text does not depend on the resistivity data and that, therefore, their discussion 
in terms of the mechanisms of Sect. 4 provides, to some degree, an independent test of the model 
developed in the present paper. 

Fig. Al shows both the peak stress, σ , and the deformation-induced residual resistivity, Δρ, of a 
Cu single crystal as a function of the number Ν of deformation cycles at 14 K. The strain amplitude 
was ερΙ = 2 · 10"3, hence according to the definition (1) Ν = 5 · 104 corresponds to 8pliCum = 4 -102. 

Several features of Fig. Al are worth noting. 
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Fig. A l :Peak stress, σ , and change of the residual electrical resistivity, Δρ, of a Cu single crystal 

fatigued at 14 Κ at ερ 1 = 2 ·10~ 3 as functions of the number of cycles, Ν /21/. From σ (AO the 

cyclic-hardening curve σ = σ (£ · ρ ) c u m ) is obtained by making use of ε ρ ] c u m = 4 j V e p l . 

( / ) The saturation resistivity Δρ5„, = 1 · ΙΟ"9 Ωιη is rather high. If we assume, for the sake of the 

argument, that the electrical resistivity per unit atomic concentration of Frenkel pairs is 2.5 • ΙΟ"6 Ωιη 
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and that the entire resistivity change was due to isolated vacancies and self-interstitials, we arrive at a 
total concentration of atomic defects (vacancies plus self-interstitials) of about 8 · 10"4. Owing to the 
considerable clustering that must have taken place at concentrations of this order of magnitude, the 
true concentration of vacant lattice sites and interstitials is presumably substantially larger, even if we 
allow for the fact that the scattering of conduction electrons by dislocations also contributes to Δρ. 
(The annealing experiments to be discussed in item (4) demonstrate that the main contribution does 
not come from dislocations.)13 

(2) The peak stress saturates at a cumulative plastic strain that is lower by a factor 2.5 to 3 
(depending on the definition of saturation) than that required to saturate Δρ. As discussed in Sect. 4, 
on the stress level of σ ^ the flow stress is insensitive against both isolated atomic defects and very 

small defect agglomerates (divacancies, di-interstitials, ...). On the other hand, the contribution per 

vacancy or per interstitial to the electrical resistivity is largest for isolated defects. We therefore have 

to conclude that even when the densities of dislocations and large defect clusters have become 

stationary, the net production of intrinsic atomic defects continues. (Coarsening of the size 

distribution of small defect clusters by a generalized Llick-Sizmann effect without generation of 

additional defects would cause Δρ to decrease with increasing EpijCum.) This means that the to-and-fro 

motion of the dislocations in the saturation regime must be nort-inversive (cf. Sect. 2). Since the 

mobile dislocations in the PSBs have predominantly screw character, it is presumably their 

annihilation by cross-slip that brings about the required non-inversiveness of the dislocation motion. 

This conclusion is in agreement with that of Seeger and Frank 111, who, on the basis of quite different 

experimental evidence, argued that in the persistent slip bands dislocation annihilation must be very 

frequent (cf. Sect. 4). This produces isolated vacancies and interstitials if there are small deviations 

from the screw character of annihilating dislocations or if jogs are dragged along by the screw 

dislocations. Since at the temperature of deformation (14 K) the atomic defects do not move by 

individual jumps, the saturation of Δρ should indeed be reached at much higher 8piiCum than that of σ . 

(3) The ratio of the initial values of άσ/άΝ and dAp/dN is only one half of σΜ,/ΔρΜ(. This is in 

agreement with the concept that with increasing SpliCum the generalized Lück-Sizmann effect causes 

more and more isolated atomic defects to accumulate in larger clusters and thus reduces their 

contribution to the resistivity per defect. 

13 A quantitative treatment of the electrical resistivity should take into account that, in contrast to the 
flow stress in the saturation regime, the resistivities in the matrix and in the PSBs differ. The 
resistivity is expected to be higher in the PSBs, since there the dislocation movement and therefore the 
rate of generation of intrinsic atomic defects is larger. Since in the measuring geometry the resistances 
of the matrix and PSBs are "in series", for qualitative discussions of the resistivity in the regimes Β 
and C of the cyclic stress-strain curves it suffices to consider the PSBs. Measurements of the resistivity 
in the saturation regime as a function of fPSB, which would allow the contributions of the matrix and 
the PSBs to be determined separately, have apparently not yet been performed but would be 
informative. 
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Fig. A2: Recovery of the residual electrical resistivity after low-temperature fatigue of two Cu single 
crystals (isochronal anneals for 1.8 · 103 s at Ta) [21].Δρ (0) - residual resistivity change due 

4 4 

to cyclic deformation at 18 Κ for 5.5 · 10 cycles (Δ) and at 14 Κ for 5.25 · 10 cycles 
(O). 

Fig. A2 shows the recovery of the residual electrical resistivity of two copper single crystals that 
had been cyclically deformed with έρι = 2 · 10"3 at 14 Κ (8piiCum = 420) or 18 Κ (ερί,^ = 440). At each 
cf the temperatures indicated the samples were annealed for 1.8 · 10^ s. Where the two measurements 
overlap, the recovery curves normalized to the Δρ-value after deformation agree with each other, as 
was to be expected since at the deformation temperature the defect generation is essentially athermal 
(cf. Sect. 4) and the diflusivity of the defects is negligibly small. Features of Fig. A2 that invite special 
comment are the following. 

(4) About 0.6 of the original resistivity had recovered after the 300 Κ anneal. We can be fairly 
confident that the dislocation density was not reduced appreciably by the annealing treatment. 
Therefore, the recovered fraction of the resistivity must have been due to atomic defects and their 
small clusters. It is indeed well established that in Cu isolated self-interstitials and divacancies are 
quite mobile at 300 K. Their disappearance (together with their partners in annihilation reactions) is 
thought to be responsible for the recovery between 200 Κ and 300 K. [For the recovery at lower 
annealing temperatures see item (5).] Mono-vacancies diffuse only very sluggishly in Cu at 300 K; a 
fraction of them will nevertheless have annealed out at 300 Κ because they provided sinks for the 
migrating interstitials. The remaining monovacancies would presumably have annealed out if the 
annealing temperature had been raised to, say, 400 K. The same may be true for some of the small 
defect clusters. All circumstances considered, we may conclude that only a small fraction of ΔρΜΐ, 
possibly as little as 0.1 or even less, is due to dislocations. 

(5) The recovery of the electrical resistivity begins only at about 100 K. This is noteworthy in view 
of the existence of a school of thought 723/ claiming that the self-interstitial configuration of lowest 
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energy, which in fee metals is generally accepted to be the so-called <100> dumbbell, migrates in 
metals such as Cu and Al at about 50 K. There is very strong evidence against this view (see, e.g., /24, 
25, 26/), one of the oldest and strongest being that after plastic deformation of fee metals at liquid-He 
or liquid-H2 temperatures the electrical resistivity does not show signs of recoveiy up to annealing 

temperatures well above those at which the self-interstitials should have migrated and annealed out (cf., 

e.g. /20/). The seminal work was that of T.H.Blewitt and his associates on Cu single crystals deformed 

in tension at 4.2 Κ /27/. Their observation that there was no resistivity recovery after annealing at 77 Κ 

was subsequently confirmed by other authors. Analogous results were found on all other fee metals 

investigated l4. 

The considerations of Sects. 2 and 4 leave little doubt that the low-temperature cyclic deformation 

of the crystals investigated by Basinski and Basinski UM produced large concentrations of vacancies 

and self-interstitials and that at the beginning of the annealing treatments enough of the latter were 

present to have given rise to a detectable recovery below 60 Κ if they were capable of migrating freely 

at low temperatures. The fact that Fig. A2 shows no recovery up to about 100 Κ is thus very convincing 

evidence that the self-interstitials produced in Cu by plastic deformation do not migrate at temperatures 

of about 50 K. The explanation of the absence of any low-temperature recovery in plastically deformed 

Cu, Al, Ni etc. is that the self-interstitials seen in radiation-damage experiments to migrate at low 

temperatures are not in their "ground states" (in which they are if generated during plastic deformation) 

but in a metastable state of higher energy in which they may be created by special processes 

characteristic of radiation damage 15 [26]. The stable <110>-dumbbell configuration migrates in the 

recovery stage III referred to in footnote 11, in agreement with the strong recovery seen in Fig. A2 

between 200 Κ and 300 K. This recovery is primarily due to the diffusion of self-interstitials and 

divacancies to randomly distributed defects or defect clusters of opposite sign. If the reaction partners 

happen to be close together as, e.g., in a close Frenkel pair, the recovery temperature is lowered partly 

because now only few migrational steps are needed till annihilation takes place, partly because the 

energy barrier to migration is lowered. This is thought to account for the recovery between 100 Κ and 

200 K. 

In summary, the following may be stated. 

(/) Information on the mechanisms of cyclic deformation of metals that is complementary to that 

14 For references as well as for a discussion of the generation of vacancies and self-interstitials by 
plastic deformation that goes beyond that of Sect. 2 see /25/. 
15 Because for metals such as Cu, Al, Ni, Ag it postulates the existence of two distinct self-interstitial 
configurations, the model described above is known as the "two-interstitial model". This name is 
somewhat misleading, since in at least one fee metal, viz. Au, in spite of large efforts the 
low-temperature recovery attributed by the "one-interstitial model" to self-interstitial migration has 
never been found in radiation damage experiments, let alone after plastic deformation. This means 
that in Au only one self-interstitial configuration exists which, however, migrates in Stage ΙΠ as 
postulated by the "two-interstitial model". 

58 



Α. Seeger Journal of the Mechanical Behavior of Materials 

obtainable from mechanical measurements and microstructure observations may be deduced from 
measurements of the residual electrical resistivity and its recovery. 
(») When pertaining to the same question, the results from electrical and mechanical measurements 
agree. 
(///') The observation that after low-temperature fatigue of Cu the recovery of the residual electrical 
resistivity does not start until the annealing temperature is raised to about 100 Κ is in serious conflict 
with the "one-interstitial model" but in full accord with the "two-interstitial model" of the radiation 
damage of fee metals. 
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