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Abstract

The effect of a complex coefficient of thermal expansion upon the thermoelastic
relaxation mechanism is analyzed. A phase angle in the thermal expansion has the effect of
generating a very broad band of mechanical damping, in addition to the peak usually observed.
Phase angles in the thermal expansion have been observed in several polymers, and they may
be generated in composite materials in which one or more phases is viscoelastic. However the
resulting enhancement of the overall damping of the composite is modest, unless new materials

can be found with very high relaxation strength or with a large intrinsic phase angle in the

expansion.

15 INTRODUCTION

Thermoelastic relaxation is a coupled-field type viscoelastic mechanism. Relaxation
proceeds to a non-zero asymptotic value of stiffness, therefore it is regarded as anelastic.
Thermoelastic relaxation, initially explored by Zener [1-3], occurs in all materials which exhibit
thermal expansion. It is present whenever there is inhomogeneity of temperature, since the
consequent flow of heat gives rise to a dissipation of energy. Temperature inhomogeneity can
arise due to an inhomogeneity of dilatational stress. Stress inhomogeneity occurs in some types
of vibration, such as bending vibration of reeds. Inhomogeneity of stress also is present if the
material has cavities, discrete phases, or anisotropic crystallites with random orientation. There
is also a homogeneous thermoelastic relaxation governed by heat flow between the specimen
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and the environment. The maximum tan & due to thermoelastic damping depends on the
relaxation strength A, defined as the change in stiffness during relaxation divided by the

stiffness at long time t, or in the formulation of creep compliance J(t), as follows.

_J(=) - J(0)
A==Tp52 (1
For thermoelastic relaxation, the relaxation strength is
2T
A=cs .

with a as the thermal expansion coefficient, J¢ = J(0) as the adiabatic compliance, T as the
absolute temperature and C, as the heat capacity per unit volume. When the relaxation strength
is small as it is for this mechanism, the maximum tan d for a Debye peak is %A. Values of %A
for some common materials are 0.0012 for Fe, 0.0024 for Al, 0.0003 for SiC, and 0.0089 for
Zn. Thermoelastic relaxation is most important in metals and ceramics in which it may
comprise most of the total relaxation. Experimental verification of the theory was reported by

Zener and co-workers [3,4].

c A Loading at

constant Fig. 1 Cyclic history of stress ¢ vs. strain €
temperature ) o ‘
(slow) showing energy dissipated due to thermoelastic

Slope l/ST/"j', damping. Conversion of mechanical energy into

gS thermal energy via the thermal expansion and

< ST piezocaloric effects. Energy densities W are shown
\ R Free expansion, £
Initial state temperature as shaded areas. Material is loaded slowly at constant

change
temperature, then unloaded rapidly at constant

entropy (adiabatically), which causes a temperature change, finally allowed to thermally
equilibrate at zero stress.
Dissipation of mechanical energy in a cyclic load history with heat flow is illustrated in

Fig. 1. The history consists of three portions. First the solid is loaded slowly at constant
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temperature (isothermally). It is then unloaded adiabatically, too rapidly for heat flow to occur,
with the slope of the stress strain curve as the adiabatic modulus which differs from the
isothermal modulus. The solid is then held at constant stress, and it exchanges heat with the
environment. Thermal expansion occurs, so the strain changes. Mechanical energy is
dissipated in this cycle, since there is a non-zero area enclosed by the load history. The loss
tangent as a measure of damping refers to sinusoidal loading which gives an elliptical stress-
strain diagram, governed by the same general principles.

Thermoelastic damping has received renewed attention in view of the fact that it is
operative in stiff materials which are of use structurally. Since the figure of merit for many
aspects of structural damping is E tan 8, the thermoelastic mechanism is of interest even though
the maximum damping values from it are relatively small. Thermoelastic damping in composite
materials arises due to the inhomogeneity of the thermal and mechanical properties of such
materials, leading to heat flow between constituents, hence mechanical energy dissipation. The
damping depends on the specific phase geometry as well as the constituents involved. The
reason is that damping depends on inhomogeneity of dilatational stress, and on the nature of
the boundary value problem under consideration. Composites of the following structure have
been analyzed for thermoelastic damping: one dimensional inclusions by Milligan and Kinra
[5], laminates by Bishop and Kinra [6], laminates with perfect and imperfect thermal interfaces
by Bishop and Kinra [7], and composites with particulate inclusions by Bishop and Kinra [8].

In this article we consider the effect upon damping of phase angles in the thermal
expansion, in view of the fact that similar phase angles in piezoelectric moduli can substantially

affect the mechanical damping due to piezoelectric coupling as demonstrated by Lakes [9].

II. MECHANICAL LOSS DUE TO THERMAL CURRENTS
A. Homogeneous case, with complex expansion coefficient

In this section we obtain the mechanical damping due to thermoelastic coupling. The
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analysis parallels that of Zener [3], with the exception that the thermal expansion coefficient is
assumed to be a complex quantity,
a* = a'(l +1i tan 3y), (3)
with 8, as a phase angle, tan §, = Im{a*}/Re{a*} and o' as Re{a*}.
The relation between strain &, stress G, and temperature T is, in one dimension:
€ = J10 + o*AT, (4)
with J1 as the isothermal compliance, so
AT = - (¢ - I0). )
o*
Thermal diffusion is governed by the following, with T as the thermal diffusion time. This is

homogeneous thermal diffusion, from the specimen to its environment. It is assumed that the

exchange of heat with the snvironment is much faster than the thermal diffusion within the

specimen.
dAT AT
dt ldiffusion - T . (6)

In the frequency domain,

AT
IWAT = - —. )
T

Under adiabatic conditions, an increase in length of a specimen of material results in a decrease

in temperature, for a > 0.

dAT ., de o
dt ladiabatic = = Y dr’ \0)
with

oT |
Y= 5_ adiabatic’
€

There may also be a phase angle in y:
v*=v(1 +itan 87)'

The change in temperature in response to strain is a manifestation of the piezocaloric effect,
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which is complementary to thermal expansion. In the frequency domain,

IWAT = - y* iwe, )

Combining Eq. 6 and 8, since there are two independent sources for rate of temperature

change,
dAT AT  de
& T T G

In the frequency domain,
AT
IWAT = -— - v* ik, (11)
T

Eliminating AT with Eq. 5,
1

o't

10 L* (€-Jr0) =- (€ - J70) - imy*e. (12)
a

Calculating the ratio of stress to strain, the product y*o* appears. It may be written as follows
in terms of the phase angles. The prime denotes the real part.

y*a* = ¥(1 + i tan 8,)a'(1 +1i tan §,) = Ya'{1 + i(tan 8+ tan &) - tan d.tan d }.

For small phase angles,

Y*a* = Yo'(1 + i(tan 8y+ tan 8y)) =Yo'(1 + i tan 8y ).
pro L1 +iotay(d +itan gy + 0202y (1 + i tan 8,) + 0272

It 1 + o2 -
But .
tan 8g =% , (14)
so the mechanical damping due to thermoelastic effects is
tan B = OTYa + w2T20'y'tan dyy (15)

1+ 02t2(1 + ") - ota'y'tan 85y

This damping is shown for various values of tan 8y, in Fig. 2. Observe that in the
absence of a phase angle in thermal expansion (8, = 0), the damping due to thermoelasticity in
this example follows a Debye peak. Following Zener [3], the relaxation strength for the Debye

peak is
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a¢.
A=(1’Y='C—VJ—S,

with the second form obtained via thermodynamic arguments based on the fact that an
increment of free energy is a perfect differential. The Debye form is obtained for the case of
macroscopic diffusion of heat. In cases of transverse vibration of reeds or cylinders, tan &

exhibits a series of peaks of progressively smaller magnitude.

2
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When 9§, # 0, the high frequency damping for @ >> -1, is as follows.
tan O = Ya'tan Sw (16)
This damping is constant, independent of frequency corresponding to the flat region to the right

in the curves in Fig. 2. In a continuum, this damping extends to arbitrarily high frequency, but

206



Roderic Lakes Journal of the Mechanical Behavior of Materials

if the material has microstructure, an upper limit on frequency is to be expected as discussed in
section III.

The effect of a positive phase angle in thermal expansion increases the mechanical
damping. This behavior is in contrast to a positive phase angle in the piezoelectric 'd' tensor
which reduces the mechanical damping [9]. Indeed, prior theoretical treatments which
neglected piezoelectric phase angles overestimated observed mechanical damping in
piezoelectric ceramics by more than a factor of two.

B. Restrictions on the coefficients

In a passive material, the total damping tan 8 must be nonnegative. However the
thermal expansion coefficient o can be positive or negative. Damping in the Debye peak is
always positive regardless of the sign of a since it is governed by a2. As for the phase 8, Eq.
16 shows that a negative phase combined with a positive expansion coefficient, gives rise to a

negative contribution to the mechanical loss in the high frequency region. Consequently

negative values of §, are excluded in passive materials unless viscoelastic mechanisms other
than thermoelasticity are operative. As demonstrated in section III, negative values of §, can be
generated in composite materials, but only by having at least one phase which is already
viscoelastic.
C. Loss due to thermal diffusion among inhomogeneities

Damping which results from thermal diffusion between the grains in a polycrystalline
metal was studied by Randall, er al. [4]. Experiments showed that this damping, though small
in magnitude, can account for virtually all the damping in the kHz region in some metals.
Damping due to thermoelastic effects associated with inclusions in a one dimension was
presented by Milligan and Kinra [5]. Predicted damping for one dimensional inclusions is
proportional to (&t;/p;c; - ®o/p,C,)? with o as a real thermal expansion, p as density, ¢ as

specific heat per unit mass and the subscripts representing the phase. The peak is 1.2 to 1.9
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decades wide at half maximum depending on the ratio of thermal conductivities compared with
1.1 decades for a Debye peak. The more realistic and more complicated case of spherical
inclusions was examined by Bishop and Kinra [8]). The damping peak in this case is broader
than a Debye peak: about 1.7 decades wide at half maximum. Peak tan &g values for one-
dimensional inclusions are, for SiC in Mg, 0.0091, for SiC in Al, 0.0049; for spherical
inclusions, for SiC in Mg, 0.0067, for SiC in Al, 0.0045.

Examination of the effect of a phase angle in o for such cases is considerably more
difficult than in the case considered above. One cannot apply the correspondence principle to a
result for the loss tangent. The loss is a real quantity, and substitution of a complex @ in its
expression does not yield a physically meaningful quantity. Nevertheless, to the extent that the
behavior is approximated by a Debye peak, the effect of a complex thermal expansion

coefficient is expected to be similar to that obtained above.

III. MATERIALS WITH COMPLEX COEFFICIENTS OF THERMAL EXPANSION
A. Unidirectional composite
Complex thermal expansions are known to occur in polymeric materials [10,11]. We
demonstrate here that they can be obtained in a controlled fashion in composite materials,

provided that at least one phase is viscoelastic. Consider the longitudinal thermal expansion

coefficient o for a unidirectional fibrous composite [12,13].

1
oL = I-a (alElvl + a2E2V2), (17)
in which a, is the thermal expansion coefficient of the fibers, E; is Young's modulus of the
fibers, and V| is the volume fraction of the fibers; o»,E,,V, are corresponding values for the
matrix, with V,+V, = 1. E; is given by the Voigt relation or rule of mixtures,

EL . Elvl + E2V2, (18)
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Applying the dynamic elastic-viscoelastic correspondence principle, and assuming that each

component is viscoelastic but has a real thermal expansion coefficient,

* 1 *
o, = E—L* (alEl Vl +a2E2*V2). (19)

We remark that this form can be readily obtained from the dynamic stress-strain-temperature
relation without any appeal to the correspondence principle.

Combining, and incorporating V, =1- V|,

Ez' 1-V,
oy + Ay T3
. E~ ™

e =

1
Y (20)
El* vl

Materials with complex thermal expansions can therefore be prepared as composite materials in
which at least one constituent is viscoelastic. Fig. 3 shows the tangent of the phase 8, of the
thermal expansion for such a composite. Tan §, can be made on the order of the mechanical
damping tan g , of the matrix phase, for reasonably large volume fractions of fibers. The
magnitude of the thermal expansion in this example is rather small, since the expansion of the
fibers is assumed to be small. The phase §, can be negative in composites if the expansion in
the stiff phase is greater than that in the more compliant phase, as shown in the lower part of
Fig. 3.

The above calculation of the complex thermal expansion is based on a continuum view
of the composite. Such a view is warrantable provided the frequency is sufficiently below the

characteristic frequency of thermal diffusion between the fiber and matrix phases of the

composite.
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3 Theoretical tangent of

tan & ay the phase angle d in the

thermal expansion of a

0.08 unidirectional fibrous

006 composite in terms of

0.04 the mechanical damping

107 , tan 8 of the matrix
o —0 \0'1 phase, and thermal
e)?g:rtllsii):)n ° Iv{ztsrsix expansion o, of the

matrix. It is assumed
that the fibers are purely
elastic and are 45 times
stiffer than the matrix
and that they have a
longitudinal expansion
ae = 4.5 x 10-8 /°C.

These figures are

representative  of
Matrix graphite fibers in an

Matrix loss i
expansion epoxy matrix. The
volume fraction of fibers

is assumed to be 0.5.

Top diagram: range of o, 0 to 104 /°C.
Arrow: a typical epoxy, o, =6 x 10-5 /°C.
Bottom diagram: range of a,, 0 to 10-7 /°C, showing the possibility of a negative phase if the

matrix expansion is very small.
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B. Isotropic composite

The thermal expansion for a macroscopically isotropic composite is given as follows

[14]):
SIS IR S
K, T-K,! K K (21)

0.=0.2+

in which K, and K, are the bulk moduli of the two phases and K is the bulk modulus of the

composite as a whole. Let K be given as the Hashin-Shtrickman upper bound, assuming a

Poisson's ratio of 0.3 for both phases, so K; = 2.166 G, with G, as the shear modulus of the

first phase. The Hashin-Shtrickman upper bound is given by:

Vs,
S 6K, +2G )V, - (2)

G,-G, ' 5(3K;+4G )G,

Again, consider the stiffness of the matrix (phase 2) to be a complex quantity. The phase in the

thermal expansion is shown in Fig. 4, for constituent material properties as in Fig. 3. As in the

case of the unidirectional composite, tan 3, can be made on the order of the mechanical

damping tan Og 5 of the matrix phase, for reasonably large volume fractions of inclusions.

oy 4 Theoretical tangent of the phase

Isotropic

angle 3, in the thermal expansion of an
isotropic composite in terms of the
mechanical damping tan O of the matrix
phase, and thermal expansion o, of the
matrix. Hashin-Shtrickman upper bound

model. Assumed constituent properties

Matrix Matrix are the same as those for Fig. 3.
: loss
expansion ‘ : o
P Poisson's ratio is assumed to be 0.3 for

both phases.
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C. Prospects for high-loss materials. Structural hierarchy.

If a composite material is used to generate a phase 8, for use in homogeneous
thermoelastic damping, there are two length scales, that of the composite structure and that of
the specimen or structural member itself. This is an example of structural hierarchy, in which
there are multiple nested length scales. Hierarchical materials are known to offer the potential
for superior stiffness, strength and toughness [15]. Complex composite structures need not
arise by manufacturing. For example spherulitic structures in polymers, and eutectic structures
in metal alloys are heterogeneous. In the context of viscoelastic composites, the high frequency
plateau for the example of homogeneous relaxation extends over frequencies at which a
continuum view applies to any composite structures used. At sufficiently high frequency,
thermal flow between constituents gives rise to an additional damping peak as considered for
laminates [6] and for particulate composites [8]. One may envisage hierarchical composites in
which each lamina, fiber, or particle has its own internal structure. In such a case a high

frequency plateau is expected above the damping peak associated with the largest structural
elements.

Thermoelastic damping due to the phase 8, in a unidirectional composite, was

calculated in the plateau region governed by Eq. 16, for several combinations of constituent
materials. This damping was compared with the composite damping due to the assumed
viscoelasticity of the matrix phase, following a correspondence principle analysis of the Voigt
relation, Eq. 18, for elastic materials:

E'=E;*V; +E;"V,.

Taking the ratio of real and imaginary parts, the mechanical loss tangent of the composite due

to the viscoelasticity of the constituent phases is given by:
E .

: . (23)
\£)

tan . = 3
B

Vi+ ==
1El
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The thermoelastic enhancement of the damping, defined as the ratio & of the plateau

damping of Eq. 16 to the damping due to the viscoelasticity of the matrix phase, Eq. 23, was

calculated.

_ A tan 8y,

- (24)
tan o_

This enhancement increases with E,/E,, with V;, with a5/c.;, and with the relaxation strength.
For composites made of commonly known materials, the enhancement is small, less than 20%
for all cases considered. Several examples, calculated using thermal data reported by Milligan
and Kinra [5] are given in Fig. 5. Observe that if the matrix itself has a phase angle in its
thermal expansion (to be distinguished from the phase angle of the composite) then there is
additional mechanical damping.

Applications of thermoelastic damping all suffer from the drawback that the relaxation
strength, hence the maximum tan §, is relatively small for known materials considered thus far
by investigators of thermoelastic damping. It is possible to obtain very high values of thermal
expansion in certain cellular composites [16,17]. Such materials are compliant in view of the
bending deformation which occurs in them, hence they will also have a small relaxation
strength. Moreover such compliant materials cannot be expected to exhibit a large figure of
merit E tan 8. As for a broader view of materials, Ashby [18] has compiled mechanical and
thermal properties of many engineering materials. Ashby plots & vs E and shows contours of
the product oE which governs thermal stress in a constrained system. In the context of
thermoelastic relaxation, the figure of merit is the relaxation strength, which contains o2E. By
drawing contours of a2E, we observe that the figure of merit for metals such as magnesium,
zinc, aluminum, steel and copper is similar to that of polymers such as nylon and polystyrene.
Ceramics and porous materials are less promising in this regard. The specific heat of a wide
range of engineering materials, expressed as pC, does not deviate much from 3 x 106 J/m3K,

so it seems unlikely to enhance the relaxation strength by control of that variable.
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Damping Damping
enhancement enhancement

O

5 Theoretical thermoelastic damping enhancement at high frequency for composites.

Matrix damping is assumed to be 0.1 for all cases. Matrix o, shown by arrow.

Top left, zinc-polyethylene; damping of zinc assumed to be 10 based on pinned
dislocations. Top right: tan §, = 0.1 for the polymer. Bottom left, tin-silicon carbide. Damping

of silicon carbide assumed to be zero. Bottom right, tan 8, = 0.1 for the tin.

Future development of high-damping structural materials based on thermoelasticity will

be facilitated by a search for new materials, possibly alloys, which exhibit a largé thermoelastic
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relaxation strength. If such materials are to be used in composites they need not be as strong as
common engineering materials. This study demonstrates that thermoelastic phase angles can be

beneficial. If needed, they can be generated in composite materials.

IV. CONCLUSIONS

A phase angle in the thermal expansion coefficient & gives rise to mechanical damping
over a broad range of frequency. This damping is in addition to the Debye peak expected for
homogeneous thermoelastic relaxation. A phase angle in a is known to exist in certain
polymers. A phase angle in & can be obtained in a controlled fashion in composite materials,
provided that at least one phase is viscoelastic. However the resulting enhancement of the

overall damping of the composite is modest, unless new materials with very high relaxation

strength can be found.
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