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A b s t r a c t 

The effect of a complex coefficient of thermal expansion upon the thermoelastic 

relaxation mechanism is analyzed. A phase angle in the thermal expansion has the effect of 

generating a very broad band of mechanical damping, in addition to the peak usually observed. 

Phase angles in the thermal expansion have been observed in several polymers, and they may 

be generated in composite materials in which one or more phases is viscoelastic. However the 

resulting enhancement of the overall damping of the composite is modest, unless new materials 

can be found with very high relaxation strength or with a large intrinsic phase angle in the 

expansion. 

1 . I N T R O D U C T I O N 

Thermoelastic relaxation is a coupled-field type viscoelastic mechanism. Relaxation 

proceeds to a non-zero asymptotic value of stiffness, therefore it is regarded as anelastic. 

Thermoelastic relaxation, initially explored by Zener [1-3], occurs in all materials which exhibit 

thermal expansion. It is present whenever there is inhomogeneity of temperature, since the 

consequent flow of heat gives rise to a dissipation of energy. Temperature inhomogeneity can 

arise due to an inhomogeneity of dilatational stress. Stress inhomogeneity occurs in some types 

of vibration, such as bending vibration of reeds. Inhomogeneity of stress also is present if the 

material has cavities, discrete phases, or anisotropic crystallites with random orientation. There 

is also a homogeneous thermoelastic relaxation governed by heat flow between the specimen 
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and the environment. The maximum tan δ due to thermoelastic damping depends on the 

relaxation strength Δ, defined as the change in stiffness during relaxation divided by the 

stiffness at long time t, or in the formulation of creep compliance J(t), as follows. 
J ( ~ ) - J(0) 

Δ = J(0) • ( 1 ) 

For thermoelastic relaxation, the relaxation strength is 

® 

with α as the thermal expansion coefficient, J s = J(0) as the adiabatic compliance, Τ as the 

absolute temperature and C,, as the heat capacity per unit volume. When the relaxation strength 

is small as it is for this mechanism, the maximum tan δ for a Debye peak is ^Δ. Values of ^Δ 

for some common materials are 0.0012 for Fe, 0.0024 for Al, 0.0003 for SiC, and 0.0089 for 

Zn. Thermoelastic relaxation is most important in metals and ceramics in which it may 

comprise most of the total relaxation. Experimental verification of the theory was reported by 

Zener and co-workers [3,4], 
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S . /Unloading at 
Slope l /S^V^^ ' l^pcffi^ant entropy damping. Conversion of mechanical energy into 
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Initial state temperature as shaded areas. Material is loaded slowly at constant 
change 

temperature, then unloaded rapidly at constant 

entropy (adiabatically), which causes a temperature change, finally allowed to thermally 

equilibrate at zero stress. 

Dissipation of mechanical energy in a cyclic load history with heat flow is illustrated in 

Fig. 1. The history consists of three portions. First the solid is loaded slowly at constant 
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temperature (isothermally). It is then unloaded adiabatically, too rapidly for heat flow to occur, 

with the slope of the stress strain curve as the adiabatic modulus which differs from the 

isothermal modulus. The solid is then held at constant stress, and it exchanges heat with the 

environment. Thermal expansion occurs, so the strain changes. Mechanical energy is 

dissipated in this cycle, since there is a non-zero area enclosed by the load history. The loss 

tangent as a measure of damping refers to sinusoidal loading which gives an elliptical stress-

strain diagram, governed by the same general principles. 

Thermoelastic damping has received renewed attention in view of the fact that it is 

operative in stiff materials which are of use structurally. Since the figure of merit for many 

aspects of structural damping is Ε tan δ, the thermoelastic mechanism is of interest even though 

the maximum damping values from it are relatively small. Thermoelastic damping in composite 

materials arises due to the inhomogeneity of the thermal and mechanical properties of such 

materials, leading to heat flow between constituents, hence mechanical energy dissipation. The 

damping depends on the specific phase geometry as well as the constituents involved. The 

reason is that damping depends on inhomogeneity of dilatational stress, and on the nature of 

the boundary value problem under consideration. Composites of the following structure have 

been analyzed for thermoelastic damping: one dimensional inclusions by Milligan and Kinra 

[5], laminates by Bishop and Kinra [6], laminates with perfect and imperfect thermal interfaces 

by Bishop and Kinra [7], and composites with particulate inclusions by Bishop and Kinra [8]. 

In this article we consider the effect upon damping of phase angles in the thermal 

expansion, in view of the fact that similar phase angles in piezoelectric moduli can substantially 

affect the mechanical damping due to piezoelectric coupling as demonstrated by Lakes [9]. 

I I . MECHANICAL LOSS DUE TO THERMAL CURRENTS 

A. Homogeneous case, with complex expansion coefficient 

In this section we obtain the mechanical damping due to thermoelastic coupling. The 
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analysis parallels that of Zener [3], with the exception that the thermal expansion coefficient is 

assumed to be a complex quantity, 

a * = a ' ( l + i tan δα), (3) 

with δ α as a phase angle, tan δα = Im{a*}/Re{a*} and a ' as Re{a*}. 

The relation between strain ε, stress σ, and temperature Τ is, in one dimension: 

ε = J T a + α*ΔΤ, (4) 

with JT as the isothermal compliance, so 
ΔΤ = — (ε - JTa). (5) 

a* 

Thermal diffusion is governed by the following, with τ as the thermal diffusion time. This is 

homogeneous thermal diffusion, from the specimen to its environment. It is assumed that the 

exchange of heat with the environment is much faster than the thermal diffusion within the 

(6) 

specimen. 
dAT _ AT 

(jj 'diffusion · 

In the frequency domain, 

ιωΔΤ = - — . (7) 
x 

Under adiabatic conditions, an increase in length of a specimen of material results in a decrease 

in temperature, for α > 0. 
dAT. άε 

'adiabatic ~ " Ύ φ» \°) 

with 
ΘΤ, 

Y adiabatic· όε 

There may also be a phase angle in γ. 

γ* = Y(1 + i tan δγ), 

The change in temperature in response to strain is a manifestation of the piezocaloric effect, 
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which is complementary to thermal expansion. In the frequency domain, 

ίωΔΤ = - γ* ϊωε, (9) 

Combining Eq. 6 and 8, since there are two independent sources for rate of temperature 

change, 
dAT ΔΤ Λ d£ 

In the frequency domain, 
ΔΤ 

ίωΔΤ = - — - γ * icoe, (11) 
χ 

Eliminating ΔΤ with Eq. 5, 

ico — (ε - JTo) = - - 7 - (ε - JTa) - ΐωγ*ε. (12) 
α* α χ 

Calculating the ratio of stress to strain, the product γ*α* appears. It may be written as follows 

in terms of the phase angles. The prime denotes the real part. 

γ*α* = Y(1 + i tan δγ)α'(1 + i tan δα) = Υα'{ 1 + i(tan δγ+ tan δα ) - tan ö^an δα}. 

For small phase angles, 

γ*α* = Υα'{ 1 + i(tan δγ+ tan δα)} ξ γα '{ 1 + i tan δα γ}. 

+ 1 1 + ί ω χ α ' Υ ( 1 + i tan δ α γ ) + ω 2 χ 2 α ' γ ' ( 1 + i tan δ α γ ) + ω 2 χ 2 

Ε = γ . (13) 
J t 1 + ω 2 χ 2 

But 
- Im {Ε*} .. 

" » S t ' R ^ W ) · < 1 4 ) 

so the mechanical damping due to thermoelastic effects is 
ω χ γ α + (D2x2aYtan δ „ ν 

tan ög = — L . (15) 
1 + ω 2 χ 2 ( 1 + α 'γ ' ) - roTa'y'tan δ α γ 

This damping is shown for various values of 

tan δαγ, in Fig. 2. Observe that in the 

absence of a phase angle in thermal expansion (δα = 0), the damping due to thermoelasticity in 

this example follows a Debye peak. Following Zener [3], the relaxation strength for the Debye 

peak is 
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a 2 T 
Δ = α γ = p - j - , 

V s 

with the second form obtained via thermodynamic arguments based on the fact that an 

increment of free energy is a perfect differential. The Debye form is obtained for the case of 

macroscopic diffusion of heat. In cases of transverse vibration of reeds or cylinders, tan δ 

exhibits a series of peaks of progressively smaller magnitude. 

CO 
a «j 

10" 

10" 

10" 

10-

10 - 6 

/ ^ 
0.1 

> o 0.03 
Ooo oooo^> 

V 0.01 

Debye 
tan δ = 0 αγ 

10"4 10"3 ΙΟ"2 10"1 10 

Frequency 

101 ΙΟ2 10J 10 

2 Theoretical mechanical damping tan ög for thermoelastic damping with and without a 

phase angle δ α in the thermal expansion coefficient; effect of different values of tan δ γ + tan δα , 

labeled as tan δ. αγ· 

When δ α Φ 0, the high frequency damping for ω » r 1 , is as follows, 

tan δ Ε = Ya'tan δα γ . (16) 

This damping is constant, independent of frequency corresponding to the flat region to the right 

in the curves in Fig. 2. In a continuum, this damping extends to arbitrarily high frequency, but 
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if the material has microstructure, an upper limit on frequency is to be expected as discussed in 

section III. 

The effect of a positive phase angle in thermal expansion increases the mechanical 

damping. This behavior is in contrast to a positive phase angle in the piezoelectric'd' tensor 

which reduces the mechanical damping [9]. Indeed, prior theoretical treatments which 

neglected piezoelectric phase angles overestimated observed mechanical damping in 

piezoelectric ceramics by more than a factor of two. 

Β . Restrictions on the coefficients 

In a passive material, the total damping tan δΕ must be nonnegative. However the 

thermal expansion coefficient α can be positive or negative. Damping in the Debye peak is 

always positive regardless of the sign of α since it is governed by a 2 . As for the phase δα , Eq. 

16 shows that a negative phase combined with a positive expansion coefficient, gives rise to a 

negative contribution to the mechanical loss in the high frequency region. Consequently 

negative values of δ α are excluded in passive materials unless viscoelastic mechanisms other 

than thermoelasticity are operative. As demonstrated in section HI, negative values of δ α can be 

generated in composite materials, but only by having at least one phase which is already 

viscoelastic. 

C . Loss due to thermal diffusion among inhomogeneities 

Damping which results from thermal diffusion between the grains in a polycrystalline 

metal was studied by Randall, et al. [4], Experiments showed that this damping, though small 

in magnitude, can account for virtually all the damping in the kHz region in some metals. 

Damping due to thermoelastic effects associated with inclusions in a one dimension was 

presented by Milligan and Kinra [5]. Predicted damping for one dimensional inclusions is 

proportional to (cxj/pjcj - CC2/P2C2)2 with α as a real thermal expansion, ρ as density, c as 

specific heat per unit mass and the subscripts representing the phase. The peak is 1.2 to 1.9 
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decades wide at half maximum depending on the ratio of thermal conductivities compared with 

1.1 decades for a Debye peak. The more realistic and more complicated case of spherical 

inclusions was examined by Bishop and Kinra [8]). The damping peak in this case is broader 

than a Debye peak: about 1.7 decades wide at half maximum. Peak tan δΕ values for one-

dimensional inclusions are, for SiC in Mg, 0.0091, for SiC in Al, 0.0049; for spherical 

inclusions, for SiC in Mg, 0.0067, for SiC in Al, 0.0045. 

Examination of the effect of a phase angle in α for such cases is considerably more 

difficult than in the case considered above. One cannot apply the correspondence principle to a 

result for the loss tangent. The loss is a real quantity, and substitution of a complex α in its 

expression does not yield a physically meaningful quantity. Nevertheless, to the extent that the 

behavior is approximated by a Debye peak, the effect of a complex thermal expansion 

coefficient is expected to be similar to that obtained above. 

I I I . M A T E R I A L S WITH COMPLEX COEFFICIENTS OF THERMAL EXPANSION 

A . Unidirectional composite 

Complex thermal expansions are known to occur in polymeric materials [10,11]. We 

demonstrate here that they can be obtained in a controlled fashion in composite materials, 

provided that at least one phase is viscoelastic. Consider the longitudinal thermal expansion 

coefficient a L for a unidirectional fibrous composite [12,13]. 

a L = ^ ( a ^ V i + a , E , V 2 ) , (17) 

in which is the thermal expansion coefficient of the fibers, Ej is Young's modulus of the 

fibers, and Vj is the volume fraction of the fibers; a2 ,E2 ,V2 are corresponding values for the 

matrix, with Vj+N^ = 1. EL is given by the Voigt relation or rule of mixtures, 

E l = E1V1 +E 2V 2 , (18) 
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Applying the dynamic elastic-viscoelastic correspondence principle, and assuming that each 

component is viscoelastic but has a real thermal expansion coefficient, 

V = Α (c t jE^Vj + α2Ε2*ν2) . (19) 
h L 

We remark that this form can be readily obtained from the dynamic stress-strain-temperature 

relation without any appeal to the correspondence principle. 

Combining, and incorporating V2 = 1 - Vj, 

Materials with complex thermal expansions can therefore be prepared as composite materials in 

which at least one constituent is viscoelastic. Fig. 3 shows the tangent of the phase δ α of the 

thermal expansion for such a composite. Tan δα can be made on the order of the mechanical 

damping tan δΕ 2 of the matrix phase, for reasonably large volume fractions of fibers. The 

magnitude of the thermal expansion in this example is rather small, since the expansion of the 

fibers is assumed to be small. The phase δα can be negative in composites if the expansion in 

the stiff phase is greater than that in the more compliant phase, as shown in the lower part of 

The above calculation of the complex thermal expansion is based on a continuum view 

of the composite. Such a view is warrantable provided the frequency is sufficiently below the 

characteristic frequency of thermal diffusion between the fiber and matrix phases of the 

composite. 

E-,* 1-V 
+ a , - f r -ΓΓ-

(20) 

Fig. 3. 
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3 Theoretical tangent of 

the phase angle δα in the 

thermal expansion of a 

unidirectional fibrous 

composite in terms of 

the mechanical damping 

tan δ Ε of the matrix 

phase, and thermal 

expansion a m of the 

matrix. It is assumed 

that the fibers are purely 

elastic and are 45 times 

stiffer than the matrix 

and that they have a 

longitudinal expansion 

a f = 4.5 χ 10-8 /°C. 

These f igures are 

r e p r e s e n t a t i v e of 

graphite fibers in an 

epoxy matrix. The 

volume fraction of fibers 

is assumed to be 0.5. 

Matrix 
loss 

tan δ. 

Matrix 
loss 

Top diagram: range of o^ 0 to ΙΟ"4 ΓC. 

Arrow: a typical epoxy, o^ = 6 χ 10 5 /°C. 

Bottom diagram: range of a m 0 to 10'7 /°C, showing the possibility of a negative phase if the 

matrix expansion is very small. 
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Β . Isotropic composite 

The thermal expansion for a macroscopically isotropic composite is given as follows 

[14]: 
oc i - cx , r l 1 , . . . . 

a = a 2 + K f i - K 2 - i { K - ^ ' ( 2 1 ) 

in which K^ and K2 are the bulk moduli of the two phases and Κ is the bulk modulus of the 

composite as a whole. Let Κ be given as the Hashin-Shtrickman upper bound, assuming. a 

Poisson's ratio of 0.3 for both phases, so Kj = 2.166 G t with G t as the shear modulus of the 

first phase. The Hashin-Shtrickman upper bound is given by: 
V, 

G = G 1 + ~ 1 e q c ^ G p v , · ( 2 2 ) 

G2-G! + 5(3K1+4G1)G1 

Again, consider the stiffness of the matrix (phase 2) to be a complex quantity. The phase in the 

thermal expansion is shown in Fig. 4, for constituent material properties as in Fig. 3. As in the 

case of the unidirectional composite, tan δ α can be made on the order of the mechanical 
damping tan 2 °f the matrix phase, for reasonably large volume fractions of inclusions. 

tan δ, 

Matrix Matrix 
expansion l o s s 

4 Theoretical tangent of the phase 

angle δα in the thermal expansion of an 

isotropic composite in terms of the 

mechanical damping tan 5g of the matrix 

phase, and thermal expansion a m of the 

matrix. Hashin-Shtrickman upper bound 

model. Assumed constituent properties 

are the same as those for Fig. 3. 

Poisson's ratio is assumed to be 0.3 for 

both phases. 
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C . Prospects for high-loss materials. Structural hierarchy. 

If a composite material is used to generate a phase δ α for use in homogeneous 

thermoelastic damping, there are two length scales, that of the composite structure and that of 

the specimen or structural member itself. This is an example of structural hierarchy, in which 

there are multiple nested length scales. Hierarchical materials are known to offer the potential 

for superior stiffness, strength and toughness [15]. Complex composite structures need not 

arise by manufacturing. For example spherulitic structures in polymers, and eutectic structures 

in metal alloys are heterogeneous. In the context of viscoelastic composites, the high frequency 

plateau for the example of homogeneous relaxation extends over frequencies at which a 

continuum view applies to any composite structures used. At sufficiently high frequency, 

thermal flow between constituents gives rise to an additional clamping peak as considered for 

laminates [6] and for particulate composites [8]. One may envisage hierarchical composites in 

which each lamina, fiber, or particle has its own internal structure. In such a case a high 

frequency plateau is expected above the damping peak associated with the largest structural 

elements. 

Thermoelastic damping due to the phase δ α in a unidirectional composite, was 

calculated in the plateau region governed by Eq. 16, for several combinations of constituent 

materials. This damping was compared with the composite damping due to the assumed 

viscoelasticity of the matrix phase, following a correspondence principle analysis of the Voigt 

relation, Eq. 18, for elastic materials: 

Taking the ratio of real and imaginary parts, the mechanical loss tangent of the composite due 

to the viscoelasticity of the constituent phases is given by: 

Ec* = E ^ V j + E2*V2. 

tan δ ς = (23) 
Ε , ' 
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The thermoelastic enhancement of the damping, defined as the ratio ξ of the plateau 

damping of Eq. 16 to the damping due to the viscoelasticity of the matrix phase, Eq. 23, was 

calculated. 
Δ tan δ„ ν 

ξ = - S 2 . (24) 

tan oc 

This enhancement increases with EjA^, with Vj, with α2/α[, and with the relaxation strength. 

For composites made of commonly known materials, the enhancement is small, less than 2(T% 

for all cases considered. Several examples, calculated using thermal data reported by Milligan 

and Kinra [5] are given in Fig. 5. Observe that if the matrix itself has a phase angle in its 

thermal expansion (to be distinguished from the phase angle of the composite) then there is 

additional mechanical damping. 

Applications of thermoelastic damping all suffer from the drawback that the relaxation 

strength, hence the maximum tan δ, is relatively small for known materials considered thus far 

by investigators of thermoelastic damping. It is possible to obtain very high values of thermal 

expansion in certain cellular composites [16,17]. Such materials are compliant in view of the 

bending deformation which occurs in them, hence they will also have a small relaxation 

strength. Moreover such compliant materials cannot be expected to exhibit a large figure of 

merit Ε tan δ. As for a broader view of materials, Ashby [18] has compiled mechanical and 

thermal properties of many engineering materials. Ashby plots α vs Ε and shows contours of 

the product a E which governs thermal stress in a constrained system. In the context of 

thermoelastic relaxation, the figure of merit is the relaxation strength, which contains a2E. By 

drawing contours of a 2 E, we observe that the figure of merit for metals such as magnesium, 

zinc, aluminum, steel and copper is similar to that of polymers such as nylon and polystyrene. 

Ceramics and porous materials are less promising in this regard. The specific heat of a wide 

range of engineering materials, expressed as pC, does not deviate much from 3 χ 106 J/m3K, 

so it seems unlikely to enhance the relaxation strength by control of that variable. 
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Damping Damping 
enhancement enhancement 

5 Theoretical thermoelastic damping enhancement at high frequency for composites. 

Matrix damping is assumed to be 0.1 for all cases. Matrix a m shown by arrow. 

Top left, zinc-polyethylene; damping of zinc assumed to be 1(H based on pinned 

dislocations. Top right: tan δ α = 0.1 for the polymer. Bottom left, tin-silicon carbide. Damping 

of silicon carbide assumed to be zero. Bottom right, tan δ α = 0.1 for the tin. 

Future development of high-damping structural materials based on thermoelasticity will 

be facilitated by a search for new materials, possibly alloys, which exhibit a large thermoelastic 
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relaxation strength. If such materials are to be used in composites they need not be as strong as 

common engineering materials. This study demonstrates that thermoelastic phase angles can be 

beneficial. If needed, they can be generated in composite materials. 

IV. C O N C L U S I O N S 

A phase angle in the thermal expansion coefficient α gives rise to mechanical damping 

over a broad range of frequency. This damping is in addition to the Debye peak expected for 

homogeneous thermoelastic relaxation. A phase angle in α is known to exist in certain 

polymers. A phase angle in α can be obtained in a controlled fashion in composite materials, 

provided that at least one phase is viscoelastic. However the resulting enhancement of the 

overall damping of the composite is modest, unless new materials with very high relaxation 

strength can be found. 
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