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ABSTRACT 

The effects of gradients on the localization and patterning of 
deformation at various scales ranging from the millimeter (macroscale) down to 
the nanometer (nanoscale) are discussed. At the nanoscale, a dominant 
mechanism of deformation is the rearrangement of free nano volume and 
exchange of momentum between bulk and grain boundary space. At the 
microscale, a most common mechanism of deformation is dislocation motion. At 
the macroscale, deformation patterning occurs by the transport of strain from 
one region of the deforming material to another. In each case, higher order 
gradients of the respective nano, micro or macro variables are essential to be 
included in the constitutive equations. This leads to various classes of 
material behavior including a gradient theory of elasticity, a gradient theory 
of defect dynamics, and a gradient theory of macroscopic plasticity. Within 
such "internal-length" theories it is possible to discuss the occurrence of 
deformation patterns at various scales, the determination of width, spacing 
and velocity of deformation bands, as well as the structure of the crack tip 
and the removal of associated strain or stress singularities. 

1. INTRODUCTION 

One of the outstanding problems in the mechanical behavior of materials 
has been the connection between micro (-10 - 100 μπ\) and macro (~ 0.1 - 1.00 
mm or larger) scales. Recently, substantial attention has been given to 
materials at the nanometer scale 10 - 100 nm grain size) with the question 
of interest here being the determination of the coupling between nano and 
micro scales and its effect on the overall macroscopic response. The first 
step in addressing this question is to elucidate the mechanisms of deformation 
at various scales for all three regimes: prelocalization, postlocalization 
and fracture. 

At the nanoscale, recent arguments suggest that elastic deformation may 
not be described by the standard theory of elasticity, but surface-tension 
like effects should be included through the incorporation of higher order 
gradients in the stress-strain relation. Plastic deformation occurs via the 
rearrangement and production of free volume associated with nanopores at 
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triple grain boundary junctions, while dislocation activity is usually 
confined within the grain boundary space only. Moreover, grain "stretching", 
"rotation" and "sliding", as well as "nano damage" development has been 
observed. At the microscale, the usual deformation mechanism is dislocation 
motion and production within the grains, while grain boundaries may act as 
obstacles or sources to dislocation motion or production. Again, "micro 
damage" formation is another mechanism of irreversible deformation, either 
independent or indirectly related to dislocation activity. Effectively, these 
mechanisms may be responsible for the development of high strain or stress 
gradients at the macroscale and the transport of strain from one material 
region to another. It turns out that these mechanisms of nano-, micro-, or 
macro-strain transport may act, indeed, as stabilizing mechanisms when the 
local homogeneous material response loses stability as a result of the 
external load exceeding a certain threshold. In fact, the most common way 
that a material responds to an increasing external stress before fracture, is 
to undergo through the occurrence of a "continuous" hierarchy of 
pattern-forming instabilities ranging from single dislocations and dislocation 
pileups to complex dislocation structures, shear bands and cracks. 

A general framework for connecting micro to macro scales based on the 
concept of "normal" and "excited" states has been proposed by the author and 
his co-workers in the last decade. Within this program, "standard" and 
"non-standard" models of macroscopic plasticity were obtained on the basis of 
crystal slip and dislocation motion, and a justification for introducing 
higher order gradients of strain into corresponding constitutive equations was 
provided. These physically based non-standard plasticity models have led to a 
direct interpretation of axial effects in torsion. The higher order gradients 
have led to a direct interpretation of measurements pertaining to shear bands 
widths and spacings. The notion of normal and excited states may also be 
extended to describe deformation mechanisms occurring at the nanoscale. 
Nanostructural materials exhibit a large surface-to-volume ratio and, as a 
result, the material element may be viewed as a superposition of "surface" and 
"bulk" continua with each one supporting its own mechanical (stress and 
strain) fields. Moreover, they are allowed to exchange effective mass and 
momentum with each other in a manner consistent with the overall mass and 
momentum balance of the two superimposed continua considered as a whole. In 
fact, it can be shown that if (for moderate stress levels) both the bulk and 
grain boundary phases deform elastically and the interaction force is 
proportional to the relative displacement, then the governing differential 
equation is equivalent to that obtained from a direct second order strain 
gradient extension of Hooke's law. The corresponding second order stress is a 
surface tension-like stress similar in nature to the capillary force in the 
theory of inhomogeneous fluids. 

In this paper, gradient effects on deformation processes occurring at the 
nano, micro, and macro scale are discussed. It is shown that higher order 
gradients are essential in capturing the heterogeneity of deformation and 
associated pattern-forming instabilities. At the nanoscale, the implications 
of a gradient theory of elasticity on the structure of the crack tip and the 
elimination of associated singularities are discussed. Moreover, a 
preliminary discussion of gradient effects on plastic flow and damage 
development at the nanoscale and some remarks on the "inverse" flow 
stress-grain size dependence observed in nanocrystalline materials are given. 
At the microscale (or mesoscale), gradient effects are accounted for through 
higher order gradients in defect (e.g. dislocations) densities modelling the 
relevant short-range interactions, with the corresponding long-range 
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interactions being screened due to the relatively high densities of defects or 
clusters of defects usually present in the cases under consideration. It is 
shown that these gradients are essential in modelling the self-organization of 
defects and dislocation patterning phenomena occurring at the micro (or meso) 
scale. The resultant theoretical framework may be termed dislocation-gradient 
dynamics. Finally, at the macroscale, gradient effects are most conveniently 
incorporated into the yield condition or the evolution equation for the back 
stress with tHe rest of the equations being the same as in the classical 
theory of plasticity. It has already been shown by the author and his 
co-workers that such a gradient dependence provides an appropriate 
internal-length scale to the structure of classical theory of plasticity, thus 
allowing the derivation of shear band widths and spacings in the 
post-instability regime. As this question has been addressed elsewhere for 
isothermal conditions, attention is confined here in illustrating the role of 
higher order gradients on the problem of thermoplastic instability with 
emphasis on the coupling between nonlinearity, strain gradients, and 
temperature gradients. Moreover, it is shown how a previous difficulty 
encountered in analyses pertaining to the velocity determination of Portevin 
Le Chatelier (PLC) bands is removed. 

The various ideas are presented in the order that they were developed 
chronologically. Thus, microscales (or mesoscales) are considered first by 
modelling the gradient-dependent evolution of defects and the corresponding 
dislocation patterns. Then, macroscales are discussed by modelling 
gradient-dependent thermoplastic flow phenomena with reference to adiabatic 
shear banding. Finally, the nanoscale is addressed by modelling elastic nano 
deformation via a gradient-dependent elasticity theory (describing, among 
other things, surface-dependent deformation phenomena such as those occurring 
at crack tips) and plastic nano deformation via a gradient-dependent 
plasticity theory (describing, among other things, the evolution and transport 
of nano pores and nano damage development). To facilitate the discussion, 
however, a brief account motivating the need of higher order gradients for 
each class of the aforementioned deformation problems is given in the next 
section. In fact, the material of the next section (Section 2), as well as 
that of the subsequent section (Section 3), borrows heavily from a recent 
lecture of the author. [Keynote Lecture at the 7th Int. Symp. on Continuum 
Models of Discrete Systems, Paderborn, Germany June 14-19, 1992. Proceedings 
to be published by Trans Tech, eds. K.-H. Anthony and Η.-J. Wagner, Materials 
Science Forum, Volumes 123-125, 1993.] 

2. MOTIVATION FOR HIGHER ORDER GRADIENTS 

The ultimate problem in continuum mechanics is the determination of 
stress and strain fields σ and ε from the differential equations of dynamic 
equilibrium (or the local statements of conservation of linear and angular 
momenta), 

div σ = ρ u; σ = σ τ (2.1) 

the stress-strain or constitutive relation 

σ = f(ε) ( 2 . 2 ) 
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and the strain-displacement relation, which for small deformations, reads 

ε = j (Vu + VuT) . (2.3) 

The symbols div and V denote the divergence and gradient operators 
respectively, a superimposed dot denotes material time differentiation, a 
superimposed Τ denotes transpose, ρ is the mass density, u is the displacement 
and the quantity f is a tensor function of the present value (elasticity) or 
the history (viscoelasticity) of the strain ε. In some models of generalized 
continua, such as Cosserat or multipolar media, the stress tensor may not be 
symmetric (σ * σ ). 

An excessively large number of variants of equation (2.2) has been 
proposed in the past to such a degree that a special research area commonly 
known as "constitutive theory" has been developed. Thus, the quantity f could 
be a linear or nonlinear (convex or nonconvex) function of strain ε. It may 
also depend on first or higher order time derivatives of ε or an additional 
set of (scalar, vector or tensor) internal variables α modelling the evolution 
of microstructure. 

Such models of constitutive behavior for solid materials are not suitable 
for capturing the occurrence of pattern-forming instabilities. This is due to 
the fact that they do not posses an internal length to provide the governing 
differential equations with sufficient structure for analyzing the evolution 
of deformation in the post-instability regime. In this connection, it is 
emphasized that certain higher order continua such as Cosserat, multipolar or 
nonlocal media are usually characterized by a complex inhomogeneous spatial 
structure which, in principle, is amenable to instability analysis. However, 
the homogeneous part of the corresponding stress-strain relation was assumed 
to be either linear or convex nonlinear (strain hardening regime). Thus, 
these models could only predict stable homogeneous or nearly homogeneous 
deformation states and were not suitable for the analysis of deformation 
patterns. 

To make this point more clear, we list below the constitutive equations 
for the following four typical classes of deformation behavior: 

(i) Linear Elasticity: 

σ = A(tre)1 + 2με , (2.4) 

where λ and μ are the Lame' constants. 

(ii) Rigid Plasticity: 

σ = -pi + 2με ; tre = 0 ; τ = κ(γ) , (2.5) 

where the viscosity-like coefficient μ is now given by the ratio μ = x/s with 
τ = l/ i <r'·σ' being the shear stress intensity or equivalent stress and γ 
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being the shear strain intensity or equivalent strain γ = JVdt= dt, 

while a dot and a prime denote inner product and deviatoric part respectively. 
The quantity ρ in the stress-strain relation (2.5)^ is the hydrostatic 

pressure, equation (2.5)^ is a statement of incompressibility, while equation 

(2.5)^ expresses the yield condition. 

(iii) Internal Variables: 

σ = ί(ε,α) , α = g(c,a) , (2.6) 

where f and g are functions whose structure is motivated by microscopic theory 
and experiment and α is a measure of the internal state of the material. It 

can be related to dislocation density in a metal, to molecular chain 
configuration in a polymer, or to void concentration in a porous rock. It is 
worth noting that equation (2.6)^, i.e. the evolution equation for the 

internal variables, includes only the generation or source term g of the 

relevant microstructures within an elementary material volume, but it neglects 
the transport or flux of microstructures through the boundaries of this 
material element. Complete balance laws for the internal variables containing 
both a rate and a flux or divergence term have been suggested by the author in 
the past and specific forms will also be discussed below. 

(iv) Dislocation Kinetics: 

p> = g (ρ , σ , . . . ) ; Ν = 1,2 (2.7) 
Ν Ν — 

where ρ^ denotes the density of the N t h family of dislocations and the 

dependence on the dislocation velocity is implicitly included through the 
dependence on σ. Equations of the type (2.7) have been used excessively in 

the materials science literature for modelling plastic flow and they are 
commonly known as the equations of dislocation dynamics (in analogy to 
population dynamics in biology). Again, no flux or divergence terms are 
contained in equations (2.7) and, therefore, they are not suitable for 
predicting the routinely observed dislocation patterns. Divergence terms 
modelling the flux of dislocations within the elementary volume for certain 
simplified material geometries were first introduced in the papers of the 
author and his co-workers in order to model dislocation patterning phenomena 
and the corresponding framework was termed "gradient dislocation dynamics". 

To contrast the above classes of constitutive equations with other model 
equations of physical and chemical systems which are amenable to 
pattern-forming instability analyses, we list below the Navier-Stokes 
equations of incompressible fluid mechanics, i.e. 

2 θν 
-Vp + μ7 ν = ρ [ — + (7v)ν] , (2.8) 
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and the Reaction-Diffusion equations for a system of interdiffusing and 
chemically interacting Ν species, i.e. 

c. + D.V2c. = g.(c.) ; {i, j ) = 1,2, Ν , (2.9) 1 1 1 1 ] 

where ρ is the pressure, μ is the viscosity coefficient, ρ is the fluid 
density, c denotes concentration and D denotes diffusion coefficient, i i 
Equation (2.8) is the result of substituting the constitutive equation for a 
viscous incompressible fluid σ = -pi + μ(7ν + Vv ) into the momentum balance 
equation divσ = pv. Equation (2.9) is the result of substituting the 
constitutive equation for the flux j of the i species j = -D 7c into the ~i ~i i i 
mass balance equation equation c + div j = g (c ), where the nonlinear i —i i j 
source term g incorporates the effect of chemical reaction, i 

The rich pattern formation predicted by equations (2.8) or (2.9) is due 
to the competition of the gradient terms V ν and nonlinear terms (7v)v in 

2 (2.8) or the gradient terms 7 c and nonlinear terms g (c ) in (2.9) . 
i i j 

This concludes our discussion concerning the motivation for incorporating 
higher order gradients in various model equations describing the 
spatio-temporal evolution of deformation at various scales of observation. 
Typical examples of such model equations for the deformation field at micro, 
macro and nano scales are given in the following sections. 

3. MICROSCALES-GRADIENT DISLOCATION DYNAMICS 

Higher order spatial gradients of dislocation densities were first 
introduced in the equations of dislocation dynamics in the papers of the 
author and his co-workers, [Aifantis (1984, 1985, 1986, 1987, 1988), Walgraef 
and Aifantis (1985, 1988, 1990)]. Various types of "gradient dislocation 
dynamics" were later adopted by several authors including Kubin and co-workers 
(1992), Kratochvil and co-workers (1992), Hahner (1992) and Romanov (1992) on 
the basis of physically motivated microscopic arguments. The original 
motivation for a "gradient dislocation dynamics" approach to plasticity was a 
balance equation for dislocation species of the form 

• 
ρ + divj = g, (3.1) 

with ρ denoting dislocation density, j denoting dislocation flux and g 
denoting dislocation production or annihilation. 

As emphasized in Aifantis (1987), equation (3.1) is strictly valid for 
straight edge dislocations moving along their slip plane. The flux term div j 
is absent from usual Gilman-type dislocation dynamics equations, while the 
source term g is absent from the Kroner/Mura/Kosevich continuous distribution 
theory of moving dislocations. [As explained in Aifantis (1987), this theory 
proposes a balance law of the form α + curl J = 0 with (a, J) designating 
the dislocation density and dislocation flux tensors respectively. In the 
case of a single family of straight edge dislocations the above tensor balance 
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equation reduces to the scalar balance equation (3.1) w i t h the source term g 
set identically equal to zero]. Equation (3.1) may then be considered as a 
reasonable compromise between the approaches of dislocation dynamics a n d 
continuously distributed dislocations, especially in cases of high density of 
positive a n d negative dislocations, dislocation multipoles a n d dislocation 
walls routinely observed during monotonic or cyclic loading. 

Equation (3.1) can be applied to various families a n d types of 
dislocations and other defects including positive a n d negative dislocations, 
mobile a n d immobile dislocations, as well as dislocation walls a n d 
declinations. The constitutive assumption usually employed for the flux j is 

such that a diffusive dislocation dynamics results from (3.1) a n d then a 
coupled system of reaction-diffusion like equations is o b t a i n e d for the 
evolution of various defect populations. 

As a representative example illustrating these ideas, we list the 
following set of general reaction-transport equations for dislocation species 

p. = V (D°. - D. V ) V p. + g (p.) 
ι i id ijkl k j ι ι 

bp. + Σ c p. (p +p ), 
ι η η ι m m 

ρ = - υ7 ρ + - ρ. 
m χ m λ ι 

Σ c ρ ρ 
η η i m 

(3.2) 

*- _ η -
ρ = + uV ρ + - p. - Σ c p. ρ 

η η ι m 

The indices (i,m) stand for immobile a n d mobile dislocations, while the 
superscripts (+,-) stand for positive and negative dislocation^. The teriqs ± 
uV p~ result from the flux term div j on assuming that j = p~ v~e and υ~ = 

χ m -m ~m m ~x 
± υ, where e denotes the slip direction and V is the gradient in this 

~X X 
direction. [The local dislocation velocity is assumed to be approximated by a 
spatially-independent average velocity υ]. The terms Σ ρ ρ represent η i m 
interactions of mobile dislocations with immobile multipoles, while the 
tensors D and D are effective diffusion-like coefficients representing 

ij ijkl 
the anisotropic diffusive transport of immobile dislocations. Due to the 
attractive character of elastic interactions between dislocations, the tensor 
D may be negative definite in the high density regime, while D remains 

positive definite. By expressing the system of equations in terms of the sum 
ρ = ρ + ρ and the difference δ = ρ - ρ we obtain 
m m m m m m 

(3.3) 

p. = V. (D°. - D V )7 p. + g (p.) 
ι ι l] ijkl k ] ι ι 

- bp + Σ c ρ ρ , 
i η η i m 

ρ = - t>V δ + bp - Σ c ρ ρ , 
m x m l n n i m 

δ = - vV ρ - Σ c ρ δ . 
m χ m η i m 

On assuming cyclic loading for which υ = υ sincjt a n d for times scales 
ο 

larger than the period of the fatigue process, it turns out [e.g. Aifantis 
(1986)] that the "fast" variable δ can adiabatically be eliminated. Then m 
equations (3.3) are replaced by a diffusion-like equation for the mobile 
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dislocations of the form 

ρ = D V2p + bp - Σ c p np , (3.4) 
m m x m i n n i m 

where the effective diffusivity D turns out to be given by the expression 
m 

D = v /2Zc ρ with ρ denoting a constant steady-state density. With this 
m ο η η io io 

estimate for the effective diffusion coefficient of mobile dislocations and an 
analogous one for the diffusion coefficient D = D of the immobile 

i xx 
2 

dislocations of the form D /a « £ , where I is the annihilation distance of 
i dipoles and a = -g'(p ) , we can predict the wavelength of the ladder 

io 
structure of persistent slip bands for Cu single crystals in agreement with 
experiments. This prediction is readily obtained from the linear (Turing's 
type) instability analysis of the system of the reaction-diffusion equations 
(3.3) and (3.4) giving a preferred wave number q 1 c 

q = (ay/D.D )1/4 , (3.5) 
c ι m 

where γ = Zc p n . The spatially periodic structure is obtained when the 
η η io 

Τ 
bifurcation parameter b exceeds a critical value b , i.e. 

c 

b a b η (V£ + V?D /D ) , (3.6) c ι m 

defining the onset of Turing's instability. A different threshold exists for 
a Hopf bifurcation of the form 

b £ b H s a + y , (3.7) 
c 

and this is associated with temporal dislocation oscillations which may 
effectively be related to the well-known Neumann's strain bursts. The above 
discussion holds for the later stages of deformation where the diffusion 
coefficient for the immobile dislocations is positive. At the initial stages, 
a diffusive instability may occur (|D I < 0) . It can then be shown that the 

1 ij 1 

above system of gradient dislocation dynamics can predict the appearance of 
cellular dislocation structures which can be identified with the so-called 
vein or matrix structure; [see, for example, the papers of Mughrabi quoted in 
Aifantis (1987)]. 

When a simplified version of the above reaction-diffusion approach to 
dislocation patterning was first presented, there was some concern with the 
physical basis of the diffusion-like terms for dislocation species, as well as 
with the specific form adopted for the nonlinear source term ρ ρ ; [see, for 

i m 
example, the discussion by F.R.N. Nabarro in Aifantis (1986). Recent 
justification for the diffusive-like dynamics of dislocations has 
independently been provided by several authors including Kubin and co-workers 
(1992), Kratochvil and co-workers (1992), as well as Hahner (1992) and Romanov 
(1992) by adopting microscopic arguments based on cross slip, glide of 
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positive and negative dislocations, etc. The nonlinear p"p term was included 
i m 

to model interactions between immobile dislocation multipoles and mobile 
dislocations. Such higher order nonlinearities (η £ 2), usually required for 
the stability of the resulting inhomogeneous periodic patterns, may also be 
formally obtained by assuming a lower order nonlinearity (n = 1) but also 
include the interaction with point defects in the form, say, c ρ ρ where c v i m ν 
denotes the concentration of point defects such as vacancies. The quantity c V 

• can then be adiabatically eliminated (c - 0) through an evolution equation of ν 
• 2 the form, for example, c = A ρ c - Bp (with A and Β being rate constants). ν i ν i 

This gives a proportionality relation between c and ρ which upon ν i 2 substitution into the ρ ρ term gives, in turn, the desired ρ ρ term. i m im 
An analogous adiabatic elimination argument can also be employed for 

generating higher order gradient terms in the usual equations of dislocation 
dynamics. This can readily be seen by considering a set of evolution 
equations of the form 

ρ = g(p, ca) , 
(3.8) 

• 2 c = D V c + r ( c , p ) , a α a α 

where spatial gradients are not included in the evolution equation for the 
dislocation density p. Instead, the coupling with point defects c^ (a = i,v) 
is included (c and c denote interstitial and vacancy concentration). i ν 
Naturally, c^ obeys a diffusive dynamics which, in conjunction with the 
adiabatic elimination of c , gives an equation of the form α 

ρ = g(p) + DV2p - ΕV4p + ..., (3.9) 

where g(p) is the "homogeneous" part of the source term g w h i l e the 
gradient terms comprise the corresponding "inhomogeneous" part resulting from 
the adiabatic elimination of c (c ~ 0). For more details on such adiabatic 

α α 
elimination procedure one may consult a recent article by the author, Aifantis 
(1986), as well as a related short calculation given in the next section. A 
similar fourth order reaction-diffusion equation for dislocation species has 
recently been derived and analyzed by Franek et al (1981) . 

In concluding this section, we refer to preliminary work by Romanov and 
the author in modelling disclination-dislocation patterning phenomena by the 
reaction-diffusion scheme. Some model equations are reported in Romanov 
(1992) but a system which seems to be most promising for discussing the 
relevant effects is given by the equations 

• 2 2 ρ = g(p) - bp φ + DV p, 
x x (3.10) 

• 2 2 
φ = - r ( φ ) + dp φ + D^V φ , 
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where φ denotes the density of disclinations and the rest of the quantities 
have their usual meaning. 

4. MACROSCALES-GRADIENT PLASTICITY AND THERMOPLASTICITY 

Higher order gradients have already been introduced into the 
macroscopic theory of plasticity by the author and his co-workers, as well as 
other investigators, in order to capture the thickness, spacing and velocity 
of shear bands. A most recent review of such a gradient approach to the 
heterogeneity of plastic flow can be found in a recent article by the author, 
Aifantis (1992). Here, it suffices to mention that the internal length scale 
is introduced to the aforementioned gradient-dependent theory of plasticity 
via a modification of the yield condition τ = κ(γ) (τ is the equivalent Mises 
stress and γ denotes the equivalent plastic strain) to include a term cV γ in 
its right hand side, where c is a gradient coefficient. A justification for 
such a type of gradient dependence of the flow stress can be obtained by 
allowing κ in the above relation to depend not only on γ but also on an 
internal variable α (e.g. point defect concentration) obeying a diffusive 
dynamics, say, of the form 

ά + DV2ct = g(a,y) . (4.1) 

Then, the adiabatic elimination of α from the above equation and the flow 
condition τ = κ {γ, a) yields the desired dependence of the flow stress on the 
second gradient of κ. 

To see this explicitly, let us consider the corresponding one-dimensional 
problem in the form 

τ = κ(γ,α), 
(4.2) • 2 α = D3 α + g(κ,α), 

X X 

and adopt, for simplicity, a linear dependence of the hardening function 
κ(γ,α,) on the internal variable a, as well as a linear dependence of the 
source function g(y,a.) on both γ and a. Thus, we have 

A 

τ = κ(7) - λα , 

α = Da + Αγ - Μα , X X 

where a denotes second partial derivative and (λ, Λ, Μ) are constants. The 
XX 

Fourier transform of (4.3) gives 2 

2 α = - Dq α + Αγ - Μα , (4.4) q q q q 

where q denotes the wave vector. The adiabatic elimination argument now 
suggests that α varies very rapidly in comparison to the other macroscopic q 
variables of the system (i.e. the life-time of defects is much smaller than 
the corresponding time scales over which macroscopic variables evolve) and 
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therefore it can be eliminated (a =0). It then follows from (4.4) that q 

α = — y , (4.5) α 2 q Η Μ + Dq 

2 
which, by adopting a Taylor's series expansion for the term Λ/(M + Dq ) on the 
assumption that (Dq /M) « 1, gives 

Λ AD 2 ,acs α = - y q y (4.6) q Μ q 2 q 

A AD . . „. a = - y + — y . (4.7) Μ 2 xx Μ 

Upon substitution of (4.7) into (4.3), we obtain a gradient-dependent yield 
condition of the form 

τ = κ(y) - cy , (4.8) 
XX 

with κ(y) = κ(y) - (λΛ/Μ)y and c ξ λ(AD/M2). 
A quadratic nonlinear version of (4.8) which has successfully been used 

in the past, Aifantis (1984), reads 

2 τ = K(y) - c y - c y , (4.9) 1 xx 2 χ 

and values for the gradient coefficients c and c^ have been inferred from 
shear band widths experiments, Zbib and Aifantis (1992). This was 
accomplished by substituting (4.9) into the corresponding one-dimensional 
equilibrium equation for the stress τ, i.e. 9τ/3χ = 0, and then solving the 
resultant nonlinear differential equation under appropriate boundary 
conditions (i.e. y y as χ ± co, y 0 as χ ± oo) . The solution gives a 

ο χ 
bell-like profile for the strain y and this, in turn, provides an estimate for 
the shear band thickness. 

It is also interesting to study the situation in the case that τ in (4.9) 
does not evolve quasistatically (5τ/9χ = 0) but dynamically, such that 

3τ ö- = Ρ u , (4.10) Sx ο 

with ρ denoting a constant density and u the displacement (y = 3u/9x). 
ο 

Substitution of (4.9) into (4.10) does not lead into an equation that can be 
solved analytically. Nevertheless, one can resort to stability analysis for 
understanding the basic behavior of the system. In fact, by assuming a 
homogeneous (but time-dependent) state (u , y , τ ) and perturbations (u, y, ο ο ο 
τ) such that u = u + u , y = y + y, τ = τ + τ, it is possible to first ask ο ο ο 
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the question of whether the homogeneous state can become unstable in favor of 
infinitesimal periodic perturbations. If the answer to this question is 
affirmative, then one can ask a second question, i.e. whether the so-obtained 
periodic pattern persists (stable) or it evolves rapidly to another, possibly 
localized, one (unstable). The first question is addressed by employing 
standard linear stability analysis, while the second question can be addressed 
by employing the so-called Landau's or amplitude equations approach. 

For convenience, a finite domain is assumed 0 ί χ s u. The standard or 
"homogeneous" boundary conditions are taken, as usual, to be of the form u(0, 
t) = 0, u(7i,t) = u , while the non-standard or " inhomogeneous" boundary 

ο 
conditions associated with the higher order gradient terms are assumed to be 
of the form u (0,t) = u (rr,t) = 0. 

XX XX 

For the linear stability analysis, the perturbation is assumed to be a 
modulation of the form 

~ iwt u = A(t) sin qx , A(t) = e , (4.11) 

where q denotes the wave number and A(t) the corresponding amplitude, which 
evolves according to the standard exponential relation suggested by (4.11) . 
The linear growth coefficient or eigenvalue ω and the critical or preferred 
wave number q = q (ω = ω > 0 ) are determined from the corresponding c max 
dispersion equation. This, in turn, is obtained by substituting (4.11) into 
the governing differential equations of the problem. 

For the nonlinear stability analysis the amplitude A(t) should first be 
defined from an equation, say, of the form 

π 

A(t) = J u(x,t) sinqx dx, (4.12) 
ο 

and then the expansions 

• 2 3 Α = ω Α + ω Α + ω Α , 
(4.13) — 2 3 u = u (x)A + u (x)A + u (x)A , 

are introduced into the governing differential equations to obtain appropriate 
expressions for the nonlinear growth coefficients ω^ = ω, ω^ and ω^. For the 
cases considered here it turns out that ω = 0 and thus the sign of ω 2 3 
determines the nonlinear stability. In fact, when ω^ > 0 it follows that A(t) 
-> to as t oo and the initially (linear) periodic pattern evolves 
"catastrophically"to a nonlinear, possibly periodic, one. In contrast, when 
ω^ < 0 it follows that A(t) -> (-ω^/ω^) as t ^ oo and the initially (linear) 
periodic pattern stabilizes to one with the same wavelength and an amplitude 
given as above. This type of "weakly nonlinear" analysis for deformation 
instability problems was adopted by Ru and Aifantis (1993) and the special 
results given in the remaining of this section are extracted from a prelimary 
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MM report as quoted in the list of references. 
In the case that the flow stress τ = K(y) is expanded as 

K(y) = K(y ) + Ey + - Fr2 + \ G}3, (4.14) 

ο 2 b 

the linear stability analysis gives the following dispersion equation 

-ω2ρ = (Η + c q 2) q2 . (4.15) ο 1 
It then follows that the critical point is Η = Η = 0 and that for the c 
supercritical case Η < 0 we find 

1/2 1/2 
.2 

ω = ω 
c - ty - « • % - (- 3 § r ) 

The importance of a non-vanishing c in securing a finite linear growth (ω < 
co) and a preferred wave number (q = q ) is clearly seen. On the other hand, c 
the nonlinear stability analysis, in the sense of (4.13), gives ω^ = 0 and 

Η 2 ( 2 H V FC )(Hc - Fc ) Q H 

W3 = 2 I 2~ ' ' ( 4· 1 7 ) 
32ωρ c L 3π c π ^o 1 1 

If the cubic nonlinearity is suppressed (G = 0), it follows that for 
|c F|»|c 2H| we have 

Η F2 

"3 2 2~ > ° ' ( 4 - 1 8 ) 
48π ωρ c 

^ο 1 

while for |c F|«|c H| we have 

ω ~ — < 0 . (4.19) 3 „ „ 2 4 24π ωρ c ^o 1 

In the first case the initially periodic pattern becomes unstable, while in 
the second case (fulfilled, for example, when c^ becomes important as compared 
to c ) the initially periodic pattern stabilizes with an amplitude equal to 

1/2 (-ω/ω ) It is seen that the second gradient coefficient c in (4.9) can 
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have a stabilizing effect on evolving strain modulations in softening 
materials. 

For non-isothermal cases, equations (4.9) and (4.10) should be 
supplemented with the energy equation 

ρ C0 = k0 + βτγ , (4.20) 
O X X 

where θ denotes temperature, C is the specific heat, k is the heat 
conductivity and β the Taylor-Quinney constant. Moreover, κ(γ) in (4.9) 
depends on θ in a way such that Q ξ 3κ(γ,θ)/δθ < 0 (thermal softening). The 
hardening modulus is defined as before by Η = δκ(γ,θ)/δγ and can be positive 
(strain hardening) or negative (strain softening). The appropriate boundary 
conditions are assumed to be of the form 30/3x(O,t) = 30/3x(jr,t) - 0. 

In the case of adiabatic shear, the conductivity may be taken as 
vanishingly small (k = 0), but c > 0, and the corresponding critical 

condition reads 

Qßx + Hp C = 0 , (4.21) 
ο ο 

indicating that it is independent of the gradient coefficient c . For 

supercritical states (Qßx + Hp C) < 0 , Η may be positive or negative, and the 
ο ο 

linear stability analysis gives 

1/2 

Qßr + (Qß2r2 + 4p C 2c q ) 
ο ο ο 1 . 

ω = > 0 , 
2ρ C 

Ο 

Qßx + Hp C 1 / 2 

(4.22) 

q c (Vpi + n/j ̂  χ 

" l ^ c T J 

The non-vanishing of the gradient coefficient c in securing a finite growth 

coefficient ω and a preferred wave number q = q^ is clearly seen again. It 

turns out that a nonlinear thermoplastic analysis in the sense of (4.13), by 
adopting an expansion for θ analogous to that of (4.13) , implies ω^ = 0 and 

ω > 0, i.e. the initial modulation evolves catastrophically to a different, 
3 

possibly localized pattern. 
In the case of non-vanishing conductivity (k ¥ 0) but vanishing gradient 

coefficient (c = 0 ) , it turns out that supercritical states (ω £ 0) require 

(Hp C + Qßx )2 ΐ - 4QHp ßkf ; Hp C + Qßx < 0 , (4.23) 
ο ο ο ο ο ο 

and the corresponding dispersion equation gives 
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ω = 
Hp C -Qßx - 2 ο ο -QHp β(Cr + ky ) ο ο ο 

1/2 

kp^ 
(4.24) 

4 q = 
PoCu, - poQßro 2 

kH | ω 

implying that a preferred wave number is possible only when Η > 0 (in contrast 
to the previous case of c^ ΐ 0, k = 0) where Η could be positive or negative. 
The nonlinear analysis, in this case implies as in the previous case ω^ = 0 
and ω > 0. 

3 
As mentioned earlier, some of the results presented in the later portion 

of this section will be discussed in detail in a future article; see also the 
preliminary report by Ru and Aifantis (1993) quoted in the list of references. 
In this article, the case of vanishing inertia will also be considered by 
adopting a "weakly nonlinear" analysis approach. In this connection, it is 
pointed out that certain results based on a fully nonlinear analysis for the 
problem of thermoplastic instability has been given earlier by Charalambakis 
and Aifantis (1991). Moreover, a proposal for introducing higher order 
gradients of temperature in the energy equation was recently advanced by 
Aifantis (1992) . 

In concluding this section, it is pointed out that consideration of 
inertia through (4.10) and nonlinearity through (4.13) can remove some 
undesirable features of the marginal stability analysis employed by Zbib and 
Aifantis (1988) for determining the velocity of Portevin-Le Chatelier bands. 
The velocity selection problem for propagating plastic instabilities is 
addressed in a recent viewpoint set containing both theoretical and 
experimental contributions organized by Estrin et al and to be published in 
Scripta Met (1993). The gradient-dependent viscoplastic constitutive equation 
used by Zbib and Aifantis (see also Aifantis 1987) reads 

tr = he + f (ε) + ce , (4.25) 
X X 

with σ denoting the one-dimensional stress, ε being the corresponding strain, 
(h,c) denoting respectively the hardening and strain-gradient coefficients, 
and f being a non-convex function (single loop) of the strain rate ε with the 
negative slope portion (f' < 0) suggesting a negative strain rate sensitivity. 
By introducing (4.25) into the momentum equation 

9 σ = mp 32u , (4.26) χ ο t 

with mp denoting an effective mass density (m is an adjustable coefficient) ο 
and u being the displacement (ε = 3 u) , we obtain from a linearized marginal 

X 
stability-like analysis the following expression for the velocity V = V* of 
the propagating PLC bands 2 h V* = mp +[f'(z)/4c] ' (4.27) ο 

369 



Vol. 5, No. 3, 1994 Gradient Effects of Macro, Micro, and Nana Scales 

where ζ = e(x-Vt). It is seen that for mp the previous (undesirable) 
ο 

divergence of the velocity V* does not occur at the end points of the negative 
slope regime where f'= 0. Moreover, recent unpublished results by Ru and 
Aifantis (1993), based on a weakly nonlinear analysis for the perturbation at 
the leading edge, indicate that for the branch f"(e) < 0, the velocity is 

2 2 given by V # = V* /2 where V* is the expression obtained from the linearized MSA 
• 

given above. For the branch where f"(ε) > 0, the velocity is given by V*. It 
thus follows that the above results, which originally seemed not to be in 
agreement (at least for the second branch f" > 0) with the observations of 
Karimi on steel (suggesting that the velocity decreases with applied stress 
rate and vanishes at the upper end of the stress-strain rate graph) are not 
inconsistent with the experimental trends reported by McCormick et al in the 
viewpoint set mentioned above. 

The state of affairs described above, especially the conflicting 
experimental results of Karimi and McCormick (see "Viewpoint Set on 
Propagative Plastic Instabilities" by Estrin et al, Scripta Meta, 1993), 
brings into a new perspective the analysis proposed by Jeanclaude et al 
(1992) for the PLC and it does not justifies some of their discussion and 
comments pertaining to the use of the constitutive equation (4.25) and the 
corresponding marginal stability analysis for determining the velocity of the 
PLC bands. 

5. NANOSCALES-GRADIENT ELASTICITY AND MIXTURE APPROACH 

A gradient theory of elasticity of the form 

σ = A(tre) 1 + 2με - c V 2 [ A ( t ^ ) l + 2με], (5.1) 

with c a constant has been proposed and utilized to eliminate the strain 
singularity in a Mode-Ill crack. [For an outline of the solution, the reader 
may again consult the previously mentioned review article of the author 
(Aifantis 1992)]. This theory is particularly suited for elastic deformations 
at the nanoscale, as well as for the description of the deformation field near 
elastic interfaces. It turns out, in particular, that if a nanophase material 
is assumed to consist of two superimposed states indicated by the indices 1 
(for the bulk space) and 2 (for the grain boundary space), the equations of 
equilibrium read 

div cr = f, 
ι -

div σ = -f, (5.2) 
2 — 

div cr = 0, 

where <r = σ + σ is the total stress and f is an interaction force between 
- 1 ~ 2 

the two phases. If both phases are deformed elastically, the following 
constitutive equations can be assumed 

<r = L u , k = l,2 ; f = a ( u - u ) , 
~k ~k k - - 1 - 2 

L = λ G + μ V; G = ldiv, V = V + V 
~k k~ k - - ~ 

(5.3) 
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It follows that uncoupling of (5.2) and (5.3) results into the equation 

μν 2υ + (λ+μ)Vdivu - cV2 ^ V 2 u + (λ+μ)Vdivu] = 0 , (5.4) 

if it is also assumed that the two superimposed phases have the same shear 
modulus; otherwise, two constants appear in the higher order gradient part of 
(5.4). It is apparent that (5.4) is the governing equation obtained by 
substituting the gradient elasticity constitutive equation (5.1) into the 
equilibrium equation (5.2) . 

It can be shown that for traction boundary conditions, solutions of 
equation (5.4) can be reduced to the classical elasticity solution in the 
following sense 

ο 
σ = σ , 

r,2 , Ο 
(1 - cV )u = u ; 

d\x 

3n 2 
= 0. 

(5.5) 

In equations (5.5), the superscript ° denotes the classical elasticity 
solution and the boundary condition 3 u/3n (with η denoting outward unit 

normal) is the extra boundary condition that also needs be assumed for the 
solution of the original problem (5.4). In fact, it turns out that within a 
"boundary layer approximation" for straight boundaries, condition (5.5)^ is 

essentially implied by a variational argument. 
By applying the above formulation to the solution of a straight crack, it 

turns out that due to (5.5) the stress remains singular at the crack tip as 

in the classical theory, but the strain singularity is removed and the 
corresponding crack opening displacement (COD) δ = δ(χ) is obeying the 
differential equation 

δ - cö" = δ (χ) , (5.6) 

'2 
a -χ is the classical elasticity COD with b denoting the 

(directional) stress-intensity factor and 2a denoting the crack length. If 
the boundary condition ö(±a) = 0 is assumed, the solution of equation (5.6) is 

obtained as 

b sh 

VE 
_sh r — 1 VE 
_sh 

y e 

βΤΛ\ β Λ. 

(5.7) 

indicating that δ'(±a) * 0, i^e. the strain is not singular at the crack tip. 
If the (boundary) condition 3 u/3n = 0 is assumed everywhere along the crack 

axis ahead of the crack tip, an expression of the form u ~ e is obtained 
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for the displacement. This, in a (boundary layer) sense, establishes the 
"smooth crack closure" condition of Barenblatt. If a negative c is assumed, a 
"periodic" solution for the crack tip opening displacement (COD) is obtained. 
There is some evidence that periodic crack paths are possible prior to crack 
bifurcation. This is consistent with the present result since the condition 
c < 0 implies unstable behavior, as it can be concluded from a corresponding 
routine variational argument based on the strain energy density corresponding 
to constitutive equation (5.1). 

The above framework can also be adopted for the analysis of an interface 
crack. It can be shown that the interpenetration condition is removed. This 
is because in contrast to the classical elasticity expression for the COD, 
i.e. 

δ° = bv42-χ2 cosye , θ = i log [(a+x)/(a-x)] , (5.8) 

the present theory predicts the following expression for the derivative 
(strain) of δ at the crack tip y 

δ' (-a) = 
csh (—) c 

sh cos&log (s)]' (5.9) 

which is a positive quantity. More details on the gradient elasticity and its 
implications can be found in the aforementioned preliminary report by Ru and 
Aifantis (1993) . 

In concluding the discussion on gradient elasticity effects at the 
nonoscale, it is pointed out that the constitutive equation (5.1) is not but a 
very special form of theory of elasticity with microstructure as proposed 
earlier by Toupin, Mindlin and others [for a list of references and related 
contributions see Kroner (1968)]. Moreover, the boundary conditions (5.5)^ 
and (5.5)^ turn out to be a special form of the more general boundary 
conditions derived from (5.1) and a variational argument similar to that 
earlier employed by Mindlin (1965) [see also Mindlin and Eshel (1968)]. In 
fact, the general boundary conditions reduce to (5.5)^ and (5.5)^ for straight 
boundaries such as those involved in crack problems (y = const.) under the 
"boundary layer-like" approximation that the variations in χ are much smaller 
than the variations in y. Finally, it is pointed out that while the 
uniqueness of the solution of boundary value problems based on (5.1) requires 
a positive c, the wave propagation analysis suggests that c may be negative in 
order to obtain desirable dispersion results. In fact, the simplified 
dispersion analysis of harmonic waves based on a displacement field of the 
form 

u(x,t) = u exp[i(qx-ut)], (5.10) ο 

gives the dispersion relation 

ω2 = ω2q2 (l-cq2) , (5.11) ο 
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as concluded by substituting (5.10) and (5.1) into (5.2)^ with its right 
hands-side replaced by ρ ü. It is also noted that the form (5.11) was 

ο 
obtained by replacing c with -c in (5.1) i.e. by essentially assuming a 
negative gradient coefficient. This point was not explicitly discussed in the 
short communication by Altan and Aifantis (1992) where c was effectively 
assumed negative in order to deduce a value for it consistent with lattice 
dynamics results [i.e. in order to compare (5.11), also reached by Altan and 
Aifantis (1992), with a corresponding expression deduced from lattice dynamics 
arguments]. However, Altan and Aifantis (1992), as well as Ru and Aifantis 
(1993), used a positive c in order to discuss the solution of crack boundary 
value problems. 

Next, it is shown that the concept of considering a nanostructured 
material as a mixture of "bulk" and "grain boundary" spaces can also be 
utilized to model not only its elastic but also its plastic behavior. For 
example, the well-known "abnormal" flow stress-grain size dependence and its 
departure from the traditional Hall-Petch equation (Chokshi et al 1992) can be 
interpreted on the basis of a rule-of-mixtures relationship for the flow 
stress σ of the form 

σ = ίσ + (l-f)<r , (5.12) G GB 

where f denotes the volume fraction of the "bulk" phase and (σ , σ ) the flow G GB 
stresses of the bulk and grain boundary space. It is further assumed that σ GB 
= κ is a constant comparable to the flow stress of the amorphous material and ο 
that σ^ = κ̂ +β̂ /λ/d obeys the traditional Hall-Petch equation with κ , β^ 
being constants and d denoting grain diameter. If the nanocrystalline 
material (in two dimensions) is assumed to consist of square grains of^size dI 
separated by the grain boundary space of size δ, it follows that f = d /(d+δ) 
and, then, (5.12) becomes 

(d+δ) 
- — δ (2d+ö) κ + d2 (κ +ß /Vd) . (5.13) 
δϊ2 L ° 1 1 J 

Qualitatively, for d 0 we have σ = κ ; for d co we have σ = κ ; while for δ ο 1 
= 0 we have σ = κ^ + ß^/Vd. Moreover, (5.13) attains a maximum value for d = 
d . For d > d the traditional Hall-Petch equation holds, while for d < d an 
c c c 
"inverse" Hall-Petch behavior is obtained. These results verify the 
experimental observations that the yield strength of traditional materials 
increases with decreasing grain size until a critical grain size at the 
nanometer level is reached, after which the yield stress decreases with 
further decrease of the grain size. Preliminary calculations for 
nanocrystalline Pd and other metals show a good agreement of (5.13) with the 
experimental trends. Currently, other models for the shape of the grains 
(hexagons, spheres etc.) are examined to deduce more elaborate expressions for 
the volume fraction f but the basic premise depicted in (5.13) is maintained. 

Finally, we conclude with some remarks on damage and inelastic 
deformation for nanostructured materials. Experimental observations 
pertaining to nanopore formation at triple grain boundary junctions, nanopore 
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linkage, and nanopore growth by diffusion were reported by Milligan et al 
(1992). Moreover, some one-dimensional arguments motivated by superplastic 
flow mechanisms were proposed to obtain a relationship between strain rate and 
stress including a nanopore-related component. Attention here is focused to 
the point of view that nanopore growth and migration is an inhomogeneous 
process and therefore some spatial gradients should be involved. One approach 
is to begin (Aifantis 1992) with a complete balance law for the nanoporosity 
φ of the form 

. λ 
φ + divj = c , (5.14) 

Λ 
where j denotes the flux of nanopores within an elementary volume and c 
denotes nanopore growth and coalescence. 

An alternative (and perhaps more suitable) approach would be to employ 
evolution equations for the vacancy concentration c in the form 

c = DV2C + r (c, cr) , (5.15) 

and the strain rate ε in the form 

ε = Εσ + g(c^) , (5.16) 

Λ. Λ 
with D being the diffusivity, Ε being the elastic modulus and (r,g) denoting 
respectively growth/coalescence of nanopores and production of inelastic 

Λ Λ 
strain. Under suitable assumptions for r and g, the adiabatic elimination 
of the "fast" variable c leads to the following gradient-dependent 
constitutive equation 

• · 2 2 

ε = Εσ + ασ + ßcr + yV σ , (5.17) 

with (α, β, γ) denoting structure-related phenomenological coefficients. 
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