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ABSTRACT

The effects of gradients on the localization and patterning of
deformation at various scales ranging from the millimeter (macroscale) down to
the nanometer (nanoscale) are discussed. At the nanoscale, a dominant
mechanism of deformation is the rearrangement of free nano volume and
exchange of momentum between bulk and grain boundary space. At the
microscale, a most common mechanism of deformation is dislocation motion. At
the macroscale, deformation patterning occurs by the transport of strain from
one region of the deforming material to another. 1In each case, higher order
gradients of the respective nano, micro or macro variables are essential to be
included in the constitutive equations. This leads to various classes of
material behavior including a gradient theory of elasticity, a gradient theory
of defect dynamics, and a gradient theory of macroscopic plasticity. Within
such *internal-length* theories it is possible to discuss the occurrence of
deformation patterns at various scales, the determination of width, spacing
and velocity of deformation bands, as well as the structure of the crack tip
and the removal of associated strain or stress singularities.

1. INTRODUCTION

One of the outstanding problems in the mechanical behavior of materials

has been the connection between micro (~10 - 100 pm) and macro (~ 0.1 - 1.00
mm or larger) scales. Recently, substantial attention has been given to
materials at the nanometer scale (~ 10 - 100 nm grain size) with the question

of interest here being the determination of the coupling between nano and
micro scales and its effect on the overall macroscopic response. The first
step in addressing this question is to elucidate the mechanisms of deformation
at various scales for all three regimes: prelocalization, postlocalization
and fracture.

At the nanoscale, recent arguments suggest that elastic deformation may
not be described by the standard theory of elasticity, but surface-tension
like effects should be included through the incorporation of higher order
gradients in the stress-strain relation. Plastic deformation occurs via the
rearrangement and production of free volume associated with nanopores at
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triple grain boundary junctions, while dislocation activity is usually
confined within the grain boundary space only. Moreover, grain "stretching*,
*rotation® and *sliding"*, as well as "nano damage® development has been
observed. At the microscale, the usual deformation mechanism is dislocation
motion and production within the grains, while grain boundaries may act as
obstacles or sources to dislocation motion or production. Again, "micro
damage"* formation is another mechanism of irreversible deformation, either
independent or indirectly related to dislocation activity. Effectively, these
mechanisms may be responsible for the development of high strain or stress
gradients at the macroscale and the transport of strain from one material
region to another. It turns out that these mechanisms of nano-, micro-, or
macro-strain transport may act, indeed, as stabilizing mechanisms when the
local homogeneous material response loses stability as a result of the
external load exceeding a certain threshold. 1In fact, the most common way
that a material responds to an increasing external stress before fracture, is
to undergo through the occurrence of a "continuous® hierarchy of
pattern-forming instabilities ranging from single dislocations and dislocation
pileups to complex dislocation structures, shear bands and cracks.

A general framework for connecting micro to macro scales based on the
concept of "normal® and "excited" states has been proposed by the author and
his co-workers in the last decade. Within this program, "standard®" and
*non-standard" models of macroscopic plasticity were obtained on the basis of
crystal slip and dislocation motion, and a justification for introducing
higher order gradients of strain into corresponding constitutive equations was
provided. These physically based non-standard plasticity models have led to a
direct interpretation of axial effects in torsion. The higher order gradients
have led to a direct interpretation of measurements pertaining to shear bands
widths and spacings. The notion of normal and excited states may also be
extended to describe deformation mechanisms occurring at the nanoscale.
Nanostructural materials exhibit a large surface-to-volume ratio and, as a
result, the material element may be viewed as a superposition of "surface" and
*bulk* continua with each one supporting its own mechanical (stress and
strain) fields. Moreover, they are allowed to exchange effective mass and
momentum with each other in a manner consistent with the overall mass and
momentum balance of the two superimposed continua considered as a whole. In
fact, it can be shown that if (for moderate stress levels) both the bulk and
grain boundary phases deform elastically and the interaction force is
proportional to the relative displacement, then the governing differential
eqguation is egquivalent to that obtained from a direct second order strain
gradient extension of Hooke’s law. The corresponding second order stress is a
surface tension-like stress similar in nature to the capillary force in the
theory of inhomogeneous fluids.

In this paper, gradient effects on deformation processes occurring at the
nano, micro, and macro scale are discussed. It is shown that higher order
gradients are essential in capturing the heterogeneity of deformation and
associated pattern-forming instabilities. At the nanoscale, the implications
of a gradient theory of elasticity on the structure of the crack tip and the
elimination of associated singularities are discussed. Moreover, a
preliminary discussion of gradient effects on plastic flow and damage
development at the nanoscale and some remarks on the "inverse® flow
stress-grain size dependence observed in nanocrystalline materials are given.
At the microscale (or mesoscale), gradient effects are accounted for through
higher order gradients in defect (e.g. dislocations) densities modelling the
relevant short-range interactions, with the corresponding long-range
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interactions being screened due to the relatively high densities of defects or
clusters of defects usually present in the cases under consideration. It is
shown that these gradients are essential in modelling the self-organization of
defects and dislocation patterning phenomena occurring at the micro (or meso)
scale. The resultant theoretical framework may be termed dislocation-gradient
dynamics. Finally, at the macroscale, gradient effects are most conveniently
incorporated into the yield condition or the evolution equation for the back
stress with the rest of the equations being the same as in the classical
theory of plasticity. It has already been shown by the author and his
co-workers that such a gradient dependence provides an appropriate
internal-length scale to the structure of classical theory of plasticity, thus
allowing the derivation of shear band widths and spacings in the
post-instability regime. As this question has been addressed elsewhere for
isothermal conditions, attention is confined here in illustrating the role of
higher order gradients on the problem of thermoplastic instability with
emphasis on the coupling between nonlinearity, strain gradients, and
temperature gradients. Moreover, it is shown how a previous difficulty
encountered in analyses pertaining to the velocity determination of Portevin
Le Chatelier (PLC) bands is removed.

The various ideas are presented in the order that they were developed
chronologically. Thus, microscales (or mesoscales) are considered first by
modelling the gradient-dependent evolution of defects and the corresponding
dislocation patterns. Then, macroscales are discussed by modelling
gradient-dependent thermoplastic flow phenomena with reference to adiabatic
shear banding. Finally, the nanoscale is addressed by modelling elastic nano
deformation via a gradient-dependent elasticity theory (describing, among
other things, surface-dependent deformation phenomena such as those occurring
at crack tips) and plastic nano deformation via a gradient-dependent
plasticity theory (describing, among other things, the evolution and transport
of nano pores and nano damage development). To facilitate the discussion,
however, a brief account motivating the need of higher order gradients for
each class of the aforementioned deformation problems is given in the next
section. 1In fact, the material of the next section (Section 2), as well as
that of the subsequent section (Section 3), borrows heavily from a recent
lecture of the author. [Keynote Lecture at the 7th Int. Symp. on Continuum
Models of Discrete Systems, Paderborn, Germany June 14-19, 1992. Proceedings
to be published by Trans Tech, eds. K.-H. Anthony and H.-J. Wagner, Materials
Science Forum, Volumes 123-125, 1993.]

2. MOTIVATION FOR HIGHER ORDER GRADIENTS

The ultimate problem in continuum mechanics is the determination of
stress and strain fields o and € from the differential equations of dynamic

equilibrium (or the local statements of conservation of linear and angular
momentay},

: ) T
div ¢ = p u; c =0 , (2.1)
the stress-strain or constitutive relation

¢ = f(e) , (2.2)
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and the strain-displacement relation, which for small deformations, reads

€ = % (Vu + Vu') . (2.3)
The symbols div and V denote the divergence and gradient operators

respectively, a superimposed dot denotes material time differentiation, a
superimposed T denotes transpose, p is the mass density, u is the displacement

and the quantity f is a tensor function of the present value (elasticity) or
the history (viscoelasticity) of the strain €. In some models of generalized

continua, such as Cosserat or multipolar media, the stress tensor may not be
symmetric (¢ # ¢ ).

An excessively large number of variants of equation (2.2) has been
proposed in the past to such a degree that a special research area commonly
known as "constitutive theory" has been developed. Thus, the quantity f could

be a linear or nonlinear (convex or nonconvex) function of strain €. It may
also depend on first or higher order time derivatives of € or an additional
set of (scalar, vector or tensor) internal variables o modelling the evolution

of microstructure.

Such models of constitutive behavior for solid materials are not suitable
for capturing the occurrence of pattern-forming instabilities. This is due to
the fact that they do not posses an internal length to provide the governing
differential equations with sufficient structure for analyzing the evolution
of deformation in the post-instability regime. 1In this connection, it is
emphasized that certain higher order continua such as Cosserat, multipolar or
nonlocal media are usually characterized by a complex inhomogeneous spatial
structure which, in principle, is amenable to instability analysis. However,
the homogeneous part of the corresponding stress-strain relation was assumed
to be either linear or convex nonlinear (strain hardening regime). Thus,
these models could only predict stable homogeneous or nearly homogeneous
deformation states and were not suitable for the analysis of deformation
patterns.

To make this point more clear, we list below the constitutive equations
for the following four typical classes of deformation behavior:

(i) Linear Elasticity:

o = A(tre)l + 2ue , (2.4)
where A and p are the Lame” constants.
(ii} Rigid Plasticity:

c = -pl + 2yé 5 tre = 0 ;i T = k{(y) ., (2.5)

where the viscosity-like coefficient g is now given by the ratio u = r/% with

/AT : . . 2
T = 2 0 +0’ beling the shear stress intensity or equivalent stress and ¥
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- } E -
being the shear strain intensity or equivalent strain y = Jydt=IV2egege dt,

while a dot and a prime denote inner product and deviatoric part respectively.
The quantity p in the stress-strain relation (2.5)1 is the hydrostatic

pressure, equation (2.5)2 is a statement of incompressibility, while equation

(2.5)3 expresses the yield condition.
(iii) Internal Variables:

o= f(e,a) , é_c: gl(e,a) , (2.6)

where f and g are functions whose structure is motivated by microscopic theory

and experiment and & is a measure of the internal state of the material. It

can be related to dislocation density in a metal, to molecular chain
configuration in a polymer, or to void concentration in a porous rock. It is
worth noting that equation (2.6)2, i.e. the evolution equation for the

internal variables, includes only the generation or source term g of the

relevant microstructures within an elementary material volume, but it neglects
the transport or flux of microstructures through the boundaries of this
material element. Complete balance laws for the internal variables containing
both a rate and a flux or divergence term have been suggested by the author in
the past and specific forms will also be discussed below.

(iv) Dislocation Kinetics:

Py = 9P, T o) i N=1,2,..., 2.7

where pN denotes the density of the Nth family of dislocations and the

dependence on the dislocation velocity is implicitly included through the
dependence on 0. Equations of the type (2.7) have been used excessively in

the materials science literature for modelling plastic flow and they are
commonly known as the equations of dislocation dynamics (in analogy to
population dynamics in biology). Again, no flux or divergence terms are
contained in equations (2.7) and, therefore, they are not suitable for
predicting the routinely observed dislocation patterns. Divergence terms
modelling the flux of dislocations within the elementary volume for certain
simplified material geometries were first introduced in the papers of the
author and his co-workers in order to model dislocation patterning phenomena
and the corresponding framework was termed "gradient dislocation dynamics".

To contrast the above classes of constitutive equations with other model
equations of physical and chemical systems which are amenable to
pattern-forming instability analyses, we list below the Navier-Stokes
equations of incompressible fluid mechanics, i.e.

-Vp + nvzy =p g% + (VW)v] (2.8)
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and the Reaction-Diffusion equations for a system of interdiffusing and
chemically interacting N species, i.e.

¢ +DVe =g (e) ; (i,) =1,2,....N . (2.9)
i i i i

where p is the pressure, u is the viscosity coefficient, p is the fluid
density, ci denotes concentration and D, denotes diffusion coefficient.
1

Equation (2.8) is the result of substituting the constitutive equation for a
viscous incompressible fluid ¢ = -pl + (Vv + Vv') into the momentum balance

equation divg = pg. Equation (2.9) is the result of substituting the
constitutive equation for the flux ii of the i species ii = —Dchi into the
mass balance equation equation éi + div ii = gi(cj), where the nonlinear
source term gi incorporates the effect of chemical reaction.

The rich pattern formation predicted by equations (2.8) or (2.9) is due
to the competition of the gradient terms Vv and nonlinear terms (Vv)v in

- 2 - -
(2.8) or the gradient terms V ci and nonlinear terms gi(cj) in (2.9).

This concludes our discussion concerning the motivation for incorporating
higher order gradients in various model equations describing the
spatio-temporal evolution of deformation at various scales of observation.
Typical examples of such model equations for the deformation field at micro,
macro and nano scales are given in the following sections.

3 MICROSCALES-GRADIENT DISLOCATION DYNAMICS

Higher order spatial gradients of dislocation densities were first
introduced in the equations of dislocation dynamics in the papers of the
author and his co-workers, [Aifantis (1984, 1985, 1986, 1987, 1988), Walgraef
and Aifantis (1985, 1988, 1990)]. Various types of "gradient dislocation
dynamics® were later adopted by several authors including Kubin and co-workers
(1992), Kratochvil and co-workers (1992), Hahner (1992) and Romanov (1992) on
the basis of physically motivated microscopic arguments. The original
motivation for a "gradient dislocation dynamics® approach to plasticity was a
balance equation for dislocation species of the form

p + divi = g, (3.1)

with p denoting dislocation density, j denoting dislocation flux and g

denoting dislocation production or annihilation.
As emphasized in Aifantis (1987), equation (3.1) is strictly valid for
straight edge dislocations moving along their slip plane. The flux term div j

is absent from usual Gilman-type dislocation dynamics equations, while the
source term g is absent from the Kroner/Mura/Kosevich continuous distribution
theory of moving dislocations. [As explained ig Aifantis (1987), this theory
proposes a balance law of the form o + curl g’ = 0 with (g, g) designating

the dislocation density and dislocation flux tensors respectively. In the
case of a single family of straight edge dislocations the above tensor balance
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equation reduces to the scalar balance equation (3.1) with the source term g
set identically equal to zero]. Equation (3.1) may then be considered as a
reasonable compromise between the approaches of dislocation dynamics and
continuously distributed dislocations, especially in cases of high density of
positive and negative dislocations, dislocation multipoles and dislocation
walls routinely observed during monotonic or cyclic loading.

Equation (3.1) can be applied to various families and types of
dislocations and other defects including positive and negative dislocations,
mobile and immobile dislocations, as well as dislocation walls and
declinations. The constitutive assumption usually employed for the flux j is

such that a diffusive dislocation dynamics results from (3.1) and then a
coupled system of reaction-diffusion like equations is obtained for the
evolution of various defect populations.

As a representative example illustrating these ideas, we list the
following set of general reaction-transport equations for dislocation species

o B = n + -
p, =V (D, - D..lek)Vjpi +glp) - bpi + § cp (p+p ),

i i 1j ij
. + b n +
pm =7 va pm * 2 pi - E cnpi pm ! (3-2)
Ciee = % n =
plu = vvl\ plu + 5 pJ. - E Cnpi pm

The indices (i,m) stand for immobile and mobile dislocations, while the

supe;scripts (+,-) stand for positive and negative dislocation§. . The terms b4

WV p~ result from the flux term div j on assuming that jm = p Ve and v =
X m ~m = m ~X

* v, where e, denotes the slip direction and Vx is the gradient in this

direction. [The local dislocation velocity is assumed to be approximated by a
s . . n
spatially-independent average velocity v]. The terms X pipm represent
n

interactions of mobile dislocations with immobile multipoles, while the

tensors D?_ and D?kl are effective diffusion-like coefficients representing
ij ij

the anisotropic diffusive transport of immobile dislocations. Due to the
aEtractive character of elastic interactions between dislocatiops, the tensor
D may be negative definite in the high density regime, while D remains

positive definite. By expressing the system of equations in terms of the sum
T =

+ = s a
pm = pm + pm and the difference 6m = pm = pm we obtain

. o 2 - n

E R O D D G D, e

o n

?m 5 = vi 6m + bpi = E c P, pm 7 (3.3)
am =T vi pm =2 cnpi 6m

On assuming cyclic loading for which v = v sinwt and for times scales
o

larger than the period of the fatigue process, it turns out [e.g. Aifantis
(1986)] that the "fast* variable 6m can adiabatically be eliminated. Then

equations (3.3)_. _ are replaced by a diffusion-like equation for the mobile
L,
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dislocations of the form
o =D Vp +bp - cp’ (3.4)
pm T T me pi n npipm ! :

where the effective diffusivity D turns out to be given by the expression
m
=
Dm = v;/2§cnp? with Pis denoting a constant steady-state density. With this
10

estimate for the effective diffusion coefficient of mobile dislocations and an
analogous one for the diffusion coefficient D, = D of the immobile
1 XX

dislocations of the form Di/a ~ §, where £ is the annihilation distance of
dipoles and a = —g'(pio), we can predict the wavelength of the ladder

structure of persistent slip bands for Cu single crystals in agreement with
experiments. This prediction is readily obtained from the linear (Turing’s
type) instability analysis of the system of the reaction-diffusion equations
(3.3)1and (3.4) giving a preferred wave number qc

q = (ay/DD )1/4 . (3.5)
C 1 m

where y = Ec p? . The spatially periodic structure is obtained when the
n 1o

‘ . T
bifurcation parameter b exceeds a critical value b, 1.e.
Cc

b2zb

vVa + \/wl/Dm)2 , (3.6)

[s T |

defining the onset of Turing's instability. A different threshold exists for
a Hopf bifurcation of the form

be:Ea+7, (3.7)

and this is associated with temporal dislocation oscillations which may
effectively be related to the well-known Neumann’s strain bursts. The above
discussion holds for the later stages of deformation where the diffusion
coefficient for the immobile dislocations is positive. At the initial stages,
a diffusive instability may occur (lD:jI < 0). It can then be shown that the

above system of gradient dislocation dynamics can predict the appearance of
cellular dislocation structures which can be identified with the so-called
vein or matrix structure; [see, for example, the papers of Mughrabi quoted in
Aifantis (1987})].

When a simplified version of the above reaction-diffusion approach to
dislocation patterning was first presented, there was some concern with the
physical basis of the diffusion-like terms for dislocation species, as well as
with the specific form adopted for the nonlinear source term pipm; [see, for

example, the discussion by F.R.N. Nabarro in Aifantis (1986). Recent
justification for the diffusive-like dynamics of dislocations has
independently been provided by several authors including Kubin and co-workers
(1992), Kratochvil and co-workers (1992), as well as Hahner (1992) and Romanov
(1992) by adopting microscopic arguments based on cross slip, glide of
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positive and negative dislocations, etc. The nonlinear p?p term was included
1 m

to model interactions between immobile dislocation multipoles and mobile
dislocations. Such higher order nonlinearities (n =z 2), usually required for
the stability of the resulting inhomogeneous periodic patterns, may also be
formally obtained by assuming a lower order nonlinearity (n = 1) but also
include the interaction with point defects in the form, say, cvpipm where c,

denotes the concentration of point defects such as vacancies. The quantity <,
can then be adiabatically eliminated (év = 0) through an evolution equation of
the form, for example, év = Apicv - Bpi {with A and B being rate constants).
This gives a proportionality relation between <, and pi which upon
substitution into the pipm term gives, in turn, the desired pipm term.

An analogous adiabatic elimination argument can also be employed for
generating higher order gradient terms in the usual equations of dislocation
dynamics. This can readily be seen by considering a set of evolution
equations of the form

p = alp, ca) o

c 2 (3.8)
c =DVec + r{c,p),
a o a a

where spatial gradients are not included in the evolution equation for the
dislocation density p. Instead, the coupling with point defects ca (a = i,v)

is included (c, and ¢ denote interstitial and vacancy concentration).
1 v
Naturally, o obeys a diffusive dynamics which, in conjunction with the

adiabatic elimination of ca, gives an equation of the form
. 2 4
p=gl(p) + DV p-EVPp + ..., (3.9)

where g(p) is the "homogeneous* part of the source term g(p,ca), while the

gradient terms comprise the corresponding *inhomogeneous*® part resulting from
the adiabatic elimination of ca (ca ~ 0). For more details on such adiabatic

elimination procedure one may consult a recent article by the author, Aifantis
(1986), as well as a related short calculation given in the next section. A
similar fourth order reaction-diffusion equation for dislocation species has
recently been derived and analyzed by Franek et al (1981).

In concluding this section, we refer to preliminary work by Romanov and
the author in modelling disclination-dislocation patterning phenomena by the
reaction-diffusion scheme. Some model equations are reported in Romanov
(1992) but a system which seems to be most promising for discussing the
relevant effects is given by the equations

©
1]

2 2
g(p) - bp g + DV p,
(3.10)

2 2
¢ = ~-r(p) + dp ¢ + DPV ® .
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where ¢ denotes the density of disclinations and the rest of the guantities
have their usual meaning.

4. MACROSCALES-GRADIENT PLASTICITY AND THERMOPLASTICITY

Higher order gradients have already been introduced into the
macroscopic theory of plasticity by the author and his co-workers, as well as
other investigators, in order to capture the thickness, spacing and velocity
of shear bands. A most recent review of such a gradient approach to the
heterogeneity of plastic flow can be found in a recent article by the author,
Aifantis (1992). Here, it suffices to mention that the internal length scale
is introduced to the aforementioned gradient-dependent theory of plasticity
via a modification of the yield condition T = k(%) (T is the equivalent Mises
stress and ¥y denotes the equivalent plastic strain) to include a term cV 7 in
its right hand side, where ¢ is a gradient coefficient. A justification for
such a type of gradient dependence of the flow stress can be obtained by
allowing k in the above relation to depend not only on y but also on an
internal variable a (e.g. point defect concentration) obeying a diffusive
dynamics, say, of the form

« + DVa = gla, 7). (4.1)

Then, the adiabatic elimination of a from the above equation and the flow
condition T = Kk (7,a) yields the desired dependence of the flow stress on the
second gradient of ¥%.

To see this explicitly, let us consider the corresponding one-dimensional
problem in the form

T = K(”Ia)l
. 2 (4.2)
o = D3 a+ gly,a),
XX
and adopt, for simplicity, a linear dependence of the hardening function
K(7,a) on the internal variable a, as well as a linear dependence of the
source function g(y,a) on both ¥ and a. Thus, we have
T = K(7) - Aa , (4.3)
(.x = Da + A'I - Ma ,
XX
where a denotes second partial derivative and (A, A, M) are constants. The
XX
Fourier transform of (4.3)2 gives
. 2
o« =-Dga + Ay - Ma , (4.4)
q q q q
where g denotes the wave vector. The adiabatic elimination argument now

suggests that a varies very rapidly in comparison to the other macroscopic
q

variables of the system (i.e. the life-time of defects is much smaller than
the corresponding time scales over which macroscopic variables evolve) and
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therefore it can be eliminated (&q = 0). It then follows from (4.4) that

« =D, (4.5)

9 Ma4+Dg @

. 2
which, by adopting a Taylor’s series expansion for the term A/(M + Dg ) on the
assumption that (Dg /M) << 1, gives

A AD 2
o« = — o = : (4.6)
q M 7q ol £ 7q
1
or
D
o = é Y+ é— Y . (4.7)
M M2 XX

Upon substitution of (4.7) into (4.3), we obtain a gradient-dependent yield
condition of the form

T = k(7)) - S A (4.8)

with k(¥) = k(¥) - (AA/M)y and ¢ = A(AD/M’).
A quadratic nonlinear version of (4.8) which has successfully been used
in the past, Aifantis (1984), reads

2
2 e RE) = @%._ = &4 (4.9)
1 xx 2 x

and values for the gradient coefficients cl and c2 have been inferred from

shear band widths experiments, Zbib and Aifantis (1992). This was
accomplished by substituting (4.9) into the corresponding one-dimensional
equilibrium equation for the stress T, i.e. 8t/8x = 0, and then solving the
resultant nonlinear differential equation under appropriate boundary
conditions (i.e. ¥y > ¥, as x > * oo, v, 52 0 as X > * w). The solution gives a

bell-like profile for the strain ¥ and this, in turn, provides an estimate for
the shear band thickness.

It is also interesting to study the situation in the case that T in (4.9)
does not evolve quasistatically (8t/8x = 0) but dynamically, such that

g% =pu, (4.10)

o

with po denoting a constant density and u the displacement (y = 8u/dx).

Substitution of (4.9) into (4.10) does not lead into an equation that can be
solved analytically. Nevertheless, one can resort to stability analysis for
understanding the basic behavior of the system. 1In fact, by assuming a
homogeneous (but time-dependent) state (uo, 70, ro) and perturbations (ﬁ, ;,

T) suchthat u=u +u, y =% + 7%, T =T + T, it is possible to first ask
[o] [o] o
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the question of whether the homogeneous state can become unstable in favor of
infinitesimal periodic perturbations. If the answer to this question is
affirmative, then one can ask a second question, i.e. whether the so-obtained
periodic pattern persists (stable) or it evolves rapidly to another, possibly
localized, one (unstable). The first question is addressed by employing
standard linear stability analysis, while the second question can be addressed
by employing the so-called Landau‘s or amplitude equations approach.

For convenience, a finite domain is assumed 0 = x = m. The standard or
'homogen?ous' bouqdary conditions are taken, as usual, to be of the form u{0,
t)y = 0, u(m,t) = uo, while the non-standard or "inhomogeneous" boundary

conditions associated with the higher order gradient terms are assumed to be
of the formu (0,t) = u (m,t) = 0.
XX XX

For the linear stability analysis, the perturbation is assumed to be a
modulation of the form

U = A(t) sin gx , A(t) = e, (4.11)

where g denotes the wave number and A(t) the corresponding amplitude, which
evolves according to the standard exponential relation suggested by (4.11) .
<

The linear growth coefficient or eigenvalue w and the critical or preferred

wave number q = q (W = @ > 0) are determined from the corresponding
& max
dispersion equation. This, in turn, is obtained by substituting (4.11) into
the governing differential equations of the problem.
For the nonlinear stability analysis the amplitude A{(t) should first be
defined from an equation, say, of the form
n

A{t) = J u({x,t) singx dx, (4.12)

(o}

and then the expansions

A

wlA + w2A2 + wJA3 ;
(4.13)

ct
]

ul(x)A + uz(x)A2 + us(x)A3,

are introduced into the governing differential equations to obtain appropriate
expressions for the nonlinear growth coefficients wl = W, w2 and w3. For the
cases considered here it turns out that w2 = 0 and thus the sign of w,
determines the nonlinear stability. In fact, when w3 > 0 it follows that A({(t)

9> ® as t » o and the initially (linear) periodic pattern evolves
“catastrophically®to a nonlinear, possibly periodic, one. 1In contrast, when
w, < 0 it follows that A(t) - (—wl/wa)"' as t 5 o and the initially {(linear)

periodic pattern stabilizes to one with the same wavelength and an amplitude
given as above. This type of *"weakly nonlinear* analysis for deformation
instability problems was adopted by Ru and Aifantis (1993) and the special
results given in the remaining of this section are extracted from a prelimary
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MM report as quoted in the list of references.
In the case that the flow stress T = kK(y) 1s expanded as

~ 1 _~2 1 -~3
k() = K(wo) + Hy + = Fy + 7 Gy, (4.14)

the linear stability analysis gives the following dispersion equation

-wzpo = (H + clqz) a . (4.15)

It then follows that the critical point is H = H = 0 and that for the
C

supercritical case H < 0 we find

2
H H

CAERU [ZE;E;J i di=g = [— o ] . (4.16)
o1 i

The importance of a non-vanishing ¢ in securing a finite linear growth (w <
1

o) and a preferred wave number (g = q ) is clearly seen. On the other hand,
C

the nonlinear stability analysis, in the sense of (4.13), gives w, = 0 and
H - 2(2Hc2+ Fcl)(ch— Fcl) o
W, = 5 o = | . (4.17)
32wp ¢ 3m’ e’ o 4
o1 i

If the cubic nonlinearity is suppressed (G = 0), it follows that for
|c_F|>>|c H| we have
1 2
2
H F
W~ - —> 0, (4.18)
3 2 2
48T wp c
o1l

while for |c F|<<|c H| we have
1 2

c2 H
W~ —— < 0 . (4.19)

2 4
24 c
T WP,
In the first case the initially periodic pattern becomes unstable, while in
the second case (fulfilled, for example, when c, becomes important as compared
to ¢ ) the initially periodic pattern stabilizes with an amplitude equal to
i §

1/2 - g _ :
(~w/w_) / . It is seen that the second gradient coefficient c, in (4.9) can
3
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have a stabilizing effect on evolving strain modulations in softening
materials.

For non-isothermal cases, equations (4.9) and (4.10) should be
supplemented with the energy equation

p.CO = kO + Bty , (4.20)

where 6 denotes temperature, C is the specific heat, k is the heat
conductivity and B8 the Taylor-Quinney constant. Moreover, k(y) in (4.9)
depends on 6 in a way such that Q = 8k(7,0)/88 < 0 (thermal softening). The
hardening modulus is defined as before by H = 9k (y,8)/8y and can be positive
(strain hardening) or negative (strain softening). The appropriate boundary
conditions are assumed to be of the form 86/6x(0,t) = 88/6x(m,t) = O.

In the case of adiabatic shear, the conductivity may be taken as
vanishingly small (k = 0), but c1 > 0, and the corresponding critical

condition reads

QBTO + HpOC = O , (4.21)

indicating that it is independent of the gradient coefficient c - For

supercritical states (0Bt + Hp C) < 0, H may be positive or negative, and the
o] o]

linear stability analysis gives

. 2°2 2 A 12
OBy + (QB'y + 4p Cc q’)
[e) [e} (o] aL
s 2p C >0
pO
(4.22)
1/2

G- q - [_ QBTO + HpoC N

c 2poC ¢

The non-vanishing of the gradient coefficient c in securing a finite growth
coefficient w and a preferred wave number gq = g, is clearly seen again. It

turns out that a nonlinear thermoplastic analysis in the sense of (4.13), by
adopting an expansion for 6 analogous to that of (4.13)2, implies w2 = 0 and
w > 0, i.e. the initial modulation evolves catastrophically to a different,
3

possibly localized pattern. .

In the case of non-vanishing conductivity (k # 0) but vanishing gradient
coefficient (c = 0), it turns out that supercritical states (w =z 0) require

1

(Hp C + Qﬁzro)2 > - 4QHp°3k7}o ; HpC + QBT_< 0, (4.23)

and the corresponding dispersion equation gives

368



E.C. Aifantis Journal of the Mechanical Behavior.of Materials

. 1/2
HpoC —QBro - 2 [—QHpOB(Cto + kyo)]
W = '
kp_

(4.24)

Iw '

2 .
4 4 pon h poQByo 1 2
KH )

c

implying that a preferred wave number is possible only when H > 0 (in contrast
to the previous case of c1 # 0, k = 0) where H could be positive or negative.

The nonlinear analysis, in this case implies as in the previous case w2 =0
and w3 > 0.

As mentioned earlier, some of the results presented in the later portion
of this section will be discussed in detail in a future article; see also the
preliminary report by Ru and Aifantis (1993) quoted in the list of references.
In this article, the case of vanishing inertia will also be considered by
adopting a "weakly nonlinear* analysis approach. In this connection, it is
pointed out that certain results based on a fully nonlinear analysis for the
problem of thermoplastic instability has been given earlier by Charalambakis
and Aifantis (1991). Moreover, a proposal for introducing higher order
gradients of temperature in the energy equation was recently advanced by
Aifantis (1992).

In concluding this section, it is pointed out that consideration of
inertia through (4.10) and nonlinearity through (4.13) can remove some
undesirable features of the marginal stability analysis employed by Zbib and
Aifantis (1988) for determining the velocity of Portevin-Le Chatelier bands.
The velocity selection problem for propagating plastic instabilities is
addressed in a recent viewpoint set containing both theoretical and
experimental contributions organized by Estrin et al and to be published in
Scripta Met (1993). The gradient-dependent viscoplastic constitutive equation
used by Zbib and Aifantis (see also Aifantis 1987) reads

¢ =he + f(€) + ce , (4.25)
XX

with 6 denoting the one-dimensional stress, € being the corresponding strain,
(h,c) denoting respectively the hardening and strain-gradient coeff}cients,
and f being a non-convex function (single loop) of the strain rate g€ with the
negative slope portion (f’ < 0) suggesting a negative strain rate sensitivity.
By introducing (4.25) into the momentum equation

2
axa = mpoatu . (4.26)

with mpo denoting an effective mass density (m is an adjustable coefficient)
and u being the displacement (g = 6xu), we obtain from a linearized marginal

stability-1like analysis the following expression for the velocity V = V* of
the propagating PLC bands "
2
* =
- mpo+[f’(z)/4c] ! (4.27)
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where z = é(x—Vt). It is seen that for mp #0 the previous (undesirable)
o

divergence of the velocity V* does not occur at the end points of the negative
slope regime where f’= 0. Moreover, recent unpublished results by Ru and
Aifantis (1993), based on a weakly nonlinear ana1y§is for the perturbation at
the leading edge, indicate that for the branch f'(g) < 0, the velocity V, is

g 2 2 q q Q : -
given by V, = V* /2 where V* is the expression obtained from the linearized MSA

given above. For the branch where f“(é) > 0, the velocity is given by V*. It
thus follows that the above results, which originally seemed not to be in
agreement (at least for the second branch f* > 0) with the observations of
Karimi on steel (suggesting that the velocity decreases with applied stress
rate and vanishes at the upper end of the stress-strain rate graph) are not
inconsistent with the experimental trends reported by McCormick et al in the
viewpoint set mentioned above.

The state of affairs described above, especially the conflicting
experimental results of Karimi and McCormick (see "Viewpoint Set on
Propagative Plastic Instabilities" by Estrin et al, Scripta Meta, 1993),
brings into a new perspective the analysis proposed by Jeanclaude et al
(1992) for the PLC and it does not justifies some of their discussion and
comments pertaining to the use of the constitutive equation (4.25) and the
corresponding marginal stability analysis for determining the velocity of the
PLC bands.

S. NANOSCALES-GRADIENT ELASTICITY AND MIXTURE APPROACH

A gradient theory of elasticity of the form

¢ = A(trg) I 2p§ = cV2[A(tr§)l + 2p§], (5.1)

with ¢ a constant has been proposed and utilized to eliminate the strain
singularity in a Mode-III crack. [For an outline of the solution, the reader
may again consult the previously mentioned review article of the author
(Aifantis 1992)]). This theory is particularly suited for elastic deformations
at the nanoscale, as well as for the description of the deformation field near
elastic interfaces. It turns out, in particular, that if a nanophase material
is assumed to consist of two superimposed states indicated by the indices 1
(for the bulk space)} and 2 (for the grain boundary space), the equations of
equilibrium read

div o = £,
1 =~

div (= -f, (5.2)

div ¢ = 0,

where ¢ = 01 + 02 is the total stress and f is an interaction force between

the two phases. If both phases are deformed elastically, the following
constitutive equations can be assumed

Ek = E’kukl k = 112 H E = a(gl_EZ),
A A o } (5.3)

Akg + pk v; 9

0]
[y
Qu
=
5
L]
i
t<g
+
t<q
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It follows that uncoupling of (5.2) and (5.3) results into the equation
2 - 2 2 y
uVu + (A+p)Vdivu - eV [pVu + (A+n)Vdivul = 0, (5.4)

if it is also assumed that the two superimposed phases have the same shear
modulus; otherwise, two constants appear in the higher order gradient part of
(5.4). It is apparent that (5.4) is the governing equation obtained by
substituting the gradient elasticity constitutive equation (5.1) into the
equilibrium equation (5.2)3.

It can be shown that for traction boundary conditions, solutions of
equation (5.4) can be reduced to the classical elasticity solution in the
following sense

o
g =0 ,
-7 (5.5)

In equations (5.5), the superscript oqdenoges the classical elasticity
solution and the boundary condition 8 u/8n~ (with n denoting outward unit

normal) is the extra boundary condition that also needs be assumed for the
solution of the original problem (5.4). 1In fact, it turns out that within a
*boundary layer approximation* for straight boundaries, condition (5.5)3 is

essentially implied by a variational argument.
By applying the above formulation to the solution of a straight crack, it
turns out that due to (5.5) the stress remains singular at the crack tip as
i

in the classical theory, but the strain singularity is removed and the
corresponding crack opening displacement (COD) 8 = 8(x) is obeying the
differential equation

8 - c8" = 8 (x), (5.6)

/2
where So(x) = bva —x2 is the classical elasticity COD with b denoting the

(directional) stress-intensity factor and 2a denoting the crack length. If
the boundary condition 8(*a) = 0 is assumed, the solution of equation (5.6) is

obtained as

Sh[ﬁ Vaz_sz ds - sh[ﬁ]Va2_szd . (5.7)
Ve vc
=)

-a

b sh| ~
3(x) = —
V<

Ve
Ak
shive

indicating that &8’ (%a) # 0, i.e. tPe strain is not singular at the crack tip.
If the (boundary) condition 8u/8n" = 0 is assumed everywhere along the crack

v~

axis ahead of the crack tip, an expression of the form u ~ e 7'~ is obtained
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for the displacement. This, in a (boundary layer) sense, establishes the
*smooth crack closure® condition of Barenblatt. If a negative ¢ is assumed, a
*periodic"* solution for the crack tip opening displacement (COD) is obtained.
There is some evidence that periodic crack paths are possible prior to crack
bifurcation. This is consistent with the present result since the condition

c < 0 implies unstable behavior, as it can be concluded from a corresponding
routine variational argument based on the strain energy density corresponding
to constitutive equation (5.1).

The above framework can also be adopted for the analysis of an interface
crack. It can be shown that the interpenetration condition is removed. This
is because in contrast to the classical elasticity expression for the COD,
i.e.

log [(a+x)/(a-x)] , (5.8)

N =

6; = b az—x2 cosy8 , B =

the present theory predicts the following expression for the derivative
(strain) of 6y at the crack tip

o]

8 (-a) = ___l%?___ sh I—=I Vaz-s2 cos[% log [gifj] . e
csh(—%) \

which is a positive quantity. More details on the gradient elasticity and its
implications can be found in the aforementioned preliminary report by Ru and
Aifantis (1993).

In concluding the discussion on gradient elasticity effects at the
nonoscale, it is pointed out that the constitutive equation (5.1) is not but a
very special form of theory of elasticity with microstructure as proposed
earlier by Toupin, Mindlin and others [for a list of references and related
contributions see Kroner (1968)]. Moreover, the boundary conditions (5.5)1

and (5.5)3 turn out to be a special form of the more general boundary

conditions derived from (5.1) and a variational argument similar to that
earlier employed by Mindlin (1965) [see also Mindlin and Eshel {(1968)]. 1In
fact, the general boundary conditions reduce to (5.5)1 and (5.5)3 for straight

boundaries such as those involved in crack problems (y = const.) under the
*boundary layer-like" approximation that the variations in x are much smaller
than the variations in y. Finally, it is pointed out that while the
uniqueness of the solution of boundary value problems based on {5.1) requires
a positive ¢, the wave propagation analysis suggests that c may be negative in
order to obtain desirable dispersion results. In fact, the simplified
dispersion analysis of harmonic waves based on a displacement field of the
form

u(x,t) = uoexp[i(qx-wt)], (5.10)
gives the dispersion relation

BE e wzqz(l-cq2) , (5.11)
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as concluded by substituting (5.10) and (5.1) into (5.2)3 with its right
hands-side replaced by pou. It is also noted that the form (5.11) was

obtained by replacing c with -c in (5.1) i.e. by essentially assuming a
negative gradient coefficient. This point was not explicitly discussed in the
short communication by Altan and Aifantis (1992) where ¢ was effectively
assumed negative in order to deduce a value for it consistent with lattice
dynamics results [i.e. in order to compare (5.11), also reached by Altan and
Aifantis (1992), with a corresponding expression deduced from lattice dynamics
arguments]. However, Altan and Aifantis (1992), as well as Ru and Aifantis
(1993), used a positive c in order to discuss the solution of crack boundary
value problems.

Next, it is shown that the concept of considering a nanostructured
material as a mixture of *"bulk" and “grain boundary" spaces can also be
utilized to model not only its elastic but also its plastic behavior. For
example, the well-known "abnormal* flow stress-grain size dependence and its
departure from the traditional Hall-Petch equation (Chokshi et al 1992) can be
interpreted on the basis of a rule-of-mixtures relationship for the flow
stress o of the form

o = fcé + (l-f)aGB, (5.12)

where f denotes the volume fraction of the "bulk" phase and (ob, obB) the flow
stresses of the bulk and grain boundary space. It is further assumed that OEB
= xo is a constant comparable to the flow stress of the amorphous material and
that o, = K1+Bl/Vd obeys the traditional Hall-Petch equation with K. . Bl
being constants and d denoting grain diameter. If the nanocrystalline

material (in two dimensions) is assumed to consist of square grains of_size d

separated by the grain boundary space of size §, it follows that f = d2/(d+6)2
and, then, (5.12) becomes

r 1
e = —1 18(2a+8)k_ + dz(K1+Bl/\/<§)J . (5.13)

{d+3)

Qualitatively, for d » 0 we have ¢ = Ko; for d 5> © we have ¢ = xl; while for &
= 0 we have ¢ = nl + Bl/Va. Moreover, (5.13) attains a maximum value for 4 =
dc. For 4 > dC the traditional Hall-Petch equation holds, while for 4d <« dC an

*inverse" Hall-Petch behavior is obtained. These results verify the
experimental observations that the yield strength of traditional materials
increases with decreasing grain size until a critical grain size at the
nanometer level is reached, after which the yield stress decreases with
further decrease of the grain size. Preliminary calculations for
nanocrystalline Pd and other metals show a good agreement of (5.13) with the
experimental trends. Currently, other models for the shape of the grains
(hexagons, spheres etc.) are examined to deduce more elaborate expressions for
the volume fraction f but the basic premise depicted in (5.13) is maintained.
Finally, we conclude with some remarks on damage and inelastic
deformation for nanostructured materials. Experimental observations
pertaining to nanopore formation at triple grain boundary junctions, nanopore
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linkage, and nanopore growth by diffusion were reported by Milligan et al
(1992). Moreover, some one-dimensional arguments motivated by superplastic
flow mechanisms were proposed to obtain a relationship between strain rate and
stress including a nanopore-related component. Attention here is focused to
the point of view that nanopore growth and migration is an inhomogeneous
process and therefore some spatial gradients should be involved. One approach
is to begin (Aifantis 1992) with a complete balance law for the nanoporosity
¢ of the form

¢ + divj = c , (5.14)

where j denotes the flux of nanopores within an elementary volume and c¢

denotes nanopore growth and coalescence.
An alternative (and perhaps more suitable) approach would be to employ
evolution equations for the vacancy concentration ¢ in the form

& = D¥e + e, ol , (5.15)

and the strain rate é in the form

€ = E¢ + glc,0) , (5.16)

A A

with D being the diffusivity, E being the elastic modulus and (r,g) denoting
respectively growth/coalescence of nanopores and production of inelastic

strain. Under suitable assumptions for r and g, the adiabatic elimination
of the "fast" variable ¢ leads to the following gradient-dependent
constitutive equation

€ = EC + ao + BUZ + 7V20 0 (5.17)

with («, B, %) denoting structure-related phenomenological coefficients.
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