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ABSTRACT Strain localization and instabilities are studied in two extreme cases: the first one deals
with the competition between precipitate shearing and coarsening, the second between strain induced
reversion of ordered precipitates and reprecipitation. A particular emphasis is laid on the problem of
spatial coupling due to solute diffusion. It is shown that this spatial coupling can lead to strain

localization, with a characteristic wavelength which depends on the imposed strain rate and
characteristics of the precipitation (volume fraction, radius, antiphase boundary energy, ...).
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I- INTRODUCTION

-Plastic instabilities exhibited by some materials under some straining conditions can be described
from two closely related and complementary viewpoints: the temporal aspect of instabilities appears
for example on the stress-strain curves (as serrations in the Portevin le Chatelier effect or as yield
points followed by a plateau as in the Piobert-Liiders effect for instance) -The spatial aspect appears
as a strain localization: some regions of the material deform at a much larger rate than others, and can
be either stationnary or propagating. The description of the temporal aspect must take into account the
stiffness of the testing machine; this intricate problem will not be examined here. The spatial aspect of
strain localization is more closely related to the physical properties of the material itself, and will be
our main concern here.

-The presence of shearable precipitates introduced for structural hardening purposes is well known to
lead to a strong strain localization (1,2). -Although this effect can be easily understood qualitatively,
the spatial aspects, and in particular the derivation of the lengthscale of strain localization, have not
been explained up to now. The key of this problem lies in the description of the spatial coupling
between neighbouring regions of the crystal which behave in a different way. This coupling can arise
either from dislocation interactions or spreading (cross-slip or climb), from diffusion of heat
produced by plastic deformation (for instance adiabatic shearing of Nb at low temperatures (3)), or
from solute diffusion, which couples the state of precipitation and the related structural hardening in
different regions of the sample.

Since it involves long range interactions the coupling through dislocations is an intricate problem
although in some cases it can be treated as a diffusion-like problem (4,5,6). The thermal or solute
coupling being more local are more likely to be correctly described through diffusion equations. In
this paper we will focus our attention only on the solute coupling.

-For the sake of simplicity, we shall make the following assumptions:

1-We shall consider the case of a single crystal in single slip conditions, in particular in order to get
rid of strain hardening.

2-The precipitates are assumed to be shearable, coherent and ordered.

The model will then be set up in terms of the following parameters: volume fraction and radius of

precipitates, antiphase boundary energy, free enthalpy of precipitation, strain rate €,...The critical

stress o¢ for overcoming the precipitates has been already computed in the case of shearable
precipitates by various authors (7,8,9). It can be written as:

R3/2
Gc = Co 177 1)

where £is the precipitate spacing in the slip plane, R the average radius of the intersection of the slip
plane with the precipitates, b the Burgers vector, and 0, a stress-like coefficient which is given by:

%o = 1pr12 2)

where y is the antiphase energy and I the dislocations line tension.

In the following, we shall derive the time (or strain) evolution of the critical stress ¢, look for the
steady states, and see whether they are stable or not. For this purpose, we shall examine two extreme
cases: the first one deals with geometrical shearing of precipitates by dislocations (softening term)
competing with precipitate coarsening (hardening term), and is likely to be found in the case of large
but shearable precipitates. The second one deals with strain induced reversion due to shearing by
dislocation, softening term competing with reprecipitation (hardening term), which is more likely to
occur in the case of small ordered precipitates with a large antiphase boundary energy, at the very
beginning of precipitation stage.
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II- COMPETITION BETWEEN SHEARING AND COARSENING

-When an ordered precipitate is sheared by a superdislocation, the surface to be sheared by the next
one in the same plane is reduced, i.e. the average apparent radius of the precipitate becomes smaller
(fig.1). The resulting softening comes from the reduction of the average "effective" radius R, and not
from the separation 1 between precipitates, which remains constant. One must keep in mind that R and
1 are not related to one another through a relation involving the volume fraction f, since R is related to
a surface to be sheared, and not to a precipitate volume.

-This radius reduction competes with precipitate coarsening, which changes both the spacing and the
average size of precipitates, the volume fraction being roughly constant (Oswald ripening).

II-1-H n 1

The softening which results from an effective radius reduction dR can be written, from eq.1:

3 0'02/30'(:1/3
doc = EWdR 3)

We shall now estimate the effective radius reduction dR coming from shearing at a rate € during dt:
the number of dislocations shearing the precipitate during dt is:

pvdt.2(ff1/2)

Each of them will reduce the area by 2bR (10).
The resulting area reduction is then:

dS = 2nRdR = - pvdt.2(ff1/2). 2bR 4)
and then, using Orowan's equation:
T

The rate of evolution of 6¢ coming from this shearing process is:
_3 0'02/30'01/3 .

S (shearing) = = it VA (6)

If this mechanism was the only one to operate, we should observe a complete softening.

N

Fig. 1 : Shearing of an ordered precipitate by a dislocation leaving behind it an
antiphase boundary (hatched region)
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The coarsening kinetics will be now modelled in the simplest way, i.e. using the steady state of
Lifschitz Slyozov Wagner (LSW) theory, (11,12), assuming that the evolution of the effective radius
R follows the same law as that of the average radius <R>. The LSW equation is:

o L
<R>2

M

where D is the diffusion coefficient of solute atom, and K a constant which depends on the interfacial
energy and is given by:

~27 kKT &)

The resulting rate evolution of o is then:

o

(o))

1

. . f3
oc (coarsening) = 5 —_

=3 KD ©)

ol

o

7

The overall evolution of G, resulting from the competition of the two phenomena results from adding
the contributions given by equations.(6) and (9):

g KD 1 (10)

o, o . .
Ina—=vs — plot (fig.2), one can see that there is a stable attractor given by:
Go ©Go

Ocvi KD 155 £ 13316
(00)*—[6 3 éfs @ ] (11)

In order to see whether we have hardening or softening, it is useful to compare the initial value of o
and the steady state one. Using equations (1) and (11), and noticing for the sake of simplicity 3/16
~1/5 and 1/2>>1/15 we find that softening will occur if:

(%)?/2 252 >§(;Twé) (12)

where it must be noticed that the diffusion coefficient D may depend on the plastic-induced vacancy
production as (13):

D=Dy+a¢ (13)
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g
€/
&

Fig. 2: Rate of evolution of the critical stress o¢ : case of competition between
shearing and coarsening

There is a critical value of € given by:
Do

3
% %{(.%.)5/2 25120,

-
€=

(14)

above which shearing dominates coarsening, and therefore results in a softening.

I1-2- Spatial coupling

In order to investigate the stability of the previous homogeneous steady state versus spatial
fluctuations, one has to take into account the spatial coupling resulting from solute diffusion between
neighbouring regions which have different average precipitate sizes, i.e. different solute
supersaturations.
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Regions where precipitates are small exhibit a higher supersaturation, and this will resultin a
solute flux towards regions with lower supersaturations (i.e. larger precipitates) which will then grow
faster. This type of instability is inherent to coarsening processes and can occur without the help of
plasticity. A spectacular example is found in geology with the "greedy giants" (14,15). The additional
effect of plasticity is to introduce an anisotropic diffusion tensor through eq. (13). The normal to the
slip planes becomes therefore a particular direction, and the effect of plasticity is to introduce a
“"texture” in the instability, which otherwise would be isotropic.

The coarsening of a given precipitate results from both the short range interaction between
this precipitate and its nearest neighbours (roughly at a distance L), and an interaction at a longer
range between regions exhibiting different average radii of precipitates. The first coupling is
accounted for by the LSW theory. The additional coupling we are looking for results from the second

type of interaction. The volume increase of the precipitate resulting from the flux due to this latter term
is:

2
422 G = - (V) 22~ (V) xe 412] STLD (V2) s)

Remembering that the supersaturation is given by the Gibbs-Thomson equation:

c-coo=% (16)

with B =2§—K from which V2¢ can be derived as :

Vic= - %VZR a7

where the 24 order term in (VR)?2 has been neglected. From (15) and (17) the evolution rate of the
radius is then:

B8LD dR

R=" 1R, w2 ¥

From egs. (1) and (18), the additional contribution to oc¢ due to the coupling mechanism if finally
given by:

1 ©o
)4

: i S8LD d2cc
G (coupling) = - 7 (— R ieY)

® < o (19)

It results from eqgs. (10) and (19) that the evolution equation for the critical stress oc is:

°_c_-_(_)3f1/2/_0\1/38 +1f3m, t 1 _BD £, d oc )

co 2" b3 (oc/o0)S 4 (cc/co)4 b dx2 g \_)
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X
Fig. 3: Solute gradients associated with a gradient in average size of precipitates

II-3- Stability analysis

We shall look now at the evolution of a small sinusoidal perturbation in space with a wave
vector q around the homogeneous steady state given by eq. (11). A standard linear stability analysis
(16) leads to an evolution in exp (w(q)t) where ® (q) is approximately given by:

=L _BD £2 5 16 B3g.316, 080018
0= g2 () 02 3 R 316 ) @

and schematically shown in fig.4. The most important result is that any perturbation with a wave
vector larger than qc is unstable, and that the larger is g, the larger is the associated amplification

factor w(q). Practically it means that in presence of both shearing and coupling through solute
diffusion, the homogeneous solution is unstable, i.e. strain localization has to occur, but no particular
length scale is selected. This means that the distance between neighbour slip bands will be scattered at
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Fig. 4: Amplification factor w(q) of a sinusoidal perturbation of wave vector q :
case of competition between shearing and coarsening

full line :classical diffusion equation
dashed line : generalised Cahn Hilliard equation

least between L (which is the limit of validity of our continuum approach) and 2n/qc. This is to say
that considering a given slip band, one has to find another one within a distance less than 2n/qc, with
(after some algebra):

3‘
qz- = .37(%)3/‘8 £1724 (%)15/8 (22)

III- COMPETITION BETWEEN STRAIN-INDUCED REVERSION AND
REPRECIPITATION

The other extreme case is that where precipitates become unstable through strain induced
accumulation of antiphase boundaries (17). In this case, the related softening arises from an increase
in the average separation {. of precipitates in the slip plane, the radii of the remaining precipitates

being constant. Now, £ and R are related to each other through the volume fraction f, but f varies.
The increase of solute content due to precipitate dissolution increases the precipitation rate with which
it is competing.
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III-1- Homogeneous problem

The evolution rate of oc can be expressed in terms of &, which itself is related to the
evolution rate of the number n of precipitates per unit volume:

R20 2 . (23)
Oc = 00 _bW?n n

where n results from a balance between shear-induced dissolution and reprecipitation

The dissolution criterion is taken from (17) as:

E
1+ <

R=Rc (€)= Re, (24)

£ya

el

byv

which is to say that the increase of volume energy due to APB accumulation in the precipitate drives

the critical radius Rc(€) for reversion to a value larger than R. The reversion kinetics are approximated
by;

dt
dn=-n— 25
o (25)

where 6 is a characteristic time for precipitate dissolution, and can be estimated by:

0=x

(26)
€

€ being related to R through eq. (24).

Assuming that we are at the very beginning of nucleation, R can be expressed as:
R =Reo (1+8) 27)

where & <<1.
From eqs. (24),(25),(26),(27) the reverson kinetics becomes:
M =t (28)

The precipitation from the solid solution is classically given by (18):
s o AG*
n=noexp (- T) (29)
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3
16_'S
where AG* = Ty 30)
Ty
The supersaturation dependence of yy can be written:
v = Yo(C-Ceq) (31)
. 1 092G
with Yo = 5 (Cp-Ceq) C=3) c=Ceq (32)
dCL
The solute concentration can itself be written as:
C=Co- gnR3 ncp (33)
The evolution rate of n resulting from both precipitation and shear-induced reversion is then:
- 2 -
.- 16n Ys 1 _E|® o Ya n
n =n,exp '3kT_3(4 3 §E 4 3 |nc-n
o e e’ | 97 s 60
where: ng =p2—¢d (35)
TR R3
The evolution of oc can be derived directly from egs. (23), (34) and (35).
: ) 6 1 1 : Y 1
o _2rR 1 : -16n Vs N a
—= —— [ n,exp — -=]=-+
c, 3 (o 3kT 3 3 . 2 El8 4 3 4
T g fozel]) e =] o
4nR "\ O 3b ( ol )

o, .
Z¢can be plotted versus — as in §II-2 (Fig.5).

Oo OCo

This plot shows that, once more, we have a stable attractor
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the evolution curve of Fig.5, we can have either softening or hardening. If nucleation is almost
completed in the predeformed state, the reversion will be dominant and will lead to softening. On the
contrary, if we start with a highly supersaturated solution, nucleation will dominate, and result in

hardening. In the former case, it is worth noting that the softening will increase when the strain rate €
is increased, or when the diffusion coefficient is decreased.

For the sake of simplicity, we shall consider in the following the evolution equation for n

o . . . . .
and not for —. In the case of coarsening discussed in §II, the supersaturation, in both the
Co
homogeneous and the inhomogeneous cases, is small compared to the nominal concentration cg,
which allowed us to neglect the spatial variations of c,. Here we are considering a reversion process,
where a large amount of solute is driven back into the solid solution. We therefore need to study now

q
C/e
/s,
: a R“
7R n¢
3b
. L]
a | @
(3 <
G %,
I
I
I
Fig.5: Rate of evolution of the critical stress o : case of competition between

strain induced dissolution and reprecipitation
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the coupled evolution of n and c,. In the regions of highly supersaturated solution, nucleation is a
local process, i.e. it does not need long range diffusion. However this does not prevent a long range
diffusion of atoms in solid solution, which results in a spatial coupling acting on the evolution rate of
Co. This evolution rate for cq is dominated by the diffusion of solute atoms in solid solution :

2
_ dc
Ca=D——
2
ox €Y))
which can be written using eq. (33) :
az 2
c,=D c° _4 1tR3ch?—r;
ox“ 3 ox (38)
III-3- Stability analysis
Eq. (34) is of the type :
n = (n,Co) (39)

and then egs. (38) and (39) form an autonomous system of partial differential equations. The linear
stability of the associated spatially homogeneous steady state solution can be investigated by the

standard method (16): it is governed by the sign of the real parts of the eigenvalues of the associated
Jacobian matrix. Its secular determinant is:

00 0P
on - @ % |y (40)
g—nR 3cpq2D -Dq™-m(q)

where it can be noticed from egs. (34) and (35) that g% <0and g_(P > 0.
Co

The amplification factors m(q) of a perturbation of wave vector q are solutions of eq.(40):

2 o 0p 4 _ 00.
® +® (qu-g%) +Dg’ (-?gnx%p-@;) =10 (41)

The sum of the two roots is always negative. The condition for instability will be therefore that the
two roots are real, and one of them positive. The instability condition can then be written:

(42)
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In this case:
2
o(Q) = % (3—2 - Dq2) + 'J(qu - 3—2) + 4 (i—t#nR%p + g—(ﬁ) Dq’ (43)
which is plotted in Fig.6.

As in 8§11, no characteristic wave length is selected, any one between zero and infinity being unstable.

IV- DISCUSSION AND CONCLUSIONS

The competition between geometrical shearing and coarsening and between reversion and
nucleation can be illustrated in Al-Li alloys in Figs. 7 and 8. Although these experiments were
performed in cyclic straining, similar results could be expected in monotonous testing, if the failure of
the specimen did not prevent from reaching easily the steady state. In addition, these alloys exhibit a

o(q)

Eig.6: Amplification factor w(q) of a sinusoidal perturbation of wave vector q :
case of competition between shear induced dissolution and reprecipitation :

full line :classical diffusion equation
dashed line : generalized Cahn Hilliard equation
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2000A

Fig. 7 : A125 % Lialloysaged 45 hoursat 195°C, fatigued in torsion (Ae;=0.5%) :

[s?leoaired b’ precipitates after fatigue, superallatice dark field [110], zone axis

very low hardening and one dominant slip plane, which brings the situation closer to the academic
case examined here. The problem of spatial coupling we have studied is strongly reminiscent of that
of spinodal decomposition (19, 20) which involves a "negative diffusion coefficient". The classical
diffusion equation in our case as well as in spinodal decomposition fails in selecting a dominant
instability wavelength. The physical reason for this failure is that such a treatment neglects the
"interfacial energies" arising from the strong solute gradients involved in short wavelength
fluctuations. These large q fluctuations are actually stabilized by this interfacial energy term
introduced in the case of spinodal decomposition by Cahn, Hilliard and Hillert (19, 20, 21).
Similarly, we can expect here the same kind of stabilization, and therefore a selected wavelength
(dotted lines in Figs. 4 and 6). A strong qualitative difference arises then between the two cases: in
the first case of geometrical shearing and coarsening a strong interfacial energy effect would kill all
the instabilities, whereas this will never happen in the second case of reversion vs nucleation
competition. This approach has obviously an academic character for several reasons. First it is well
known (22, 23) that it is quite artificial to separate nucleation from coarsening. Second, spatial
coupling does not arise only from solute diffusion, but also from thermal diffusion or (and)
dislocation interactions and spreading. In addition, work hardening which has been neglected in this
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approach is very likely to act as a stabilizing factor, especially in the case of multislip.

- However, this approach allows in a simple case to evidence the unstabilizing factors in alloys with
shearable precipitates, and to introduce explicitely a simple kind of spatial coupling from which arise
the characteristic lengths of strain localization.

Fig. 8: Al25 % Lialloys.aged8 h at 100°C fatigued (Aey =0.3 %) : dissolution of §'

precipitates inside bands obtained during fatigue testing (superlattice dark
field)
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APPENDIX

List of symbols

c : stress

cc : critical stress for precipitate overcoming

R : average radius of the intersection of the precipitate by the slip planes.
X : precipitate separation in the slip plane

Y : antiphase boundary energy

b : Burgers vector modulus

r : line tension of dislocations

f : volume fraction of precipitates

€ : strain

€ : strain rate

v : dislocation velocity

p : dislocation density

<R> :average radius of precipitates

K : defined by eq. (8)

D : diffusion coefficient of solute atoms

Vs : interfacial energy

Q : atomic volume

c : solid solution concentration

k : Boltzmann constant

T : absolute temperature

Dy,0¢  : constants defined by eq. (13)

L : distance between precipitates

Cp : solute concentration in precipitates

Coo : solute concentration in solid solution (read on the phase diagram)
B : —K287

X : distance

q : instability wave vector

qc : critical wave vector separating stable and unstable perturbations
n : number of precipitates per unit volume

Yv : gain of bulk energy per unit volume during precipitation
R¢ : critical radius for precipitate redissolution
Reo : critical radius of redissolution at zero strain
0 : characteristic time for precipitate dissolution
€ : defined by eq. (27)

AG*  :saddle point energy for precipitation

Yo : defined by eq. (32)

G : free enthalpy

Co : nominal concentration

nc : defined by eq. (35)

¢ : defined by eq. (39)
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