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ABSTRACT Strain localization and instabilities are studied in two extreme cases: the first one deals 
with the competition between precipitate shearing and coarsening, the second between strain induced 
reversion of ordered precipitates and reprecipitation. A particular emphasis is laid on the problem of 
spatial coupling due to solute diffusion. It is shown that this spatial coupling can lead to strain 
localization, with a characteristic wavelength which depends on the imposed strain rate and the 
characteristics of the precipitation (volume fraction, radius, antiphase boundary energy,...). 
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I- INTRODUCTION 

-Plastic instabilities exhibited by some materials under some straining conditions can be described 
from two closely related and complementary viewpoints: the temporal aspect of instabilities appears 
for example on the stress-strain curves (as serrations in the Portevin le Chätelier effect or as yield 
points followed by a plateau as in the Piobert-Lüders effect for instance) -The spatial aspect appears 
as a strain localization: some regions of the material deform at a much larger rate than others, and can 
be either stationnary or propagating. The description of the temporal aspect must take into account the 
stiffness of the testing machine; this intricate problem will not be examined here. The spatial aspect of 
strain localization is more closely related to the physical properties of the material itself, and will be 
our main concern here. 
-The presence of shearable precipitates introduced for structural hardening purposes is well known to 
lead to a strong strain localization (1,2). -Although this effect can be easily understood qualitatively, 
the spatial aspects, and in particular the derivation of the lengthscale of strain localization, have not 
been explained up to now. The key of this problem lies in the description of the spatial coupling 
between neighbouring regions of the crystal which behave in a different way. This coupling can arise 
either from dislocation interactions or spreading (cross-slip or climb), from diffusion of heat 
produced by plastic deformation (for instance adiabatic shearing of Nb at low temperatures (3)), or 
from solute diffusion, which couples the state of precipitation and the related structural hardening in 
different regions of the sample. 
Since it involves long range interactions the coupling through dislocations is an intricate problem 
although in some cases it can be treated as a diffusion-like problem (4,5,6). The thermal or solute 
coupling being more local are more likely to be correctly described through diffusion equations. In 
this paper we will focus our attention only on the solute coupling. 
-For the sake of simplicity, we shall make the following assumptions: 
1-We shall consider the case of a single crystal in single slip conditions, in particular in order to get 
rid of strain hardening. 
2-The precipitates are assumed to be shearable, coherent and ordered. 
The model will then be set up in terms of the following parameters: volume fraction and radius of 

• 

precipitates, antiphase boundary energy, free enthalpy of precipitation, strain rate ε,...The critical 
stress oc for overcoming the precipitates has been already computed in the case of shearable 
precipitates by various authors (7,8,9). It can be written as: 

R3/2 
σ ε = σ ο ρ 7 Ι (1) 

where {is the precipitate spacing in the slip plane, R the average radius of the intersection of the slip 
plane with the precipitates, b the Burgers vector, and σ0 a stress-like coefficient which is given by: 

Κογ3/2 
G o = - p / 2 F ^ ( 2 ) 

where γ is the antiphase energy and Γ the dislocations line tension. 
In the following, we shall derive the time (or strain) evolution of the critical stress a c , look for the 
steady states, and see whether they are stable or not. For this purpose, we shall examine two extreme 
cases: the first one deals with geometrical shearing of precipitates by dislocations (softening term) 
competing with precipitate coarsening (hardening term), and is likely to be found in the case of large 
but shearable precipitates. The second one deals with strain induced reversion due to shearing by 
dislocation, softening term competing with reprecipitation (hardening term), which is more likely to 
occur in the case of small ordered precipitates with a large antiphase boundary energy, at the very 
beginning of precipitation stage. 
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II- COMPETITION BETWEEN SHEARING AND COARSENING 

-When an ordered precipitate is sheared by a superdislocation, the surface to be sheared by the next 
one in the same plane is reduced, i.e. the average apparent radius of the precipitate becomes smaller 
(fig. 1). The resulting softening comes from the reduction of the average "effective" radius R, and not 
from the separation 1 between precipitates, which remains constant. One must keep in mind that R and 
1 are not related to one another through a relation involving the volume fraction f, since R is related to 
a surface to be sheared, and not to a precipitate volume. 
-This radius reduction competes with precipitate coarsening, which changes both the spacing and the 
average size of precipitates, the volume fraction being roughly constant (Oswald ripening). 

II-1- Homogeneous problem 

The softening which results from an effective radius reduction dR can be written, from eq.l: 

We shall now estimate the effective radius reduction dR coming from shearing at a rate ε during dt: 
the number of dislocations shearing the precipitate during dt is: 

pvdMtif1/2) 

Each of them will reduce the area by 2bR (10). 
The resulting area reduction is then: 

dS = 2πRdR = - pvdt^ff 1^) . 2bR (4) 
and then, using Orowan's equation: 

doc = 
3 a02/3aci/3 

' c ~ 2 <ß/3bl/3 dR (3) 

R = - f l / 2 £ e (5) 
π 

The rate of evolution of Gc coming from this shearing process is: 

(6) 

If this mechanism was the only one to operate, we should observe a complete softening. 

1 

Fig. 1 : Shearing of an ordered precipitate by a dislocation leaving behind it an 
antiphase boundary (hatched region) 
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The coarsening kinetics will be now modelled in the simplest way, i.e. using the steady state of 
Lifschitz Slyozov Wagner (LSW) theory, (11,12), assuming that the evolution of the effective radius 
R follows the same law as that of the average radius <R>. TTie LSW equation is: 

where D is the diffusion coefficient of solute atom, and Κ a constant which depends on the interfacial 
energy and is given by: 

K ~ 27 kT w 

The resulting rate evolution of a c is then: 

6 
1 σ ° f3 

σ0 (coarsening) =77 - c r r KD (9) 2 σ 5 b3 

The overall evolution of o c resulting from the competition of the two phenomena results from adding 
the contributions given by equations.(6) and (9): 

(10) 
σ 0 π b σ 0 z & (σ0/σ0)5 

In a — vs — plot (fig.2), one can see that there is a stable attractor given by: 
σ 0 σο 

In order to see whether we have hardening or softening, it is useful to compare the initial value of Gc 

and the steady state one. Using equations (1) and (11), and noticing for the sake of simplicity 3/16 
-1/5 and 1 / 2 » 1/15 we find that softening will occur if: 

(1)5/2 1 2 » (12) 

where it must be noticed that the diffusion coefficient D may depend on the plastic-induced vacancy 
production as (13): 

D = D 0 + α έ (13) 
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Fig. 2 : Rate of evolution of the critical stress ac : case of competition between 
shearing and coarsening 

There is a critical value of έ given by: 

(14) 
^ T c < F ) 5 / 2 f 2 5 / 2 - a 

above which shearing dominates coarsening, and therefore results in a softening. 

II-2- Spatial coupling 

In order to investigate the stability of the previous homogeneous steady state versus spatial 
fluctuations, one has to take into account the spatial coupling resulting from solute diffusion between 
neighbouring regions which have different average precipitate sizes, i.e. different solute 
supersaturations. 
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Regions where precipitates are small exhibit a higher supersaturation, and this will result in a 
solute flux towards regions with lower supersaturations (i.e. larger precipitates) which will then grow 
faster. This type of instability is inherent to coarsening processes and can occur without the help of 
plasticity. A spectacular example is found in geology with the "greedy giants" (14,15). The additional 
effect of plasticity is to introduce an anisotropic diffusion tensor through eq. (13). The normal to the 
slip planes becomes therefore a particular direction, and the effect of plasticity is to introduce a 
"texture" in the instability, which otherwise would be isotropic. 

The coarsening of a given precipitate results from both the short range interaction between 
this precipitate and its nearest neighbours (roughly at a distance L), and an interaction at a longer 
range between regions exhibiting different average radii of precipitates. The first coupling is 
accounted for by the LSW theory. The additional coupling we are looking for results from the second 
type of interaction. The volume increase of the precipitate resulting from the flux due to this latter term 
is: 

HI? D7rR2 7tR2 
4 7 i r 2 w=- t t ~ [ ( V c ) X = - U 2 ' ( V c ) x = + L / 2 ] ( V 2 c ) ( 1 5 ) 

Remembering that the supersaturation is given by the Gibbs-Thomson equation: 

c - c°° = A (16) 

27 Κ with ß =—g—, from which V2c can be derived as : 

V2c = - p V 2 R (17) 

where the 2d order term in (VR)2 has been neglected. From (15) and (17) the evolution rate of the 
radius is then: 

ßLD_ d2R 
*P 

R " ~ W Z d^2 ( 1 8 ) 

From eqs. (1) and (18), the additional contribution to ac due to the coupling mechanism if finally 
given by: 

s 1 ,oon4 ,f,2 ßLD d2ac _ _ σ< (coupling) = - j ( - ) 4 (F)2 — (19) 

It results from eqs. (10) and (19) that the evolution equation for the critical stress oc is: 

Ξ£.= . I ( A ) 3 f 1/2&1/3 ε + 1 * 3 1 ßLP f 2 d OC 
σο π b σο 2 b3 (gc/go)5 4 (σς/σο)% b dx2 σο 

(20) 
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χ 
Fig . 3 : Solute gradients associated with a gradient in average size of precipitates 

II-3- Stability analysis 

We shall look now at the evolution of a small sinusoidal perturbation in space with a wave 
vector q around the homogeneous steady state given by eq. (11). A standard linear stability analysis 
(16) leads to an evolution in exp (co(q)t) where ω (q) is approximately given by: 

co(q)= - 7 7 — 7 (£)2 q2 - ^ (|)3/8 f 3/16 ε 9/8(^1)1/8 ( 2 1) 
^ P (oc*/oo)4 b 4 " 3 Vb 

and schematically shown in fig.4. The most important result is that any perturbation with a wave 
vector larger than qc is unstable, and that the larger is q, the larger is the associated amplification 
factor co(q). Practically it means that in presence of both shearing and coupling through solute 
diffusion, the homogeneous solution is unstable, i.e. strain localization has to occur, but no particular 
length scale is selected. This means that the distance between neighbour slip bands will be scattered at 
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Fig. 4 : Amplification factor ω(ς) of a sinusoidal perturbation of wave vector q : 
case of competition between shearing and coarsening 

full line : classical diffusion equation 
dashed line : generalised Cahn Hilliard equation 

least between L (which is the limit of validity of our continuum approach) and 2n/qc. This is to say 
that considering a given slip band, one has to find another one within a distance less than 2n/qc, with 
(after some algebra): 

III- C O M P E T I T I O N B E T W E E N STRAIN-INDUCED R E V E R S I O N AND 
REPRECIPITATION 

The other extreme case is that where precipitates become unstable through strain induced 
accumulation of antiphase boundaries (17). In this case, the related softening arises from an increase 
in the average separation t of precipitates in the slip plane, the radii of the remaining precipitates 
being constant. Now, i and R are related to each other through the volume fraction f, but f varies. 
The increase of solute content due to precipitate dissolution increases the precipitation rate with which 
it is competing. 
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ΙΠ-1- Homogeneous problem 

The evolution rate of σο can be expressed in terms of <*-, which itself is related to the 
evolution rate of the number η of precipitates per unit volume: 

' R.5/2 £ 2 (23) 
σ ο = σ ° - £ Ι 7 2 - 3 π η 

where η results from a balance between shear-induced dissolution and reprecipitation 

The dissolution criterion is taken from (17) as: 

1 πε 
1 + ΊΓ R = R c(e) = RCo (24) 
l eya 

byv 

which is to say that the increase of volume energy due to APB accumulation in the precipitate drives 
the critical radius Rc(e) for reversion to a value larger than R. The reversion kinetics are approximated 
by; 

dn = - η — (25) 
θ 

where θ is a characteristic time for precipitate dissolution, and can be estimated by: 

θ = τ (26) 
ε 

ε being related to R through eq. (24). 

Assuming that we are at the very beginning of nucleation, R can be expressed as: 

R = R c 0 ( l - ^ ) (27) 

where ξ « I . 

From eqs. (24),(25),(26),(27) the reverson kinetics becomes: 

π _γ_ ή = . ε ^ ν . η (28) 
ξ 

The precipitation from the solid solution is classically given by (18): 
• » AG* η = η ο exp (- (29) 
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16 YS 
where ÄG* = — π (30) 

The supersaturation dependence of γν can be written: 

Yv=Yo(c-Ceq) 

1 a2G 
with Yo = 2 (Cp-Ceq) C=Ceq 

The solute concentration can itself be written as: 

4 •πΙΙ3 c = c0 - j ^ K y ncp 

The evolution rate of η resulting from both precipitation and shear-induced reversion is then: 

(31) 

(32) 

(33) 

η = n0exp 
16π 

2 
Y s 1 

3kT 3 (Λ λ 3 
τ . ' i - ' J 

I I3 
| nc" n) 

J 

π 
— + 

8 4 3 

by0-KR c 
3 

η 
n c - n 

(34) 

where: nc 
cn - ce 

icR3 
(35) 

The evolution of ac can be derived directly from eqs. (23), (34) and (35). 

^r _ 2nR 1 
σ, 3b 

n0exp 
2 

-16π Ys 
3kT 3 

To 3b σ 

4nR 

π + 1 
8 4 3 4 

by0-nR cp 4πη,Κ J 

3b 

(36) 

σ0 an be plotted versus — a s in §11-2 (Fig.5). 
σ0 σ0 

o c This plot shows that, once more, we have a stable attractor —·. Depending on the starting point on 
σ0 
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the evolution curve of Fig.5, we can have either softening or hardening. If nucleation is almost 
completed in the predeformed state, the reversion will be dominant and will lead to softening. On the 
contrary, if we start with a highly supersaturated solution, nucleation will dominate, and result in 

hardening. In the former case, it is worth noting that the softening will increase when the strain rate ε 
is increased, or when the diffusion coefficient is decreased. 

ΙΠ-?- Spatial coupling 

For the sake of simplicity, we shall consider in the following the evolution equation for η 
σ and not for —. In the case of coarsening discussed in §11, the supersaturation, in both the 
σ0 

homogeneous and the inhomogeneous cases, is small compared to the nominal concentration c0, 
which allowed us to neglect the spatial variations of cQ. Here we are considering a reversion process, 
where a large amount of solute is driven back into the solid solution. We therefore need to study now 

Fig. "i: Rate of evolution of the critical stress <rc : case of competition between 
strain induced dissolution and reprecipitation 
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the coupled evolution of η and cD. In the regions of highly supersaturated solution, nucleation is a 
local process, i.e. it does not need long range diffusion. However this does not prevent a long range 
diffusion of atoms in solid solution, which results in a spatial coupling acting on the evolution rate of 
c0. This evolution rate for c0 is dominated by the diffusion of solute atoms in solid solution : 

c„ = D 

2 
3c 

A ? (37) 

which can be written using eq. (33) 

c0 = D 

2 2 
9 C° 4 D3 Π 3 11 

r π R CpD—— 
dx 3 a x

2 
(38) 

ΙΠ-3- Stability analysis 

Eq. (34) is of the type : 

η = (p(n,c0) (39) 
and then eqs. (38) and (39) form an autonomous system of partial differential equations. The linear 
stability of the associated spatially homogeneous steady state solution can be investigated by the 
standard method (16): it is governed by the sign of the real parts of the eigenvalues of the associated 
Jacobian matrix. Its secular determinant is: 

^ R ^ q 2 ! ) 

θφ 

-Dq2-C0(q) 
= 0 

(40) 

3φ 3φ 
where it can be noticed from eqs. (34) and (35) that < 0 and > 0. 

dc0 

The amplification factors G)(q) of a perturbation of wave vector q are solutions of eq.(40): 

2 2 3Φ 2 3φ 4 3 3φ 
ω +co (Dq - ^ ) + Dq (- ν « 0 (41) 

The sum of the two roots is always negative. The condition for instability will be therefore that the 
two roots are real, and one of them positive. The instability condition can then be written: 

3 ( P 4 T R 3 C 3 Φ 

(42) 
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In this case: 

« « - φ - » ή + < 4 3 ) 

which is plotted in Fig. 6. 

As in §Π, no characteristic wave length is selected, any one between zero and infinity being unstable. 

IV- DISCUSSION AND CONCLUSIONS 

The competition between geometrical shearing and coarsening and between reversion and 
nucleation can be illustrated in Al-Li alloys in Figs. 7 and 8. Although these experiments were 
performed in cyclic straining, similar results could be expected in monotonous testing, if the failure of 
the specimen did not prevent from reaching easily the steady state. In addition, these alloys exhibit a 

\ 
\ 

Fig. 6 : Amplification factor co(q) of a sinusoidal perturbation of wave vector q : 
case of competition between shear induced dissolution and reprecipitation : 

full line : classical diffusion equation 
dashed line : generalized Cahn Hilliard equation 
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Fig , 7 : Al 2.5 % Li alloys aged 45 hours at 195*C. fatigued in torsion (ie t = 0.5 %): 
sheared δ' precipitates after fatigue, superallatice dark field [110], zone axis 
[110] 

very low hardening and one dominant slip plane, which brings the situation closer to the academic 
case examined here. The problem of spatial coupling we have studied is strongly reminiscent of that 
of spinodal decomposition (19, 20) which involves a "negative diffusion coefficient". The classical 
diffusion equation in our case as well as in spinodal decomposition fails in selecting a dominant 
instability wavelength. The physical reason for this failure is that such a treatment neglects the 
"interfacial energies" arising from the strong solute gradients involved in short wavelength 
fluctuations. These large q fluctuations are actually stabilized by this interfacial energy term 
introduced in the case of spinodal decomposition by Cahn, Hilliard and Hillert (19, 20, 21). 
Similarly, we can expect here the same kind of stabilization, and therefore a selected wavelength 
(dotted lines in Figs. 4 and 6). A strong qualitative difference arises then between the two cases: in 
the first case of geometrical shearing and coarsening a strong interfacial energy effect would kill all 
the instabilities, whereas this will never happen in the second case of reversion vs nucleation 
competition. This approach has obviously an academic character for several reasons. First it is well 
known (22, 23) that it is quite artificial to separate nucleation from coarsening. Second, spatial 
coupling does not arise only from solute diffusion, but also from thermal diffusion or (and) 
dislocation interactions and spreading. In addition, work hardening which has been neglected in this 
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approach is very likely to act as a stabilizing factor, especially in the case of multislip. 
- However, this approach allows in a simple case to evidence the unstabilizing factors in alloys with 
shearable precipitates, and to introduce explicitely a simple kind of spatial coupling from which arise 
the characteristic lengths of strain localization. 

Fig. 8 : Al 2.5 % Li alloys . aged 8 h at 100'C fatigued ( ie t = 0.3%): dissolution of 8' 
precipitates inside bands obtained during fatigue testing (superlattice dark 
field) 
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APPENDIX 

List of symbols 

σ : stress 
csc : critical stress for precipitate overcoming 
R : average radius of the intersection of the precipitate by the slip planes. 

: precipitate separation in the slip plane 
γ : antiphase boundary energy 
b : Burgers vector modulus 
Γ : line tension of dislocations 
f : volume fraction of precipitates 
ε : strain • 
ε : strain rate 
ν : dislocation velocity 
ρ : dislocation density 
<R> : average radius of precipitates 
Κ : defined by eq. (8) 
D : diffusion coefficient of solute atoms 
Ys : interfacial energy 
Ω : atomic volume 
c : solid solution concentration 
k : Boltzmann constant 
Τ : absolute temperature 
D 0 , a : constants defined by eq. (13) 
L : distance between precipitates 
cp : solute concentration in precipitates 
coo : solute concentration in solid solution (read on the phase diagram) 

27 ß : f K 
x : distance 
q : instability wave vector 
qc : critical wave vector separating stable and unstable perturbations 
η : number of precipitates per unit volume 
γν : gain of bulk energy per unit volume during precipitation 
Rc : critical radius for precipitate redissolution 
Reo : critical radius of redissolution at zero strain 
θ : characteristic time for precipitate dissolution 
ξ : defined by eq. (27) 
AG* : saddle point energy for precipitation 
Yo : defined by eq. (32) 
G : free enthalpy 
c0 : nominal concentration 
nc : defined by eq. (35) 
φ : defined by eq. (39) 
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