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Abstract

The Portevin—Le Chatelier effect is discussed in terms of a model based on behaviour of
crystal lattice defects. The model integrates two aspects of this behaviour: dynamic strain
ageing associated with solute diffusion to dislocations and evolution of the densities of
mobile and forest dislocations. The association of the PLC effect with the condition that
the strain rate sensitivity of the flow stress be negative is demonstrated by linear stability
analysis. It is further shown that plastic strain rate at a given specimen site undergoes
relaxation oscillations in time keeping the average at the value prescribed by the imposed
deformation (or loading) conditions. All characteristics of temporal behaviour can be
found from the model. It is shown that this behaviour gives rise to a spatial pattern whose
features can be investigated numerically provided the band propagation velocity is known.
The importance of studying this quantity is emphasized.

1. Introduction

If one were to look for evidence of localized plastic deformation, there perhaps
wouldn’t be a better example than the Portevin—Le Chatelier (PLC) effect. The effect
consists in repeated generation and propagation of deformation bands in a tensile speci-

men. These manifest themselves in discontinuities ("serrations") on deformation curves
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(Fig. 1) and sometimes can be visualized on the specimen surface (Fig.2). The
understanding of the PLC effect advanced significantly in the last decade or so, and a

summary of the state—of—the—art appears timely at this stage.

S

o (MPa)

350 4

Fig. 1. A fragment of stress vs. time diagram for Al-5%Mg exhibiting PLC
serrations under constant strain rate of 5-10-4 s-1.

Fig. 2. Surface markings associated with PLC band propagation in Al-5%Mg under
constant strain rate of 5-10-4 s-1.

The experimental situation with regard to the PLC effect is reviewed by Neuhiuser
in this volume [1]. Various aspects of the phenomenon have been surveyed earlier by
Kocks [2], Strudel [3], Rodriguez [4], and Pink and Grinberg [5]. In the present article, we

undertook to overview the field, while concentrating on the theoretical description.
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The investigation of the PLC effect has a long record. It has first been discovered
by Le Chatelier in 1909 on mild steels at a slightly elevated temperature [6] and has been
found later (1924) by Portevin and Le Chatelier on duraluminium alloys at room tem-
perature [7]. As a matter of fact, the so called blue—brittleness of steels — a phenomenon
related to the PLC effect — has been observed by Adamson as early as in 1878 (see quo-
tation in Ref. 8). Since then, the PLC effect has been recorded in a number of dilute
alloys (both substitutional and interstitial) of Al, Cu, Ni, Fe, Mg, etc. (in polycrystalline
form for the most part). The phenomenology of the PLC effect may be quite complex, e.g.
due to interference of such processes as precipitation, formation of the Guinier—Preston
zones, etc. [9]. It can be considered established, however, that a negative strain rate
sensitivity of the flow stress is a necessary prerequisite for the occurrence of the PLC

effect [2,10—13]. Consequently, this is a central feature of the approach outlined below.

Negative strain rate sensitivity (SRS) of the flow stress is one of macroscopic
manifestations of dynamic strain ageing (DSA). The underlying microscopic mechanism of
DSA is additional pinning of mobile dislocations, temporarily arrested on localized ob-
stacles, by solute atoms. Since solute diffusion is involved, DSA can only be effective
within a certain range of temperature T and plastic strain rate e¢. The domain of DSA is
generally broader than that of the PLC effect, and the proximity of the latter is usually
felt by such attributes as a hump on the flow stress vs. temperature diagram, a SRS dip
and a ductility hole in the corresponding range of T and ¢. The PLC effect proper occurs
within a well—defined area in the (T,e) plane. Moreover, for a given temperature and a
fixed strain rate from within this area, a certain critical conditions involving plastic strain
have to be fulfilled for discontinuous deformation to occur. This is seen from the fact that
the onset of the PLC effect often requires an incubation strain, é; = €¢(T,¢). Sometimes,
there is, in addition, an upper critical strain so that only a limited portion of a stress—

strain curve is serrated. More complex behaviour has been observed occasionally (see
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below). A theory of the PLC effect has, of course, to account for the occurrence of the

critical strains as well as for their temperature and strain rate dependences observed.

In the present study, we outline a model which explains the features described
above. It is based on a constitutive equation whose mathematical form gives rise to an
instability of continuous uniform deformation with the properties sought for. In Section 2,
microscopic mechanisms leading to this mathematical form are discussed. These involve
(i) dynamic interaction of solutes with temporarily arrested mobile dislocations via some
diffusional process (possibly including reordering of atoms within dislocation cores) and
(ii) collective dislocation effects associated with the evolution of two dislocation popu-
lations: mobile and forest dislocations. A synthesis of these two aspects leads to an ex-
pression for the intrinsic SRS. This expression serves as a basis for analysis of the
mechanism of instabilities and temporal variation of the corresponding mechanical
response (Section 3). In Section 4, various consequenses of the model, especially with
regard to strain and strain rate effects, are discussed in connection with experimental
data. Finally, Section 5 deals with some unsolved problems, in particular, with those

related to spatial aspects of strain localization.

2. Dynamic strain ageing and the intrinsic strain rate sensitivity

Theories of the PLC effect are based on the interaction of mobile dislocations with
solute atoms. The approach goes back to Cottrell [14] and Friedel [15]. While continuous
viscous motion of dislocations was considered in these early models, a discontinuous
character of dislocation motion was taken into account in later treatments [16,17]. In
these, the interaction between solute atoms and dislocations held by localized obstacles
was considered responsible for additional glide resistance which decreases with decreasing

waiting time at an obstacle, i.e. with increasing strain rate. A consequence of this process
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underlying dynamic strain ageing is a reduced strain rate sensitivity of the flow stress.

The PLC effect is thought to be associated with the SRS getting negative.

2.1 Basic mechanisms

The stress o to move a dislocation in its glide path can be assumed to be additively
made up of two contributions. One, denoted o4, stems from the interaction of the dislo-
cation with the dislocation ensemble, primarily with forest dislocations. The other, re-
ferred to as the "friction stress" f, originates from interactions between the mobile dislo-

cations and solute atoms. One has [2]

c=04 +f (1)

The dislocation contribution, o4, can, in turn, be decomposed into an athermal
part 03 and a component a(tih originating from interactions of mobile dislocations with
localized obstacles — forest dislocations. Overcoming these obstacles is considered to be a

thermally activated process. Regrouping the terms, eq. (1) can be rewritten as

a
g = O'd + F (2)

where
F = a&“+ f. (3)

The term F is a function of temperature and disloction velocity v, while ‘73 is largely
independent of these quantities. It does evolve with strain, however. In a "usual", i.e.
non—dynamic strain ageing material, F increases with v and decreases with T, in
accordance with an Arrhenius relation connecting these quantities. For a dynamic strain
ageing material, F turns out to decrease with v in a certain range of dislocation velocities.
This "anomaly" results from the behaviour of the friction stress f which can be qualita-
tively described as follows. At small velocities, solute atoms have enough time to diffuse

to temporarily arrested dislocations (or to get redistributed near dislocation junctions)
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thus impeding the breakaway from localized obstacles. In the opposite limit case of high
velocities, such additional pinning is suppressed, for the dislocattion waiting time at
localized obstacles is too short for the diffusional processes to be operative. The two
velocity ranges are characterized by different slopes (different "friction coefficients") in
the f vs. v curve: large in the low velocity range where mobile dislocations have to drag
along their solute atmospheres and small in the high velocity range where they are free
from solute atmospheres (Fig. 3a). It is the velocity range in between where a negative

dependence of f on v occurs. The function F(¢) (Fig. 3b) retains a characteristic shape of

f A dragorf
solute atm.
\ Y. SRS <O
\
\ no solute
=~ atmosphere
=
v
Fig. 3. Thermal component of stress in a dynamic strain ageing alloy (schematic).

(a) "Friction stress" f as a function of dislocation velocity v. The dotted
portion of the curve gives rise to a negative strain rate sensitivity.

F A
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(b) Thermal component of stress F as a function of plastic strain rate €. In
the interval (€, €2), negative SRS is exhibited.
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h

the f vs. v curve though it is somewhat distorted owing to the contribution of og to the
fact that the mobile dislocation density pp entering the Orowan relation
€ = pubv (4)

between the plastic strain rate and the individual dislocation velocity is generally strain
rate dependent. (Here b is the magnitude of the Burgers vector of mobile dislocations and

¢ is a geometric factor.)

2.2 Determining the intrinsic SRS

The constitutive equation (2) can be viewed as a result of integration of a general
differential form

do = hde + Sdéne (5)

where the strain hardening rate h = (9c/d¢)|; and the SRS S = (do/ Olne)| ¢ have been
introduced. Indeed, eq. (5) is trivially integrable if h does not depend on € and S does not
depend on e. The fulfillment of the first condition will be simply assumed, while the

second one is satisfied if S is identified with the corresponding derivative of F:

§ = dF/dfe (6)

Equation (6) defines the intrinsic strain rate sensitivity of the flow stress following from
the local constitutive behaviour. For uniform deformation, it coincides with the global,
macroscopically measurable behaviour. In the case of nonuniform deformation associated
with negative intrinsic SRS (see Section 3), the measurable, apparent SRS is not identical

with the intrinsic one [12], as will be shown below.

In the early works [18,19], and later in [20—22], the qualitative shape of the curve
shown on Fig. 3b has been recognized as a key property of DSA giving rise to the PLC
effect. The macroscopic model due to Penning [23] is consistent with the microscopic

considerations of Cottrell [14] and Friedel [15] and the mentioned refinements [16,17]
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taking into account a jerky character of dislocation motion. In Penning’s model [23] the
term afi is replaced by he. The deficiencies of Penning’s model are obvious. Separation of
the variables € and € in two additive terms is definitely an approximation. The model is
further limited by the assumption of constancy of h. Most serious is the fact that the
plastic strain € plays a role of a state variable which is only valid for materials with no
strain path memory. However, these limitations are not too serious as long as small
strains are considered which is the case when one band of localized deformation is passing.
Despite the mentioned deficiences, Penning’s model does capture the most significant
features of the PLC effect, and it was adopted by the present authors [11,24,25]. It should
be emphasized that in terms of eq. (1), the DSA effects enter through the friction compo-
nent of stress, f. In an alternative approach by Kocks et al. [26—29], it is assumed that
DSA comes about primarily via the effect of solutes on the dislocation junction strength.
The model exploits the idea due to Sleeswijk [20] that solute redistribution near dislo-
cation junctions, occurring by core diffusion, increases the glide resistance from the forest
and that the effect becomes larger with increasing waiting time. The pertinent term in eq.

(1) is, in this "dislocation model", ;.

2.3 Analytical form of intrinsic SRS

In accordance with eq. (3), the SRS given by eq. (6) is expressed as a sum of two
terms

S=8,+ Syping (7)

where

S, = (904"/6ne)| , = KT/ 8)

stems from thermally activated breakaway of dislocations from localized obstacles in the
absence of DSA and

S = df/dIné (9)

ageing

262



Y. Estrin and L.P. Kubin Journal of the Mechanical Behavior of Metals

is associated with the strain rate dependence of the friction stress. In eq. (8) k is the
Boltzmann constant and v is the activation volume which characterizes thermally
activated overcoming of localized obstacles.

For the discussion to follow, it is convenient to introduce t_, the waiting time at a

wry)
w

localized obstacle. Assuming that the average spacing between localized obstacles, ¢, is
proportional to the average spacing between forest dislocations, p}ll 2, and considering the

free—flight time between the obstacles as negligible, one has

v= ety ~ (o) (10)

and
€= Q/tw. (11)

Equation (11) is obtained from eq. (4) by substituting eq. (10) and introducing the ele-

mentary incremental strain
-1/2
0 = ¢bp_ s / . (12)

This is essentially a strain dependent quantity which corresponds to the deformation
obtained when an elementary activation step is accomplished by all mobile dislocations.
The ageing component of the SRS given by eq. (9) can be expressed as

S = — df/dlnt (13)

ageing
Equations (11) through (13) reflect two most important aspects of the Portevin—Le
Chatelier effect mentioned in the Introduction. The dynamic interaction between mobile

dislocations and solute atoms (i) is described by the function f(tw), while the collective
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dislocation effects (ii) enter through the dislocation densities p =~ and p; evolving with
strain. A complete description of the system is furnished by specifying the function f(tW)

and the evolution equations for the two disloction densities.

First, we consider the dependence of f on the waiting time ty Taking f to be
proportional to the solute concentration Cs at an arrested dislocation after a time t = i
and assuming the Cottrell-Bilby ageing kinetics [30] the solute concentration is expressed

as
¢, = C (KDt )2/ (14)

where C0 is the solute concentration in the bulk, far from the arrested dislocations
(Cs >> C,), D is the solute diffusivity and K is a constant which includes the solute—
dislocation binding energy. Saturation effects at long ageing times can be accounted for by

using a heuristic form of t —dependence of C, [31]:
C 2/3
C; = Cpyl — expl— G (KDt,) /3 (15)

where C_ is the saturation value of C_. At small t_, the Cottrell-Bilby relation (14) is

recovered. Equation (15) leads to the following expression for f:
- N 2/3
f=1 [1—exp—(t, /r)""]. (16)

Here the saturation value fu represents the maximum increase in stress associated with

DSA; the characteristic time 73 reads

r = (kD) Y(c_/c )3/ (17)
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This quantity contains information on the kind of diffusion process underlying DSA.

Second, the collective dislocation behaviour affects the PLC effect through the

elementary incremental strain Q = ¢bpmp;l/ 2

. Indeed, at a given strain rate, the evo-
lution of  with strain influences the waiting time, cf. eq. (11). This imposes an indirect
strain dependence of the friction stress f and, consequently, of the ageing component

S of the SRS. This fact makes it possible to explain the experimental finding that

agein
DSgA eifects are strain dependent. To account for this dependence, it was assumed in a
number of studies, e.g. [16,17,32], that the mobile dislocation density increases with strain
and that the diffusivity D in substitutional solid solutions grows with ¢, too. The latter
depencence was ascribed in the mentioned works to the increase with deformation of

vacancy concentration entering as a factor in the substitutional solute diffusivity.

To investigate the strain dependence of 2, coupled evolutionary differential
equations for P and [n have to be formulated. A corresponding model has been proposed
in Ref. 33. Without going into detail here, we just mention that at small plastic strains
the mobile dislocation density increases with strain faster than the forest density, while at
large strains, the density of forest dislocations increases faster, the mobile density being
close to saturation [34]. Thus, {2 increases at small strains from an initial value Q2 , passes
through a maximum and decreases with strain (nearly as the ivnerse of o d), asymptoti-

cally approaching a saturation value Q_ [33,34] (see Figure 8 below).

The intrinsic strain rate sensitivity can be conveniently represented in the nondi-

mensional form. Combining egs. (7), (9) and (16) yields

§=85,— Xexp(—X) (18)
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where
s = (3/2)(S/1), s, = (3/2)(S,/1) (19)
and

X = (1, /7)Y = (/2)2/3. (20)

Here the quantity Z = é'ro has been introduced which bears some similarity with the
Zener—Hollomon parameter often used in studies on creep. It is recognized that the effect
of strain rate and temperature enters the DSA—related term —Xexp(—X) through this
parameter. (Note that the characteristic time 7 is associated with solute diffusivity
(cf. eq. (17)) and is given by an Arrhenius—type formula.) The nominal solute concen-
tration C0 is contained in this parameter as well. Finally, as already mentioned, a strain
dependence is incorporated through the elementary incremental strain Q. The SRS in the
absence of DSA, S (and, consequently the corresponding dimensionless quantity so) is
proportional to 94 in materials which exhibit the so called Cottrell-Stokes behaviour, e.g.
in fcc metals, and is practically constant in bcc metals. For the sake of simplicity, a

"model material" with a constant 5 will be considered below.

It is readily recognized from eq. (18) that s can only be negative if s o 1s smaller
than the maximum value, 1/e, of the bell-shaped function Xexp(—X). In such a case, as
will be illustrated below, there is a range of X, i.e. of strain rates and temperatures,

within which the SRS, s, is negative.

3. The instability mechanism

3.1 Linear stability analysis and instability criterion

The essence of the instability mechanism leading to jerky flow and nonuniform
deformation is easily rationalized by investigating the stability of uniform flow in a

material obeying Penning’s constitutive equation. As shown in [35], the result obtained is,
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however, quite general. The imposed external condition is that of constant stress rate:

o= &0 = const leading to

ot =he + F(e) (21)

This equation has a uniform steady state solution € = 'es — bo/h = const. The same

uniform steady state can equivalently be reached by straining with a constant plastic

strain rate o, /h. By differentiating eq. (21) with respect to time one obtains

(22)

Linearizing eq. (22) around its steady state value, small local deviations from steady state
can be introduced in the form de = e —e, = (8e) exp(Mt),6e = Ade, where (de)  is a
constant and time t is reckoned from the moment the perturbation has been introduced.

Inserting into eq. (22), we obtain the growth parameter (bifurcation coefficient) A:

A = -h/(dF/de)| =t = —h&/S('es). (23)

A positive A indicates a growing localization. Bifurcation from uniform to nonuniform
deformation occurs at the point where A changes sign. In the case under consideration \
becomes positive when the SRS, S, turns negative. It follows that the domain of the
occurrence of the PLC effect is defined by the condition that the loading rate or the strain

rate at steady state are such that S(e.) < 0.

Experimentally, the apparent SRS, as measured through strain rate jump tests,
may already be slightly negative when jerky flow begins [26]. A modified localization
condition accounting for this fact was proposed recently by McCormick [13] who con-
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sidered the kinetics of transition of solute concentration to its new quasi—steady state
value. In what follows, the condition s = 0 will be still considered as a "demarkation line"

between stable and unstable deformation, however.

3.2 Temporal behaviour

The evolution of the plastic strain rate e in a given cross—section can be investi-
gated by considering its time derivative given by eq. (22). The sign of this derivative
depends on the location of the point € = ;s with respect to the interval ('el, '52) where
dF/de is negative (Figs. 3b and 4). For e, < ¢,, dF/de is positive and any deviation of ¢

from the steady state value will decrease with time. Uniform steady state is thus stable, in

accord with the result of linear stability analysis.

Consider now the case when ¢_falls within the interval (&;,¢,):
e < €< € (24)

Starting with ¢ = 0, the strain rate will grow, € being positive. This growth will go on

D I |
I I
| ' | !
+ + + >
. . . . * .
g5 & €, €] €
Fig. 4. Relaxation oscillations behaviour consisting in strain rate jumps A—C and

B—D and continuous variation of ¢ along the ascending branches, DA and
CB, of the F(¢) characteristic.
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until e will reach the value 'el at which point dF/de vanishes and ¢ becomes infinite, cf.
eq. (22). The strain rate is then bound to change instantaneously, and a jump to € = 'e’i‘
will take place (Fig. 4). The system will thus find itself on the opposite ascending branch
of the F vs. e curve. Here, again, dF/de > 0 so that ¢ is negative. The plastic strain rate
will decrease tending again to the steady state value. On reaching the point € = &g, €
turns infinite again, and another jump, now to € = E;, will occur. A continuous increase
of € will resume, until the point e = ¢; will be reached and the jump 'el - 'eI will be
repeated. This succession of events in which continuous variation of plastic strain rate
along the branches DA and CB is interrupted by strain rate jumps (A - C and B - D)
onto the opposite ascending branch of the F(¢) characteristic will recur periodically. The
system permanently tends to the steady state value lying in the "forbidden gap" ('el,'ez),
but can never enter this strain rate interval. In other words, when forced by the imposed
loading conditions to deform with é;;- from within the forbidden gap, the material in an
individaul cross—section spends one part of a period in the range of small strain rates
(DA), where mobile dislocations drag along their solute atmospheres, and the other in the
range of large strain rates (CB), where mobile dislocations are free from solute clouds. The
jumps A - C and B - D correspond to depinning and pinning of mobile dislocations,
respectively. The temporal behaviour along the low and high velocity branches can easily
be estimated [11] by integrating eq. (22), provided the shape of the F(¢) curve is known in

the ranges where its slope is positive:

ams N A
—ht — I ul.'}c} . .UC - (25)
de € — €

After one cycle of temporal oscillations one has AF = 0, and from Penning’s equation,
eq. (23), the plastic strain increment Ae and the time period AT are such that

&O/h = .Es = Ae¢/AT.
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The average over the period in a given cross—section is maintained at the pre-
scribed value 'es. The average over the entire gauge length can be kept if parts of the
specimen deform with the strain rates corresponding to range DA and parts to range BC.
Stratification of the deforming material into bands is thus inherent to this deformation

regime.

The temporal variation of the plastic strain rate in an individual cross—section
following the periodic pattern described is shown in Fig. 5. The cycles of slow—fast—slow—
fast variation of e are referred to as relaxation oscillations [36,25]. The class of nonlinear
phenomena related to relaxation oscillations is encountered quite frequently. Common to
the systems of this class is a negative characteristic analogous to negtive SRS in case of
the PLC effect. As an example closely related to the PLC effect, the Gunn effect should
be mentioned [37]. It is observed in bulk semiconductors exhibiting a range of negative
differential resistivity. Another example is pull-out of a metallic filament from a poly-

meric matrix where the relevant characteristic is a negative friction coefficient for low

C2 Cs

AT, ATq
AT

Dy D2 D3

1 ————
£ t;

o b =|=-- -

Fig. 5. Strain rate profile as a function of time at a given location within a
specimen. Strain rate jumps A—C and B—D (Fig. 4) are found again in this
diagram as the jumps A;—C; and B;j—Dj, respectively.
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displacement velocities [38]. Further examples have been discussed in Refs. 25 and 39. A

translation of the results appears rather straightforward.

3.3 Spatial aspects

Turning back to the PLC effect we should stress the spatial aspects. The constitu-
tive equation (21) underlying the present analysis does not contain a spatial coordinate. If
all parts of a specimen could deform coherently, in "phase", the global behaviour would
coincide with the local behaviour characterized by relaxation oscillations of the plastic
strain rate. Such a coherency is not possible for usual specimen lengths, so that the tem-
poral pattern discussed above should propagate along the gauge length. Indeed, it can
easily be demonstrated [24,25] that the constitutive description used admits of solutions
propagating with an arbitary constant velocity V. The strain rate profile along the speci-
men axis, taken at a fixed time, exhibits a band—like shape (Fig. 6). The regions of in-
creased plastic strain rate (B1C1’ B,C,, B303, etc...) can be referred to as the PLC

bands. A remarkable feature of these deformation bands is that they have sharp edges on

&> C3 | C2 C1
1 T
¢ B | 82/ | B1
? i
I
I
I .
A | | =—> V
| L
s =
£ Az | A2| | A1
N ! TN
& D3 D2 | Dy ! \
| | L ~.bo
X; X X
Fig. 6. Strain rate profile as a function of coordinate at a fixed time. The spatial

period A is related to the time period AT, cf. Fig. 5, via the pattern propa-
gation velocity V according to eq. (26). The specimen gauge length is
denoted by L.
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both sides. This spatial pattern propagating at a velocity V is a reflection of the temporal
pattern at a given specimen cross—section (Fig. 5). The spatial period A is related to the

temporal period AT via

A = VAT. (26)

Similarly, the band width, w, is related to the duration AT, of the continuous decrease of

o ¥ - )
strain rate from €, to €, via

w = VAT, (27)

The passage of each PLC band across the gauge length is recorded in a stress—
strain curve as a steep strain increment, whereas the strain increment associated with slow
deformation between the bands is incomparably smaller. A typical stair—case deformation
curve is produced as illustrated in Fig. 7 by a strain vs. stress curve for Al-5%Mg de-

formed with a constant stress rate of 0.1 MPa/s at room temperature [40]. The above

TIME, MIN
;20 21 22 23 2 5 %
| Al-5% Mg
sgl RT

STRAIN, %
£~
~

G /h =10"s"

G0
1'6100 10 120 130
STRESS, MPa
Fig. 7. A stair—ase deformation curve of Al-5%Mg deformed with a constant

stress rate in the PLC regime (after [40]).

272



Y. Estrin and L.P. Kubin Journal of the Mechanical Behavior.of Metals

considerations imply that the shape of the stress vs. stress diagram determined by the
loop ACBD is independent of the magnitude of Efo, provided that ES = Ero/h lies anywhere
in the interval (e,€,). This conclusion contradicts the experimental observation that the
magnitude of the strain bursts or stress drops decreases with increasing stress rate or
strain rate [41,42]. The contradiction is removed [43] by taking into account the variation
of the thermal component of stress during a waiting time. The intrinsic SRS is then
modified in such a way that the shape of the F(¢) characteristic explicitly depends on Efo.
These stress rate effects are illustrated in Sec. 4.2, while a detailed presentation of
modelling them is given in Ref. 43. Here we would only like to emphasize a parallel
between two modes of straining: with constant stress rate and constant strain rate. The
first one, considered here, is much easier to treat [11] because, under these conditions, the
stress remains constant during the propagation of a deformation band, and the
propagation occurs with constant velocity. The mathematical description of the temporal
variation of the mechanical quantities (plastic strain, plastic strain rate and stress) in a

given material cross—section is especially easy in the case of ¢ = const.

The conditions for the occurrence of the PLC effect under constant imposed strain
rate, €, can be inferred from the corresponding conditions for constant stress rate testing

[25]. The strain rate interval in which the PLC effect occurs in the former case is given by

h+M - . h+M .
Hﬁ_ Yol < €a SEM Y02 (28)

where (0,,0,5) is the interval of stress rates corresponding to the occurrence of the PLC
effect under constant stress rate testing. M denotes the combined elastic modulus of

specimen and testing machine.

During a discontinuity of plastic flow ("jerk"), there is generally a drop in stress,
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Ao (Ao<0), and a strain burst, Ae. By taking the difference of the values of stress and

strain between points C and B of the characteristic curve F(¢), cf. Fig. 4, we have:
Ao = hAe + AF (29)

where AF = F(C)—F(B) is the difference between the maximum and the minimum value
of the characteristic curve which can be considered as an intrinsic amplitude of the PLC
effect for the material considered. During a short time interval of a jerk, the stiffness of
the tensile system comes into play through the relation Ag + M Ae¢ = 0, which, combined

with eq. (29), yields the amplitude of the load drops and the strain bursts:
Ae = —Aog/M = —AF/(h+M), (30)

It follows that a hard tensile system (h<<M) will translate the PLC instabilities into load
drops of amplitude Ao » AF, while in a soft tensile system (h>>M) and under constant
stress rate (M = 0) one will mainly observe strain bursts of amplitude Ae » —AF/h. As
mentioned above, the intrinsic amplitude AF depends in practice on the applied stress
rate, or on the equivalent applied strain rate bc/h. As a consequence, the recorded ampli-
tudes of strain bursts or load drops, which are both proportional to AF, will have the
same dependence on the applied rate whatever the mode of testing and the stiffness of the

tensile system.

Concluding this section we would like to stress that any experimental determi-
nation of the SRS in the region where it is negative can only yield an apparent quantity.
The intrinsic SRS remains hidden by its very nature, for strain rates from within the
forbidden gap cannot be attained physically. On the other hand, the exact shape of the

F(e€) characteristic in the forbidden gap is of no relevance for a description of the PLC
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effect [24]. However, the knowledge of the exact position of the extrema of the curve and
its shape in proximity to them in the range of positive slope is extremely important for

theory.

4. Macroscopic features of PLC instabilities
The above considerations make it possible to discuss macroscopic manifestations of
the PLC effect on the basis of the model integrating DSA effects with collective dislo-

cation behaviour and effects of the applied stress rate or strain rate.

4.1 The critical strains

We proceed from the condition

S<0 (31)

which, with some limitations mentioned in Sect. 3, provides a criterion for the occurrence
of the PLC effect. For solutions to exist, 8, must be smaller than 1/e, cf. Sect. 2. When
this is the case, there are two solutions, X, <1 and X, > 1, of eq. (18) which expresses
the critical condition for the onset of PLC instabilities. Accordingly, for given strain rate

2

and temperature, this defines two critical values, Ql = ZXI/ 3 and 2, = ZX§/ 3, of the

elementary incremental strain (cf. eq.(20)).

The PLC domain can now be easily determined by placing a strip limited by the
horizontal lines = Q, and @ = €, onto the Q vs. ¢ diagram of Fig. 8 and by deter-
minign the intersections. A wealth of various possibilities opens, depending on the values
of the plastic strain rate, temperature, and the nominal solute concentration C0 which
determine the location of the strip with respect to the Q(e)—curve. Variation of one of
these parameters leads to a displacement of the strip along the Q2—axis accompanied by

variation of the band width.
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Fig. 8. Elementary incremental strain Q as a function of €. Qp, Qn, and Qg denote
the initial, the maximum, and the saturation values, respectively. The
negative SRS range (i.e. the PLC domain) is represented by the hatched
strip bounded by the horizontal lines @ = Q; and Q = Q,. The lower (¢c)
and upper (ec'*) critical strains are shown.

Consider an example shown in Fig. 8. The bottom line of the band, Q = Ql, inter-

sects the Q(e) profile twice, at e = ¢, and € = eé*. Jerkey flow will occur in this interval.

¢

Under real deformation conditions, e é* may be too large to be recorded so that the upper
critical strain is not systematically observed. An example, found on an Al-Li alloy at

300K (unpublished work), is shown in Fig. 9a.

Obviously, no PLC effect will occur if the strip is located below the Q vs. € profile,
ie. €, < (cf. Fig. 8). This corresponds to sufficiently low strain rates and/or high
temperatures. Likewise, there will be no PLC effect for 2, > Q (where Q1 is the maxi-
mum value of Q) for which case the strip is located above the elementary incremental
strain profile. This corresponds to sufficiently high strain rates and/or low temperatures.
The threshold conditions for the occurrence of the PLC effect are thus Q, =0 and

92 =0 o Expressing the above conditions in terms of ¢, a PLC domain is obtained:

a/(r, X% < e < a_/(r, X3/2). (32)
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W *
e¥ €. 2
70]

-— Strain

Fig. 9. Time dependence of stress in an Al-Li alloy deformed at room temperature
with a constant strain rate.
(a) A )curve exhibiting a lower and an upper critical strain (¢ = 1.75-105
s1).

(b) A curve showing two regions of jerky flow separated by a smooth
region (€ = 2-10°5 5-1).

A sufficient condition for the occurrence of the PLC effect is therefore the fulfillment of
inequalities (32). Otherwise, DSA simply results in a decrease of the SRS which, however,
remains positive and does not give rise to PLC instabilities. With typical numerical values
for A1-5%Mg and with the value Ty = 18 for the characteristic time associated with
diffusion, i.e. typically around room temperature, inequalities (32) read

—6 —2-1

1810 %" <e<58-10 [33]. This compares reasonably well with the experi-

mental range of existence of the PLC effect.

Various possibilities with regard to the number and position of the critical strains
for the occurrence of jerky flow have been analysed in Ref. 33. The strain rate dependence
of the critical strains can be investigated by tracing the variation of width and position of
the strip bounded by the horizontal lines 2 = Ql and Q = 92. One of four most represen-
tative dependences is illustrated by Fig. 10 where the positions of the PLC intervals
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Fig. 10. One of four most likely sequences of diagrams illustrating the strain rate

dependence of the critical strains. Strain rate increases (or, equivalently,
temperature decreases) from bottom to top. The regions of jerky flow are
hatched.

(hatched regions) are shown as a function of strain rate at a fixed temperature or, alterna-
tively, as a function of temperature for a given strain rate. From this figure, one can see
how the number and position of the critical strains change depending on deformation
conditions. While no observation of all four critical strains on a single stress—strain curve
is available to our knowledge, such striking feature of the described behaviour as merging
of intervals of jerky flow with increasing strain rate of decreasing temperature has been
observed by Réauchle et al. [44] on Cu—3.3 at% Sn. This is illustrated by Fig. 11. The
existence of two regions of jerky flow separated by a smooth portion of deformation curve

was found on Al-Li (unpublished work), Fig. 9b.

The strain rate dependence of the critical strain, €0 at which the PLC effect first
sets in, is of particular interest. For most alloy systems exhibiting the PLC effect, €
increases with strain rate, cf. e.g. [32]. A plot of log € vs. log €, yields a straight line with
a slope ranging from 2 to 3 for substitutional and from 0.5 to 1 for interstitial alloys. The
difference in this exponent between substitutional and interstitial solutes is explained by a

number of authors [16,17] by the above mentioned assumption of accumulation with strain
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Fig. 11. A stress—strain curve with two regions of jerky flow separated by a smooth

region in a Cu—3.3at%Sn alloy at 2550C (after Riuchle et al. [44]).

of deformation—induced vacancies whose concentration enters the diffusivity of substi-
tutional solutes, but does not affect that of interstitial ones. There is no consensus on the

origin of this difference among researchers, though, cf. Ref. 28.

The model outlined above yields a strain rate dependence of € which can be
roughly approximated by a power law [33]. The exponent obtained (0.5 to 1) stems from
the evolution with strain of the dislocation densities p_ and Ps (primarily p m) and does
not take into account any possible strain dependencies of solute diffusivity. It compares

fairly well with the e dependence of ¢ . measured on interstitial alloys [33].

An interesting feature, observed in Al based substitutional solid solutions [45—48,9]
and in carbon steels [49,50], is that at low strain rates and high temperatures an "inverse"
behaviour is found: the critical strain increases with decreasing strain rate and increasing
temperature. The ranges of "normal" and “inverse" behaviour in a corresponding log €
vs. log € curve are thus separated by a minimum. The mechanism by which the critical
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strain is affected is not clearly understood at present, although there is some evidence that

it is linked to precipitation before or during the deformation test [9)].

4.2 The rate dependence of jerky flow

Now, after we dwelt on the conditions for the occurrence of the PLC effect, we turn
to a description of its observable features. First, characteristic features of deformation
curves, such as stress drops under constant strain rate loading and strain bursts under
constant stress rate loading, will be considered. Then, the characteristics of the associated

deformation bands will be described (Sect. 4.3).

Repeated stress drops, of the type depicted on Fig. 1, are recorded in a hard testing
machine during deformation with constant imposed strain rate, E& = const. A staircase
curve of the kind of Fig. 7 is a typical diagram for constant stress rate deformation. As
mentioned in Sect. 3.3 (cf. also eq. (30)), the amplitude of stress drops or strain bursts is
determined in the first case by the difference AF of the maximum and the minimum

values of the corresponding dynamic, i.e. rate dependent, characteristic.

The static reference curve F(e) as well as a family of dynamic curves F('e,&o)
computed on the basis of the model [43] for various strain rates and at a constant strain
value (2 = 10—3, corresponding to a strain of a few percent) are depicted on Fig. 12
together with the strain rate jumps which accompany the relaxation oscillation behaviour.
Typical parameter values for Al-5%Mg at room temperature have been used for these and
the following numerical estimates. The range of stress rates (601, &02) is such that ine-
qualities [32] are fulfilled. The magnitude of AF, which is proportional to the amplitude of
the PLC jerks, decreases with increasing applied stress (or strain) rate. This behaviour is
rationalized by considering that, during the reloading sequence following a jerk there is a
competition between ageing effects which tend to increase the waiting time and the
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Igle s 1))

Fig. 12. Dynamic F(e) characteristic showing a dependence on the imposed stress
rate oy (indicated in the parentheses). The variation of the strain rate is
described by cycles such as ABCD or A'B'C'D'. The dotted curve connects
the critical points for the onset of PLC jumps at various gy.

loading rate which tends to reduce it. Ageing effects are thus largest at low (stress) rates,
and the magnitude of jerks decreases until it vanishes at the upper boundary of the PLC

interval.

Turning to equivalent constant strain rate testing,it is interesting to note that the
top value of a stress drop, which corresponds to the maximum of a particular F(¢) curve,
decreases with éa, while the bottom value, associated with the minimum of the curve
largely remains constant. The ¢ , dependence of the top stress in the forbidden gap ('el,'ez)
qualitatively follows the descending branch of the reference (static) curve F(e). Thus, by
measuring this apparent SRS, the intrinsic SRS can be studied qualitatively. The apparent
SRS for Al-5%Mg measured at room temperature in the described manner [25] is shown
on Fig. 13 as a function of the applied stress rate. (Note that the term he has to be de-

tracted from the stress for the function related to F(e) to be obtained.) The positions of
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Fig. 13. Upper stress of PLC serrations at ¢ = 8% as a function of imposed strain

rate in AI-5%Mg at room temperature [25].

the extrema of this function provide a measure of the boundary values for the stress rate
range of the PLC effect. Direct determination of the boundary values of strain rate indi-

cates a satisfactory accuracy of this procedure [25].

To obtain an exact relation between, e.g. the strain burst amplitude, Aeb, under
constant stress rate loading and AF, the time AT2 has to be calculated. The latter quan-
tity is that portion of the relaxation oscillations period which corresponds to the high
strain rate part (CB) of the trajectory ACBD in Fig. 4. Applied to the initial and the

final states of a strain burst, the constitutive equation (21) yields

0,AT, = hAg + AF. (33)

The expression for AT, can be obtained from eq. (25), the integration being carried out

l* .
from € to €.

From eq. (33), the main contribution to Ae arises from the term AF/h which
decreases with increasing stress rate. The term &OAT2 increases with strain rate and may
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become significant at large e. However, in most of the PLC range Aeb is approximately
equal to AF/h. The stress drop amplitude in constant strain rate loading is accordingly
given by AF. It is interesting to inquire about the strain dependence of Aeb. Investigation
of the strain dependence of the dynamic characteristic curves, entering through Q, reveals
that AF is rather insensitive to strain. The term r}OAT2 does depend on ¢ via . Without
going into detail we just mention that AT2 decreases with increasing Q. Consequently,
when (2 increases, so does the strain burst amplitude. Since under usual conditions
increases with strain (though it may exhibit a makimum, cf. Fig. 8), the general tendency

is an increase of Aeb with strain.

The experimental results obtained by Karimi [51] can be interpreted in favour of
the model leading to the discussed dependences. The data obtained on an austenitic
stainless steel in a soft machine are shown in two diagrams, as Aeb Vs. ('70 plots taken at

various strains (Fig. 14) and as Ae, vs. € plots taken at a fixed stress rate for various

5
S
g 45
3
2
1
] 1 e
104 105 . 108
oo (Pa/s)
Fig. 14. Strain burst magnitude (plastic strain within a band) as a function of stress

rate for various strains in an austenitic stainless steel. (After Karimi [51]).
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temperatures (Fig. 15). It is recognized that even small details, such as a weak increase of
Aeb at large stress rates (Fig. 14) are in accord .with the above predictions of the model.
Karimi [61] distinguishes three stages in the strain dependence of Aeb shown on Fig. 15
and mentions that stage III is associated with necking. It is evident then that stage I may
be associated with the fast initial increase of Q- with strain while stage II may correspond

to saturation behaviour of 2 at larger strains.

Also consistent with experiment is the behaviour with stress rate of the portion
AT1 of the period of relaxation oscillations. Defined as the time between strain bursts, it
can also be associated with reloading time in constant strain rate testing. The computed
dependence presented in Fig. 16 shows a fairly good agreement with a measured one
(Fig. 17). It should be mentioned that the reloading time AT,(o,) is larger than the
elastic reloading time, AF/ &C, which indicates that there is some plasticity, up to 0.5 %,

during reloading. This effect is especially pronounced at small stress rates.

&€ | StageI |,  Stagell . Stage III %‘ :
2 | 1650 ' e )
< 4 | 2: 600 y~
3: 550 (o) 3.5.10Pa/s 7 :
4: 500 .
5: 470
2L 6: 450
| I I I .
0 10 20 30 40
€ (%)
Fig. 15. Strain burst magnitude (plastic strain within a band) as a function of strain

for a fixed stress rate and various temperatures in an austenitic stainless
steel. (After Karimi [51]).
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Fig. 16. Reloading time AT, as a function of imposed strain rate (computed).

AT].’ S

1ge, (s~

Fig. 17. Reloading time AT; as a function of imposed strain rate measured on
Al-5%Mg [42].
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Concluding this section we would like to mention the effect of static recovery which
modifies the instability conditions discussed in Sect. 3. It can be shown that in all ex-
pressions the stress rate o a has to be replaced by c'ro + 1 where r denotes the phenomeno-
logical recovery coefficient in the Bailey—Orowan sense [11]. An interesting result is that
at zero stress rate, i.e. in a conventional creep test, the conditions for the occurrence of

the PLC effect (in the form of strain bursts),
¢y <1/h < &, (34)

may be satisfied. This suggests a possible explanation of repeated strain bursts observed in

creep, e.g. [52,53].

5. Band velocity

As already mentioned, there is a direct correspondence between the appearance of a
stress—strain curve and the features of the corresponding deformation band pattern. Using
eqs. (26) and (27) the temporal behaviour (relaxation oscillations of plastic strain rate)
depicted on Fig. 5 can trivially be recalculated into the spatial behaviour, provided that
the band velocity V is known. Since the latter quantity does not follow from the model,

additional considerations have to be invoked.

A plausible assumption would be to postulate that V is related to the dislocation
velocity or to the plastic strain rate at the front of a moving band [54—56]. Alternately, it
has been assumed [2,11] that the band velocity is proportional to the magnitude of the
strain rate jump at the band front V = a(éI — 'el). The proportionality constant a (which
is generally temperature dependent) remains an adjustable parameter of the model. It
should be noted that neither the period AT of relaxation osciallations nor the band propa-

gation velocity V depend on gauge length L (cf. Fig. 6) and the spatial period A given by
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eq. (26) is generally incommensurate with the latter. Consequently, one band, or several

bands, or no band at all may be propagating in the specimen at a given moment.

In an effort to obtain the band velocity from a Penning—type model by including
spatial interactions, Zbib and Aifantis [57] heuristically introduced a term proportional to
the second derivative of strain with respect to coordinate x along the specimen axis on the
right—hand side of Penning’s equation, eq. (24). This term, which has the dimensionality
of stress, is supposed to take into account the influence of long—range stresses on the
initiation of slip ahead of a moving band. The present authors [39,58], as well as Bréchet
and Louchet [59] rather treat the problem by considering exchange of mobile dislocations
between adjacent elements of material via cross—slip mechanism. This results in the

appearance of a "diffusion—like" term x62 ¢/ %2 in the Penning—type equation (21):

o= he + F(e — x626/8x2). (35)

Of course, the similarity with diffusion is merely formal, and the analogue of diffusion
coefficient, x = I‘az, is related to cross—slip parameters: I' is the cross—slip probability

and a denotes a typical cross—slip length.

At first glance, this modification should be sufficient to solve the problem of band
velocity determination. Indeed, the physical mechanism of transmission of plastic activity
from one specimen site to another is related to cross—slip, and — if deformation band
propagation with constant speed turns out to be possible — it should be determined by y.
It can be demonstrated, however, that a travelling wave solution of the type ¢ = e(x—vt)
is still possible with an arbitrary velocity V. One is again confronted with the problem of
selecting the unique velocity which the specimen chooses at given deformation conditions.
For systems where a periodic pattern continuously emerges from a uniform steady—state

at a bifurcation point, there are several procedures for picking up a unique, physically
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distinguished propagation velocity (see [60] for a review). The simplest method based on
the Marginal Stability Hypothesis (MSH), was proposed by Dee and Langer [61]. It con-
sists in substance in selecting the velocity for which the moving front is insensitive to

fluctuations, whatever their wave number.

Although a formal application of the MSH to the Penning model, extended by a
"diffusion—like" term [57], leads to a selected band propagation velocity, the behaviour of

this velocity,

¢ = 2 [hx/(dF/d?) - _: ]/ (36)

with the stress rate is in conflict with experiment. Indeed, c diverges at the boundaries of
the PLC interval, ES = 21, ES = 22, where dF/de vanishes. By contrast, Karimi’s experi-
ments, [51] show a monotonic decrease of the PLC band velocity V with increasing stress
rate (Fig. 18). This discrepancy arises from the fact that PLC instabilities do not belong

to the class of phenomena where the procedures mentioned above can apply. Indeed, it can

] | -
4 . 5
i G, (Pas) 1V
Fig. 18. Stress rate dependence of the PLC band velocity in an austenitic stainless

steel. (After Karimi [51]).
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be seen from Fig. 4 that the cycle of relaxation oscillations is never infinitesimally close to
the steady state value lying along the unstable branch of the characteristic curve, so that
linear expansions around the steady state may lead to uncertain results. The problem of
velocity selection for a nonlinear differential equation of the generalized relaxation oscil-
lation type (i.e. involving both time and space as variables) still remains to be solved in a
general mathematical form although it seems proven that a unique stable velocity does

exist. In the absence of analytic tools, computer simulations are required.

6. Concluding remarks
The Portevin—Le Chatelier effect, although known to metallurgists for a long time,

was not really understood in its complexity until recently. Its negative practical conse-
quences, such as the occurrence of undesired surface markings, reduced ductility and
diminished fracture toughness, observed, in particular, on modern Al- and Ti—based
alloys for medium temperature applications, caused an increased activity on the theoreti-
cal part. A constitutive model emerged which adequately describes the unstable mechani-
cal response, associated with the PLC effect, on the basis of behaviour of crystal lattice
defects. The most significant features of the model have been outlined in the above expo-
sition. It has been shown that the two most important relevant aspects of defect beha-
viour, viz. dynamic strain ageing and the collective dislocation effects determining the
evolution of the dislocation densities, can be efficiently integrated in a rather simple
constitutive equation of the Penning type. An additional component of the model is the
inclusion of rate effects. Further elements can be introduced if a particular feature of the
PLC effect is to be described in more detail, but the most significant phenomena are

already covered by the present form of the model.

Some of characteristic properties of the PLC effect, such as the distinction between

different types of serrations (A,B,C, etc. [5]), the angle at which the bands are inclined
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with respect to the specimen axis, and some others, have not been considered, in order not
to depart from the major line of our treatment. We would like to recapitulate it now. The
description on the level of lattice defects has led us to a macroscopic model whose mathe-
matical form yields temporal behaviour at a given location (relaxation oscillations in
strain rate). Then, a spatial band pattern has been derived via the band propagation
velocity V. This is a key quantity in describing the characteristics of the spatial pattern,
such as the band spacing and the band width. Determining V from the model, in its
extended form, remains a most pressing fundamental problem, and future efforts will

undoubtedly concentrate on it.
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