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Abstract 

The Portevin—Le Chatelier effect is discussed in terms of a model based on behaviour of 
crystal lattice defects. The model integrates two aspects of this behaviour: dynamic strain 
ageing associated with solute diffusion to dislocations and evolution of the densities of 
mobile and forest dislocations. The association of the PLC effect with the condition that 
the strain rate sensitivity of the flow stress be negative is demonstrated by linear stability 
analysis. It is further shown that plastic strain rate at a given specimen site undergoes 
relaxation oscillations in time keeping the average at the value prescribed by the imposed 
deformation (or loading) conditions. All characteristics of temporal behaviour can be 
found from the model. It is shown that this behaviour gives rise to a spatial pattern whose 
features can be investigated numerically provided the band propagation velocity is known. 
The importance of studying this quantity is emphasized. 

1. Introduction 

If one were to look for evidence of localized plastic deformation, there perhaps 

wouldn't be a better example than the Portevin—Le Chatelier (PLC) effect. The effect 

consists in repeated generation and propagation of deformation bands in a tensile speci-

men. These manifest themselves in discontinuities ("serrations") on deformation curves 
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(Fig. 1) and sometimes can be visualized on the specimen surface (Fig. 2). The 

understanding of the PLC effect advanced significantly in the last decade or so, and a 

summary of the s t a t e -o f - the -a r t appears timely at this stage. 

Fig. 1. A fragment of stress vs. time diagram for Al—5%Mg exhibiting PLC 
serrations under constant strain rate of 5·10~4 s"1. 

Fig. 2. Surface markings associated with PLC band propagation in Al—5%Mg under 
constant strain rate of 5-10 ~4 s"1. 

The experimental situation with regard to the PLC effect is reviewed by Neuhäuser 

in this volume [1], Various aspects of the phenomenon have been surveyed earlier by 

Kocks [2], Strudel [3], Rodriguez [4], and Pink and Grinberg [5], In the present article, we 

undertook to overview the field, while concentrating on the theoretical description. 
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The investigation of the PLC effect has a long record. It has first been discovered 

by Le Chatelier in 1909 on mild steels at a slightly elevated temperature [6] and has been 

found later (1924) by Portevin and Le Chatelier on duraluminium alloys at room tem-

perature [7]. As a matter of fact, the so called blue-brittleness of steels — a phenomenon 

related to the PLC effect — has been observed by Adamson as early as in 1878 (see quo-

tation in Ref. 8). Since then, the PLC effect has been recorded in a number of dilute 

alloys (both substitutional and interstitial) of Al, Cu, Ni, Fe, Mg, etc. (in polycrystalline 

form for the most part). The phenomenology of the PLC effect may be quite complex, e.g. 

due to interference of such processes as precipitation, formation of the Guinier—Preston 

zones, etc. [9]. It can be considered established, however, that a negative strain rate 

sensitivity of the flow stress is a necessary prerequisite for the occurrence of the PLC 

effect [2,10—13]. Consequently, this is a central feature of the approach outlined below. 

Negative strain rate sensitivity (SRS) of the flow stress is one of macroscopic 

manifestations of dynamic strain ageing (DSA). The underlying microscopic mechanism of 

DSA is additional pinning of mobile dislocations, temporarily arrested on localized ob-

stacles, by solute atoms. Since solute diffusion is involved, DSA can only be effective 

within a certain range of temperature Τ and plastic strain rate c. The domain of DSA is 

generally broader than that of the PLC effect, and the proximity of the latter is usually 

felt by such attributes as a hump on the flow stress vs. temperature diagram, a SRS dip 

and a ductility hole in the corresponding range of Τ and e. The PLC effect proper occurs 

within a well—defined area in the (T,e) plane. Moreover, for a given temperature and a 

fixed strain rate from within this area, a certain critical conditions involving plastic strain 

have to be fulfilled for discontinuous deformation to occur. This is seen from the fact that 

the onset of the PLC effect often requires an incubation strain, ec = ec(T,c). Sometimes, 

there is, in addition, an upper critical strain so that only a limited portion of a stress— 

strain curve is serrated. More complex behaviour has been observed occasionally (see 
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below). A theory of the PLC effect has, of course, to account for the occurrence of the 

critical strains as well as for their temperature and strain rate dependences observed. 

In the present study, we outline a model which explains the features described 

above. It is based on a constitutive equation whose mathematical form gives rise to an 

instability of continuous uniform deformation with the properties sought for. In Section 2, 

microscopic mechanisms leading to this mathematical form are discussed. These involve 

(i) dynamic interaction of solutes with temporarily arrested mobile dislocations via some 

diffusional process (possibly including reordering of atoms within dislocation cores) and 

(ii) collective dislocation effects associated with the evolution of two dislocation popu-

lations: mobile and forest dislocations. A synthesis of these two aspects leads to an ex-

pression for the intrinsic SRS. This expression serves as a basis for analysis of the 

mechanism of instabilities and temporal variation of the corresponding mechanical 

response (Section 3). In Section 4, various consequenses of the model, especially with 

regard to strain and strain rate effects, are discussed in connection with experimental 

data. Finally, Section 5 deals with some unsolved problems, in particular, with those 

related to spatial aspects of strain localization. 

2. Dynamic strain ageing and the intrinsic strain rate sensitivity 

Theories of the PLC effect are based on the interaction of mobile dislocations with 

solute atoms. The approach goes back to Cottrell [14] and Friedel [15]. While continuous 

viscous motion of dislocations was considered in these early models, a discontinuous 

character of dislocation motion was taken into account in later treatments [16,17]. In 

these, the interaction between solute atoms and dislocations held by localized obstacles 

was considered responsible for additional glide resistance which decreases with decreasing 

waiting time at an obstacle, i.e. with increasing strain rate. A consequence of this process 
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underlying dynamic strain ageing is a reduced strain rate sensitivity of the flow stress. 

The PLC effect is thought to be associated with the SRS getting negative. 

2.1 Basic mechanisms 

The stress σ to move a dislocation in its glide path can be assumed to be additively 

made up of two contributions. One, denoted σα, stems from the interaction of the dislo-

cation with the dislocation ensemble, primarily with forest dislocations. The other, re-

ferred to as the "friction stress" f, originates from interactions between the mobile dislo-

cations and solute atoms. One has [2] 

σ = σά + f (1) 

The dislocation contribution, σ<ι, can, in turn, be decomposed into an athermal 
a th part σ^ and a component σ^ originating from interactions of mobile dislocations with 

localized obstacles — forest dislocations. Overcoming these obstacles is considered to be a 

thermally activated process. Regrouping the terms, eq. (1) can be rewritten as 

σ = σ* + F (2) 

where 

F = f. (3) 

The term F is a function of temperature and disloction velocity v, while σ^ is largely 

independent of these quantities. It does evolve with strain, however. In a "usual", i.e. 

non-dynamic strain ageing material, F increases with ν and decreases with T, in 

accordance with an Arrhenius relation connecting these quantities. For a dynamic strain 

ageing material, F turns out to decrease with ν in a certain range of dislocation velocities. 

This "anomaly" results from the behaviour of the friction stress f which can be qualita-

tively described as follows. At small velocities, solute atoms have enough time to diffuse 

to temporarily arrested dislocations (or to get redistributed near dislocation junctions) 
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thus impeding the breakaway from localized obstacles. In the opposite limit case of high 

velocities, such additional pinning is suppressed, for the dislocation waiting time at 

localized obstacles is too short for the diffusional processes to be operative. The two 

velocity ranges are characterized by different slopes (different "friction coefficients") in 

the f vs. ν curve: large in the low velocity range where mobile dislocations have to drag 

along their solute atmospheres and small in the high velocity range where they are free 

from solute atmospheres (Fig. 3a). It is the velocity range in between where a negative 

dependence of f on ν occurs. The function F(e) (Fig. 3b) retains a characteristic shape of 

f A drag of 
solute atm. 

V 
Fig. 3. Thermal component of stress in a dynamic strain ageing alloy (schematic), 

(a) "Friction stress" f as a function of dislocation velocity v. The dotted 
portion of the curve gives rise to a negative strain rate sensitivity. 

F A 

ε ι ε 2 ε 

(b) Thermal component of stress F as a function of plastic strain rate e. In 
the interval (e"i, 62), negative SRS is exhibited. 
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the f vs. v curve though it is somewhat distorted owing to the contribution of σ^*1 to the 

fact that the mobile dislocation density pm entering the Orowan relation 

e = <f>pm bv (4) 

between the plastic strain rate and the individual dislocation velocity is generally strain 

rate dependent. (Here b is the magnitude of the Burgers vector of mobile dislocations and 

φ is a geometric factor.) 

2.2 Determining the intrinsic SRS 

The constitutive equation (2) can be viewed as a result of integration of a general 

differential form 

where the strain hardening rate h = (da/de) \ ·( and the SRS S = (da/dtie)| f have been 

introduced. Indeed, eq. (5) is trivially integrable if h does not depend on e and S does not 

depend on e. The fulfillment of the first condition will be simply assumed, while the 

second one is satisfied if S is identified with the corresponding derivative of F: 

Equation (6) defines the intrinsic strain rate sensitivity of the flow stress following from 

the local constitutive behaviour. For uniform deformation, it coincides with the global, 

macroscopically measurable behaviour. In the case of nonuniform deformation associated 

with negative intrinsic SRS (see Section 3), the measurable, apparent SRS is not identical 

with the intrinsic one [12], as will be shown below. 

In the early works [18,19], and later in [20—22], the qualitative shape of the curve 

shown on Fig. 3b has been recognized as a key property of DSA giving rise to the PLC 

effect. The macroscopic model due to Penning [23] is consistent with the microscopic 

considerations of Cottrell [14] and Friedel [15] and the mentioned refinements [16,17] 

da = hde + SdAie (5) 

S = dF/d6ic (6) 
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taking into account a jerky character of dislocation motion. In Penning's model [23] the 
ο 

term σ^ is replaced by he. The deficiencies of Penning's model are obvious. Separation of 

the variables e and e in two additive terms is definitely an approximation. The model is 

further limited by the assumption of constancy of h. Most serious is the fact that the 

plastic strain e plays a role of a state variable which is only valid for materials with no 

strain path memory. However, these limitations are not too serious as long as small 

strains are considered which is the case when one band of localized deformation is passing. 

Despite the mentioned deficiences, Penning's model does capture the most significant 

features of the PLC effect, and it was adopted by the present authors [11,24,25]. It should 

be emphasized that in terms of eq. (1), the DSA effects enter through the friction compo-

nent of stress, f. In an alternative approach by Kocks et al. [26—29], it is assumed that 

DSA comes about primarily via the effect of solutes on the dislocation junction strength. 

The model exploits the idea due to Sleeswijk [20] that solute redistribution near dislo-

cation junctions, occurring by core diffusion, increases the glide resistance from the forest 

and that the effect becomes larger with increasing waiting time. The pertinent term in eq. 

(1) is, in this "dislocation model", σ 

2.3 Analytical form of intrinsic SRS 

In accordance with eq. (3), the SRS given by eq. (6) is expressed as a sum of two 

terms 

where 

S = S + S · (7) ο ageing ^ > 

S0 = K h / ö l n 6 ) | e = k T / 7 (8) 

stems from thermally activated breakaway of dislocations from localized obstacles in the 

absence of DSA and 

^ageing = <" / d l n i (9) 
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is associated with the strain rate dependence of the friction stress. In eq. (8) k is the 

Boltzmann constant and 7 is the activation volume which characterizes thermally 

activated overcoming of localized obstacles. 

For the discussion to follow, it is convenient to introduce t , the waiting time at a 

localized obstacle. Assuming that the average spacing between localized obstacles, ί, is 

proportional to the average spacing between forest dislocations, P ^ ^ , and considering the 

free—flight time between the obstacles as negligible, one has 

ν = / / t w ~ ( 4 / 2 t w ) _ 1 (10) 

6 = n / t w . (11) 

Equation (11) is obtained from eq. (4) by substituting eq. (10) and introducing the ele-

mentary incremental strain 

Ω = ^ b V f 1 / 2 ( 1 2 ) 

This is essentially a strain dependent quantity which corresponds to the deformation 

obtained when an elementary activation step is accomplished by all mobile dislocations. 

The ageing component of the SRS given by eq. (9) can be expressed as 

^ageing = " ^ " V (13> 

Equations (11) through (13) reflect two most important aspects of the Portevin—Le 

Chätelier effect mentioned in the Introduction. The dynamic interaction between mobile 

dislocations and solute atoms (i) is described by the function f(t ), while the collective w 
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dislocation effects (ii) enter through the dislocation densities p m and p^ evolving with 

strain. A complete description of the system is furnished by specifying the function f( tw ) 

and the evolution equations for the two disloction densities. 

First, we consider the dependence of f on the waiting time t . Taking f to be w 

proportional to the solute concentration Cg at an arrested dislocation after a time t = t 

and assuming the Cottrell—Bilby ageing kinetics [30] the solute concentration is expressed 

C s = C 0 ( K D t w ) 2 / 3 (14) 

where CQ is the solute concentration in the bulk, far from the arrested dislocations 

(Cg > > CQ), D is the solute diffusivity and Κ is a constant which includes the solute— 

dislocation binding energy. Saturation effects at long ageing times can be accounted for by 

using a heuristic form of t —dependence of Cg [31]: 

Cs = C m { l - e x p [ - % ( K D t w ) 2 / 3 , } (15) 

where C is the saturation value of C„. At small t , the Cottrell-Bilby relation (14) is m s w' j \ ι 

recovered. Equation (15) leads to the following expression for f: 

f = f 0 [ l - e x p - ( t w / r 0 ) 2 / 3 ] . (16) 

Here the saturation value f represents the maximum increase in stress associated with 

DSA; the characteristic time r reads 
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This quantity contains information on the kind of diffusion process underlying DSA. 

Second, the collective dislocation behaviour affects the PLC effect through the 

elementary incremental strain Ω = <t>bpmpf/2. Indeed, at a given strain rate, the evo-

lution of Ω with strain influences the waiting time, cf. eq. (11). This imposes an indirect 

strain dependence of the friction stress f and, consequently, of the ageing component 

! S a g e i n g of the SRS. This fact makes it possible to explain the experimental finding that 

DSA effects are strain dependent. To account for this dependence, it was assumed in a 

number of studies, e.g. [16,17,32], that the mobile dislocation density increases with strain 

and that the diffusivity D in substitutional solid solutions grows with e, too. The latter 

depencence was ascribed in the mentioned works to the increase with deformation of 

vacancy concentration entering as a factor in the substitutional solute diffusivity. 

To investigate the strain dependence of Ω, coupled evolutionary differential 

equations for ρ and p^ have to be formulated. A corresponding model has been proposed 

in Ref. 33. Without going into detail here, we just mention that at small plastic strains 

the mobile dislocation density increases with strain faster than the forest density, while at 

large strains, the density of forest dislocations increases faster, the mobile density being 

close to saturation [34]. Thus, Ω increases at small strains from an initial value Ωο, passes 

through a maximum and decreases with strain (nearly as the ivnerse of σ^), asymptoti-

cally approaching a saturation value Ω [33,34] (see Figure 8 below). 
υ 

The intrinsic strain rate sensitivity can be conveniently represented in the nondi-

mensional form. Combining eqs. (7), (9) and (16) yields 

s = sQ - Xexp(-X) (18) 
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where 

s = (3/2)(S/f0), s0 = (3/2)(S0 /f0) (19) 

X = Μ Τ Ο ) 2 / 3 = ( Ω / Ζ ) 2 / 3 ( 2 ° ) 

Here the quantity Ζ = erQ has been introduced which bears some similarity with the 

Zener—Hollomon parameter often used in studies on creep. It is recognized that the effect 

of strain rate and temperature enters the DSA—related term —Xexp(—X) through this 

parameter. (Note that the characteristic time rQ is associated with solute diffusivity 

(cf. eq. (17)) and is given by an Arrhenius—type formula.) The nominal solute concen-

tration CQ is contained in this parameter as well. Finally, as already mentioned, a strain 

dependence is incorporated through the elementary incremental strain Ω. The SRS in the 

absence of DSA, SQ (and, consequently ̂  the corresponding dimensionless quantity Sq) is 

proportional to σ^ in materials which exhibit the so called Cottrell—Stokes behaviour, e.g. 

in fee metals, and is practically constant in bcc metals. For the sake of simplicity, a 

"model material" with a constant Sq will be considered below. 

It is readily recognized from eq. (18) that s can only be negative if sQ is smaller 

than the maximum value, 1/e, of the bell—shaped function Xexp(—X). In such a CCTSGJ CLS 

will be illustrated below, there is a range of X, i.e. of strain rates and temperatures, 

within which the SRS, s, is negative. 

3. The instability mechanism 

3.1 Linear stability analysis and instability criterion 

The essence of the instability mechanism leading to jerky flow and nonuniform 

deformation is easily rationalized by investigating the stability of uniform flow in a 

material obeying Penning's constitutive equation. As shown in [35], the result obtained is, 
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however, quite general. The imposed external condition is that of constant stress rate: 

σ = σ0 = const leading to 

aQt = he + F(6) (21) 

This equation has a uniform steady state solution c = eg = aQ /h = const. The same 

uniform steady state can equivalently be reached by straining with a constant plastic 

strain rate σ /h. By differentiating eq. (21) with respect to time one obtains 

e = — — (6 c ) (22) 
dF/de 

Linearizing eq. (22) around its steady state value, small local deviations from steady state 

can be introduced in the form δε — e — e = (δ'ε) exp(At),£e = Atfe, where is a b U Ο 

constant and time t is reckoned from the moment the perturbation has been introduced. 

Inserting into eq. (22), we obtain the growth parameter (bifurcation coefficient) A: 

A = - h / ( d F / d c ) | - = . = - h e / S ( 6 s ) . (23) 

A positive A indicates a growing localization. Bifurcation from uniform to nonuniform 

deformation occurs at the point where A changes sign. In the case under consideration A 

becomes positive when the SRS, S, turns negative. It follows that the domain of the 

occurrence of the PLC effect is defined by the condition that the loading rate or the strain 

rate at steady state are such that S(e ) < 0. s 

Experimentally, the apparent SRS, as measured through strain rate jump tests, 

may already be slightly negative when jerky flow begins [26]. A modified localization 

condition accounting for this fact was proposed recently by McCormick [13] who con-
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sidered the kinetics of transition of solute concentration to its new quasi—steady state 

value. In what follows, the condition s = 0 will be still considered as a "demarkation line" 

between stable and unstable deformation, however. 

3.2 Temporal behaviour 

The evolution of the plastic strain rate e in a given cross—section can be investi-

gated by considering its time derivative given by eq. (22). The sign of this derivative 

depends on the location of the point e = eg with respect to the interval (e^, eg) where 

dF/de is negative (Figs. 3b and 4). For e < e,, dF/de is positive and any deviation of e S i. 

from the steady state value will decrease with time. Uniform steady state is thus stable, in 

accord with the result of linear stability analysis. 

Consider now the case when e falls within the interval (e, ,e9) : 

Starting with e = 0, the strain rate will grow, e being positive. This growth will go on 

e, < e < e 1 2 (24) 

F 

• * · · · * · ε*2 ε ι ε 2 ε ι ε 

Fig. 4. Relaxation oscillations behaviour consisting in strain rate jumps A—>C and 
B—»D and continuous variation of e along the ascending branches, DA and 
CB, of the F(e) characteristic. 
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until e will reach the value e^ at which point dF/de vanishes and e becomes infinite, cf. 

eq. (22). The strain rate is then bound to change instantaneously, and a jump to e = e* 

will take place (Fig. 4). The system will thus find itself on the opposite ascending branch 

of the F vs. e curve. Here, again, dF/de > 0 so that e is negative. The plastic strain rate 

will decrease tending again to the steady state value. On reaching the point e = e^, e 
. * 

turns infinite again, and another jump, now to e = e^, will occur. A continuous increase 
. * 

of e will resume, until the point e = e^ will be reached and the jump e^ —» e^ will be 

repeated. This succession of events in which continuous variation of plastic strain rate 

along the branches DA and CB is interrupted by strain rate jumps (A -» C and Β -» D) 

onto the opposite ascending branch of the F(e) characteristic will recur periodically. The 

system permanently tends to the steady state value lying in the "forbidden gap" (cpcg), 

but can never enter this strain rate interval. In other words, when forced by the imposed 

loading conditions to deform with e from within the forbidden gap, the material in an 
υ 

individaul cross—section spends one part of a period in the range of small strain rates 

(DA), where mobile dislocations drag along their solute atmospheres, and the other in the 

range of large strain rates (CB), where mobile dislocations are free from solute clouds. The 

jumps A -» C and Β -> D correspond to depinning and pinning of mobile dislocations, 

respectively. The temporal behaviour along the low and high velocity branches can easily 

be estimated [11] by integrating eq. (22), provided the shape of the F(e) curve is known in 

the ranges where its slope is positive: 

- ht = J (25) 
de e - es 

After one cycle of temporal oscillations one has AF = 0, and from Penning's equation, 

eq. (23), the plastic strain increment Δε and the time period ΔΤ are such that 

u j h = e g = A e / A T . 
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The average over the period in a given cross—section is maintained at the pre-

scribed value e . The average over the entire gauge length can be kept if parts of the 

specimen deform with the strain rates corresponding to range DA and parts to range BC. 

Stratification of the deforming material into bands is thus inherent to this deformation 

regime. 

The temporal variation of the plastic strain rate in an individual cross-section 

following the periodic pattern described is shown in Fig. 5. The cycles of slow—fast—slow— 

fast variation of e are referred to as relaxation oscillations [36,25]. The class of nonlinear 

phenomena related to relaxation oscillations is encountered quite frequently. Common to 

the systems of this class is a negative characteristic analogous to negtive SRS in case of 

the PLC effect. As an example closely related to the PLC effect, the Gunn effect should 

be mentioned [37]. It is observed in bulk semiconductors exhibiting a range of negative 

differential resistivity. Another example is pull-out of a metallic filament from a poly-

meric matrix where the relevant characteristic is a negative friction coefficient for low 

c- C2 C 3 

A1 

Bi 

A 2 

ΔΤ 2 

B 2 

• Δ Τ 1 

A * 

B 3 

A1 

Bi 

A 2 
Δ Τ 

A * 

B 3 

01 D2 ^ ^ D 3 \ ! 
t* ι 

Ο t. t 

Fig. 5. Strain rate profile as a function of time at a given location within a 
specimen. Strain rate jumps A—>C and B—>D (Fig. 4) are found again in this 
diagram as the jumps Ai—»Ci and Bi—>Dj, respectively. 
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displacement velocities [38]. Further examples have been discussed in Refs. 25 and 39. A 

translation of the results appears rather straightforward. 

3.3 Spatial aspects 

Turning back to the PLC effect we should stress the spatial aspects. The constitu-

tive equation (21) underlying the present analysis does not contain a spatial coordinate. If 

all parts of a specimen could deform coherently, in "phase", the global behaviour would 

coincide with the local behaviour characterized by relaxation oscillations of the plastic 

strain rate. Such a coherency is not possible for usual specimen lengths, so that the tem-

poral pattern discussed above should propagate along the gauge length. Indeed, it can 

easily be demonstrated [24,25] that the constitutive description used admits of solutions 

propagating with an arbitary constant velocity V. The strain rate profile along the speci-

men axis, taken at a fixed time, exhibits a band—like shape (Fig. 6). The regions of in-

creased plastic strain rate ( B j C p I^Cg , B3C3, etc...) can be referred to as the PLC 

bands. A remarkable feature of these deformation bands is that they have sharp edges on 

ε 
C3 1 

1 B 2 y 1 B 1 v / / 

C1 

1 
1 

A 1 
L 

I 

I 

I = > V 

A1 

1« L 

I 

I 

I = > V 

A1 A3 1 A2 
" Ί 

I 

= > V 

A1 
s Ν Ν 

\ l 

03 02 

I ^ s . 
D1 ' \ 

ι 1 : ; \ , d 0 _ 

χ 

Fig. 6. Strain rate profile as a function of coordinate at a fixed time. The spatial 
period Λ is related to the time period Δ Τ , cf. Fig. 5, via the pattern propa-
gation velocity V according to eq. (26). The specimen gauge length is 
denoted by L. 
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both sides. This spatial pattern propagating at a velocity V is a reflection of the temporal 

pattern at a given specimen cross—section (Fig. 5). The spatial period Λ is related to the 

temporal period ΔΤ via 

Similarly, the band width, w, is related to the duration Δ Τ 9 of the continuous decrease of 

The passage of each PLC band across the gauge length is recorded in a stress— 

strain curve as a steep strain increment, whereas the strain increment associated with slow 

deformation between the bands is incomparably smaller. A typical stair-case deformation 

curve is produced as illustrated in Fig. 7 by a strain vs. stress curve for Al-5%Mg de-

formed with a constant stress rate of 0.1 MPa/s at room temperature [40]. The above 

Λ = ΥΔΤ. (26) 

strain rate from eΛ to en via 

w = ΥΔΤ 2 . (27) 

72 

TIME, MIN 
20 21 22 23 2U 25 26 

^ 5 . 8 

cr 
Ι -

ο 

Fig. 7. 
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considerations imply that the shape of the stress vs. stress diagram determined by the 

loop ACBD is independent of the magnitude of σ , provided that e = er /h lies anywhere Ο s o 

in the interval ( e^ ,^ ) · This conclusion contradicts the experimental observation that the 

magnitude of the strain bursts or stress drops decreases with increasing stress rate or 

strain rate [41,42]. The contradiction is removed [43] by taking into account the variation 

of the thermal component of stress during a waiting time. The intrinsic SRS is then 

modified in such a way that the shape of the F(c) characteristic explicitly depends on aQ. 

These stress rate effects are illustrated in Sec. 4.2, while a detailed presentation of 

modelling them is given in Ref. 43. Here we would only like to emphasize a parallel 

between two modes of straining: with constant stress rate and constant strain rate. The 

first one, considered here, is much easier to treat [11] because, under these conditions, the 

stress remains constant during the propagation of a deformation band, and the 

propagation occurs with constant velocity. The mathematical description of the temporal 

variation of the mechanical quantities (plastic strain, plastic strain rate and stress) in a 

given material cross—section is especially easy in the case of σ = const. 

The conditions for the occurrence of the PLC effect under constant imposed strain 

rate, e , can be inferred from the corresponding conditions for constant stress rate testing 

[25]. The strain rate interval in which the PLC effect occurs in the former case is given by 

h + M · _ · , h + M · ,„„,. 
m ~ ol < ea < HM o2 <28) 

where { 'σ0ι> 'σ02) interval of stress rates corresponding to the occurrence of the PLC 

effect under constant stress rate testing. Μ denotes the combined elastic modulus of 

specimen and testing machine. 

During a discontinuity of plastic flow ("jerk"), there is generally a drop in stress, 
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Δσ (Δσ<0), and a strain burst, Δε. By taking the difference of the values of stress and 

strain between points C and Β of the characteristic curve F(e), cf. Fig. 4, we have: 

where AF = F(C)—F(B) is the difference between the maximum and the minimum value 

of the characteristic curve which can be considered as an intrinsic amplitude of the PLC 

effect for the material considered. During a short time interval of a jerk, the stiffness of 

the tensile system comes into play through the relation Δ σ + M A e s O , which, combined 

with eq. (29), yields the amplitude of the load drops and the strain bursts: 

It follows that a hard tensile system (h<<M) will translate the PLC instabilities into load 

drops of amplitude Δσ κ AF, while in a soft tensile system (h>>M) and under constant 

stress rate (M = 0) one will mainly observe strain bursts of amplitude Δε « —AF/h. As 

mentioned above, the intrinsic amplitude AF depends in practice on the applied stress 

rate, or on the equivalent applied strain rate σ /h. As a consequence, the recorded ampli-

tudes of strain bursts or load drops, which are both proportional to ΔΓ, will have the 

same dependence on the applied rate whatever the mode of testing and the stiffness of the 

tensile system. 

Concluding this section we would like to stress that any experimental determi-

nation of the SRS in the region where it is negative can only yield an apparent quantity. 

The intrinsic SRS remains hidden by its very nature, for strain rates from within the 

forbidden gap cannot be attained physically. On the other hand, the exact shape of the 

F( t ) characteristic in the forbidden gap is of no relevance for a description of the PLC 

Δσ = hAe + AF (29) 

Ae = - Δ σ / Μ = - A F / ( h + M ) . (30) 
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effect [24]. However, the knowledge of the exact position of the extrema of the curve and 

its shape in proximity to them in the range of positive slope is extremely important for 

theory. 

4. Macroscopic features of PLC instabilities 

The above considerations make it possible to discuss macroscopic manifestations of 

the PLC effect on the basis of the model integrating DSA effects with collective dislo-

cation behaviour and effects of the applied stress rate or strain rate. 

4.1 The critical strains 

We proceed from the condition 

S < 0 (31) 

which, with some limitations mentioned in Sect. 3, provides a criterion for the occurrence 

of the PLC effect. For solutions to exist, sQ must be smaller than 1/e, cf. Sect. 2. When 

this is the case, there are two solutions, X^ < 1 and X2 > 1, of eq. (18) which expresses 

the critical condition for the onset of PLC instabilities. Accordingly, for given strain rate 

and temperature, this defines two critical values, Ω^ = Z X ^ and Ω2 = Z X ^ , of the 

elementary incremental strain (cf. eq.(20)). 

The PLC domain can now be easily determined by placing a strip limited by the 

horizontal lines Ω = Ω^ and Ω = Ω2 onto the Ω vs. e diagram of Fig. 8 and by deter-

minign the intersections. A wealth of various possibilities opens, depending on the values 

of the plastic strain rate, temperature, and the nominal solute concentration CQ which 

determine the location of the strip with respect to the Ω(ε)—curve. Variation of one of 

these parameters leads to a displacement of the strip along the Ω—axis accompanied by 

variation of the band width. 
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Fig. 8. Elementary incremental strain Ω as a function of e. Ω0) Ω„,, and Ωβ denote 
the initial, the maximum, and the saturation values, respectively. The 
negative SRS range (i.e. the PLC domain) is represented by the hatched 
strip bounded by the horizontal lines Ω = Ωι and Ω = Ω2. The lower (ec) 
and upper (ec'*) critical strains are shown. 

Consider an example shown in Fig. 8. The bottom line of the band, Ω = Ωρ inter-

sects the Ω(ε) profile twice, at e = ec and e = e^*. Jerkey flow will occur in this interval. 

Under real deformation conditions, e1* may be too large to be recorded so that the upper 

critical strain is not systematically observed. An example, found on an Al—Li alloy at 

300K (unpublished work), is shown in Fig. 9a. 

Obviously, no PLC effect will occur if the strip is located below the Ω vs. e profile, 

i.e. Ω2 < Ωο (cf. Fig. 8). This corresponds to sufficiently low strain rates and/or high 

temperatures. Likewise, there will be no PLC effect for Ω̂^ > Ω ι η (where Ω ι η is the maxi-

mum value of Ω) for which case the strip is located above the elementary incremental 

strain profile. This corresponds to sufficiently high strain rates and/or low temperatures. 

The threshold conditions for the occurrence of the PLC effect are thus Ω.. = Ω and 1 m 
Ω2 = Ωο· Expressing the above conditions in terms of e, a PLC domain is obtained: 

V ^ o X 2 / 2 ) < * < V K X l / 2 ) · ( 3 2) 



Y. Estrin and LP. Kubin Journal of the Mechanical Behavior of Metals 

Fig. 9. Time dependence of stress in an Al—Li alloy deformed at room temperature 
with a constant strain rate. 
(a) A curve exhibiting a lower and an upper critical strain (e = 1.75· 10"5 

s-i). 

(b) A curve showing two regions of jerky flow separated by a smooth 
region (e = 2· 10 S'*). 

A sufficient condition for the occurrence of the PLC effect is therefore the fulfillment of 

inequalities (32). Otherwise, DSA simply results in a decrease of the SRS which, however, 

remains positive and does not give rise to PLC instabilities. With typical numerical values 

for Al—5%Mg and with the value rQ = Is for the characteristic time associated with 

diffusion, i.e. typically around room temperature, inequalities (32) read 
g ι m 2 J 

1 . 8 - 1 0 s < e < 5.8 · 10 s [33]. This compares reasonably well with the experi-

mental range of existence of the PLC effect. 

Various possibilities with regard to the number and position of the critical strains 

for the occurrence of jerky flow have been analysed in Ref. 33. The strain rate dependence 

of the critical strains can be investigated by tracing the variation of width and position of 

the strip bounded by the horizontal lines Ω = Ω^ and Ω = Ω^· One of four most represen-

tative dependences is illustrated by Fig. 10 where the positions of the PLC intervals 
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Fig. 10. One of four most likely sequences of diagrams illustrating the strain rate 
dependence of the critical strains. Strain rate increases (or, equivalently, 
temperature decreases) from bottom to top. The regions of jerky flow are 
hatched. 

(hatched regions) are shown as a function of strain rate at a fixed temperature or, alterna-

tively, as a function of temperature for a given strain rate. From this figure, one can see 

how the number and position of the critical strains change depending on deformation 

conditions. While no observation of all four critical strains on a single stress—strain curve 

is available to our knowledge, such striking feature of the described behaviour as merging 

of intervals of jerky flow with increasing strain rate of decreasing temperature has been 

observed by Räuchle et al. [44] on Cu-3.3 at% Sn. This is illustrated by Fig. 11. The 

existence of two regions of jerky flow separated by a smooth portion of deformation curve 

was found on Al—Li (unpublished work), Fig. 9b. 

The strain rate dependence of the critical strain, c , at which the PLC effect first 

sets in, is of particular interest. For most alloy systems exhibiting the PLC effect, 

increases with strain rate, cf. e.g. [32]. A plot of log e vs. log yields a straight line with 

a slope ranging from 2 to 3 for substitutional and from 0.5 to 1 for interstitial alloys. The 

difference in this exponent between substitutional and interstitial solutes is explained by a 

number of authors [16,17] by the above mentioned assumption of accumulation with strain 
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c - 2 . 7 x 1 0 S 5 , - 1 
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4 . 5 x 1 0 " 5 
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8 . 9 x 1 0 ' 5 

' 9 . 8 x 1 0 ~5 

0 0.1 0.2 0.3 
ε 

Fig. 11. A stress—strain curve with two regions of jerky flow separated by a smooth 
region in a Cu-3.3at%Sn alloy at 255°C (after Räuchle et al. [44]). 

of deformation—induced vacancies whose concentration enters the diffusivity of substi-

tutional solutes, but does not affect that of interstitial ones. There is no consensus on the 

origin of this difference among researchers, though, cf. Ref. 28. 

The model outlined above yields a strain rate dependence of ec which can be 

roughly approximated by a power law [33]. The exponent obtained (0.5 to 1) stems from 

the evolution with strain of the dislocation densities p m and ρ^ (primarily p m ) and does 

not take into account any possible strain dependencies of solute diffusivity. It compares 

fairly well with the e dependence of ec measured on interstitial alloys [33]. 

An interesting feature, observed in Al based substitutional solid solutions [45—48,9] 

and in carbon steels [49,50], is that at low strain rates and high temperatures an "inverse" 

behaviour is found: the critical strain increases with decreasing strain rate and increasing 

temperature. The ranges of "normal" and "inverse" behaviour in a corresponding log ec 

vs. log e curve are thus separated by a minimum. The mechanism by which the critical 
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strain is affected is not clearly understood at present, although there is some evidence that 

it is linked to precipitation before or during the deformation test [9]. 

4.2 The rate dependence of jerky flow 

Now, after we dwelt on the conditions for the occurrence of the PLC effect, we turn 

to a description of its observable features. First, characteristic features of deformation 

curves, such as stress drops under constant strain rate loading and strain bursts under 

constant stress rate loading, will be considered. Then, the characteristics of the associated 

deformation bands will be described (Sect. 4.3). 

Repeated stress drops, of the type depicted on Fig. 1, are recorded in a hard testing 

machine during deformation with constant imposed strain rate, e = const. A staircase α 

curve of the kind of Fig. 7 is a typical diagram for constant stress rate deformation. As 

mentioned in Sect. 3.3 (cf. also eq. (30)), the amplitude of stress drops or strain bursts is 

determined in the first case by the difference AF of the maximum and the minimum 

values of the corresponding dynamic, i.e. rate dependent, characteristic. 

The static reference curve F(c) as well as a family of dynamic curves F(f,aQ) 

computed on the basis of the model [43] for various strain rates and at a constant strain 
ο 

value (Ω = 10 , corresponding to a strain of a few percent) are depicted on Fig. 12 

together with the strain rate jumps which accompany the relaxation oscillation behaviour. 

Typical parameter values for Al—5%Mg at room temperature have been used for these and 

the following numerical estimates. The range of stress rates (ögp σ ^ ) is such that ine-

qualities [32] are fulfilled. The magnitude of AF, which is proportional to the amplitude of 

the PLC jerks, decreases with increasing applied stress (or strain) rate. This behaviour is 

rationalized by considering that, during the reloading sequence following a jerk there is a 

competition between ageing effects which tend to increase the waiting time and the 
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lg[e(s"1)] 

Fig. 12. Dynamic Fie) characteristic showing a dependence on the imposed stress 
rate σο (indicated in the parentheses). The variation of the strain rate is 
described by cycles such as ABCD or A'B'C'D 1 . The dotted curve connects 
the critical points for the onset of PLC jumps at various σο. 

loading rate which tends to reduce it. Ageing effects are thus largest at low (stress) rates, 

and the magnitude of jerks decreases until it vanishes at the upper boundary of the PLC 

interval. 

Turning to equivalent constant strain rate testing,it is interesting to note that the 

top value of a stress drop, which corresponds to the maximum of a particular F(e) curve, 

decreases with e , while the bottom value, associated with the minimum of the curve 
ci 

largely remains constant. The ea dependence of the top stress in the forbidden gap (epC2) 

qualitatively follows the descending branch of the reference (static) curve F(e). Thus, by 

measuring this apparent SRS, the intrinsic SRS can be studied qualitatively. The apparent 

SRS for Al—5%Mg measured at room temperature in the described manner [25] is shown 

on Fig. 13 as a function of the applied stress rate. (Note that the term he has to be de-

tracted from the stress for the function related to F(e) to be obtained.) The positions of 
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Fig. 13. Upper stress of PLC serrations at e = 8% as a function of imposed strain 
rate in Al-5%Mg at room temperature [25]. 

the extrema of this function provide a measure of the boundary values for the stress rate 

range of the PLC effect. Direct determination of the boundary values of strain rate indi-

cates a satisfactory accuracy of this procedure [25]. 

To obtain an exact relation between, e.g. the strain burst amplitude, Aeunder 

constant stress rate loading and AF, the time AT 2 has to be calculated. The latter quan-

tity is that portion of the relaxation oscillations period which corresponds to the high 

strain rate part (CB) of the trajectory ACBD in Fig. 4. Applied to the initial and the 

final states of a strain burst, the constitutive equation (21) yields 

σ 0 Δ Τ 2 = hAeb + AF. (33) 

The expression for AT 2 can be obtained from eq. (25), the integration being carried out 

from e^ to e^· 

From eq. (33), the main contribution to Ae^ arises from the term AF/h which 

decreases with increasing stress rate. The term ^qAT2 increases with strain rate and may 
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become significant at large e. However, in most of the PLC range Ae^ is approximately 

equal to AF/h. The stress drop amplitude in constant strain rate loading is accordingly 

given by AF. It is interesting to inquire about the strain dependence of Ae^. Investigation 

of the strain dependence of the dynamic characteristic curves, entering through Ω, reveals 

that AF is rather insensitive to strain. The term σ ΔΤ„ does depend on e via Ω. Without Ο Δ 

going into detail we just mention that ΔΤ2 decreases with increasing Ω. Consequently, 

when Ω increases, so does the strain burst amplitude. Since under usual conditions Ω 

increases with strain (though it may exhibit a maximum, cf. Fig. 8), the general tendency 

is an increase of A e, with strain. 

The experimental results obtained by Karimi [51] can be interpreted in favour of 

the model leading to the discussed dependences. The data obtained on an austenitic 

stainless steel in a soft machine are shown in two diagrams, as Ae^ vs. crQ plots taken at 

various strains (Fig. 14) and as Ae, vs. e plots taken at a fixed stress rate for various 

b 

40% 

5 
σ 0 (Pa/s) 

1 0 6 

Fig. 14. Strain burst magnitude (plastic strain within a band) as a function of stress 
rate for various strains in an austenitic stainless steel. (After Karimi [51]). 
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temperatures (Fig. 15). It is recognized that even small details, such as a weak increase of 

Ae^ at large stress rates (Fig. 14) are in accord with the above predictions of the model. 

Karimi [51] distinguishes three stages in the strain dependence of Ae^ shown on Fig. 15 

and mentions that stage III is associated with necking. It is evident then that stage I may 

be associated with the fast initial increase of Ω-with strain while stage II may correspond 

to saturation behaviour of Ω at larger strains. 

Also consistent with experiment is the behaviour with stress rate of the portion 

ΔΤ^ of the period of relaxation oscillations. Defined as the time between strain bursts, it 

can also be associated with reloading time in constant strain rate testing. The computed 

dependence presented in Fig. 16 shows a fairly good agreement with a measured one 

(Fig. 17). It should be mentioned that the reloading time ΔΤ^(σ0) is larger than the 

elastic reloading time, A F / σ , which indicates that there is some plasticity, up to 0.5 %, 

during reloading. This effect is especially pronounced at small stress rates. 

0 10 20 30 40 
ε (%) 

Fig. 15. Strain burst magnitude (plastic strain within a band) as a function of strain 
for a fixed stress rate and various temperatures in an austenitic stainless 
steel. (After Karimi [51]). 
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l g e a ( s - i ) 

Fig. 16. Reloading time ΔΤι as a function of imposed strain rate (computed). 

l g e a ( s " l ) 

Fig. 17. Reloading time ATj as a function of imposed strain rate measured on 
Al—5%Mg [42]. 
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Concluding this section we would like to mention the effect of static recovery which 

modifies the instability conditions discussed in Sect. 3. It can be shown that in all ex-

pressions the stress rate aQ has to be replaced by aQ + r where r denotes the phenomeno-

logical recovery coefficient in the Bailey—Orowan sense [11]. An interesting result is that 

at zero stress rate, i.e. in a conventional creep test, the conditions for the occurrence of 

the PLC effect (in the form of strain bursts), 

ej_ < r /h < e2, (34) 

may be satisfied. This suggests a possible explanation of repeated strain bursts observed in 

creep, e.g. [52,53]. 

5. Band velocity 

As already mentioned, there is a direct correspondence between the appearance of a 

stress—strain curve and the features of the corresponding deformation band pattern. Using 

eqs. (26) and (27) the temporal behaviour (relaxation oscillations of plastic strain rate) 

depicted on Fig. 5 can trivially be recalculated into the spatial behaviour, provided that 

the band velocity V is known. Since the latter quantity does not follow from the model, 

additional considerations have to be invoked. 

A plausible assumption would be to postulate that V is related to the dislocation 

velocity or to the plastic strain rate at the front of a moving band [54—56]. Alternately, it 

has been assumed [2,11] that the band velocity is proportional to the magnitude of the 
. * 

strain rate jump at the band front V = a(e^ — e^). The proportionality constant α (which 

is generally temperature dependent) remains an adjustable parameter of the model. It 

should be noted that neither the period ΔΤ of relaxation osciallations nor the band propa-

gation velocity V depend on gauge length L (cf. Fig. 6) and the spatial period A given by 
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eq. (26) is generally incommensurate with the latter. Consequently, one band, or several 

bands, or no band at all may be propagating in the specimen at a given moment. 

In an effort to obtain the band velocity from a Penning—type model by including 

spatial interactions, Zbib and Aifantis [57] heuristically introduced a term proportional to 

the second derivative of strain with respect to coordinate χ along the specimen axis on the 

right—hand side of Penning's equation, eq. (24). This term, which has the dimensionality 

of stress, is supposed to take into account the influence of long—range stresses on the 

initiation of slip ahead of a moving band. The present authors [39,58], as well as Brechet 

and Louchet [59] rather treat the problem by considering exchange of mobile dislocations 

between adjacent elements of material via cross—slip mechanism. This results in the 

appearance of a "diffusion—like" term χcP1 e/dx2 in the Penning—type equation (21): 

a = h6 + F ( 6 - x ö 2 e / Ä c 2 ) . (35) 

Of course, the similarity with diffusion is merely formal, and the analogue of diffusion 

2 

coefficient, χ = Ta , is related to cross—slip parameters: Γ is the cross—slip probability 

and a denotes a typical cross—slip length. 

At first glance, this modification should be sufficient to solve the problem of band 

velocity determination. Indeed, the physical mechanism of transmission of plastic activity 

from one specimen site to another is related to c ross^ l ip , and — if deformation band 

propagation with constant speed turns out to be possible — it should be determined by χ. 

It can be demonstrated, however, that a travelling wave solution of the type e = e(x—vt) 

is still possible with an arbitrary velocity V. One is again confronted with the problem of 

selecting the unique velocity which the specimen chooses at given deformation conditions. 

For systems where a periodic pat tern continuously emerges from a uniform steady—state 

at a bifurcation point, there are several procedures for picking up a unique, physically 
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distinguished propagation velocity (see [60] for a review). The simplest method based on 

the Marginal Stability Hypothesis (MSH), was proposed by Dee and Langer [61]. It con-

sists in substance in selecting the velocity for which the moving front is insensitive to 

fluctuations, whatever their wave number. 

Although a formal application of the MSH to the Penning model, extended by a 

"diffusion—like" term [57], leads to a selected band propagation velocity, the behaviour of 

this velocity, 

c = 2 [ h x / ( d F / d e ) | . = · J 1 / 2 (36) 

with the stress rate is in conflict with experiment. Indeed, c diverges at the boundaries of 

the PLC interval, e = e,, e = e0, where dF/de vanishes. By contrast, Karimi's experi-S I S Δ 
ments, [51] show a monotonic decrease of the PLC band velocity V with increasing stress 

rate (Fig. 18). This discrepancy arises from the fact that PLC instabilities do not belong 

to the class of phenomena where the procedures mentioned above can apply. Indeed, it can 

1120 

> 100 

80 

10 σ 0 (Pa/s) 10 

30% 

Fig. 18. Stress rate dependence of the PLC band velocity in an austenitic stainless 
steel. (After Karimi [51]). 
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be seen from Fig. 4 that the cycle of relaxation oscillations is never infinitesimally close to 

the steady state value lying along the unstable branch of the characteristic curve, so that 

linear expansions around the steady state may lead to uncertain results. The problem of 

velocity selection for a nonlinear differential equation of the generalized relaxation oscil-

lation type (i.e. involving both time and space as variables) still remains to be solved in a 

general mathematical form although it seems proven that a unique stable velocity does 

exist. In the absence of analytic tools, computer simulations are required. 

6. Concluding remarks 

The Portevin—Le Chätelier effect, although known to metallurgists for a long time, 

was not really understood in its complexity until recently. Its negative practical conse-

quences, such as the occurrence of undesired surface markings, reduced ductility and 

diminished fracture toughness, observed, in particular, on modern Al— and Ti—based 

alloys for medium temperature applications, caused an increased activity on the theoreti-

cal part. A constitutive model emerged which adequately describes the unstable mechani-

cal response, associated with the PLC effect, on the basis of behaviour of crystal lattice 

defects. The most significant features of the model have been outlined in the above expo-

sition. It has been shown that the two most important relevant aspects of defect beha-

viour, viz. dynamic strain ageing and the collective dislocation effects determining the 

evolution of the dislocation densities, can be efficiently integrated in a rather simple 

constitutive equation of the Penning type. An additional component of the model is the 

inclusion of rate effects. Further elements can be introduced if a particular feature of the 

PLC effect is to be described in more detail, but the most significant phenomena are 

already covered by the present form of the model. 

Some of characteristic properties of the PLC effect, such as the distinction between 

different types of serrations (A,B,C, etc. [5]), the angle at which the bands are inclined 
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with respect to the specimen axis, and some others, have not been considered, in order not 

to depart from the major line of our treatment. We would like to recapitulate it now. The 

description on the level of lattice defects has led us to a macroscopic model whose mathe-

matical form yields temporal behaviour at a given location (relaxation oscillations in 

strain rate). Then, a spatial band pattern has been derived via the band propagation 

velocity V. This is a key quantity in describing the characteristics of the spatial pattern, 

such as the band spacing and the band width. Determining V from the model, in its 

extended form, remains a most pressing fundamental problem, and future efforts will 

undoubtedly concentrate on it. 
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