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1 Introduction

In assessing the performance of engineered products, considerations of structural integrity or
mechanical strength figure importantly. Depending on the application, one may be involved with
the static loading of parts made of materials which on the one hand are ductile or, on the other,
have low fracture toughness or it may be necessary to consider the possibility of fatigue failure in
dynamical situations. Whether, as in the former, local yielding at stress concentrations alleviate
the effects of overload or in the latter, where a knowledge of local stress profiles provide a basis
for life assessment, in critical applications, good quality predictions of the stress levels at the
surface of solids is crucial. To attempt an analytical determination of the stress field in typical
engineering components, using the formal notions of solid continuum mechanics, leads to
insuperable mathematical difficulties in all but the most trivial cases. Accordingly, to make
useful progress, it is necessary to adopt some approximation method. Thus, one possible approach
is to form rather gross idealisations into very simple models to which may be applied the concepts
of elementary mechanics of materials; local predictions may then be enhanced on the basis of such
published data as the stress concentration factors associated with certain geometric
discontinuities( 1.2,3) or stress intensity factors at cracks(4) However, most machine or
structural elements are not readily identifiable with catalogued cases and a more reasoned
approach 1s necessary to obtain stress predictions of good accuracy. In this connection, the finite
element process(s-) has transformed the engineer’s capability for design analysis 1n general and
in the description of structural behaviour or the assessment of mechanical strength in particular

Notwithstanding the rational basis for approximation embodied in finite element analysis,
however, assessing the quality of its predictions still requires the exercise of insight and
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judgement by the practitioner if the capability of the process is not to be overstretched and abused
leading to faulty conclusions regarding the quality of a design. _

Unless specifically stated to the contrary, finite element analysis is an approximation process
based upon piecewise assumed displacement fields. Since strains, and hence stresses, have to be
determined by differentiation of displacement functions, when the latter are approximate, the
corresponding predicted stress levels are inferior in quality to the displacements themselves.
Then, to recover, by conventional finite element methods, stress values of adequate quality
requires that the displacements be determined to an accuracy which is greater than may really be
required and this can incur an unacceptable computational overhead. This being particularly the
case in the analysis of fully three-dimensional situations. Consequently, a number of
investigators have addressed the problem of enhancing the quality of finite element stress
prediction and various methods have been proposed.

in this paper, we briefly review some of these approaches and more fully discuss a very effective
procedure, developed by the authors(6-7), for locally enhancing the quality of finite element
surface stress prediction at a modest computational cost.

2. Finite Element Prediction of Stress Levels

The finite element method has been thoroughly presented in a number of texts( 5,8,9) so that only
the briefest outline is necessary here for convenient reference in the discussion on element
performance and surface stress prediction presented below.

The formulation of any stressing problem requires a consideration of three essential ingredients;
i) satisfying the requirements of equilibrium,
i1)  satisfying the requirements of continuity of displacements,
ii1) describing the mechanical behaviour of the material in some constitutive law.

Within the formal framework of solid continuum mechanics, manipulating these ingredients leads
toan "exact” formulation in which the mechanical behaviour of an object under load is described in
terms of partial differential equations and associated boundary conditions. Closed form solutions to
these equations are only available for a few idealised situations which bear little relation to most
actual engineering components with their complex shapes and 1oading patterns. Accordingly, as
pointed out above, for useful progress to be made it is necessary to resort to some approximation
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process or other. When consciously seeking an approximate solution, it is necessary to consider
what quality of performance prediction is deemed to be adequate for the purpose. Thus, in the
ear ly stages of the design process, say, a rough and ready estimate of stress levels may be all that
is required whereas in arriving at a final refined product design a high level of precision may be
called for. Such considerations influence the choice of approach to be used in & particular
situation.

Being a rational approximation process, finite element analysis yields results having a quality
which is very largely under the control of the practitioner, albeit at some consideration of cost;
this is in contrast to the often gross idealisations involved in modelling situations on the basis of
elementary mechanics of materials and the use of various handbooks. Effectively, to use the
method, it is not necessary to be familiar with the detailed construction of the various commercial
programmes which are available. However, it is essential to have a sound appreciation of the
foundations of the process and especially of the approximations implicit in it as an accompaniment
to a good “feel” for structural behaviour. This has a particular bearing on the accurate
determination of the surface stresses which are of interest here and why we now briefly outline
the essentials of the method.

Without further qualification, finite element stress analysis is usually understood tc be an
approximation process based on piecewise approximations to/displacement fields and the
exploitation of a variational principle. That is, the region occupied by a solid object is imagined to
be divided into a finite number of relatively simply shaped sub-regions, or elements, comprising
lines, surfaces or volumes established by meshes of curves which intersect to define various nodal
points. Each element is assumed to deform in a relatively simple admissible manner, such that
continuity between adjacent elements is assured. On the basis of such an assumption, usually
expressed in terms of polynomials involving a finite number of parameters which comprise
generalised co-ordinates, the infinite degrees of freedom characterising a continuum are replaced
by a finite number. Strain values may be inferred and, in the case of in linear elastic situations,
an expression for strain energy density determined so that integration over the volume of the

glement leads to the total strain energy stored in the form U® = 1/2 {u}oet [k]® {u},® which 1s
characteristic of a finite degree of freedom system( 10) . The elements in [k18, called the element
stiffness matrix, usually require numerical integration, commonly achieved by Gaussian

guadrature. On the same basis, the work done by forces acting on the element may be computed.
Taking into account the requirements of continuity of displacements, the total petential energy in
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the assemblage of elements representing the original solid may be computed and the application of
the principle of virtual work leads to

[(K){q} = {Q}
This is a stiffness equilibrium statement characteristic of any discrete, linear elastic system.
Here [K], corresponds to the assemblage stiffness matrix, {Q} is the vector of generalised forces
corresponding to the vector of generalised co-ordinates {q}.

The finite element process thus generates a finite degree of freedom system the mechanical
characteristics of which approximate those of the original continuum. In relation to the three
essential ingredients for formulation referred to.above, it can be seen that the finite element
model: -

i)  aims to provide continuity of displacements*

i1) aproper constitutive law is implicit in the expression for strain energy density

ii1) equilibrium can only be satisfied in some average or weighted fashion consequent
upon the variational principle being used in conjunction with approximations to
the displacement fields

This last factor is a crucial one and provides a measure of the quality of the finite element
prediction of stresses. It is also important to notice that the primary unknowns in the formulation
are displacement parameters and that the strains (and hence stresses) are obtained by
differentiating approximating displacement functions in which these parameters figure; the
stresses are thus inevitably less accurate than the displacements from which they are derived, and
one is led to the considerations which underlie the main theme of this paper.

3. The Quality of Finite Element Stress Predictions

Various element designs have been created utilising "low" or "high" order polynomials to provide
approximations to the element displacement fields and rules have been established regarding what
is admissiblel 7 Conventional extraction of strain, and hence stress, values is achieved by
applying the appropriate strain-displacement-stress relations to these approximate displacement
fields, the amplitudes of which are given by the nodal displacements of the direct finite element
solution. Broadly, higher order polynomials allow fewer elements to be used to achieve a given
accuracy, and experience has shown that a good compromise between accuracy and computational

* For orlam prodlems, as in plates snd shells, matlers are not so slraightrarward See rer (5.
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costs is achieved by quadratic elements. In particular, the so-called isoparametric elements have
become widely used in the various commercial computer codes available, but they too are not free
of problems.

Difficulties associated with obtaining the "best” set of stresses, particularly those at the surface of
a component, from a given analysis, can be appreciated by considering first the simplest linear
displacement triangle element for plane stress/strain situations. Such a displacement model
implies a constant state of stress within a typical element with step changes between adjacent
elements. Intuitively, one might attribute the stress values to the centroid of the element., on the
other hand, one may attribute, to a node of interest, some weighted average value from the
elements meeting at the mode, or a least squares smoothing process adopted (11 ). The benefits of
such approaches are least when stresses at the surface of a component or at the interface between
two phases in a nonhomogeneous object are required. To improve matters, local surface
equilibrium conditions may be imposed as constraints as exemplified by Hollaway( 12) and Allison
and Soh( 13)

Higher order elements usually employ incomplete polynomials so that the behaviour is
non-isotropic in the sense that a parabolic displacement field can imply a linear strain variation
with respect to one co-ordinate whilst there is quadratic variation with respect to another. Such
loops, or ripples, are not smoothed out if one chooses to utilise nodal average stresses from
elements meeting at a node in an attempt to refine stress prediction; serious errors can be
encountered even with fine meshes. |t has been shown( 14) that for conventional extraction of the
stress levels, the optimum sampling points correspond to the Gauss integration points. Then, in
pursuit of further improvements, various least squares smoothing schemes have been
proposed( 15,16) to allow extrapolation from the Gauss points to the nodes; the net effect is not
necessarily worthwhile, however. Commercial finite element software do not incorporate any of
the various stress refinement processes described above. However, thé present authors have
proposed a scheme for isoparametric elements( 6.7) specifically designed to be interfaced, as an
optional routine, to a commercially available package. An outline of this approach together with a
description of some test results are presented below.

Other factors, relating to mesh design and geometric distortion, also have an important influence
on element performance and certain of these are recognised in some computer codes which issue
warnings when selected criteria of good mesh design are not satisfied In broad terms,
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performance deteriorates the further an element is distorted from its basic shape. Thus, a long
thin triangle is not as satisfactory as an equilaterial one and a thin rectangle is inferior to a
square. The formulation of isoparametric elements involves a mapping process to transform
generic triangles and squares into curvilinear triangles and rectangles. Various studies have
shown that the performance of elements is seriously impaired when they are highly
curvedt ' 7.18) and, in fact, ref ( 19) advised that straight sides should always be used unless good
matching to a boundary contour makes curved sides essential. Other studies have shown that
geometric distortion can imply a singularity in the stress field in regions outside the
element( 20); this can be exploited to advantage, of course, when such a singularity is known to
exist as at the tip of a crack( 21 ).

The remainder of this paper is concerned with enhancing the prediction of stresses at the surface
of solid objects using quadratic isoparametric element meshes which are designed to be
satisfactory in the senses implied above.

4 The Efficient Enhancement of Surface Stress Prediction

The process for enhancing finite element surface stress prediction proceeds essentially as follows.
Accepting the nodal displacements provided by conventional finite element analysis, utilise a least
squares process, constrained by satisfaction of the boundary traction conditions, to generate new
"smoothed” displacement functions local to elements of interest adjacent to the surface of a given
component. In the case of isoparametric elements, the mapping processes involved in formulating
the element characteristics introduce complexities into the process which are not met in the
simpler elements addressed in, say, ref ( 13). The analytic basis of the process is outlined below.

Expressed in terms of the local curvilinear co-ordinate system, the displacement field for a
typical eight node ( plane) isoparametric quadrilateral element is described by

u= [PI{B}_g . vy = [P]{B}9-15 (1)
where [P] = {1 rsrsr?srdsrs?] (2)
and the generic element occupies the region -1 sr¢1 , -1< s < 1.
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For our purposes here, By, 8, , ..... Byg will, in effect, be known for a typical element from the

results of a finite element analysis already carried out.

In the stress refinement process, we define new displacement functions

U, = [P') {B'}'_g 0 v = [P'] {B'}lo_‘s (3)
where [P'] = [1rsrsr?s?rdsrs? r2g2) (4)
and By .B'Q ...... g g  are tobe found by the constrained least sguares procedure.

For a typical boundary element, as shown in Fig. 1, the traction boundary conditions will be

O = O = prescribed (5)
e = Lo'ﬁe = prescribed (6)

for £= 15,2 corresponding to the element nodes actually on the solid surface. Then, the
constraint conditions to be introduced into the least squares procedure are

L(O’rr' a-r-r) = 0 (7)
L(d‘,.é -G) = 0 (8)
for £ = 15.2.

Constraints (7) and (8) may be introduced into an auxilliary function & (B3 , A ) by means of
Lagrange multipliers )\j. That is,

B(p) = & [ s+ Vi)

3 _ 6 _
I T E N T O
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Then, the constrained least squares process requires that
Sém.) =0 (10)

Actually, tocarry out the variation in equation (10) requires first that the u'y, v, o rr.

[ re beexpressedintermsof §'y, §'p ~----- B'1g. This is very complicated in the case of the

stress components requiring a consideration of the co-ordinate transformations and associated
jacobian involved and the appropriate form of Hooke's law (for plane stress, plane strain or
axisymmetric situations). Such particulars are presented elsewhere (6) and it is sufficient to
state here that 24 linear simultaneous algebraic equations are generated from which the

B'y..Bysand A ... A may be calculated.
1 18 6

in this way, the refined displacement functions u’ and v' are determined from which the refined
stresses are obtained by means of the appropriate strain-displacement and stress-strain relations
for each element midside node of interest at the surface of the component. For corner nodes, the
procedure is similar except that a fictitious element straddling two adjacent normal elements is
introduced such that the fictitious midside node on the surface coincides with the actual common
corner node. Interpolation is used where necessary to locate new fictitious nodes and the "actual”
displacements associated with them. The procedure is then as before.

The process has been described in relation to plane problems. The semi-analytic generalisations
necessary to treat axisymmetric solids, loaded in a non axisymmetric manner, have also been
detailed elsewhere { 7) and an application to three dimensional situations is presented here.

S interfacing the Scheme with Existing Finite Element Software
The procedures described above can be coded as self-contained routines which can be called as

desired by a control statement in the stress recovery phase of a main finite element programme.
There is thus no question of modifying existing well proven codes.

The extra computing cost associated with carrying out the stress refinement process in a typical
problem is very modest, being of the order of 108 - 15% of the total cost of the analysis.
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6. Some Applications of the Stress Refinement Process

The elliptic plate with an elliptic hole subjected to a uniform external pressure has been adopted
by the National Agency for Finite Element Methods and Standards ( NAFEMS) as broviding a bench
mark for plane elements. Fig. 2 shows the very coarse mesh used for the trial and Fig. 3 the
excellent results provided by the refinement process.
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Fig. 1. A typical “boundary element-
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Fig. 2. Coarse mesh for elliptical plate.
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Fig. 3.  Inner boundary maximum principal stress for elliptical plate subjected

to unit external pressure, obtained by conventional and refined finite
element solutions to coarse mesh.

66



T.H.E. Richards and M.J. Daniels Jowrnal of the Mechanical Behaviour of Materials
A commonly utilized component is an axlally loaded round bar having a circumferential

semi-circular groove as shown in Fig. 4. Stress concentration factors (SCFs) for such
components have been published previously ( 1,2) and provide useful comparisons. Fig. S shows

0T
i

.Fig. 4. Semi-circular groove in a tension rod.
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Fig. 5. Maximum stress concentration factor (SCF) for a tension rod with a.
U-groove (r/d = 0.1 and D/d-= 1.2) obtained by conventional and
refined finite element solutions.
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the effect of refining the mesh by factors of 2, 3, 4 successively on the SCF predicted here, the
coarsest mesh being shown in Fig. 6. For the bar,r/d=0.1andD/d=1.2.

Fig. 6. Coarse, 10-element, 85-dof. mesh (grid size = 1)

If the grooved bar of Fig. 4 is subjected to bending or torsion, the situation corresponds to an
axisymmetric solid loaded in a non-axisymmetric manner. A finite element formulation for such
cases can be achieved by using ring type elements originally proposed by Wilson (22) and
subsequently documented in various texts eg,(s-g). Then, the displacement components are
assumed to vary according to equations (1) and (2) in a diametral plane, but to vary in a
harmonic fashion circumferentially. Since sines and cosines provide orthogonal sets, the
harmonic contributions uncouple in finite element formulations leading to very efficient analyses
for this class of three dimensional problems. A semi-analytic stress refinement process can thus
be formulated with respect to each uncoupled harmonic contribution which is completed analogous
to that described above( 7). Figs. 7 and 8 show the effect of mesh refinement on the quality of SCF
prediction, with and without the refinement process described above, for the torsion and bending
cases respectively.

As a final example, again we consider the case of the axially loaded grooved bar described above,
but now analysed as a solid model. Fig. 9 shows the effect of refining the mesh by successive
sub-division (in all three directions), the coarsest mesh being shown in Figure 10. Here the 20
npde isoparametric brick element was used and, whilst the stress refinement process was
conceptually the same as described above, the implementation required a considerable amount of
care and meticulous attention to detail.

s Conclusions
The method of enhancing the finite element prediction of surface stresses for a variety of classes of
problems described here has proved to be accurate and cost effective. It may be appended to
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Fig. 7. Maximum stress concentration factor (SCF) for rod with a U-groove
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conventional and refined finite element solutions.
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established finite element code as a self-contained set of routines called, as desired, by

appropriate control statements. There is thus no question of modifying existing well proven code.

10.

1.

12.

13.

14.
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