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Based on a recent extensive study of the state of displacements 

of the flanks of an internal elastic crack in an infinite plate 

submitted to in-plane loading at infinity it was shown that the 

influence of shear in the plate imposes various limitations and 

eventual modifications in our concepts of the components of the 

stress intensity factors (SIFs). 

Since pure shear of the plate results in an immediate non-

congruent overlapping of the flanks of the crack, there is a need 

for a reliable solution tackling the problem of pure shear with 

the crack flanks closed for defining the real Kjj-mode. In mixed 

Κj- and Kjj-modes of deformation the existing definitions for 

SIFs are valid only in the domain of loading of the p l a t e , where 

the contribution of the Kj-mode counterbalances the deleterious 

effect of the Kjj-mode, in closing the crack flanks, and 

guarantees their non-overlapping. 

For the plane-stress solution the development of the out of 

plane deformations makes the introduction of the Kjjj-mode 

compulsory in describing the state of stress at the crack tip. 

Moreover as soon as a shear mode o f deformation exists, there 

develops also a round-about displacement of the lips of the 

crack, called lip-sliding, which brings progressively new points 

from behind the initial crack tip to the instantaneous position 

of a transient crack tip as the elastic loading of the plate is 

increased. Simultaneously, the decrease of the curvature at the 

crack tip of the ideal crack which is deformed to an ellipse 

results in a reduction of the SIFs and the necessity of 

introducing instead the notion of a stress concentration factor 

(SCF). All these phenomena are reviewed in this paper, based on 

the exact solution of the internal crack as this is described 

by Muskhelishvi1i 1s solution. 
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I n t r o d u c t i o n 

L i t t l e a t t e n t i o n was pa i d up to now i n the. l i n e a r e l a s t i c f r a c t u r e 

mechan ics (LEFH) to the d i s p l a c e m e n t f i e l d s o f the f l a n k s o f an i n t e r n a l 

c rack i n an e l a s t i c i n f i n i t e p l a t e s u b m i t t e d to an i n - p l a n e b i a x i a l l o a d 

at i n f i n i t y , a l t h o u g h c l o s e d - f o r m s o l u t i o n s e x i s t f o r t h i s p a r t i c u l a r 

prob lem based on the M u s k h e l i s h v i 1 i complex s t r e s s f u n c t i o n t heo ry [ 1 ] , 

S i n c e the d e f i n i t i o n o f the Κ J » K
 J J

 a n d
 K J J J components o f the s t r e s s 

i n t e n s i t y f a c t o r ( S I F ) i n LEFM i s based up - to -now to the e x p r e s s i o n s o f 

s t r e s s e s a t the c r a c k t i p as tho se a re d e r i v e d from t h e i r one - t e rm 

s i n g u l a r e x p r e s s i o n s o f the s e r i e s e x p a n s i o n o f the Φ( ζ ) , the 

m a t h e m a t i c a l l y i d e a l c r a c k i s assumed a t i t s i n i t i a l undeformed s t a t e and 

the o n l y d i s p l a c e m e n t s e v a l u a t e d u n t i l r e c e n t l y were the d i s p l a c e m e n t s o f 

the i n i t i a l c r a c k - t i p ba sed e i t h e r on the s i n g u l a r , or on the so-cal 1 ed two-

term s o l u t i o n s . These d i s p l a c e m e n t s gave a r a t h e r e r r o n e o u s p i c t u r e o f 

the deformed c r a c k s i n c e they d i d not r e vea l the e x a c t modes o f 

d e f o r m a t i o n o f the f l a n k s o f the e l a s t i c c r a c k . 

The a u t h o r and h i s c o - w o r k e r s [ 2 ] p r e s e n t e d r e c e n t l y a complete and 

e x a c t s t u d y o f the shape o f the deformed e l a s t i c c r a c k based on the e x a c t 

s o l u t i o n g i v e n by M u s k h e l i s h v i 1 i [ 1 ] . They gave the e q u a t i o n o f the shape 

o f the i d e a l c r a c k wh ich when deformed becomes an e l l i p s e w i t h i t s major 

a x i s a n g u l a r l y d i s p l a c e d r e l a t i v e l y to the a x i s o f the i n i t i a l c r a c k . 

They e s t a b l i s h e d a l s o the lip-sliding phenomenon o f the f l a n k s o f the 

c r a c k due to s h e a r and d e f i n e d the r o u n d - a b o u t r o t a t i o n o f the f l a n k s . 

The p a r t i c u l a r c h a r a c t e r i s t i c s o f the ca se o f a c e n t r a l c r a ck 

l oaded under pure s h e a r c o n d i t i o n s were d e s c r i b e d i n r e f . [ 3 ] < I t was 

shown t h a t f o r a pure s h e a r l o a d i n g the re i s a lways a n o n - c o n g r u e n t 

o v e r l a p p i n g o f the c r a c k f l a n k s wh ich means t h a t o p p o s i t e p o i n t s on the 

l i p s o f the c r a c k b e f o r e d e f o r m a t i o n are d i s p l a c e d d u r i n g d e f o r m a t i o n i n 

o p p o s i t e d i r e c t i o n s so t h a t the t o u c h i n g p o i n t s o f the 1 ips come from 

d i f f e r e n t p a i r s o f p o i n t s o f the undeformed c r a c k . The e l l i p t i c shape o f 

the deformed c r a c k g i v e n by the e x a c t s o l u t i o n was compared w i t h two-

b ranch p a r a b o l i c s hape s d e r i v e d from the s i n g u l a r and the two- term 

s o l u t i o n s . The l i p s l i d i n g phenomenon, wh ich has i t s cause to the s h e a r 

l o a d i n g , and the 

v a r i a t i o n o f the c u r v a t u r e o f the c r a c k deformed shape 

at i t s t i p were s t u d i e d e x t e n s i v e l y [ 4 ] . 

The deformed c r a c k under t e n s i o n o r c o m p r e s s i o n w i t h o u t s h e a r was 

s t u d i e d i n r e f s . [ 5 , 6 ] . I n the l o a d i n g o f the c r a ck f l a n k s exempt o f 

s hea r makes the components o f t h e i r d i s p l a c e m e n t to depend o n l y on one 

term. T h u s , u - d i s p i a c e m e n t s a l o n g the c r a c k a x i s a re v a r y i n g o n l y 

l i n e a r l y whereas u - d i s p i a c e m e n t s normal to the c r a c k a x i s a re f u n c t i o n s 

o f the e l l i p t i c term. I n t h i s way t he re i s no a n g u l a r d i s p l a c e m e n t o f 

the c r a c k d u r i n g d e f o r m a t i o n but t h e r e i s a lway s change ( p o s i t i v e o r 

n e g a t i v e ) o f the c r a c k l e n g t h o f the e l l i p t i c shape o f the c r a c k . The 

same happens a l s o i n the case o f s h e a r . The c r a c k l e n g t h remains 
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u n a l t e r e d o n l y f o r h y d r o s t a t i c t e n s i o n o r c o m p r e s s i o n o f the p l a t e . T h i s 

v a r i a t i o n o f c r a c k l e n g t h h o l d s a l s o f o r s h e a r and the s i n g u l a r s o l u t i o n 

and t h i s c o r r e c t s the f a l 1 a c * - t h a t the c r a c k l e n g t h under pure s h e a r 

rema ins unchanged [ 3 ] . 

I f the p l a t e i s ex tended the c r a c k f l a n k s are a lway s open w i t h the 

c r a c k l e n g t h l a r g e r than i t s i n i t i a l l e n g t h f o r k >1 . 0 (where k i s the 

b i a x i a l i t y f a c t o r , o 2 =ko^ the e x t e r n a l l o a d i n g o f the p l a t e ) and s m a l l e r 

than t h i s l e n g t h f o r k < 1 . 0 . On the c o n t r a r y , f o r c o m p r e s s i v e e x t e r n a l 

l o a d i n g the c r a c k l i p s c l o s e c o n g r u e n t l y and t h e r e i s no s t r e s s i n t e n s i t y 

f a c t o r . T h i s phenomenon was p roved a l s o e x p e r i m e n t a l l y f o r s t a t i c and 

dynamic l o a d i n g modes [ 6 , 9 ] . 

Re fe rence [ 7 ] i n d i c a t e s t h a t i f the p l a t e i s l o aded under mode I I 

and i t i s under p l ane s t r e s s c o n d i t i o n the d e f o r m a t i o n o f the c r a c k 

f l a n k s not o n l y f o l l o w the phenomena d e s c r i b e d i n r e f s . [ 3 , 4 ] , but a l s o 

deve l op o u t - o f - p l a n e s h e a r s which engender K j j j - m o d e s o f d e f o r m a t i o n . 

O u t - o f - p l a n e d i s p l a c e m e n t s o f the f l a n k s were s t u d i e d , by u s i n g the 

e x a c t s o l u t i o n based on complex s t r e s s p o t e n t i a l s and con fo rma l mapp ing , 

i n d i c a t i n g t h a t a n t i s y m m e t r i c t w i s t i n g d i s p l a c e m e n t s a re a p p e a r i n g i n 

o p p o s i t e d i r e c t i o n s f o r o p p o s i t e . f l a n k s w i t h maxima ( p o s i t i v e o r 

n e g a t i v e ) a t the v e r t i c e s o f the e l l i p t i c s hape s o f the deformed c r a c k . 

E x p e r i m e n t a l e v i dence w i t h r u b b e r membranes, used i n o r d e r to show 

s p e c t a c u l a r l y the phenomena deve l oped a round the c r a c k s due to s h e a r , 

i n d i c a t e d q u a l i t a t i v e l y the d e f o r m a t i o n o f the i d e a l c r a c k to an 

e l l i p s e w i t h i t s a x i s a n g u l a r l y d i s p l a c e d f rom i t s i n i t i a l p o s i t i o n by 

a doub le r o t a t i o n , the one due to the l i n e a r term and the o t h e r due to 

the e l l i p t i c term o f the components o f the i n - p l a n e d i s p l a c e m e n t s . The 

s l i p - s l i c f i n g phenomenon was a l s o i n d i c a t e d by s c r i b i n g an i s o m e t r i c 

network b e f o r e d e f o r m a t i o n and p h o t o g r a p h i n g i t s d i s t o r t e d shape d u r i n g 

d e f o r m a t i o n [ 8 ] . 

I n t h i s paper the con sequence s o f t he se phenomena, e s p e c i a l l y t ho se 

due to the s h e a r component o f l o a d i n g , a re s t u d i e d on the a c c u r a t e 

e v a l u a t i o n o f the components o f the s t r e s s i n t e n s i t y f a c t o r and 

c o n d i t i o n s a re e s t a b l i s h e d f o r t h e i r v a l i d i t y . S u g g e s t i o n s were a l s o 

advanced f o r remedy ing the i n c o m p a t i b l e c o m b i n a t i o n s o f l o a d i n g c r e a t i n g 

o v e r l a p p i n g o f the c r a ck f l a n k s and thus i n v a l i d a t i n g the i n i t i a l e l a s t i c 

s o l u t i o n . 

T h e o r e t i c a l C o n s i d e r a t i o n s 

We c o n s i d e r an i n f i n i t e e l a s t i c p l a t e , c o n t a i n i n g an i n t e r n a l c r a c k 

o f l e n g t h 2a , l oaded a t i n f i n i t y w i t h p r i n c i p a l s t r e s s e s oQ and koQ 

( F i g . l ) . The o r i g i n 0 o f the O x y - c o o r d i n a t e s y s t e m i s p l a ced i n the 

midd le o f the c r a c k w i t h the O x - a x i s d i r e c t e d a l o n g the c r a c k - a x i s , and 

the p r i n c i p a l l o a d i n g a x i s ( 0 y n ) s u b t e n d i n g an a n g l e 3 w i t h the O x - a x i s . 
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Fig. 1 

The geometry of a biaxially loaded internal slant crack of 

length 2a. 

The elastic displacements along the crack-lips for the 

abovementioned geometry have been derived in ref.[2] from the appropriate 

complex potentials of Muskhelishvili, assuming no rigid-body rotation at 

infinity, as fol1ows 

u®(x) = c{(l-k)(cos23)x±(l-k)(sin23)(a 2-x 2) 5' 2} (1) 

u®(x) = c{(l-k)(sin23)x±[(l+k)-(l-k)cos23](a 2-x 2)' 5} (2) 

The pair (u^.u^) denotes, for every value of the variable χ in the 

interval [-a,+a], the Cartesian components of the displacement vector on 

the upper crack-flank and (u e,u e) the respective components on the lower 
~ 2 

one. The multiplicative factor c is defined by c=o Q/E and c=Og(1-v )/E 

for plane-stress, or plane-strain conditions, respectively. In these 

relations Ε and ν are the Elastic modulus and Poisson's ratio of the 

material of the plate, whereas k is the biaxiality factor. 

Relations (1) and (2) represent the exact forms for the displacements 

at every point along the upper or lower crack flanks without any regional 

limitation and, therefore, they are suitable expressions for the 
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investigation of the mechanism of deformation and of the shape of the 

whole deformed mixed-mode crack. 

The linear terms of the displacements in relations (1) and (2) have 

the same sign for both lips. J h u s , they lead to a crack deformation which 

leaves the crack flanks straight, passing through the origin of the 

coordinate system. On the contrary, the non-linear terms, which have 

opposite signs for the upper and lower crack flanks, lead to an opening, 

or eventual overlapping, of the crack flanks and to a curved deformed 

crack. 

It must be pointed out that any solution of the problem predicting 

overlapping lips must be excluded, because in such a case the initial 

boundary conditions of stress-free crack flanks is violated. 

Figure 2 shows the components of displacement and how an initial 

crack, AB, of normalized length 2a, deforms. In this figure the three 

parameters of the crack are 0 = 70°,k = -0.5° and c=0.25. The crack tips 

move to the points A' and B 1 , according to the linear terms, and the 

generic point C moves to the point C 1 . Then, the non-linear terms lead 

to an opening and sliding of the lips and the double point C' splits to 

the point C + on the upper and C_ on the lower deformed flank. 

We observe that the opening and sliding of the flanks does not start 

from the initial crack AB, but from the straight segment A 1Β 1 . T_hus, the 

segment A 1 Β ' deserves the name "effective crack-axis", and the deformed 

Fig. 2 

The geometry of the displacements and the resulting deformed crack 

for 3=70°, k=-0.50 and c=0.25. 
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c r a c k i s skew symmetr i c w i t h r e s p e c t to t h i s e f f e c t i v e c r a c k - a x i s . 

M o r e o v e r , because the e f f e c t i ve c r a c k - a x i s i n gene ra l p r e s e n t s an a n g u l a r 

d i s p l a c e m e n t r e l a t i v e l y to the i n i t i a l c r a c k - a x i s , both n o n - l i n e a r u - and 

υ - d i s p l a c e m e n t s p roduce an o p e n i n g and a s l i d i n g e f f e c t as w e l l . 

Wh i l e the e xac t d i s p l a c e m e n t s depend on a s e l f - s i m i l a r manner on the 

l o a d i n g l e v e l d e f i n e d by the f a c t o r c o r , e q u i v a l e n t l y , on the p r i n c i p a l 

s t r e s s OQ at i n f i n i t y the shape o f the deformed c r a ck does not f o l l o w the 

same dependence. T h i s i s because the p a r a m e t r i c e q u a t i o n s o f the shape o f 

the c r a c k a re depend ing on the d i s p l a c e m e n t s t h r ough the r e l a t i o n s h i p s : 

x® = x + u e ( x ) 

e e ( 3 ) 

y * = υ ( χ ) 

where the x - p a r a m e t e r t ake s v a l u e s i n the i n t e r v a l [ - a , + a ] . T h u s , o n l y 

the y - c o o r d i n a t e s o f the deformed c r a c k - l i p s a re p r o p o r t i o n a l to the 

l o a d i n g OQ, and t h i s i s not t r u e f o r the r e s p e c t i v e x - c o o r d i n a t e s . 

M o r e o v e r , the shape o f the deformed mixed-mode c r a c k canno t be 

i n v e s t i g a t e d i n terms o f the s t r e s s i n t e n s i t y f a c t o r s Kj and K J J , wh ich 

are p r o p o r t i o n a l to OQ. Such an i n v e s t i g a t i o n demands to be made i n 

terms o f t h ree p a r a m e t e r s , and we have chosen f o r t h i s pu rpo se the 

n a t u r a l pa ramete r s o f the p rob lem, i . e . c , ß and k ( see F i g . l ) . 

A s y s t e m a t i c a n a l y s i s o f the e x a c t shape o f the deformed c r a ck 

l e a d s to the f o l l o w i n g r e s u l t s [ 2 ] : 

i ) The exac t shape o f a deformed c rack i s a lways an e l l i p s e . T h i s 

e l l i p s e d e g e n e r a t e s i n t o a s t r a i g h t segment , or even p r e s e n t s o v e r l a p p i n g 

l i p s f o r some c o m b i n a t i o n s of the pa ramete r s c , 3 and k. 

i i ) The major a x i s o f the e l l i p s e i s a n g u l a r l y d i s p l a c e d by an a n g l e 

θ w i t h r e s p e c t to the i n i t i a l c r a c k . For non o v e r l a p p i n g f l a n k s ang l e θ 

i s g i v e n by [ 2 ] : 

s i η 2 θ = 2 c ( l - k ) s i n 2 ß { [ l - c ( l + k ) ] 2 + 4 c ( l - k ) [ l - c ( l + k ) ] c o s 2 ß + 4 c 2 ( l - k ) 2 } 

Thu s , a n g l e θ t ake s v a l u e s i n the i n t e r v a l [ - π / 2 , π / 2 ] and i t i s p o s i t i v e 

f o r a n t i c l o c k w i s e r o t a t i o n s and n e g a t i v e f o r c l o c k w i s e r o t a t i o n s . 

M o r e o v e r , the ang l e θ f o r open c r a c k f l a n k s i s a lways a b s o l u t e l y g r e a t e r 

than the a n g l e λ o f i n c l i n a t i o n o f the e f f e c t i v e c r a c k - a x i s w i t h r e s p e c t 

to the i n i t i a l c r a c k . 

i i i ) P o i n t s A ' and B ' , where the c rack t i p s a re d i s p l a c e d a f t e r 

d e f o r m a t i o n , do not c o i n c i d e , i n g e n e r a l , w i t h the p o i n t s o f maximum 

c u r v a t u r e o f the e l l i p s e . 

The i n c l i n a t i o n λ of the e f f e c t i v e c r a c k - a x i s i s g i v e n by [ 2 ] : 

H . _ c ( 1 - k ) s i η2ß , c , 
U n K ' 1+c ( 1 - k ) cos 2ß < 5> 

and t h i s s l o p e e q u a l s to a n g l e θ o n l y i f the deformed c r a c k i s a 

s t r a i g h t segment. 
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iv) The lengths a^ and a 2 of the m a j o r and m i n o r s e m i - a x e s of the 

ellipse r e s p e c t i v e l y , which r e p r e s e n t * the e x a c t length and the m a x i m u m 

opening of the crack after d e f o r m a t i o n , for not o v e r l a p p i n g lips are 

given by [2]: 

a i ] 
• = ! ± c l L t i l a ± I a { [ l - c ( l + k ) ]

2 + 4 c ( l - k ) [ l - c ( l + k ) ] c o s 2 0 + 4 c 2 ( l - k ) 2 } h , 
α 2 c. c. 

(6) 

where the quantity a 1 refers to the (+) sign and a,, to the (-) sign. 

v) The x - c o o r d i n a t e s of the points on the initial c r a c k , which 

after d e f o r m a t i o n become the points of m a x i m u m c u r v a t u r e of the 

e l l i p s e , are given by: 

Xj = ±acos6 (7) 

where θ is defined by Eq.(4). The (+) sign c o r r e s p o n d s to a point on 

the upper c r a c k - l i p , if the angle θ is p o s i t i v e , or on the lower one 

if θ is n e g a t i v e , while the o p p o s i t e holds for the minus sign in 

re 1 ation (7). 

We may remark that the length of the d e f o r m e d crack and its 

o p e n i n g , as well as the slantness of the d e f o r m e d m i x e d - m o d e crack can 

be d e f i n e d in a natural way from the q u a n t i t i e s a^.a^ and the angle θ 

of the exact s o l u t i o n . These q u a n t i t i e s , w h i c h concern the whole 

deformed crack, cannot be derived from the a p p r o x i m a t i v e s o l u t i o n s , 

unless we impose d e f i n i t i o n s of these q u a n t i t i e s in an inadequate w a y . 

C o n d i t i o n s of O v e r l a p p i n g of the Crack Flanks 

The analysis of the e x a c t shape of the d e f o r m e d m i x e d - m o d e crack 

allows the i n v e s t i g a t i o n , in a faithful m a n n e r , of the o v e r l a p p i n g 

p h e n o m e n o n of the crack flanks. 

The linear e l a s t i c solution of the first fundamental p r o b l e m for 

a m i x e d - m o d e crack, as well as any a p p r o x i m a t i o n of this s o l u t i o n , is 

meaningful as long as the p r e d i c t e d d i s p l a c e m e n t s r e s u l t to an open 

deformed crack, or, at least, to a d e f o r m e d crack which is a s t r a i g h t 

segment and its lips remain in simple c o n t a c t . In the o p p o s i t e 

situation where the predicted d i s p l a c e m e n t s y i e l d o v e r l a p p i n g crack 

flanks, the boundary c o n d i t i o n s for the s t r e s s - f r e e crack flanks are 

violated and the s o l u t i o n of the problem m u s t be r e c o n s i d e r e d . 

The analysis of the shape of the d e f o r m e d crack has shown that the 

deformed crack may be d e g e n e r a t e d to a s t r a i g h t s e g m e n t for the e x a c t , 

as well as for the a p p r o x i m a t e solutions [8], and there is no p o s s i b i l i t y 

to obtain a piecewise o v e r l a p p i n g of the c r a c k - l i p s or a partially c l o s e d 

crack. Thus, the limits of validity of anyone of these solutions are 
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given by the respective condition that the deformed crack degenerates to 

a straight segment presenting touching flanks in its full length. 

We define first the angle ω subtended by the Oy-axis and the 

conjugate axis (0_00 +) to the effective axis A'OB 1 of the ellipse in 

Fig.2. It may be readily shown that all chords defined by two conjugate 

points of the ellipse, for example the segments C +C_ and 0 +0_ in Fig.2, 

are parallel to each other with a constant inclination, ω, with respect 

to the Oy-axis, given by: 

t a r w l _ KII _ (1- k) s i η2β , 0> 
t a m J " K ^ * (l+k)-(l-k)cos20 < 8> 

For the exact solution the lips of the deformed crack are in touch, 

if and only if the non-linear displacements along the crack flanks take 

place only along the effective crack-axis. The last condition holds for 

a positive slope λ of the effective crack, if the angles λ and ω are 

complementary. 

Generally, it may be readily concluded that the touching-flanks 

condition is equivalent to the condition: 

tanutanA = 1 , (9) 

where tanu) and t a η λ are given by relations (8) and (5) respectively. So, 

the condition (9) in terms of the parameters c,3 and k, may be written 

c[(.l + k)-(.l-k)cos20-c(l-k) 2+c(l-k 2)cos20] = 0 . (10) 

In another context, it is valid that the deformed crack degenerates 

to a straight segment, if and only if the area of the ellipse is zero. 

This happens if the product of the lengths a^ and a^ given by Eq.(6) is 

zero, which, after some algebra, yields again the condition (10). 

It is worthwhile mentioning that condition (10) does not imply 

necessarily that the degenerated deformed crack is situated along the 

Ox-axis of the initial crack. There are, indeed, combinations of c,0 and 

k, for which condition (10) is fulfilled and for the same values of c,@ 

and k the slope λ of the deformed straight crack is not zero. Only when 

the initial crack is parallel to one of the loading directions (0=0° or 

3=90°) the degenerated deformed straight crack remains at its initial 

position [5]. 

Limiting Conditions for Touching Crack-Flanks 

In the followings we shall investigate the regions in the three-

dimensional parameter space (c,0,k), where the touching flank-conditions 

(17) and (19) hold. 

Without restricting the generality of the problem we may assume that 

the loading factor c varies in the interval [-1.+1], the angle 0 takes 
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values in the interval [0°,90°] and the biaxiality factor k varies from 

-«> to +00. Large values of the loading factor c above the yield limit of 

the material invalidate the elastic solution since plastic enclaves 

start to develop around the crack tips which evolute and eventually 

occupy the whole stress field. Since the theory did not introduce any 

restriction concerning the loading level of the phenomena described.it 

is valid up to the point of plastic deformation. 

However, for microcracks and similar defects inside the stress 

field which are strongly constrained by the surrounding elastic material 

high loading factors may be operative without violating the conditions 

for a totally elastic stress field. 

The points in the (c ,0, k)-space , for which the condition (10) is 

satisfied, constitute surfaces in this parame trie space, which separate 

regions where the left-hand side (LHS) expression of Eq.(lO) is 

positive or negative. It may be readily concluded that the regions, 

where the above expression is positive, represent (c,3,k)-combinations 

for open crack flanks. The opposite is true in the regions where the 

left-hand side expression (10) negative, and therefore, in these 

regions, the linear elastic solution invalid. Condition (10) satisfied 

for c-Q. This is the trivial evident case of the unloaded crack. So, 

the aboyementioned surfaces possess a common branch the (k,3)-plane 

Cc-O). 

For the exact solution and for c^O the touching flank condition 

(10) is satisfied, if it is valid: 

(l+k)-(l-k)cos23-c(l-k) 2+c(l-k 2)cos2ß = 0 . (11) 

This non-trivial part of the touching-flank condition depends on 

the c-factor, and so it involves not only the k,3 parameters, but also 

implicitly the external load o Q , the mechanical properties of the 

material, and the prevailing plane-stress or plane-strain conditions as 

well. The surface defined by Eq.(ll) is not simply connected, but it is 

composed of three different branches, whose investigation leads to 

unexpected results. 

Figure 3 presents these three branches. In this figure the 

projections in the (k,0)-piane of the curves are plotted, where the 

surface intersects planes with c=const. The family of the curves in the 

right-hand side lower part of Fig.3 corresponds to the first branch of 

the surface, which is situated in the half space c>0, and to the right 

of the (c,0)-piane. 

Each one of the curves of this family with c>0 begins at a point 

k.j + -ij of the k-axis and goes asymptotically to 0 = 90° for k->~. 

Thus, the first branch of the surface (11) does not intersect the (k,0)-

plane (c=0). The region below the first branch corresponds to cracks with overlapping 

flanks. It may be readily verified that for c>0 and 0=0° k-values smaller 
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f i g . 3 

The overlapping condition in the (k,0)-plane for various c-

values, according to the two-term and the exact solution. 

than + ^ represent open cracks, while when k values are larger than 

+ the left and right halves of the respective crack overlap each 

other. 

The family of the curves in the RHS-upper part of Fig.3 corresponds 

to the second branch of the surface (1), which is situated in the half-

space c<0 and to the right of the (c^0)-plane. This second branch, 

contrariwise to the first one, does not separate regions in the (c,k,0)-

space with open and overlapping lips. The (c , k ,0)-points below and to 

the left of this second branch correspond to cracks, for which the 

upper and lower lips overlap. This happens, for instance, when c=-0.2, 

0=90° and k=2.0. If k is increasing and surpasses the value k=6.0, while 

c = -0.2 and 0=90° remain constant, namely if the (c,k,0)-point passes 

through the second surface branch, the crack flanks do not open, but 

their RHS- and LHS-parts overlap once more to each other. Thus, the 

region above the second branch corresponds to doubly overlapping cracks, 

and the whole region c<0,k>0 for every 0-value corresponds to 

unacceptably deformed-cracks. 

The family of the curves in the LHS-part of Fig.3 corresponds to 

the third branch of the surface (11). The third branch intersects the 

(k,0)-plane along a curve, which is obtained from Eq.(ll) if we put c=0. 

The resulting curve is identical with the intersection of the separating 

cylindrical surface for open and overlapping cracks as this is given by 
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the s i n g u l a r s o l u t i o n [ 8 ] . T h i s c y l i n d r i c a l s u r f a c e c o r r e s p o n d s to 

c r a c k s o f m o d e - I I d e f o r m a t i o n . 

The p o i n t s on the t h i r d b ranch o f s u r f a c e o f Ε q. ( 11 ) are now, f o r 

the e x a c t s o l u t i o n , the p o i n t s c o r r e s p o n d i n g to m o d e - I I c r a c k s . T h i s new 

" m o d e - I I " deformed c r a c k has g e n e r a l l y a d i f f e r e n t p o s i t i o n from i t s 

r e s p e c t i v e i n i t i a l c r a c k . 

From t h i s e x t e n s i v e s t u d y i t i s c l e a r t h a t f o r the e x a c t s o l u t i o n 

the r u l e i f a c r a c k i s a m o d e - I I c r a c k o r not depends not o n l y on the 

k - and 3 - p a r a m e t e r s , but a l s o on the c - p a r a m e t e r , t h a t i s on the 

a p p l i e d s t r e s s Og, i n a s s o c i a t i o n w i t h the mechan i ca l p r o p e r t i e s o f the 

m a t e r i a l and the p r e v a i l i n g p l a n e - s t r e s s o r p l a n e - s t r a i n c o n d i t i o n s o f 

the c r a c k e d p l a t e . T h i s dependence i s shown i n F i g . 3 , where now the 

t h i r d b r anch o f the s u r f a c e o f E q . ( 1 1 ) i s not a c y l i n d r i c a l one, 

p a r a l l e l to the c - a x i s . I n d e e d , we o b s e r v e i n F i g . 3 t h a t the t h i r d 

b ranch o f E q . ( l l ) c u t s the p l ane c = 1 . 0 a l o n g the v e r t i c a l l i n e k =0 , then 

i t t u r n s to the l e f t i n a h e l i c a l way, f o r d e c r e e s i n g c , and i n t e r s e c t s 

the ( c = 0 ) - p l a n e a l ong the c u r v e c=0 wh ich c o i n c i d e s w i t h the s e p a r a t i n g 

cu r ve f o r the s i n g u l a r s o l u t i o n [ 8 ] , 

Beyond the p lane c=Q, the t h i r d b ranch f o r d e c r e a s i n g c ' s c o n t i n u e s 

to t u r n dawnward, but a t the same time i t warps and e v o l u t e s i n t o a s o r t 

o f t u n n e l , wh ich i s p r o g r e s s i v e l y s h r i n k i n g w i t h d e c r e a s i n g c ' s . F i n a l l y , 

the tunne l t e r m i n a t e s a t a s i n g l e p o i n t c = - 1 . 0 , k=0 and 3 = 0° . T h i s 

s i n g u l a r p o i n t c o r r e s p o n d s to a c r a c k , whose l e n g t h s h r i n k s to a p o i n t , 

as one may r e a d i l y v e r i f y f rom the r e l a t i o n s ( 1 ) and ( 2 ) . 

The ( c , k , 0 ) p o i n t s i n the h a l f space c > 0 , t h a t l i e on the upper and 

RHS space o f the t h i r d b r a n c h , c o r r e s p o n d to open c r a c k s . On the 

c o n t r a r y , the p o i n t s i n the same h a l f space below and on the LHS space 

o f the t h i r d b ranch r e p r e s e n t c r a c k s w i t h o v e r l a p p i n g l i p s . The s i t u a t i o n 

i s r e v e r s e d i n the h a l f space c < 0 . I n t h i s space the p o i n t s i n s i d e the 

" t u n n e l " r e p r e s e n t open c r a c k s , whereas the r e g i o n o u t s i d e the " t u n n e l " 

c o r r e s p o n d s to c r a c k s w i t h o v e r l a p p i n g l i p s . The c y l i n d r i c a l s u r f a c e f o r 

c=0 l i e s below the t h i r d b ranch o f the s u r f a c e ( 1 1 ) f o r c > 0 , and o u t s i d e 

the " t u n n e l " f o r c <0 . 

The c r a c k s w i t h k=0 and 3=0° , i . e . the c r a c k s wh ich are s u b j e c t e d 

to a t e n s i l e o r c o m p r e s s i v e l o a d p a r a l l e l to them, p r e s e n t the o n l y 

e x c e p t i o n o f the abovement ioned s t a t e m e n t . T h i s can be seen i n F i g . 3 , 

where the t h i r d b ranch o f s u r f a c e ( 1 1 ) , as we l l as the c y l i n d r i c a l 

s u r f a c e w i t h c = 0 , cu t the ( c , k ) - p l a n e a l o n g the c - a x i s . Both s t r e s s 

i n t e n s i t y f a c t o r s , Kj and K J J , f o r such c r a c k s ( k = 0 , 3 = 0 ° ) are ze ro and 

no s i n g u l a r s t r e s s f i e l d s deve l op a t t h e i r t i p s . 

I n e ve r y o t h e r c a s e , where K j = 0 , but K J J / O , the nove l r e s u l t &f 

t h i s i n v e s t i g a t i o n o f the c r a c k - o v e r l a p p i n g p rob lem demands a 

r e c o n s i d e r a t i o n o f the m o d e - I I c r a c k s . I n p a r t i c u l a r , i t i s an open 

q u e s t i o n whether a s i n g u l a r s t r e s s f i e l d d e v e l o p s i n the ca se o f the 
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pure shear mode-II crack (k=-1.0,0=45°), where the crack flanks press 

against each other. Moreover, it becomes now doubtful what a critical 

Kjj-stress intensity factor means [10,11], 

Then, it is unrealistic to check mixed-mode fracture criteria for 

cracks, presenting overlapping flanks. This has been already done by a 

lot of authors in recent papers..An interesting remark is given in ref. 

[12] where the inadequacy of any fracture criterion is stated for 

cases where overlapping takes place. 

For a further study of the surface defined by Eq, (11) we have 

plotted in Fig.4 the contour lines of Eq.(ll) for parametric values of 

the 3-angle. The family of the curves in the right upper part of Fig.4 

corresponds to the first branch of Eq.(ll). For any 0=const. level the 

respective curve separates a LHS- and a RHS-region, which correspond to 

open and overlapping cracks, respectively. 

The family of the curves in the right lower part of Fig.4 

corresponds to the second branch of Eq.(ll). These curves lie inside 

the region c<0 and k>0, i.e. in the region which corresponds to cracks 

subjected to compression-compression, and, as we have already mentioned, 

these cracks present for every 0-angle an overlapping or a double 

overlapping. 

The family of the curves in the LHS-part of Fig.4 corresponds to 

Fig. 4 

The overlapping condition in the (k,c)-plane for various 3-

values, according to the exact solution. 
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-10 -0.8 -0.6 -OA -02 

F i g . 5 

The o v e r l a p p i n g c o n d i t i o n i n the ( c , @ ) - p 1 a n e f o r n e g a t i v e k -

v a l u e s , a c c o r d i n g to the e xac t s o l u t i o n . 

the t h i r d b ranch o f E q . ( l l ) . I t i s s t r i k i n g how much d i f f e r e n t i s t h i s 

s u r f a c e from the c y l i n d r i c a l s u r f a c e w i t h c=0 c o r r e s p o n d i n g to the 

s i n g u l a r s o l u t i o n [ 8 ] , which has i t s equa l l e v e l l i n e s p a r a l l e l to the 

c - a x i s . We a l s o o b s e r v e how a b r u p t i s the s l o p e o f t h i s s u r f a c e c l o s e - b y 

the (c , 3 ) - p i a n e . S o , sma l l v a r i a t i o n s o f the b i a x i a l i t y f a c t o r k c l o s e -

by the ( c , 3 ) - p l a n e may r a p i d l y l ead an open c r a c k to one w i t h 

o v e r l a p p i n g f l a n k s o r v i c e v e r s a . 

F i g u r e 5 p r e s e n t s a s i d e - f a c e o f the t h i r d b ranch o f the s u r f a c e 

of E q . ( l l ) . Here the p r o j e c t i o n s o f the c u r v e s i n the ( c , 3 ) - p l a n e a re 

p l o t t e d , where the s u r f a c e ( 11 ) i n t e r s e c t s p l a n e s w i t h k = c o n s t . and 

n e g a t i v e . The ( c , 3 ) - p l a n e i t s e l f ( k =0 ) c u t s the t h i r d b ranch a l o n g the 

c - a x i s and the v e r t i c a l l i n e c = l . 

E ve ry o t h e r c u r ve ( k<0 ) i n t e r s e c t s the 3 - a x i s , and i t d i v i d e s the 

( c , 3 ) - p l a n e t o g e t h e r w i t h the 3 - a x i s i n f o u r a r e a s . The upper RHS a rea 

and the lower LHS one c o r r e s p o n d to open c r a c k s f o r the r e s p e c t i v e k -

v a l u e s , w h i l e the o t h e r two a r e a s r e p r e s e n t c r a c k s w i t h o v e r l a p p i n g 

f l a n k s . 

Every h o r i z o n t a l l i n e i n t e r s e c t i n g the 3 - a x i s a t the same p o i n t w i t h 

a ( . k - k g ) - c u r v e l i e s c o m p l e t e l y i n the a r e a s where f o r k = kQ the c r a c k s 

p r e s e n t o v e r l a p p i n g f l a n k s . On the o t h e r hand, each one o f t he se 

h o r i z o n t a l l i n e s r e p r e s e n t s a m o d e - I I c r a c k ( Κ j = 0 , Κ j j ^ O ) , e . g . the l i n e 

S S ' i n F i g . 5 r e p r e s e n t s the pure s h e a r m o d e - I I c r a c k (k = - 1 . 0 ,3 = 45°) . 
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Finally, from this detailed analysis of the internal oblique crack 

under biaxial loading at infinity it may be concluded that: 

Any purely mode-II loaded internal araok presents always overlapping 

flanks. Therefore, it belongs to physically unacceptable solutions, thus 

necessitating a reconsideration of the initial boundary-condition 

problem of the internal crack in an infinite plate. 

Fig.6 presents the case of an infinite plate submitted to pure 

shear with stresses o m and -o^ (k=-1.0) at infinity. It contains an oblique 

crack AB=2a subtending an angle 3=45° with the loading axes. The amount 

of stresses o^ is expressly taken quite high and equal to σ ο ο/Ε=0.25, in 

order to show the shape of the deformed crack. 

The final shape of the loaded crack is the ellipse with the Qx'-

and Oy'-axes as major and minor axes respectively, angularly displaced 

f 
Fig. 6 

The geometry of an internal·crack in an infinite 

plate submitted to pure shear under plane stress 

conditions. The initial crack AB is angularly 

displaced to its effective crack axis under load, 

A ' B 1 , and then deformed to a final ellipse, by 

moving its upper lip downwards and its lower lip 

upwards, thus creating an overlapping of the 

faces of the crack. 
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from the Oxy-frame by the θ-angle. The effective crack axis is the line 

segment A'B', having a half-length, a", given by: 

a' = a t m e 2 } 5 * 

Then, as the external loading is increased, the ratio c is increased and 

the length a' of the crack along the effective axis is increased. It 

suffices an external load of the order of one hundredth of the respective 

modulus of the material to increase the length of the effective crack-

axis by 4 per thousand. Relations (1) and (2) indicate that, in the case 

of pure shear with 3=45° and k=-1.0, there is a single linear 

displacement, normal to the initial crack-axis. Then, points A1 and B' 

lie on the normals to the initial crack (AB) from its tips A and B. The 

angle of rotation of the effective crack axis, λ, is given by 

ί3ηλ = 2σ^/Ε = 2ο. Moreover, to every point of the effective crack-axis 

correspond two points on the final ellipse, defirved by line-segments, 

parallel to the Ox-axis. Thus, the middle point 0 of the crack goes to 

points 0' and 0" respectively, and point C on the initial crack is 

displaced to point C Q on the effective axis and then to points C' and 

C" on the final ellipse. It is obvious that C n=2cx and C nC'=C„C"= 
o p j , O c O O 

=2c(a - x 2 ) . 

It is worthwhile indicating that point C' corresponds to the upper 

flank of the crack, whereas point C" to the lower flank of it. It is 

then, clear that we have phenomena of overlapping of the faces of the 

crack. It is obvious that this overlapping phenomenon happens for any 

pure shearing loading. 

Discussion and Conclusions 

A study of the form of the displacements along the flanks of an 

elastic internal oblique crack in an infinite plate, submitted to a 

biaxial load at infinity revealed interesting results and paradoxes for 

this basic mode of deformation of the crack, which have up-to-now not 

thoroughly disclosed. The method of analysis was based on the exact 

solution given in closed form by Muskhelishvi1i [1]. 

It was shown that: i) Both flanks of the deformed crack, according 

to the exact solution, are angularly displaced by an angle λ, due to 

their linear terms of displacements, thus defining an effective crack-

axis, whose slope λ depends on the angle of obliqueness, 3, of the crack, 

on the loading step and the mechanical properties of the plate through c, 

and, finally, on the biaxiality factor k. ii) The notion of the effective 

crack-axis disappears for the singular solution, where no linear, common 

for both flanks, displacements exist. Accordingly, the crack-tips are not 

displaced,fact which is unacceptable from the physical point of view. 

111) For the exact solution the non-linear terms of displacements, which 
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make the flanks of the crack either to open, or to close and overlap to 

each other, are elliptic and these displacements are smooth and more 

moderate than the respective displacements derived from the singular or 

the two-term solutions, iv) The linear elastic crack-flank displacements 

may result to overlapping crack flanks. However, the overlapping 

condition in the case of the singular solution which implied that Kj<0, 

differs significantly from the respective one in the case of the exact 

solution. The latter involves not only the geometry and the loading of 

the cracked plate, but also the mechanical properties and the prevailing 

plane-stress or plane-strain conditions. 

The overlapping phenomenon is of great importance, since it defines 

cases, where the basic concept of LEFM, that is the complex stress 

intensity factor, which is expressed as the vector sum of the Kj- and 

Kjj-components, should be reconsidered, since in the cases of 

overlapping flanks the initial boundary conditions of the problem are 

strongly invalidated, v) All mode-II loaded internal cracks present 

from the beginning of the loading of the plate overlapping flanks, and 

therefore these cracks belong to the physically unacceptable solutions, 

vi) Addition of friction forces of constant amplitude along the crack 

flanks, which were assumed as a remedy in geomechanics, is unrealistic, 

since neither the components of stresses and strains along the flanks 

may be of constant value, nor they remain constant during loading, 

since they depend on the three physical parameters 3,k and c. v i i ) All 

these phenomena are the consequences of the deformations of the crack 

flanks mainly due to the shear loading of the plate. Then, it becomes 

evident that a new confrontation of the problem of the sheared internal 

crack should be undertaken, which may consider the influence of the 

eventual in-plane and also the out-of plane [7] overlapping of the flanks 

of a sheared crack. 
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