P.S.

MODIFICATIONS IN THE CONCEPT OF THE STRESS
INTENSITY FACTORS DUE TO INFLUENCE OF SHEAR

Theocaris

Department of Engineering Sciences
Athens National Technical University

P.0.

Box 77230, Athens 175-10°, Greece

Based on a recent extensive study of the state of displacements
of the flanks of an internal elastic crack in an infinite plate
submitted to in-plane loading at infinity it was shown that the
influence of shear in the plate imposes various limitations and
eventual modifications in our concepts of the components of the
stress intensity factors (SIFs).

Since pure shear of the plate results in an immediate non-
congruent overlapping of the flanks of the crack, there is a need
for a reliable solution tackling the problem of pure shear with
the crack flanks closed for defining the real KII-mode. In mixed
Ky- and KII-modes of deformation the existing definitions for
SIFs are valid only in the domain of loading of the plate, where
the contribution of the KI-mode counterbalances the deleterious
effect of the KII-mode, in closing the crack flanks, and
guarantees their non-overlapping.

For the plane-stress solution the development of the out of
plane deformations makes the introduction of -the KIII-mode
compulsory in describing the state of stress at the crack tip.
Moreover as soon as a shear mode of deformation exists, there
develops also a round-about displacement of the lips of the
crack, called lip-sliding, which brings progressively new points
from behind the initial crack tip to the instantaneous position
of a transient crack tip as the elastic loading of the plate is
increased. Simultaneously, the decrease of the curvature at the
crack tip of the ideal crack which is deformed to an ellipse
results in a reduction of the SIFs and the necessity of
introducing instead the notion of a stress concentration factor
(SCF). A11 these phenomena are reviewed in this paper, based on
the exact solution of the internal crack as this is described

by Muskhelishvili's solution.
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Introduction

Little attention was paid up to now in the linear elastic fracture
mechanics (LEFM) to the displacement fields of the flanks of an internal
crack in an elastic infinite plate submitted to an in-plane biaxial load
at infinity, although closed-form solutions exist for this particular
problem based on the Muskhelishvili complex stress function theory [1].

Since the definition of the KI’KII
intensity factor (SIF) in LEFM is based up-to-now to the expressions of
stresses at the crack tip as those are derived from their one-term
singular expressions of the series expansion of the 0(z), the

and KIII components of the stress

mathematically ideal crack is assumed at its initial undeformed state and
the only displacements evaluated until recently were the displacements of
the initial crack-tip based either on the singular, or on the so-called two-
term solutions. These displacements gave a rather erroneous picture of
the deformed crack since they did not reveal the exact modes of
deformation of the flanks of the elastic crack.

The author and his co-workers [2] presented recently a complete and
exact study of the shape of the deformed elastic crack based on the exact
solution given by Muskhelishvili [1]. They gave the equation of the shape
of the ideal crack which when deformed becomes an ellipse with its major
axis angularly displaced relatively to the axis of the initial crack.
They established also the 1ip-siiding phenomenon of the flanks of the
crack due to shear and defined the round-about rotation of the flanks.

The particular characteristics of the case of a central crack
loaded under pure shear conditions were described in ref.[3]: It was
shown that for a pure shear loading there is always a non-congruent
overlapping of the crack flanks which means that opposite points on the
lips of the crack before deformation are displaced during deformation in
opposite directions so that the touching pointsof the 1ips come from
different pairs of points of the undeformed crack. The elliptic shape of
the deformed crack given by the exact solution was compared with two-
branch parabolic shapes derived from the singular and the two-term
solutions, The lip sliding phenomenon, which has its cause to the shear
loading, and the variation of the curvature of the crack deformed shape
at its tip were studied extensively [4].

The deformed crack under tension or compression without shear was
studied in refs.[5,6]. In the loading of the crack flanks exempt of
shear makes the components of their displacement to depend only on one
term. Thus, u-displacements along the crack axis are varying only
linearly whereas u-displacements normal to the crack axis are functions
of the elliptic term. In this way there is no angular displacement of
the crack during deformation but there is always change (positive or
negative) of the crack length of the elliptic shape of the crack. The
same happens also in the case of shear. The crack length remains
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unaltered only for hydrostatic tension or compression of the plate. This
variation of crack length holds also for shear and the singular solution
and this corrects the fallacg that the crack length under pure shear
remains unchanged [3].

If the plate is extended the crack flanks are always open with the
crack length larger than its initial length for k>1.0 (where k is the
biaxiality factor, 02=ko1 the external loading of the plate) and smaller
than this length for k<1.0. On the contrary, for compressive external
loading the crack lips close congruently and there is no stress intensity
factor. This phenomenon was proved also experimentally for static and
dynamic loading modes [6,9].

Reference [7] indicates that if the plate is loaded under mode II
and it is under plane stress condition the deformation of the crack
flanks not only follow the phenomena described in refs.{3,4], but also
develop out-of-plane shears which engender KIII-modes of deformation.
Qut-of-plane displacements of the flanks were studied, by using the
exact solution based on complex stress potentials and conformal mapping,
indicating that antisymmetric twisting displacements are appearing in
opposite directions for opposite.flanks with maxima (positive or
negative) at the vertices of the elliptic shapes of the deformed crack.

Experimental evidence with rubber membranes, used in order to show
spectacularly the phenomena developed around the cracks due to shear,
indicated qualitatively the deformation of the ideal crack to an
ellipse with its axis angularly displaced from its initial position by
a double rotation, the one due to the linear term and the other due to
the elliptic term of the components of the in-plane displacements., The
slip-sliding phenomenon was also indicated by scribing an isometric
network before deformation and photographing its distorted shape during
deformation [8].

In this paper the consequences of these phenomena, especially those
due to the shear component of loading, are studied on the accurate
evaluation of the components of the stress intensity factor and
conditions are established for their validity. Suggestions were also
advanced for remedying the incompatible combinations of loading creating
overlapping of the crack flanks and thus invalidating the initial elastic
solution,

Theoretical Considerations

We consider an infinite elastic plate, containing an internal crack
of length 2a, loaded at infinity with principal stresses 0o and ko0
(Fig.1). The origin 0 of the Oxy-coordinate system is placed in the
middle of the crack with the Ox-axis directed along the crack-axis, and
the principal loading axis (0Oy,) subtending an angle 3 with the Ox-axis.
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Fig. 1

The geometry of a biaxially loaded internal slant crack of
length 2a.

The elastic displacements along the crack-1lips for the
abovementioned geometry have been derived in ref.[2] from the appropriate
complex potentials of Muskhelishvili, assuming no rigid-body rotation at
infinity, as follows

ui(x) = c{(l-k)(cosZB)xt(1-k)(sin26)(a2-x2)%} (1)
ui(x) = c{(l-k)(sinZB)x:[(1+k)-(1-k)cosZB](a2-x2)%} (2)
The pair (ui,ui) denotes, for every value of the variable x in the

interval [-a,+a], the Cartesian components of the displacement vector on
the upper crack-flank and (uf,uf) the respective components on the lower
one. The multiplicative factor ¢ is defined by c=oO/E and c=00(1-v2)/E
for plane-stress, or plane-strain conditions, respectively. In these
relations E and v are the Elastic modulus and Poisson's ratio of the
material of the plate, whereas k is the biaxiality factor.

Relations (1) and (2) represent the exact forms for the displacements
at every point along the upper or lower crack flanks without any regional
limitation and, therefore, they are suitable expressions for the
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investigation of the mechanism of deformation and of the shape of the
whole deformed mixed-mode crack.

The linear terms of the displacements in relations (1) and (2) have
the same sign for both lips. Thus, they lead to a crack deformation which
leaves the crack flanks straight, passing through the origin of the
coordinate system. On the contrary, the non-linear terms, which have
opposite signs for the upper and lower crack flanks, lead to an opening,
or eventual overlapping, of the crack flanks and to a curved deformed
crack.

It must be pointed out that any solution of the problem predicting
overlapping lips must be excluded, because in such a case the initial
boundary conditions of stress-free crack flanks is violated.

Figure 2 shows the components of displacement and how an initial
crack, AB, of normalized length 2a, deforms. In this figure the three
parameters of the crack are B=70°,k=-0.50 and ¢=0.25. The crack tips
move to the points A' and B', according to the linear terms, and the
generic point C moves to the point C'. Then, the non-linear terms lead
to an opening and sliding of the lips and the double point C' splits to
the point C, on the upper and C_ on the lower deformed flank.

We observe that the opening and sliding of the flanks does not start
from the initial crack AB, but from the straight segment A'B', Thus, the
segment A'B' deserves the name "effective crack-axis”, and the deformed
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Fig. 2

The geometry of the displacements and the resulting deformed crack
for p=70%, k=-0.50 and c=0.25.
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crack is skew symmetric with respect to this effective crack-axis.
Moreover, because the effective crack-axis in general presents an angular
displacement relatively to the initial crack-axis, both non-linear u- and
u-displacements produce an opening and a sliding effect as well.

While the exact displacements depend on a self-similar manner on the
loading level defined by the factor c or, equivalently, on the principal
stress 9 at infinity the shape of the deformed crack does not follow the
same dependence, This is because the parametric equations of the shape of
the crack are depending on the displacements through the relationships:

xg = x+ue(x)
e e (3)
Yo = v (x)

where the x-parameter takes values in the interval [-a,+a]. Thus, only
the y-coordinates of the deformed crack-lips are proportional to the
0° and this is not true for the respective x-coordinates.
Moreover, the shape of the deformed mixed-mode crack cannot be

loading o

investigated in terms of the stress intensity factors Ky and Ky, which
are proportional to 95 Such an investigation demands to be made in
terms of three parameters, and we have chosen for this purpose the
natural parameters. of the problem, i.e. c,B and k (see Fig.l).

A systematic analysis of the exact shape of the deformed crack
leads to the following results [2]:

i) The exact shape of a deformed crack is always an ellipse. This
ellipse degenerates into a straight segment, or even presents overlapping
libs for some combinations of the parameters c,B8 and k.

ii) The major axis of the ellipse is angularly displaced by an angle
8 with respect to the initial crack. For non overlapping flanks angle 8
is given by [2]:

sin28 = 2c(1-k)sin2B{[1-c(1+k)1%+4c(1-k)[1-c(1+k)Icos2B+4c?(1-k)?% %

Thus, angle 6 takes values in the interval [-n/2,n/2] and it is positive
for anticlockwise rotations and negative for clockwise rotations.
Moreover, the angle 6 for open crack flanks is always absolutely greater
than the angle A of inclination of the effective crack-axis with respect
to the initial crack.

iii) Points A' and B', where the crack tips are displaced after
deformation, do not coincide, in general, with the points of maximum
curvature of the ellipse.

The inclination A of the effective crack-axis is given by [2]:

c(1-k)sin2B (5)
1+c(1-k)cos2PB

tank =

and this slope equals to angle 8 only if the deformed crack is a
straight segment.
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iv) The lengths ay and a, of the major and minor semi-axes of the
ellipse respectively, which represent!the exact length and the maximum
opening of the crack after deformation, for not overlapping lips are
given by [2]:

a

1
= Lre(I+k) o b Lo r1-c(14k) 1%+4c(1-k) [1-c(1+K)]cos2B+4c?(1-k) T % ,

uz r4 L

(6)

where the quantity a; refers to the (+) sign and a, to the (-) sign.

v) The x-coordinates of the points on the initial crack, which
after deformation become the points of maximum curvature of the
ellipse, are given by:

Xq = +tacoso (7)

where 8 is defined by Eq.(4). The (+) sign corresponds to a point on
the upper crack-lip, if the angle 6 is positive, or on the lower one
if © is negative, while the opposite holds for the minus sign in
relation (7).

We may remark that the length of the deformed crack and its
opening, as well as the slantness of the deformed mixed-mode crack can
be defined in a natural way from the quantities a;,3, and the angle 6
of the exact solution. These quantities, which concern the whole
deformed crack, cannot be derived from the approximative solutions,
unless we impose definitions of these quantities in an inadequate way.

Conditions of Overlapping of the Crack Flanks

The analysis of the exact shape of the deformed mixed-mode crack
allows the investigation, in a faithful manner, of the overlapping
phenomenon of the crack flanks.

The linear elastic solution of the first fundamental problem for
a mixed-mode crack, as well as any approximation of this solution, is
meaningful as long as the predicted displacements result to an open
deformed crack, or, at least, to a deformed crack which is a straight
segment and its lips remain in simple contact. In the opposite
situation where the predicted displacements yield overlapping crack
flanks, the boundary conditions for the stress-free crack flanks are
violated and the solution of the problem must be reconsidered.

The analysis of the shape of the deformed crack has shown that the
deformed crack may be degenerated to a straight segment for the exact,
as well as for the approximate solutions [8], and there is no possibility
to obtain a piecewise overlapping of the crack-lips or a partially closed
crack. Thus, the limits of validity of anyone of these solutions are
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given by the respective condition that the deformed crack degenerates to
a straight segment presenting touching flanks in its full length,

We define first the angle w subtended by the Oy-axis and the
conjugate axis (0_00+) to the effective axis A'0B' of the ellipse in
Fig.2. It may be readily shown that all chords defined by two conjugate
points of the ellipse, for example the segments c,C_and 0,0_ in Fig.2,
are parallel to each other with a constant inclination, w, with respect
to the Oy-axis, given by:

—

K ;
- - (1-k
B R §1+k;fzg Ycos 2B (8)

—

For the exact solution the 1ips of the deformed crack are in touch,
if and only if the non-linear displacements along the crack flanks take
place only along the effective crack-axis. The last condition holds for
a positive slope A of the effective crack, if the angles A and w are
complementary.

Generally, it may be readily concluded that the touching-flanks
condition is equivalent to the condition:

tanwtanh = 1 (9)

where tanw and tanA are given by relations (8) and (5) respectively, So,
the condition (9) in terms of the parameters c,B and k, may be written
as;

cl(1+k)-(1-k)cos2B-c(1-k)2+c(1-k%)cos2B] = 0 . (10)

In another context, it is valid that the deformed crack degenerates
to a straight segment, if and only if the area of the ellipse is zero.
This happens if the product of the lengths ay and a, given by Eq.(6) is
zero, which, after some algebra, yields again the condition (10).

It is worthwhile mentioning that condition (10) does not imply
necessarily that the degenerated deformed crack is situated along the
Ox-axis of the initial crack. There are, indeed, combinations of c¢,B and
k, for which condition (10) is fulfilled and for the same values of c,B
and k the slope A of the deformed straight crack is not zero. Only when
the initial crack is parallel to one of the loading directions (B=00 or
B=900) the degenerated deformed straight crack remains at its initial
position [5].

Limiting Conditions for Touching Crack-Flanks

In the followings we shall investigate the regions in the three-
dimensional parameter space (c,B,k), where the touching flank-conditions
(17) and (19) hold.

Without restricting the generality of the problem we may assume that
the loading factor ¢ varies in the interval [-1,+1], the angle B takes
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values in the interval [0°,90°] and the biaxiality factor k varies from
-» to +=. Large values of the loading factor ¢ above the yield 1imit of
the material invalidate the elastic solution since plastic enclaves
start to develop around the crack tips which evolute and eventually
occupy the whole stress field. Since the theory did not introduce any
restriction concerning the loading level of the phenomena described,it
is valid up to the point of plastic deformation.

However, for microcracks and similar defects inside the stress
field which are strongly constrained by the surrounding elastic material
high loading factors may be operative without violating the conditions
for a totally elastic stress field.

The points in the (c,B,k)-space, for which the condition (10) is
satisfied, constitute surfaces in this parametric space, which separate
regions where the left-hand side (LHS) expression of Eq.(10) is
positive or negative. It may be readily concluded that the regions,
where the above expression is positive, represent (c,B,k)-combinations
for open crack flanks. The opposite is true in the regions where the
left-hand side expression (10) negative, and therefore, in these
regions, the linear elastic solution invalid. Condition (10) satisfied
for c-0. This is the trivial evident case of the unloaded crack. So,
the aboyementioned surfaces possess a common branch the (k,B)-plane
(c=0).

For the exact solution and for c#0 the touching flank condition
(10) is satisfied, if it is valid:

(1+k)-(1-k)cos2B-c(1-k)2+c(1-k?)cos2B = 0 . (11)

This non-trivial part of the touching-flank condition depends on
the c-factor, and so it involves not only the k,B parameters, but also
implicitly the external load 0ps the mechanical properties of the
material, and the prevailing plane-stress or plane-strain conditions as
well. The surface defined by Eq.(11) is not simply connected, but it is
composed of three different branches, whose investigation leads to
unexpected results.

Figure 3 presents these three branches. In this figure the
projections in the (k,B)-plane of the curves are plotted, where the
surface intersects planes with c=const. The family of the curves in the
right-hand side lower part of Fig.3 corresponds to the first branch of
the surface, which is situated in the half space c¢>0, and to the right
of the (c,B)-plane.

Each one of the curves of this family with c>0 begins at a point
ki=(1 + %) of the k-axis and goes asymptotically to B=900 for k- o,
Thus, the first branch of the surface (11) does not intersect the (k,B)-
plane (c=0). The region below the first branch corresponds to cracks with overlapping
flanks. It may be readily verified that for c¢>0 and B=0° k-values smaller
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The overlapping condition in the (k,B)-plane for various c-
values, according to the two-term and the exact solution.

/
than kl + %) represent open cracks, while when k values are larger than

(1 + %) the left and right halves of the respective crack overlap each
other.

The family of the curves in the RHS-upper part of Fig.3 corresponds
to the second branch of the surface (1), which is situated in the half-
space c<0 and to the right of the (c,B)-plane. This second branch,
contrariwise to the first one, does not separate regions in the (c,k,B)-
space with open and overlapping lips. The (c,k,B)-points below and to
the left of this second branch correspond to cracks, for which the
upper and lower 1lips overlap. This happens, for instance, when c=-0.2,
B=90° and k=2.0. If k is increasing and surpasses the value k=6.0, while

=-0.2 and B=90° remain constant, namely if the (c,k,B)-point passes
through the second surface branch, the crack flanks do not open, but
their RHS- and LHS-parts overlap once more to each other. Thus, the
region above the second branch corresponds to doubly overlapping cracks,
and the whole region c<0,k>0 for every B-value corresponds to
unacceptably deformed-cracks.

The family of the curves in the LHS-part of Fig.3 corresponds to
the third branch of the surface (11). The third branch intersects the
(k,B)-plane along a curve, which is obtained from Eq.(11) if we put c=0.
The resulting curve is identical with the intersection of the separating
cylindrical surface for open and overlapping cracks as this is given by
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the singular solution [8]. This cylindrical surface corresponds to
cracks of mode-II deformation.

The points on the third branch of surface of Eq.(11) are now, for
the exact solution, the points corresponding to mode-II cracks. This new
"mode-II" deformed crack has generally a different position from its
respective initial crack.

From this extensive study it is clear that for the exact solution
the rule if a crack is a mode-II crack or not depends not only on the
k- and B-parameters, but also on the c-parameter, that is on the
applied stress Ogs in association with the mechanical properties of the
material and the prevailing plane-stress or plane-strain conditions of
the cracked plate. This dependence is shown in Fig.3, where now the
third branch of the surface of Eq.(11) is not a cylindrical one,
parallel to the c-axis. Indeed, we observe in Fig.3 that the third
branch of Eq.(11) cuts the plane c=1.0 along the vertical line k=0, then
it turns to the left in a helical way, for decreasing c, and intersects
the (c=0)-plane along the curve c=0 which coincides with the separating
curve for the singular solution [8].

Beyond the plane c=0, the third branch for decreasing c's continues
to turn dawnward, but at the same time it warps and evolutes into a sort
of tunnel, which is progressively shrinking with decreasing c's. Finally,
the tunnel terminates at a single point c=-1.0, k=0 and B=0°. This
singular point corresponds to a crack, whose length shrinks to a point,
as one may readily verify from the relations (1) and (2).

The (c,k,B) points in the half space c>0, that lie on the upper and
RHS space of the third branch, correspond to open cracks. On the
contrary, the points in the same half space below and on the LHS space
of the third branch represent cracks with overlapping lips. The situation
is reversed in the half space c<0. In this space the points inside the
"tunnel" represent open cracks, whereas the region outside the "tunnel™

corresponds to cracks with overlapping lips. The cylindrical surface for
c=0 lies below the third branch of the surface (11) for c¢>0, and outside

the "tunnel" for c<0.

The cracks with k=0 and B=0°, i.e. the cracks which are subjected
to a tensile or compressive load parallel to them, present the only
exception of the abovementioned statement. This can be seen in Fig.3,
where the third branch of surface (11), as well as the cylindrical
surface with c=0, cut the (c,k)-p]ane along the c-axis. Both stress
intensity factors, KI and KII’ for such cracks (k=0,B=0°) are zero and
no singular stress fields develop at their tips.

In every other case, where KI=0’ but KIIfO, the novel result of
this investigation of the crack-overlapping problem demands a
reconsideration of the mode-II cracks. In particular, it is an open
question whether a singular stress field develops in the case of the
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pure shear mode-II crack (k=—L0,B=45°), where the crack flanks press
against each other. Moreover, it becomes now doubtful what a critical
KII-stress intensity factor means [10,11],

Then, it is unrealistic to check mixed-mode fracture criteria for
cracks presenting overlapping flanks. This has been already done by a
lot of authors in recent papers..An interesting remark is given in ref,
[12] where the inadequacy of any fracture criterion is stated for
cases where overlapping takes place.

For a further study of the surface defined by Eq.(11) we have
plotted in Fig.4 the contour lines of Eq.(11) for parametric values of
the B-angle. The family of the curves in the right upper part of Fig.4
corresponds to the first branch of Eq.(11). For any B=const. level the
respective curve separates a LHS- and a RHS-region, which correspond to
open and overlapping cracks, respectively.

The family of the curves in the right lower part of Fig.4
corresponds to the second branch of Eq.(11). These curves lie inside
the region c<0 and k>0, i.e. in the region which corresponds to cracks
subjected to compression-compression, and, as we have already mentioned,
these cracks present for every B-angle an overlapping or a double

overlapping.
The family of the curves in the LHS-part of Fig.4 corresponds to
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Fig. 4
The overlapping condition in the (k,c)-plane for various PB-
values, according to the exact solution.
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The overlapping condition in the (c,B)-plane for negative k-
values, according to the exact solution.

the third branch of Eq.(11). It is striking how much different is this
surface from the cylindrical surface with c=0 corresponding to the
singular solution [8]}, which has its equal level lines parallel to the
c-axis. We also observe how abrupt is the slope of this surface close-by
the (c,B)-plane. So, small variations of the biaxiality factor k close-
by the (c,B)-plane may rapidly lead an open crack to one with
overlapping flanks or vice versa.

Figure 5 presents a side-face of the third branch of the surface
of Eq.(11). Here the projections of the curves in the (c,B)-plane are
plotted, where the surface (11) intersects planes with k=const. and
negative. The (c,B)-plane itself (k=0) cuts the third branch along the
c-axis and the vertical line c=1,

Every other curve (k<0) intersects the B-axis, and it divides the
(c,B)-plane together with the B-axis in four areas. The upper RHS area
and the lower LHS one correspond to open cracks for the respective k-
values, while the other two areas represent cracks with overlapping
flanks.

Every horizontal line intersecting the B-axis at the same point with
a (kAkO)-curve lies completely in the areas where for k=k0 the cracks
present overlapping flanks. On the other hand, each one of these

horizontal lines represents a mode-II crack (K =0, K #0), e.qg. the line
SS' in Fig.5 represents the pure shear mode-II crack (k—-1 0,B= 45°).
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Finally, from this detailed analysis of the internal oblique crack
under biaxial loading at infinity it may be concluded that:

Any purely mode-II loaded internal crack presents always overlapping
flanks. Therefore, it belongs to physically unacceptable solutions, thus
necessitating a reconaideration of the initial boundary-condition
problem of the internal crack in an infinite plate.

Fig.6 presents the case of an infinite plate submitted to pure
shear with stresses o_ and -o_ (k=-1.0) at infinity. It contains an oblique
crack AB=2a subtending an angle 8=45° with the loading axes. The amount
of stresses o_ is expressly taken quite high and equal to o _/E=0.25, in
order to show the shape of the deformed crack.

The final shape of the loaded crack is the ellipse with the 0Ox'-
and Oy'-axes as major and minor axes respectively, angularly displaced

- O

0u/E =0.25
k=-10
ay=a/2(142) A =26.58°
az=a/2(1-Y2) 9=2250°

|
L
-

Fig. 6
The geometry of an internal-crack in an infinite

plate submitted to pure shear under plane stress
conditions. The initial crack AB is angularly
displaced to its effective crack axis under load,
A'B', and then deformed to a final ellipse, by
moving its upper lip downwards and its lower lip
upwards, thus creating an overlapping of the
faces of the crack.
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from the Oxy-frame by the 8-angle. The effective crack axis is the line
segment A'B', having a half-length, a', given by:

a' = a{1+4c2}l/2

Then, as the external l1oading is increased, the ratio ¢ is increased and
the length a' of the crack along the effective axis is increased. It
suffices an external load of the order of one hundredth of the respective
modulus of the material to increase the length of the effective crack-
axis by 4 per thousand. Relations (1) and (2) indicate that, in the case
of pure shear with B=45o and k=-1.0, there is a single linear
displacement, normal to the initial crack-axis. Then, points A' and B'
lie on the normals to the initial crack (AB) from its tips A and B. The
angle of rotation of the effective crack axis, A, is given by
tanA=20,/E=2c. Moreover, to every point of the effective crack-axis
correspond two points on the final ellipse, defined by line-segments,
parallel to the Ox-axis. Thus, the middle point 0 of the crack goes to
points 0' and 0" respectively, and point C on the initial crack is
displaced to point CO on the effective axis and then to points C' and

Ca onothg final ellipse. It is obvious that C0=2cxc and COC'=COC“=

=2c(a -xc)%.

It is worthwhile indicating that point C' corresponds to the upper
flank of the crack, whereas point C" to the lower flank of it. It is
then, clear that we have phenomena of overlapping of the faces of the
crack. It is obvious that this overlapping phenomenon happens for any
pure shearing loading.

Discussion and Conclusions

A study of the form of the displacements along the flanks of an
elastic internal oblique crack in an infinite plate, submitted to a
biaxial load at infinity revealed interesting results and paradoxes for
this basic mode of deformation of the crack, which have up-to-now not
thoroughly disclosed. The method of analysis was based on the exact
solution given in closed form by Muskhelishvili [1].

It was shown that: i) Both flanks of the deformed crack, according
to the exact solution, are angularly displaced by an angle A, due to
their linear terms of displacements, thus defining an effective crack-
axis, whose slope A depends on the angle of obliqueness, B, of the crack,
on the loading step and the mechanical properties of the plate through c,
and, finally, on the biaxiality factor k. ii) The notion of the effective
crack-axis disappears for the singular solution, where no linear, common
for both flanks, displacements exist. Accordingly, the crack-tips are not
displaced, fact which is unacceptable from the physical point of view.
111) For the exact solution the non-linear terms of displacements, which
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make the flanks of the crack either to open, or to close and overlap to
each other, are elliptic and these displacements are smooth and more
moderate than the respective displacements derived from the singular or
the two-term solutions. iv) The linear elastic crack-flank displacements
may result to overlapping crack flanks. However, the overlapping
condition in the case of the singular solution which implied that KI<0,
differs significantly from the respective one in the case of the exact
solution. The latter involves not only the geometry and the loading of
the cracked plate, but also the mechanical properties and the prevailing
plane-stress or plane-strain conditions.

The overlapping phenomenon is of great importance, since it defines
cases, where the basic concept of LEFM, that is the complex stress
intensity factor, which is expressed as the vector sum of the KI- and
KII-components, should be reconsidered, since in the cases of
overlapping flanks the initial boundary conditions of the problem are
strongly invalidated. v) A11 mode-II loaded internal cracks present
from the beginning of the loading of the plate overlapping flanks, and
therefore these cracks belong to the physically unacceptable solutions.
vi) Addition of friction forces of constant amplitude along the crack
flanks, which were assumed as a remedy in geomechanics, is unrealistic,
since neither the components of stresses and strains along the flanks
may be of constant value, nor they remain constant during loading,
since they depend on the three physical parameters B8,k and c. vii) A1l
these phenomena are the consequences of the deformations of the crack
flanks mainly due to the shear loading of the plate. Then, it becomes
evident that a new confrontation of the problem of the sheared internal
crack should be undertaken, which may consider the influence of the
eventual in-plane and also the out-of plane [7] overlapping of the flanks
of a sheared crack.
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