
Application of Genetic Algorithms to Transmit Code
Problem of Synthetic Aperture Radar

Fernando Palacios Soto, James M. Stiles and Arvin Agah

Department of Electrical Engineering and Computer Science
The University of Kansas, Lmvrence, KS 66045 USA

ABSTRACT

This paper presents the design and development of a genetic algorithm to
compute an upper bound to evaluate a formal algorithm developed to solve the
transmit code problem of Synthetic Aperture Radar (SAR). The input to the genetic
algorithm is a set of propagation matrices that contain virtual information of the
transformation of a signal transmitted and received by a SAR. The output is an upper
bound approximately 11 times smaller than the results provided by the formal
algorithm. The contributions of this paper are twofold: the upper bound found for the
transmit code problem, and a tool that can be used for further research in similar
domains.

KEYWORDS

genetic algorithms, synthetic aperture radar, soft computing, transmit code problem

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is commonly used to make high resolution
ground maps, and can also be used from earth to map a target in the space if the
target provides the necessary motion—this is called "inverse SAR" (Toomay, 1989).
To form an image, a SAR emits electromagnetic waves to targets in the ground (or

Reprint requests to: Arvin Agah, Professor, Department of Electrical Engineering and Computer
Science, The University of Kansas, Lawrence, KS 66045-7621 USA; Email: agah@ku.edu; URL:
http://people.ku.edu/~agah/

105

Vol. 18, No. 1-2. 2009 Genetic Algorithms to Transmit Code
Problem of Synthetic Aperture Radar

space in the case of inverse SAR) on a specific area. When the electromagnetic signal
bounces back, the SAR's antenna detects a scattered signal (or different signals) from
the different targets. This signal is then processed to extract information about the
targets (Fitch, 1988). One problem with this signal is that if the information about two
different targets is highly correlated, then distinguishing between the two targets would
not be possible. In other words, an ambiguous signal is obtained (Fitch, 1988). The
challenge then is to find a vector known as the transmit code, which when applied to
the information of the targets, minimizes the correlation among targets. Although
several methods for this purpose have been developed (Chung Lin, 2000; Goodman,
2002), their results has not been compared against an upper bound, so their utility is yet
to be assessed. The design of space-time codes and waveforms has become an
important research topic in wireless communication systems, and is beginning to
generate interest in the radar community as well.

A genetic algorithm (GA) is developed to find an upper bound to validate the
quality of the results obtained from an available method (Chung Lin, 2000) to
minimize the correlation between targets. More over, the GA shall be able to be
initiated with good results already found to attempt to find better results when
possible. The development of the GA is performed as described in (Goldberg, 1989).

This paper is organized into five sections. After Section 1 an introduction,
Section 2 provides the required background, and Section 3 describes in detail the
technical approach. Section 4 presents the results obtained during the process, and
Section 5 concludes this paper with a discussion of the utility ofthis paper.

2. BACKGROUND

This section provides the mathematical foundation for the design of optimal
transmit codes, and presents an introduction to genetic algorithms and its design and
implementation.

2.1 Mathematical Foundation of the Transmit Code Problem

A radar sensing problem can generally be described in terms of five fundamental
elements: the radar transmitter, the transmit propagation path, the illuminated
scatterers, the scattering propagation path, and the radar receiver. Specifically, these
elements can be mathematically describe in terms of a linear relation between the
transmit signal function (the input) and the receive signal function (the output). The

106

F.F. Soto, J.M. Stiles, and A. Agah Journal of Intelligent Systems

linear system lying between the input and output consists of three parts: the transmit
propagation path, the illuminated scatterers, and the scattering propagation path.

A Synthetic Aperture Radar (SAR) is generally used for high-quality imaging
applications used for civil and military purposes (Chung Lin, 2000). An SAR
consists of a transmitter and a receiver and may have just a single antenna (Fitch,
1988) — for instance, a single aperture SAR consists of one antenna that serves both
as a transmitter and a receiver. The antenna sends a single signal to earth, and then
the antenna receives back a scatter signal that carries information about the targets
hit by the original signal. A multiple aperture SAR can be seen as an array of SARs
where they sends different signals at different angles and then receive back the
scatter signal from different angles (Chung Lin, 2000).

Once received, the scattered signal is processed to extract information about the
targets. The information about the transformations of a signal emitted by a SAR is
stored as a set of matrices of complex numbers, where every matrix in the set is
known as a propagation matrix (Chung Lin, 2000). These transformations include the
original signal emitted by the transmitter of a SAR and the signal received by the
receiver. Each matrix in the set is denoted as //, , where 1 < ι <, Τ and Τ is the

cardinality of the set of matrices. Using this set of matrices, the received signal by a
SAR over an area can be expressed as:

Where yt is known as the reflectivity of the target; pt is a vector known as the
normalized response from target ι and pt = Hts ; and s is known as the transmit
code and it must be a unity vector; in other words 5 must comply with:

s's = \

The operator s' denotes the conjugate transpose of a vector or matrix, determined
by taking the transpose of matrix, followed by applying the complex conjugate to
each element of the matrix.

Ideally the responses from different targets should be as uncorrelated as
possible. In other words, it is desired that the normalized responses to be orthogonal:

P'PJ = 0 where i # j

107

Vol. 18, No. 1-2, 2009 Genetic Algorithms to Transmit Code
Problem of Synthetic Aperture Radar

Equivalently:

s'H'H s = 0 where i # j

For most practical cases there are no solutions for vector s such that the correlation
between two targets is equal to zero. The problem then turns out to be finding a
vector ί such that the correlation among targets in minimized. For that end, two
criteria have been developed. The first criterion seeks to minimize the total
correlated normalized energy a between a vector pt and all other vectors. It should
be noted that in this paper ι will always be equal to 1 . Therefore, the first criterion
is then defined as:

i-*\ \1\ II··' Μ \p,\
The second criterion tries to minimize the maximum normalized correlation β
between pt and any other vector. This problem is known as the minimax problem.
The second criterion is defined as:

fl--A=rr/^{2,3.4 T}
N kl J

Both criteria are used in the paper to evaluate the outcome of the approached based
on genetic algorithms.

2.2 Genetic Algorithm

Genetic Algorithms (GAs) are defined as "search algorithms based on the
mechanics of selection and natural genetics" (Goldberg, 1989). A genetic algorithm
is a search algorithm combines the features of the fittest members of a population
with a controlled, still randomized, information exchange. For every generation, a
population of solutions represented by strings of bits, which are called chromosomes,
is generated from chromosomes of fit individuals from the previous generation.
Genetic Algorithms efficiently exploit the historical information of previously
generated groups of individuals to improve the next generations. A GA performs its
function by means of two genetic operators: crossover and mutation.

Every invocation of the crossover operator generates two offspring for a new
generation from two individuals selected from the previous generation. This task is
performed in two steps, namely, selection of the two individuals, and performing the

108

P.P. Soto. J.M. Stiles, and A. Agah Journal of Intelligent Systems

crossover. The selection process is done using a biased roulette wheel, where each
individual is assigned a portion of the wheel proportional to its individual fitness
value. Consequently, the random selection of an individual is made on the roulette
wheel; i.e., the wheel is "spun." This selection process gives a higher probability of
being selected to individuals with higher fitness values. Afterwards, the crossover
itself is performed on the two selected individuals, and two offspring are generated.
A number between 1 and the number of bits (or chromosomes) in an individual
minus one is randomly generated. The new offspring are created by exchanging all
the chromosomes from the chromosome in the position of the generated number plus
one to the final chromosome. The crossover process is shown in Fgure 1.

The crossover operator combined with the selection process is the bulk of the
processing power of a genetic algorithm. Although the crossover operator is a very
powerful operator generating new improved individuals, these individuals tend to
lose potentially useful genetic material. In other word, the GA will not search for
better solutions in other places of the solution space rather than where the best-so-far
solutions have been found. It is here where the mutation operator takes place. The
mutation operator forces the GA to search for new solutions in places where the
crossover alone will not search. The mutation process is performed by executing a
walk through all the bits in a string randomly turning a 1 into 0, and vice versa. The
probability of bit change has been shown by empirical studies to be effective at rates
close to one per thousand bits.

Genetic algorithms have been applied to a variety of domains, including radar.
These include radar processing (Aydemir et al. 2003; Boyd & Glass, 1993; Daida et
al. 1995; Filippidis et al. 1999; Li and Ling, 2003; Porsani et al. 2001; Stanhope

Before crossover After crossover

aossover site

String 1

String 2

New String 1

crossover New String 2

Fig. 1: The crossover process.

109

Vol. 18, No. 1-2, 2009 Genetic Algorithms to Transmit Code
Problem of Synthetic Aperture Radar

and Daida, 1998; Yilmaz et al. 2003), radar design (Chambers et al. 1995; Michielssen
et al. 1993; Qian et al. 2001; Sanchez, 1998; Villegas et al. 2004; Weile & Michielssen,
2001); and radar modeling (Hughes, 1998; Hughes & Leyland, 2000; Sarabandi and Li,
1997).

3. TECHNICAL APPROACH

This section describes the technical approach, including the experimental setup
and the experiments conducted during this project. Several tasks were performed to
find an upper bound to validate the effectiveness of an algorithm currently under
development to solve the transmit code problem. Two series of experiments were
conducted using the two criteria described above.

3.1 Experimental Setup

All the implementation and testing for this project was conducted on a computer
model HP Pavilion 775y (HP, 2004) with an Intel® Pentium® (Intel, 2004) 4
processor at 2.40 GHz with 512 MB of RAM and an 80GB hard disk. This computer
runs Windows® XP Professional (Microsoft, 2004). Microsoft Visual Studio vo.O
was used to develop the code for the GA using Visual C++ vo.O. The input to the
program was provided in the form of a MATLAB file that contained a set of H
matrices. Each matrix in the set was generated using random data. Three different
issues were identified, two involving the basic data type used, and one due to the
randomness of the GA. These implementation issues are described later in this
section. After these issues were resolved, series of experiments were performed.
Series of runs were executed for the two criteria. For each run, four files were
generated: two text files and two binary files. The text files contained the results of
each generation and the average and maximum fitness values per generation,
respectively. The two binary files contained all individuals generated per every
generation in a binary format, and some of the best individuals generated during the
run, respectively. The binary file with the best individuals generated during a run
was input to the next run, so that the GA did not have to start with a completely
random population. The best individuals of the last run of each series of runs were
saved and used for validation as a means to evaluate the correctness of the model.
Figure 2 shows an activity diagram of the complete experimental process.

110

F.F. So/o, J.M. Stiles, and A. Agah Journal of Intelligent Systems

GAcoding \

GAissues \
identif ied

More
issues I GAissues
found resolved

/ Select a
' '\ criterion

Perfomn a series of runs \ ; Repeat until
i using the selected criterion I every criterion is

selected

1.
Report results

Fig. 2: Experimental process.

J~CModel
~^i —

Fig. 3:GA code logical structure

3.2 Genetic Algorithm Code Structure

The G A was developed using object-oriented programming. One of the non-
functional requirements for this project was to make the G A code as reusable and
modifiable as possible. To achieve this end, the entire GA code was separated into
two main classes: the genetic algorithm code itself, and the model. The GA code
deals only with the model throughout its interface, whereas the model does not deal
directly with the GA. Therefore, to replace the original model with a completely new

111

Vol. 18. No. 1-2. 2009 Genetic Algorithms to Transmit Code
Problem of Synthetic Aperture Radar

model is easy, and the GA will work fine; as long as the new model adheres to the
interface required by the G A. Figure 3 illustrates the logical structure of the G A code
using the UML notation (Rumbaugh, 1999).

The GA code is contained within a class called CGAClass. The model is
enclosed by the class CModel. The CModel class is made up of one static and one
non-static part. The static part of the CModel class contains the invariants of the
class. For instance, the set of all H matrices is the same for all instances of CModel.
The non-static part of CModel is composed of the attributes that are object-specific;
for example, the vector s and the resulting value of the model. A CGAClass instance
is responsible for initializing and deleting the static part of CModel. A CGAClass
object is also in charge of coordinating the creation of an initial population as well as
of evolving the initial generation to create new generations. Another task of a
CGAClass instance is assigning a fitness value to each individual of each generation.
A CGAClass object must implement all the GA elements described previously, in
addition to methods to initialize and delete the static part ofUieCModel class.

The CModel class is responsible for allocating and deallocating memory for the
chromosome arrays that a CGAClass object uses during generation evolving;
because only the CModel class knows how many bytes in memory are required to
allocate a complete array of chromosomes generated from the variant part of the
CModel class. A CModel object is also in charge of converting the model
representation into an array of chromosomes and vice versa. Finally, the CModel
objects are responsible for evaluating the model to compute the model value that will
be evaluated by a CGAClass instance, which in turn will assign a fitness value to that
model value. Figure 4 shows the complete logical structure of the model imple-
mentation using UML notation. The asterisks denote zero to many relations. The
diamonds are utilized to express aggregation relations, where the class at the end of
the diamond contains the class at the other side. The triangle denotes a specialization

Fig. 4: Model logical structure.

112

F.P. Soto, J.M. Stiles, and A. Agah Journal of Intelligent Systems

relation, where the class at the end of the triangle is a specialization of the class at
the other end.

On the client's side, a client may be an application, window, dialog, system, etc.
The client is responsible to initialize the parameters of die G A, ask the GA to create
the initial generation and evolve the present generation, and process the results from
the GA for every generation. Figure 5 illustrates the relationship among the client,
the CGAClass objects, the CModel objects and the CModel class by means of a
sequence diagram.

Execute once
for every
generation
except Init ial

Init ial izeParameter

: CModel CModel class

Initial Generation •̂

Execute once tx
for each
individualm in
initial — '
generation "--» ,

Eval

~- .*•v«=^ ·
EvolveGeneratlon

PerformC

Eva

<

1
1

InitializateModel

GenerateChromosomeArray
" -κ **̂

* -· — GeTieratelndivldual••̂ -^

GetModelValue

lateGeneration

ConvertModelToChro/aoSornes
, ·'" """ **

MssOverAndMutation s'

< /
ConvertChromosomesToModel^j.

. ateGeneration

DeleteChromArrays

DeleteModel

1
1

^Ί ·h— ̂
11
1
1

Execute once t\
for each
individual in

ff present
generation

Execute for C^
each

. . — - ind iv idua l

r -^

* ^
\

Fig. 5: Sequence diagram of the relationships between the client, CGAClass objects,
CModel objects, and CModel class.

113

Vol. 18, No. 1-2, 2009 Genetic Algorithms to Transmit Code
Problem of Synthetic Aperture Radar

3.3 Implementation Issues

Three implementation issues were discovered during the experimentation and
testing of the GA code. Because these issues are important and could be encountered
by others performing similar work, they are described in this paper. The first issue
was caused by changing the binary representation of the basic data type used to
represent the complex numbers directly when calling the crossover or mutation
operations. The second issue was caused by the limited range of this basic data type.
The last issue was caused by the restrictions of the model. In this section, these
issues and their resolutions are presented.

3.3.1. Changing the binary representation of the basic type. To represent a
complex number, the number has to be associated with a programming language's
basic type; one for the real part and one for the imaginary part. The basic type that
was used in this project is the double precision floating-point type or double type.
Microsoft® Visual C++ uses the IEEE-754 standard (IEEE, 1985) to represent
floating-point type. This standard includes some singular values such as NaN (Not a
Number) QNaN (Quiet NaN) and Indeterminate. Since the GA can alter any bit in
the binary representation of a number, it is possible that the resulting value after
converting the binary representation of a number back to the representation of model
be one of these singular values. This issue was solved by eliminating the individuals
that contained such singular values after converting them into model representation.

3.3.2. The range of the basic type. One of the operations a vector must provide
to implement the model is magnitude calculation. The magnitude operation returns a
double value; and the magnitude of a vector is used to normalize a vector and to
compute the value of the model. Even though a double type (the largest floating-
point number in C++) was used to compute the magnitude of a vector, some times
during experimentation, the limits of a double type were reached. Every time this
limit was exceeded, the magnitude method returned infinity (either negative or
positive infinity), causing the elements of a vector to become indeterminate during
the normalization process, resulting in a non-converging run of the algorithm.
Therefore, individuals that yielded an infinite magnitude had to be eliminated.

3.3.3 The restrictions of the model. One restriction of the model is that every
vector s must be a unity vector. In other words, the result of computing the product
of the conjugate transpose of the vector and the vector itself must be equal to 1. The
primary goal of the GA presented in this paper is to compute a vector j that
minimizes the correlation between certain matrices. Due to the randomness of the

114

F.P. Solo, J.M. Stiles, and A. Agah Journal of Intelligent Systems

crossover operator, obtaining vectors that meet the unity restriction is virtually
impossible. This was accomplished by normalizing vector s after transforming the
chromosomes array back into the model.

3.4 GA Experiments

Two series of experiments were performed, corresponding to the two criteria
described earlier. Each series comprised 35 runs, with 100 generations per run and a
population size of 5000 per generation. The input included 10 H matrices with 100
rows and 8 columns each. To comply with the matrix multiplication operation, the s
vectors had to be row vectors of 8 elements each. This vector cardinality resulted in
chromosome arrays of 1024 chromosomes (or bits); provided that a double type size
for Microsoft Visual C++ v6.0 is 8 bytes. The CGAClass was set up to minimize the
value of the model with a minimum value of zero and a maximum value of 1. The
probabilities of crossover and mutation were 85% and 0.1%, respectively. Each
series of executions lasted an average time of 12 hours.

For every run, four files were generated: two text files, and two binary files. The
first text contained all vectors generated per generation, and the fitness value and
model value associated with each vector. The objective of this file was to keep a log
of each program's execution for analysis purposes. The second text file included the
average and maximum fitness values per generation of a run, and the generation
identification number which was a consecutive number in the range of 1 to the total
number of generations. This file was input to a spreadsheet processor to generate
charts to validate the effectiveness of the GA.

The first binary file contained all vectors generated during a run and their
associated model value. This file was used for selecting the best individuals among
the entire population. Although the second binary file had the same structure as the
first one, its objective was somewhat different. This file can be seen as an historical
file that retained the best individuals generated during a series of run. To select the
best individuals, the content of the two files were compared. This process involved
merging of the two binary files, resulting in a binary file containing an ordered
subset of the total elements after the merge. Once created, this historical file was
input to the next run of the G A so that the initial generation of a run did not have to
be completely random. Moreover, this approach ensured that the best individuals
found during a run would be at least as good as the best individuals of the previous

115

Vol. 18. No. 1-2, 2009 Genetic Algorithms to Transmit Code
Problem of Synthetic Aperture Radar

execution. By doing this, obtaining much better individuals in a run was possible,
rather than when the initial population of a run was generated randomly.

3.5 Final Outcome

After a series of executions were performed, the historical binary file described
in the prior section was converted into a MATLAB file format containing only s
vectors in the file. Each MATLAB file (used for validation of the models operations)
included a matrix whose number of rows was the number of elements in each vector
s, and the number of columns was the number of vectors in the historical file.
Therefore, each column of the matrix was a vector of complex numbers representing
a complete vector s. The first column in the matrix had the best vector s generated
during a series of runs.

4. RESULTS

This section presents the results of experiments, beginning with assessing the
effectiveness of the G A by showing the progress of the fitness values with different
processes to create the initial generation of the GA. Then, several of the results
obtained by the GA are compared with those obtained using an algorithm based on
the methodology described in (Chung Lin, 2000). In successive references this is
called the formal algorithm. The development of such an algorithm is in progress.

4.1 The Effectiveness of GA

To assess the effectiveness of the GA, we analyzed the results, as shown in
Figures 6, 7, and 8. The figures illustrate the typical progress of the maximum fitness
values and average fitness values during a series runs of 100 generations with 1000
individuals per generation, using three different methods for generating the initial
generation. The probabilities of crossover and mutation were set to 85% and 0.1%,
respectively.

Figure 6 was generated with data obtained from a run when the entire initial
generation is random. The maximum fitness value (MFV), shown by the solid line,
exhibits very good levels from the first generation, meaning that every generation has at
least one strong individual with a very good fitness value. The average fitness value
(AFV), shown by the dashed line, exhibits a good performance as well. The AFV has
an upward trend, i.e., in every GA cycle, the next generation was steadily improved.

116

P.P. Sato. J.M. Stiles, and A. Agah Journal of Intelligent Systems

Figure 7 was generated from the information extracted from a run where some
individuals of the initial generation are the best individuals from the previous run. In
other word, this instance exemplifies the progress of the fitness when the initial
generation is partially random. As it can be seen, both the MFV line and the AFV
line are moderately shifted up. The quality of every generation in this run was better
that the one of the previous run.

Figure 8 illustrates the case when the initial population is entirely constituted by
the best individuals of the previous run. The MFV line shows a constant trend and
was slightly shifted up. In contrast, the AFV line goes down during the first
generations and then it remains approximately constant. Although it seems that the
overall quality of the AFV is lowered, the level of the AFV was improved from the
one in Figure 7. The drop in the first generations is explained by the quality of the
initial generation. Since the initial generation was generated from the best
individuals from the previous run, the overall quality of this generation stronger than
the one of the following generations. The general quality of the AFV in this run was
better that the one of the previous run. We concluded that the G A developed during
this project yielded good results.

Progress of the Fitness Values per Generation

0.95

0.9

I

0.8 -·-

0.75

p~ · Average 1
[^•—Maximum 1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 $5 69 73 77 81 85 89 93 97
Generation

Fig. 6: The fitness value when the initial generation is totally random.

117

Vol. 18. No. 1-2, 2009 Genetic Algorithms to Transmit Code
Problem of Synthetic Aperture Radar

Progress of the Fitness Values per Generation

0.95

0.8

- - Average
Maximum

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
Generation

Fig. 7: Progress of the fitness value when the initial generation is partially random.

Progress of the Fitness Values per Generation

0.9

J

- Average ι
—•Maximum I

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
Generation

Fig. 8: Progress of the fitness value when the initial generation is generated from the best
individuals of the previous run.

118

P.P. Soto. J.M. Stiles, and A. Agah Journal of Intelligent Systems

TABLE 1

GA And Formal Algorithm Results

Vector s from GA

-0.0272 - 0.1572

-0.5866-0.13161

0.1363+0.4317i

0.5844 -0.0632Ϊ

0.1244 +0.087Ϊ

-0.0346-0.1554!

-0.0916 -0.0446Ϊ

0.0021 +0.0625Ϊ

a = 0.0028

β = 0.0011

Vector s from model

-0.0805 -0.15861

-0.0057 + 0.0395Ϊ

0.0102 +0.0621Ϊ

0.1319-0.0059i

0.0317 -0.3372

-0.5033 +0.0876Ϊ

0.6683 +0.00001

-0.1514 +0.3164Ϊ

a = 0.0313

β = 0.0117

4.2 Analysis of the Results

In this section, the results obtained by the GA are compared with the results
obtained by the formal algorithm. Table 1 shows the best vector s found by the GA
compared with the best as computed by the formal algorithm. From Table 1 shows
that the values for both α and β from the GA were smaller that those computed by the
formal algorithm. Noteworthy is that the objective is to minimize these vales. For
instance, both GA's α and β are approximately 11 times smaller than the values
computed by the formal algorithm. Although better values were found by the GA, the
GA method should not be used as a replacement of the formal algorithm for two
reasons: (a) a GA is not suited for real-time applications because of time issues, and
(b) there is no guarantee that the same value will be found after every run (or series
of executions). For instance, the G A found the vector s presented in Table 1 during a
series of runs that lasted more than 20 hours, where as the formal algorithm took a
minute to produce its output. Therefore, the values obtained by the GA must be used
as their original objective: to serve as upper bounds.

Consequently, more research is needed to improve the formal algorithm
outcomes and integrate the strengths of the G A method with the formal method.

119

Vol. 18, No 1-2. 2009 Genetic Algorithms to Transmit Code
Problem of Synthetic Aperture Radar

5. CONCLUSIONS

The objective of this project was to find an upper bound to validate the formal
algorithm based on Chung Lin (2000) for the transmit code problem of Synthetic
Aperture Radar. As shown, the upper bounds found for both criteria α and β were
approximately 11 times smaller than the actual values found by the formal algorithm.
As a result, we concluded that more research is needed to improve the formal
algorithm to obtain at least the same results as those obtained from the GA.

The contributions of this project include finding an upper bound to validate the
existing formal algorithms and developing a set of reusable and validated classes that
can be used as a tool for further research in application of GA to radars.

REFERENCES

Aydemir, M.E., G nel, T., Erer, I. and Kurnaz S. 2003. A novel approach for
synthetic aperture radar image processing based on genetic algorithm.
Proceedings of International Conference on Recent Advances in Space
Technologies RAST2003 , November 2003, Istanbul, Turkey, 351-4.

Boyd, R.V. and Glass, C.E. 1993. Interpreting ground-penetrating radar images
using object-oriented, neural, fuzzy, and genetic processing. Proceedings of
SPIE, 1941, 169-80.

Chambers, B., Anderson, A.P. and Mitchell, R.J. 1995. Application of genetic
algorithms to the optimisation of adaptive antenna arrays and radar absorbers. In
Proceedings of the First International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications, Sheffield, UK, September
1995,94-9.

Chung Lin, S. 2000. Design of Space-Time Transmit Codes for Optimizing Multi-
static Radar Performance. Technical Report 18221-2, University of Kansas,
Center for Research, Inc.

Daida, J.M., Hommes, J.D., Ross, S.J. and Vesecky, J.F. 1995. Extracting curvilinear
features from synthetic aperture radar images of Arctic Ice: algorithm discovery
using the genetic programming paradigm. Proceedings of the 1995 International
Geoscience and Remote Sensing Symposium: Quantitative Remote Sensing for
Science and Applications, July 1995, Firenze, Italy.

120

P.P. Soto, J.M. Stiles, and A. Agah Journal of Intelligent Systems

Filippidis, A., Jain, L.C. and Martin, N.M. 1999. Using genetic algorithms and
neural networks for surface land mine detection. IEEE Transactions on Signal
Processing, 47(1), 176-86.

Fitch, P.J. 1988. Synthetic Aperture Radar, New York, Springer-Verlag, Inc.
Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization, and Machine

Learning, Reading, Massachusetts, Addison-Wesley Publishing Company, Inc.
Goodman, N.A. 1995. SAR and MTI Processing of Sparse Satellite Clusters. M.S.

Thesis, Department of Electrical Engineering and Computer Science, University
of Kansas.

Hughes, E.J. 1998. Radar Cross Section Modelling using Genetic Algorithms. PhD
thesis, Department of Aerospace, Power, & Sensors, Cranfield University, Royal
Military College of Science, Shrivenham, UK.

Hughes, E.J., and Leyland, M. 2000. Using multiple genetic algorithms to generate
radar point-scatterer models. IEEE Transactions on Evolutionary Computation,
4(2), 147-63.

IEEE. 1985. ANSI/IEEE Standard 754, IEEE Standard for Binary Floating-Point
Arithmetic, IEEE, New York.

Li, J. and Ling, H. 2003. Use of genetic algorithms in ISAR imaging of targets with
higher order motions. IEEE Transactions on Aerospace Electronic Systems,
39(1), 343-51.

Math Works 1999. MATLAB. The Math Works, Inc.
Michielssen, E., Sajer, J.-M., Ranjithan, S. and Mittra, R. 1993. Design of

lightweight, broad-band microwave absorbers using genetic algorithms. IEEE
Transactions on Microwave Theory and Techniques, 41(6), 1024-31.

Porsani, M.J., Stoffa, P.L., Sen, M.K. and Chunduru, R.K. 2001. Fitness functions,
genetic algorithms and hybrid optimization in seismic waveform inversion.
Journal of Seismic Exploration, 9, 143-64.

Qian, J., Wang, X., Wu, R. and Pei M. 2001. The multi-zone scheme for designing
radar-absorbing materials using GA. Proceedings of the Genetic and Evolu-
tionary Computation Conference Late-Breaking Papers, San Francisco, CA,
347-51.

Rumbaugh, J., Jacobson, I. and Booch, G. 1999. The Unified Modeling Language
Reference Manual, Addison-Wesley, 1999.

Sanchez, J.L.M. 1998. Radar Waveform Design using Genetic Algorithms.
Dissertation, The University of Texas at El Paso.

121

Vol. 18, No. 1-2, 2009 Genetic Algorithms to Transmit Code
Problem of Synthetic Aperture Radar

Sarabandi, K. and Li, E.S. 1997. Characterization of optimum polarization for
multiple target discrimination using genetic algorithms. IEEE Transactions on
Antennas and Propagation, 45(12), 1810-7.

Stanhope, S.A. and Daida, J.M. 1998. Genetic programming for automatic target
classification and recognition in synthetic aperture radar. In Proceedings of the
Fifth International Conference on Genetic Algorithms, San Mateo, CA, Morgan
Kaufmann, 303-9.

Toomay, J.C. 1989. Radar Principles for the Non-Specialist, New York,Van
Nostrand Reinhold.

Villegas, F.J., Cwik, T., Rahmat-Samii, Y. and Manteghi, M. 2004. A parallel
electromagnetic genetic-algorithm optimization EGO application for patch
antenna design. IEEE Transactions on Antennas and Propagation, 52(9).

Weile, D.S. and Michielssen, E. 2001. The control of adaptive antenna arrays with
genetic algorithms using dominance and diploidy. IEEE Transactions on
Antennas and Propagation, 49(10), 1424-33.

Yilmaz, A.S., McQuay, B.N., Wu, A.S. and Sciortino, J.C. 2003. Evolving sensor
suites for enemy radar detection. Proceedings of the Genetic and Evolutionary
Computation Conference, Chicago, IL, Springer-Verlag.

122

