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ABSTRACT 

This paper examines the current process of clustering gene-expression 
time-series data and proposes a novel application of filtering techniques with 
the intention of reducing the noise that is commonly found in this type of 
data. Currently, most noise reduction that is performed on gene-expression 
data is restricted to just individual points of expression, such as the removal 
of background noise. This paper proposes that multiple samples of each gene 
can be treated as a waveform and therefore, such standard wave-smoothing 
techniques as a moving average or Fourier transform filtering can improve the 
quality of the data. This hypothesis has been tested on a synthetic, human 
herpesvirus 8 and yeast-cell-cycle gene-expression experiments. The paper 
illustrates that the use of these techniques generally improves the results of 
clustering the dataset, illustrated by contrasting the quality of the clusters 
generated by fc-means, partitioning around medoids, and hierarchical-clustering 
algorithms. These improvements are demonstrated using various techniques, 
including homogeneity, separation, and a weighted-kappa based metric. The 
clustering results are also verified biologically by contrasting the effect of 
filtering on common proximity metrics used by clustering algorithms and then 
verified against domain knowledge. 

Reprint requests to: Paul D. O'Neill, School of Information Systems, Computing 
and Maths, Brunei University, Uxbridge, Middlesex, UB8 3PH. U.K.; e-mail: 
paul.oneill@brunel.ac.uk 
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1. INTRODUCTION 

Microarray technology (Moore, 2001) is in its infancy and is still very 

expensive and time consuming, leading to experimental results that are often 

limited in the number of sample points and lack the rigorous error checking 

and re-testing that is more common in other areas of experimental research. 

This drawback means that before these results are analyzed, every step should 

be taken to 'clean' the data, using all the available tools and information. 

Recently, more interest has been shown in the processing of the Microarray 

images, from image processing methods (Kooperberg et al., 2002) to the 

development of new clustering algorithms, such as Cast (Ben-Dor at al., 

1999), and the use of support vector machines (Brown et al., 2000). This 

paper looks at using wave-processing techniques on gene-expression time-

series data to reduce the impact of erroneous sample points and in doing so, 

give us more confidence in the results obtained from the analysis of such 

experiments. 

This paper proposes treating the expression profiles as waveforms rather 

than the current approach of correcting for errors individually on each 

expression point in the gene's profile. This approach allows for the appli-

cation of other error reduction techniques, such as those more commonly used 

in filtering and reconstruction of digitally stored analogue signals. The paper 

takes a preliminary look at two such methods, a moving average and a Fourier 

transform filter (FTF) in order to explore the effect that these have on a 

selection of clustering algorithms used to process the resultant data. 

The paper is organized as follows; Sec. 2 looks at the clustering of gene-

expression data, including an overview of microarray technology, the metrics 

and different algorithms used for clustering, and a brief discussion of the 

methods that can be used to compare the quality of the generated clusters. 

Section 3 gives a detailed explanation of the proposed filtering process, from 

an introduction of simple filtering algorithms to an example demonstrating 
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how they can be incorporated as part of the existing clustering process. In 

Sec. 4, the paper presents the results from three sets of experiments 

performed on datasets of different dimensionality, ranging from 106 to over 

2000 variables. These findings show the improvements this method has had 

on the quality of the clusters and demonstrate that our approach can improve 

the biological significance of the resultant groupings. Finally, Sec. 5 

summarizes these findings and discusses future work. 

2. CLUSTERING EXPRESSION DATA 

Microarray technology allows biologists to design experiments in which 

the investigator can contrast the expression levels of genes from two different 

cell cultures, such as comparing the genes expressed in an infected cell 

against those in a normal cell. An example of this approach can be seen in the 

HHV8 dataset (Jenner et al., 2001) used in the present paper, in which the 

expression levels of 106 genes were monitored and recorded at 8 time points. 

This paper will focus on experiments of a sequential or time series 

nature, w here at each time point a microarray with all relevant genes is 

hybridized and then scanned. The expression levels of each gene are then 

recorded; simple error correction such as subtracting the local background 

noise has been performed. At this point, however, a large amount of noise can 

remain in the measurement of each point or gene on the array. There can be 

many reasons for this noise, including bad alignment or recognition of the 

expression point, background noise on the chip, or the over expression of a 

gene contaminating surrounding genes. The noise is reduced to an extent by 

the current pre-processing techniques (Smyth et al., 2002). Nevertheless, if 

we treat the data as a whole, we can then reduce any errors further. 

One way to do this is to treat each gene expression profile as a waveform. 

The reason for treating the data as waveforms is inherent in the nature of the 

genes. They cannot jump from one level of expression to another in any one 

instant and therefore have to exhibit a gradual change in expression; this can 

be over a matter of minutes or last several hours. The main problem that will 

be faced with this type of data is the question—are there enough sample 

points to reconstruct each waveform successfully? 
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2.1 Similarity Metrics 

In the case of gene-expression profiles, two main comparison metrics 

when clustering are Euclidian distance and Pearson's uncentered correlation 

coefficient, as used in the Cluster package provided by 'Eisen Lab' 

(http://rana.lbl.gov). Given the expression levels observed at k time points of 

two g e n e s p \ (p\, ...,/»*) (<7i, q%, ..., qi), the formula for calculating 

the Euclidean distance, d, between the two gene vectors is shown in Eq. (1). 

Pearson's correlation coefficient, r, a well-established method for the 

comparison of objects, has been used extensively in the clustering of gene-

expression data. This method measures the linear relationships between two 

variables, jc, and x2, which can be either discrete or continuous. We use the 

uncentered version, defined in Eq. (2), where xh and x2are the /th component 

of the two variables, respectively, given a total of k observations. This version 

is used, as it is more suitable for gene expression data. 

The limits of this coefficient are [ -1 , 1], where a value greater than zero 

indicates a positive linear relationship and a value less than zero indicates a 

negative linear relationship. 

2.2 Clustering Methods 

Currently one of the main uses of gene expression data is the application 

of clustering algorithms in an attempt to classify unknown genes (Moore, 

2001; D'Haeseleer et al., 2000) For example, if gene A is clustered with gene 

Β and one knows that gene A has function F, one can hypothesize that gene Β 

may also have function F. As this paper is studying the effect of pre-

(1) 

k 
Σχ\ίχ2ί 

(2) 
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processing the data before clustering, we will be using three standard 

clustering algorithms—K-means, Partitioning Around Medoids (PAM), and 

Hierarchical. All are used regularly in this field and for this paper, the 

implementation from the statistical package 'R ' (http://www.r-project.org) is 

used. Implementations of K-means and Hierarchical clustering can also be 

found in Eisen's Lab, 'Cluster' package. 

K-means clustering (McQueen, 1967) partitions data by maintaining k 

cluster centers that define the boundaries of each partition. These centers are 

initially random points in the hypervolume containing the dataset. Each data 

point is assigned the nearest cluster center, and then the centers are 

recomputed using their current members. The entire procedure is repeated 

until a certain convergence criterion is met, such as no reassignment of data 

points or a minimal decrease in squared error. This method, however, is heavily 

influenced to initial conditions and often becomes stuck in local minima. 

Partitioning Around Medoids is described in Kaufman and Rousseeuw 

(1990). This approach is based around a search for k medoids that are 

representative of the data. Once these are found, the clusters are created by 

assigning each profile to the nearest medoid. Partitioning Around Medoids is 

often compared to K-means and generally is not so vulnerable to initial 

starting conditions; PAM differs from K-means in that it can use a 

dissimilarity matrix as its initial input and in that it minimizes a sum of 

dissimilarities instead of a sum of squared Euclidean distances. In most cases, 

PAM is accepted to produce better clustering results than K-means. 

Hierarchical clustering produces a hierarchical (binary) tree or dendro-

gram representing a nested set of data partitions. Sectioning a tree at a 

particular level leads to a partition with a number of disjoint groups, therefore 

yielding different clusters within the data. Hierarchical clustering has 

extensively been applied to many gene-expression datasets, such as Moore 

(2001, Eisen et al. (1998) and Gasch et al. (2000). In this paper, the 'cutree' 

algorithm in 'R ' was then used to divide the dendrogram into k clusters. 

2.3 Analyzing the Quality of Clusters 

One main problem with gene expression data is the verification of the 

resulting clusters, as often very little domain knowledge is available about the 
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dataset being used. This paper attempts to alleviate this problem in three main 

ways. First of all real data for which we have a limited amount of domain 

knowledge will be used. Second, a synthetic gene expression dataset that has 

been heavily distorted with noise will be tested and verified against its 

original grouping. Finally, the quality of the clusters that are generated will be 

evaluated based on two metrics: separation and homogeneity. These metrics 

are useful as they give us an indication of the clusters quality without the need 

for knowledge of a true solution. Next, we briefly present how these metrics 

have been tailored for our experiments; the reader can find detailed 

explanations of these metrics and of how they are applied to clustering in 

Sharan and Shamir (2000). 

Homogeneity is a measure of how close each gene within a cluster 

matched the clusters fingerprint. In this paper, we took the clusters fingerprint 

to be the expression profile with the highest average correlation to all the 

other members within the cluster. To calculate homogeneity, we took the 

average Pearson's correlation between the fingerprint and all members of the 

cluster. This calculation results in a correlation value between - 1 and 1, with 

1 being perfect homogeneity. 

Separation (sometimes referred to as independence) is a measure of the 

dissimilarity between clusters. Separation is calculated from the average 

correlation between each clusters fingerprint and that of all the other clusters. 

Once again, Pearson's correlation coefficient was used as the distance metric, 

with a value of - 1 indicating perfect separation. To allow for an easier 

comparison with homogeneity, however, we multiplied this value by - 1 so 

that a value of 1 indicates maximum separation, meaning that when con-

trasting the clusters generated from the various experiments, we will be 

looking to maximize both homogeneity and separation to show an improve-

ment in the quality of the clusters produced. 

3. FILTERING EXPRESSION DATA 

In this paper, we will be using two waveform-processing techniques, a 

moving average and a FTF. Both are well-established techniques that are well 

documented in Percival and Waiden (2000) and therefore this paper will 
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focus instead on the aspects important to their implementation with gene 
expression data. Generally, these aspects are used in waveform recon-
struction, such as the reconstruction of under-sampled digital sounds signals 
to their original waves. A Weighted Moving Average (WMA) filter is used 
smooth signals and is defined in Eq. (3), where D is the data series, η is the 
item of data, and / defines the weight of the filter. The greater the value o f / 
the less of an effect each new point will have on the waveform. 

D n ^ +
D " - ( f

f - X ) , \ < n < \ D S i z e [ f e Z +
 ( 3 ) 

Fourier Series Approximation uses a mathematical technique known as 
Fourier analysis. This technique can be used to show that any time-varying 
signal is made up of a possibly infinite number of single frequency sinusoidal 
signals, as described in Eq. (4), where η is the number of terms in the series, 
a0, au..., a„are amplitude coefficients, θ is the phase angle in radians, Tis the 
period of the signal, and ω is the fundamental frequency of the wave. 

x(t) = a0 + a\cos(o)t + + ...ancos(ncot + θ„), 1 < η < |α|, 

0 < θ < 2π, ω = 2π/Τ ( 4 ) 

By taking the low frequency components of these sinusoidal frequencies, 
a signal can be reconstructed mathematically. Using these principles, the FTF 
is constructed to give a good approximation of these components, and the 
standard version of the filter that is often used in wave reconstruction in 
digital to analogue converters. Figure 1 shows the effect of two filters on a 
noisy gene profile. Shown here is a simulated upregulated gene with heavy 
noise. This figure contrasts the difference between the way in which these two 
methods work—the moving average filter just smoothes the wave to an extent 
as opposed to the Fourier transform filter that attempts to approximate the 
original waveform. 

The Filtering Process 

Figure 2 shows both approaches to clustering. The classic method of 

treating gene expression data is shown with a dashed arrow and the proposed 
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Fig. 1: Example of both Moving average and Fourier filters 

Apply Clustering 
Algorithm 

Apply Filtering 
Algorithm 

Raw Data 

Add Sufficient Data 
Points 

Fig. 2: Processing stages of gene expression data 

filter based pre-processing stages are highlighted in the shaded area. The first 

stage of proposed pre-processing deals with a problem commonly found in 

gene expression data in which there are only a very limited number of time 

points. Although we are clustering hundreds of genes, it is quite common to 

have only as few as eight measurements in the series. This is normally usable 

by most clustering algorithms. Nevertheless, applying filter methods to such 

restricted observation space can lead to the data becoming distorted or 

corrupted. Nevertheless, in this situation filters are also commonly used, an 

example being the reconstruction of under-sampled digital sound signals, 

where a digital sound signal is converted back to its original waveform. 
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To accomplish this effect with the gene expression data we have simply 
added an extra three expression points between every two measurements. 
These points were calculated using the formula shown in Equation (5). 

Xn=xl + ~ ( x i - x l ) , ne[\,2,...N] (5) 

Here the new points X„ to be inserted between xx and x2 are calculated 
with Ν being the number of points to insert. Noteworthy is that by increasing 
the number of data points in this way leads to no alteration in the genes 
profile, and as it is applied globally across the dataset there is only a scaled 
change to the results of the distance metrics. 

The next stage is the application of the filtering algorithms to the gene 
expression profiles. Any waveform-filtering algorithm can be used for this 
stage. This paper focuses on using a moving average and a FTT with 
particular interest in their effect on popular clustering algorithms. The main 
benefit of this simple process is that it can easily be applied as part of the 
normal clustering process, allowing the existing clustering tools to be used 
without any modification. 

3.2 An Example of the Proposed Approach 

This section will demonstrate visually how this process can be applied to 
eight sample genes to show the effect of the process on the metric that is used 
when clustering. In this case, Pearson's correlation coefficient has been 
selected because (a) it is commonly used when processing gene expression 
data and (b) it can be easily interpreted. We should note that this example is 
presented only as a simple demonstration and as such, only a few genes 
known to cluster with each other have been used. 

In Fig. 3, one can see the expression profiles of the eight sample genes, 
which can be easily clustered into four pairs—one pair that oscillates, one that 
is downregulated, one that is upregulated, and one pair that just shows a 
constant level of expression. If this small dataset is clustered, then the 
majority of the clustering algorithms will correctly cluster the genes. 
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Fig. 3: Eight original gene profiles 

Fig. 4: Original gene profiles after applying a Fourier transform 

It would take at least a few minutes for most people to pick out the 

correct clusters from Fig. 3. If we apply a simple FTT to the data, however, 

one can see from Fig. 4 that this task is almost effortless, with all the clusters 

easily definable. This example shows how the FTT has approximated each of 

the expression profiles, removing a lot of the noise that previously made 

clustering these genes difficult. 

Another filter that we are testing in this paper is the moving average. 

Instead of approximating the expression profile, this filter works by 

smoothing the wave to a degree. The results of applying this filter can be seen 

in Fig. 5. 
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Fig. 5: Original gene profiles after applying a moving average filter 

TABLE 1 

Summary of the correlation between the original and filtered data 

Change in Homogeneity Change in Separation 
Gene pairs FTF MA Gene pairs FTF MA 

1 & 2 +11.3% +10.9% 1 & 2 +5.1% +7.4% 
3 & 4 +15.7% +14.7% 3 &4 +0.5% -3.5% 
5 & 6 +35.7% +38.0% 5 & 6 -0.2% -7.6% 
7 & 8 +187% +14.6% 7 & 8 +0.3% V5.3% 
Avg. +20.3% +19.5% Avg. +1.4% -2.3% 

Contrasting this to the original data one can see that although not quite as 

clear as the Fourier filter, the moving average has still made the data far 

easier to cluster. This effect can also be seen in the metrics used to cluster the 

different gene profiles, such as Pearson's uncentered correlation coefficient. 

Table 1 shows a summary of the differences shown between correlation 

matrices for the original data compared against the Fourier and moving 

average filtered data. 

On the left side is a table showing the change in correlation between the 

four pairs that we know should cluster. On average there is roughly a 20% 

increase shown in correlation after applying both the Fourier and the moving 

average filter. On the right side is a table showing the change in separation 
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between each pair of genes and the other 6 genes that we know should not be 
clustered with them. For example, we know that genes 1 and 2 should not 
cluster with genes 3 to 8, and they showed a 5% increase in separation. 
Overall, there was approximately a 2% change, although we should note that 
in the case of the moving average filter, this caused a slight reduction in the 
separation of the clusters. The results give an indication of the effect of 
filtering on real datasets and this will be presented in the next section. On the 
whole, filtering seems to improve cluster quality, especially homogeneity. In 
certain cases, however, the cluster quality is reduced for whatever reason. For 
example, genes 5 and 6 showed only an average 8% reduction in separation 
when the moving average filter was used but they did show an average 37% 
improvement in their homogeneity. The next section highlights these results 
and looks at possible explanations for their occurrences. 

4. EXPERIMENTAL RESULTS 

This section presents the results from three main experiments. Each 
experiment and its significance are explained in detail along with a summary of 
any improvements brought about by the use of filtering and highlights results 
that show filtering has had a negative effect. All the results here can be assumed 
the average of 10 separate tests unless the algorithm is deterministic in nature. 
Additionally, wherever the three clustering algorithms are being compared, we 
can assume that Euclidean distance was used as the proximity metric. 

Several factors, such as the number of clusters and various heuristics for 
the filters affect the quality of the results. The experiments reported here 
provide a preliminary evaluation of the effect of filtering. Therefore, these 
heuristics such as the weighted coefficient of the WMA filter, order of the 
Fourier filter, and cluster size may not be optimal for the given dataset but 
remain constant throughout the experiments unless stated otherwise. 

4.1 Description of the Datasets 

During this paper, three datasets have been used to validate the effect of 
filtering. These datasets have been picked to offer some diversity in the data 
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being used. The first dataset is synthetic and is constructed to resemble real 

gene-expression data, based on previous biological knowledge of expression 

profiles. The dataset consists of 2217 genes expressed over 100 time points. 

Each variable belongs to one of a family of functions that determines the shape 

of the expression profile and these were designed to mimic the typical gene 

expression patterns shown in Fig. 6. There are 40 potential clusters in total, each 

of which varies in size from 30 to 70 members. Patterns of gene expression were 

produced with time-dependent variations in a given gene expression profile 

(log2 ratio). The data reflect observations from two color microarray 

experiments. For example, patterns of continuous time lagged increase in gene-

expression ratios depicted in (A) and cyclical time-dependent patterns of gene 

expression, depicted in (H). A zero-centered normal noise process was added 

with standard deviation of 0.6. In addition, operators have been applied to 

distort certain variables to produce effects like skewing some gradients. 

A second experimentally derived dataset of 106 human herpesvirus 8 

(HHV8) genes expressed over 8 time points of the viruses lytic replication 

cycle (Jenner et al., 2001; Kellam et al., 2001) was also used to evaluate the 

clustering results. This dataset includes various control genes and genes of 

known functions so that any results can be verified against domain 

knowledge. 

The Yeast Data is taken from experiments conducted by Spellman et al. 

(1998) on the yeast's cell cycle. For the purpose of these tests, only the yeast 
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cultures that were synchronized by the arrest of a CDC 15 temperature-
sensitive mutant were used. The dataset consists of samples taken every 7 
minutes for 119 minutes in total. From this, only the gene profiles that 
contained no missing values across the 17 time points were used, leaving 623 
gene profiles in total. 

4.2 Weighted-Kappa Based Comparison 

In this experiment, a weighted-kappa based metric is used to evaluate 
each of the final clusters produced from the synthetic gene expression 
profiles, as described in Fig. 6. One of the biggest advantages for using 
synthetic expression data is that all of the expected clusters are already 
defined and therefore we can compare how well each method clusters the 
data. This metric was chosen as it is often used in assessing agreement in 
medical statistics to rate the agreement between two or more observers by 
creating a contingency table between the classifications of each. In the case of 
the clustering algorithm, the first observer can be seen as the correct clustering 
solution, and the second observer is the clusters produced by the algorithm in 
question. A good explanation of how to calculate this metric can be found in 
Altman (1997), and as a general guide, values of 0.6 and above are 
considered good, with 0.8 and above being very good. 

Figure 7 shows the average weighted-kappa values for each of the three 
algorithms when run to find the 40 original clusters on both the original (raw) 
data and the two filtered versions of the data. This dataset is designed to be 
particularly noisy to test different clustering algorithms to their limits and 
therefore should give a good indication of the effect of filtering. 

In the /fc-means test, both filtered versions showed a significant increase in 
the quality of the clusters with the moving average filter performing best. In 
this particular test, the use of filtering brought the Ar-means algorithm up to a 
weighted-kappa value of 0.89, which is an increase of 12%. The results for 
both the PAM and hierarchical algorithms are more interesting as these 
already have very high weighted-kappa values. In both cases, the moving 
average filtered data once again shows an increase in the quality of the 
clusters although this time to a much lesser extent, with a 2% improvement 
shown in the hierarchical tests. The results for PAM do not follow this 
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Fig. 7: Comparison of weighted-kappa results on the synthetic dataset 

trend in that the Fourier filter performed better than the MA filter. This 

difference could be due to bias' within the algorithm but obviously highlights 

the need for further research into the exact effect filtering has on different 

algorithms. 

The Fourier filter does not perform as well as the moving average. One 

possible explanation for this could be in the way the algorithm works, instead 

of modifying the actual data to remove noise, the algorithm attempts to 

approximate the profile data using a series of sinusoidal waves, which may 

have resulted in the loss of valuable characteristics of the expression profile. 

4.3 Biological Effects of Filtering 

When applied to the synthetic data, the algorithms seemed to show that they 

could improve the results of clustering; what effect would this have on real data 

and would any improvement be biologically significant? In an attempt to answer 

this question, this experiment looks at the effects filtering has had on the HHV8 

dataset. The experiment compares the results of both filtered and unfiltered data 

against 6 biological features consisting of 16 known correlations between 29 

genes. These include five sets of genes that we know have similar functions and 

nine genes that were put into each experiment twice, as a control, and should, 
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TABLE 2 

Change in Euclidean distance for the 16 correlations 

Fourier Filter Moving Average 
Order = 5 Order = 10 Weight = 4 Weight = 8 

Overall decrease in distance 0.911 0.108 4.867 8.765 

Gene pairs showing decreased 
distance 

16/16 16/16 15/16 14/16 

Gene pairs showing increased 
distance 

0/16 0/16 1/16 2/16 

TABLE 3 

Change in Pearson's coefficient for 16 correlations 

Fourier Filter Moving average 
Order = 5 Order = 10 Weight = 4 Weight = 8 

Overall increase in correlation 0.019 0.001 0.016 0.086 

Gene pairs showing improved 
correlation 

6/16 1/16 8/16 7/16 

Gene pairs showing 
decreased correlation 

0/16 1/16 1/16 2/16 

therefore cluster in pairs. The presence of only six features by which we can 
judge the quality of any changes to the clustering metrics and the limited 
numbers of time points (only eight observations) introduce additional 
difficulties; such problems are common to gene-expression data clustering. 

Table 2 shows the results of this test when using the Euclidean distance 
metric and Table 3 shows the results for Pearson's uncentered correlation 
coefficient. One should remember that with Euclidean distance we are 
looking for a decrease in distance between gene profiles, whereas with the 
Pearson correlation coefficient we are looking for an increase in correlation. 

The results for the Euclidean distance seem to show that all the expected 
correlations between genes show an improvement, with the moving average 
set at a weight of 8 showing the greatest improvement. Note, however, that 
with this higher value, two gene pairs showed reduced correlation. The 
Fourier filter set to an order of 10 showed the lowest overall improvement, 
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emphasizing that further study is needed into the best way of setting the 

heuristic parameters of each filter. 

Overall, Pearson's correlation coefficient showed a lot less improvement 

with the Fourier filter, showing at best a 0.02 increase. When using the 

moving average, approximately half the gene pairs showed improvement in 

their correlation, with at most two gene pairs showing a decrease. The Fourier 

filter set at an order of 5 showed a similar trend, albeit when set at an order of 

10, the correlation between virtually all the gene pairs appeared to have 

remained the same. This result could be attributed to the order of the filter 

being set too high, resulting in too much of the genes expression profile being 

distorted. This conjecture, however, can be supported only by more in-depth 

experiments. We can therefore say that overall, filtering shows a positive 

improvement in the correlation between these biological features with only 2 

or fewer of the 16 correlations showing any sort of significant decrease. 

4.4 Cluster Quality Comparison 

In this final experiment, all three datasets were used to produce an 

overview of the filtering process on each. Two scoring metrics were used— 

homogeneity and separation, as explained in Sec. 2.3. Additionally, note that 

for these tests the synthetic dataset was clustered into 40 groups, whereas the 

CDC 15 and HHV8 datasets were grouped into 10 clusters. Forty is the 

optimal number of clusters for the synthetic dataset but ten clusters may not 

be the optimal number for the other two. This just means that it may be 

possible to improve the clustering results slightly for the CDC 15 and HHV8 

datasets by fine-tuning the clustering algorithms. For all tests, the Fourier 

filter was used with an order of five and the moving average filter with a 

weight of four. These values were chosen as they showed significant change 

to the waveforms without distorting them too much. 

Figure 8 illustrates the overall change in both the separation and the 

homogeneity for each algorithm. As both of these metrics have the same 

scale, we were able to sum the improvement shown to give an overview of the 

effect filtering had. Any positive values in the graph represent tests for which 

an improvement was shown. Overall, it seems that either filtering method had 

a positive effect on the results of k-means although as with the other 
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• K-Mear>s 
• PAM 
• Hierarchical 

-0.1 

Fig. 8: Improvement in cluster quality over all methods and datasets 

clustering algorithms this was most beneficial to the synthetic dataset. The 

PAM and hierarchical did show quite as much improvement, with hierarchical 

doing poorly on all the real microarray datasets and PAM doing poorly on the 

HHV8 data. One interesting trend, however, is the falloff in performance as 

the number of data points decreases. The synthetic data had the most with 100 

time points, whereas the Yeast (CDC 15) data had only 17 time points, and the 

HHV8 even less with only 8. It seems reasonable to expect this sort of drop in 

performance with so few time points as generally filtering algorithms are 

designed to work on much longer series. 

Generally speaking, filtering shows an improvement in the clusters 

produced because, as expected, filtering removes a lot of the noise and other 

artefacts that normally reduce cluster quality. This means that filtering is 

improving on the performance over just using a standard clustering routine on 

the original data. Rather than concentrating on the improvements, we instead 

decided to take a more detailed look at the results that showed reduced 

correlation after filtering. For example, when hierarchical clustering was used 

in the CDC 15 dataset, both the Fourier and the moving average filtered data 

exhibited a drop in homogeneity that resulted in a drop in quality (see Fig. 8). 

In an attempt to investigate further, we re-ran the CDC 15 homogeneity test 

124 



Vol. 15, No. 1-4, 2006 Applying Wave Processing Techniques 
to Clustering of Gene Expressions 

Fig 9: Change in homogeneity as filter weight is increased. 

using hierarchical clustering with the moving average filter weight set between 1 

and 8. The results for this are shown in Fig. 9. 

Figure 9 appears to suggest that the weight of the filter plays a very 

important role and that by changing the filter to a setting of two, we were able 

to improve on the previously negative results. Additionally, it does not follow 

a simple trend because the homogeneity seems to show an increase again 

when the filter was set to eight. This tends to indicate that other factors may 

be influencing the results. A more detailed study into the effect of these and 

other factors will have to be conducted. 

5. CONCLUSION AND FUTURE WORK 

As microarray technology increases in power by the day, we are faced 

with very high dimensional data that often only has a limited number of time 

points. This paper has highlighted that it may be possible to get more 

information from gene expression data than we do at present. Rather than 
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looking at each time point on a microarray in isolation, we suggest that the 
genes expression profile can be considered as a whole. In a world in which 
we are still in our infancy in the exploration of gene-expression data, this 
paper proposes that we should make use of ideas from the field of signal 
processing in an attempt to make the best use of what is—often due to limits 
in technology and finance—less than ideal experimental results. 

This paper has shown from three different experiments that filtering can 
increase our confidence in existing clusters. Additionally, it seems that using 
the filtered data not only helps to improve the quality of the clusters but also 
improves them in a way that is biologically significant. We do not claim that 
these filtering methods are perfect or that they are the most suitable choice for 
this type of data; what this paper shows is that there is potential for filtering 
technologies to be used in this way, and that further research into this area is 
definitely needed. For example, gaining a deeper insight into the effect of 
applying these as well as other filtering techniques to gene-expression data, 
along with an analysis of the effects shown by varying the values of various 
heuristics (especially filter order and weights). One possible way to extend 
the research in this area would be to look at more sophisticated filters such as 
adaptive neural filtering (Principe et al., 2000) or the use of Wavelet filtering 
methods (Percival & Waiden 2000). These techniques have already been 
applied to other areas such as medical informatics, for example the pre-
processing of anomalous Computer Tomography (CT) images (Frangakis et 
al., 2001) and show significant potential. One thing is clear though, while 
gene expression datasets remain limited to small numbers of sparse time 
points, the form of signal analysis will be difficult at best. 
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