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ABSTRACT 

Electroencephalogram, or EEG, signals are an important source of 
information for the study of underlying brain processes. Such studies now 
provide a framework for the development of a new modality of human-
computer interaction based on EEG. Current research in this area only 
detects a small number of mental states. In this article, EEG from one 
subject who performed three mental tasks are classified by neural networks. 
Using a sixth-order autoregressive (AR) model of half-second windows of 
six-channel EEG, a classification accuracy of 89% on test data is achieved. 
A cross-validation study of a variety of neural network topologies showed 
that a network with one hidden layer of 20 units produced the best 
performance. It was also found that averaging the output of the network over 
consecutive inputs improved performance. K-means clustering of the 
resulting neural networks' weights identified key components of the AR 
representation. 
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1. INTRODUCTION 

Most EEG research seeks to understand the dynamic processes in the brain 
that are the basis of physical and mental behavior. Nunez (1995), Barlow 
(1993), and Gevins and Römond (1987) survey the state-of-the-art of this 
field. In addition to serving as tools to probe the mind, EEG signals are 
being investigated as a new mode of human-computer communication. If a 
small number of mental states can be reliably detected, then a person could 
compose sequences of such states to indicate commands to a computer, just 
as letters are composed to form words. 

In this article, we describe the methods and results of our experiments 
with EEG signals recorded from one subject while the subject performed 
three mental tasks—resting, multiplication, and letter composition. The EEG 
signals were divided into half-second windows and represented by 
autoregressive, or AR, models fit to each window. We compared the 
classification performance of one and two-hidden-layer neural networks in a 
cross-validation paradigm. Our best result was 89% correct classification of 
untrained data. 

The remainder of this article contain the following sections. Section 2 is 
a summary of work related to ours. Section 3 describes the procedures we 
followed to record the EEG signals, the instructions to the subject for each 
mental task, the autoregressive models used to represent the EEG signals, 
and the neural network training process. Our results are presented in Section 
4, followed by the analysis of the resulting neural networks in Section 5. Our 
conclusions and possible future work are stated in Section 6. 

2. RELATED WORK 

The work of Keirn and Aunon (1990, see also Keirn, 1988) formed the 
foundation of the new results we present in this article. Keirn and Aunon 
investigated the classification of five different mental tasks: a baseline 
resting task, mental multiplication, geometric figure rotation, mental letter 
composing, and visual counting. Data was recorded from seven subjects 
using six channels and was transformed into features based on spectral 
estimates, calculated from both the Fourier transform of the windowed 
autocorrelation function and a scalar AR model. Features included 
asymmetry ratios and power values for each channel from four standard 
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frequency bands-delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), and beta 
(14-20 Hz). Asymmetry ratios were taken across all right to left 
combinations of leads and are given by (R-L)/(R+L), where Λ is a power 
value from a certain frequency band of a right hemisphere lead, and L is 
defined similarly for a left hemisphere lead. A second set of features was 
generated from the AR coefficients themselves concatenated together from 
all channels. Features were extracted from a single quarter-second (and two-
second) window per trial, for ten trials of each of the tasks. Classification 
was performed with a quadratic Bayesian classifier. By averaging results 
over five subjects, it was found that all task pairs could be reliably 
discriminated 84.6% of the time using the AR coefficients as features. 

This is an encouraging result, but their study was limited in the 
following ways. A single quarter-second or two-second window was selected 
from each 10 second recording session. A window was chosen near the 
middle of the session, assuming dining that period the subject was most 
likely concentrating on the requested mental task. Another limitation is the 
use of a quadratic Bayesian classifier, which assumes the classes have a 
Gaussian distribution. Also, classifiers were constructed and tested on data 
from single subjects and pairs of tasks. Questions remained regarding 
generalization across subjects and more than pair-wise discriminations. 

In previous work, we extended Keirn and Aunon's work in several ways 
(Anderson et al., 1995a, 1995b). The Bayesian classifier was replaced with 
neural networks of varying size and, thus, complexity. Overlapping half-
second windows, that together cover the 10-second period of every recording 
session, were used. We achieved a classification accuracy of 73% between 
the baseline and multiplication tasks using Keirn and Aunon's frequency-
band representation. We also found that signal representations consisting of 
untransformed data or a Karhunen-Loöve Transform of the data resulted in 
classification performance that was not significantly better than chance. 

The tasks and representations used by Keirn and Aunon were motivated 
by the work of Doyle et al. (1974), who tested ten subjects performing eight 
tasks, two of which are primarily mental tasks. Power values were calculated 
for one-second windows for every frequency from 0 to 29 Hz, and an 
average power was calculated for the 30-64 Hz range. Each subject repeated 
the task set twice and the power spectra were averaged for each subject into 
five bands: delta, theta, alpha, beta 1 (14-20 Hz), and beta 2 (21-29 Hz). 
Band power values from homologous electrode pairs were combined as 
ratios to highlight asymmetries in the hemispheres. Results showed 
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significant asymmetries primarily in the power levels of the alpha and beta 
bands. Temporal electrodes showed more asymmetry than did the parietal 
electrodes. 

Galbraith and Wong (1993) recorded one channel of EEG from 25 
subjects during resting and mental arithmetic tasks. Two-second windows 
were represented by the relative power in the four standard frequency bands 
and by Gaussian distribution parameters. Using a linear discriminator and a 
stepwise procedure for eliminating variables, they found that the power in 
the frequency bands, primarily the alpha band, was most useM in the linear 
discrimination. Also, the variance of the amplitude distribution proved to be 
significant in forming the linear discrimination. 

Tumey et al. (1991) studied EEG recorded while a subject's eyes were 
open and alert, closed and alert, and while eyes were closed and the subject 
performed a visualization task. Data recorded from two channels were fed 
into a phase-space algorithm where the signal was plotted against a lagged 
version to generate an attractor pattern over 10 seconds. A box counting 
algorithm was employed to quantize the attractor into bins and the counts of 
each bin were composed into a feature vector. A backpropagation neural 
network (see Section 3) was trained on half of the feature vectors and tested 
on the remaining half of the data. It was found that 100% of the test vectors 
were classified correctly, even with test data recorded days after the original 
experiment. 

Other work has focused on detecting patterns in EEG that indicate 
planned, but not executed, motor actions. For example, Peltoranta and 
Pfurtscheller (1994) studied finger movement. EEG was band-pass filtered 
to 5-16 Hz (extended alpha band) and divided into one-second windows. 
The peak power (power of frequency with maximum power) in each window 
was calculated using the coefficients of an AR model fit to each window. 
Model orders from two to six were tested, with little difference between 
them. Adding the peak frequency did not improve the results. The 
performance of several classifiers was compared, including LVQ3 
(Kohonen, 1995), k-means, and backpropagation neural networks. Their 
best results-90% correct-were obtained using LVQ3 with one or two 
reference vectors. The neural network trained with backpropagation was not 
significantly worse, though required more computational effort to train. 
Varying the number of hidden units (see Section 3, "Methods") between 5 
and 25 did not have a significant effect on performance. Peltoranta and 
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Pfurtscheller (1994) describe in detail the procedures followed to calculate 
the signal features and to train the classifiers. 

Pfurtscheller et al. (1994) studied the discrimination of four motor tasks, 
left and right hand finger, toe, and tongue movement. They had previously 
found the typical event-related desynchronization in the alpha band with 
finger movement, but had also found an event-related synchronization in the 
gamma band near 40 Hz. To investigate this further, they compared 
discrimination performance using features based on power in three bands 
separately and in combination. They used the LVQ algorithm to classify. 
Results showed that the bands 10-12 Hz and 38-40 Hz were equally 
effective, producing 58% correct, and the best results of 70% were obtained 
when these two bands were combined with 30-33 Hz. 

Flotzinger et al. (1994) investigated the effect of several methods for 
normalizing recorded EEG. They recorded 17 channels from one subject for 
1.5 seconds prior to movement of one finger or the other. A visual cue 
indicated which finger to move. This was repeated for 800 trials. Several 
methods were compared for determining a reference with respect with which 
all recorded signals were normalized. These included an average over all 
electrodes and a local average over neighboring electrodes weighted by 
distance. After normalizing, signals were bandpass filtered to 9-11 Hz and 
their power was calculated by squaring the result. Power values were 
averaged over successive samples for 125, 250, or 500 milliseconds and 
results compared. Classification was performed with Kohonen's LVQ3 
algorithm (Kohonen, 1995). The best classification results on test data were 
80% correct. Results were not significantly affected by varying the window 
size or by the use of the normalization methods. They found that restricting 
the data to just six channels reduced accuracy by approximately 3%. 

3. METHOD 

3.1 EEG Signal Recording 

We used data obtained previously by Keirn and Aunon (1990), and Keirn 
(1988) who used the following procedure. The subjects were seated in an 
Industrial Acoustics Company sound controlled booth with dim lighting and 
noiseless ventilation fans. An Electro-Cap elastic electrode cap was used to 
record from positions C3, C4, 01, 02, P3, and P4, shown in Figure 1 and 
defined by the 10-20 system of electrode placement (Jasper, 1958). These six 
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channels were referenced to electrically linked mastoids at Al and A2. The 
impedance of all electrodes was kept below five Kohms. Data were recorded 
at a sampling rate of 250 Hz with a Lab Master 12 bit A/D converter 
mounted in an Π3Μ-ΑΤ computer. Before each recording session, the system 
was calibrated with a known voltage. The electrodes were connected through 
a bank of Grass 7P511 amplifiers with analog bandpass filters from 0.1-100 
Hz. Eye blinks were detected by means of a separate channel of data 
recorded from two electrodes placed above and below the subject's left eye. 
An eye blink was defined as a change in magnitude greater than 100 μ Volts 
within a 10 milliseconds period. 

We analyzed the data from one subject performing the following three 
mental tasks. The subject, selected arbitrarily from Keirn and Aunon's data, 
was a 48-year-old, left-handed, male, university employee. All tasks were 
performed with the subject's eyes open. The tasks were chosen by Keirn and 
Aunon to invoke hemispheric brainwave asymmetry (Osaka, 1984). The 
three tasks were: 

Baseline Task: The subject was not asked to perform a specific mental task, 
but to relax as much as possible and think of nothing in particular. This 
task is considered a baseline task for alpha wave production and was 
used as a control measure of the EEG. 
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Letter Task: The subject was instructed to mentally compose a letter to a 
friend or relative without vocalizing. Since the task was repeated several 
times, the subject was told to try to pick up where they left off in the 
previous task. 

Math Task: The subject was given nontrivial multiplication problems, such 
as 49 times 78, and was asked to solve them without vocalizing or 
making any other physical movements. The problems were not repeated 
and were designed so that an immediate answer was not attainable. The 
subject was asked after each trial whether or not they found the answer; 
no problem was completed before the end of the 10-second recording 
trial. 

Data were recorded for 10 seconds during each task and each task was 
repeated five times per session. The subject attended two such sessions 
recorded during separate weeks, resulting in a total of 10 trials for each task 

3.2 AR Representation of EEG Signals 

With a 250 Hz sampling rate, each 10-second trial produced 2,500 samples 
per channel. They were divided into half-second windows that overlapped by 
a quarter-second, producing 39 windows per trial. Samples from the first 
half-second of a baseline, letter, and math trial are shown in Figure 2. Data 
from all six channels are superimposed. As described in the next section, 
each half-second window was classified independently. 

Keirn and Aunon (1990) and others (Anderson et al., 1995a, 1995b) 
achieved the best classification results using a Fourier Transform based on 
AR coefficients. For the following experiments, we used the AR coefficients 
directly to represent the data in each window. To define the AR model, let 
aiiC be the iA coefficient of the AR model for channel c, where c = 
{C3,C4,0l,02,P3,P4} and / = 1 ,.,.,η with η being the order of the model. 
The order η AR model of the 125 samples, x,i0 from channel c in a window 
is given by 

The coefficients were estimated using the Burg method (Kay, 1988), 

η 

i=l 
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μνοΚβ 0 

125 
Samples over 1/2 second 

Baseline Task 

μνοΙίβ 0 

125 
Samples over 1/2 second 

Letter Task 

μΥοΙίε 0 

Fig. 2: 

125 
Samples over 1/2 second 

Math Task 

One-half second of data from one subject performing each task. 
Data from the C3, C4, 01, 02, P3, P4 channels are superimposed. 
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implemented by the MATLAB1 function ar. The AIC criterion is 
minimized for orders of two and three, but based on previous results by 
Keirn and Aunon, an order of six was used. The 36 coefficients (6 channels 
χ 6 orders) for each window were concatenated into one feature vector. 

( a i , C 3 , a i , C 4 , G l , 01> »1 , 0 2 , O l , P 3 , a i , P 4 , CL2.C3, G2 ,C4 , · · · > O.E.PA)· 

Figure 3 shows the AR representation of 26 consecutive half-second 
windows of data from one trial of each of the three tasks. For the trial shown 
in the figure, 26 of the 39 windows are eye-blink free. The width and height 

Baseline Task Letter Task Math Task 

Order 1 

Order 2 

Order 3 

Order 4 

Order 5 

Order 6 

Fig. 3: 

1 13 26 
Window Number 

13 26 
Window Number 

13 26 
Window Number 

AR representation of eye-blink free windows from one trial of 
data from one subject performing each task. Positive coefficients 
are shown as filled boxes and negative coefficients are unfilled. 
The width and height of a box is proportional to the magnitude of 
the corresponding coefficient. The highest magnitude coefficients 
across tasks are the first order coefficients. 

'MATLAB is programming environment by Mathworks, Incorporated. For more 
information, see http://www.mathworks.com. 
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of a box is proportional to the coefficient's magnitude. Positive and negative 
coefficients are shown with filled and unfilled boxes, respectively. Each 
column depicts the 36 coefficients from one window in the order given 
above. The first order coefficients have the largest magnitude in all three 
tasks. The coefficients associated with the 01 and 02 electrodes are smaller 
on average. There is considerable variation in the coefficients from one 
window to the next; no obvious difference is apparent between the tasks. The 
additional nine trials of data are not shown. A total of 843 half-second 
windows compose the 10 trials with 281 windows from each of the three 
tasks. Each trial contains the same number of windows from each task 
though the trials contain a different total number of windows ranging from 
60 to 114. 

The AR data was normalized before being submitted to the classification 
experiments to minimize the differences in variation among the coefficients. 
The normalization procedure scaled each component of the AR coefficient 
vectors independently so that each component had a mean of 0.5 and a 
standard deviation of 1/6. Values less than 0 or greater than 1 were set to 0 
or 1, respectively. The [0,1] range is required for training with the Buildnet 
library for the CNAPS computer (described later in this section). The result 
of this normalization on the data in Figure 3 is shown in Figure 4. To 
highlight differences, 0.5 was subtracted from all values in Figure 4 before 
displaying them. 

3.3 Neural Network Classifier 

The classifier implemented for this work was a standard, feedforward, 
neural network (see Figure 5) with one or two hidden layers and one output 
layer, trained with the error backpropagation algorithm. The topology of a 
network is denoted by a hyphenated pair of numbers indicating the number 
of units in the first hidden layer and the number of units in the second 
hidden layer. For example, a 10-5 network has 10 units in the first hidden 
layer and 5 in the second. A 10-0 network has 10 units in a single hidden 
layer. All networks had three units in the output layer, one for each mental 
task classification. The error backpropagation algorithm is briefly 
summarized below; details can be found in Rumelhart et al. (1986) and 
recent textbooks on artificial neural networks, such as Hassoun (1995). 

The components of an input vector composed of 36 AR coefficients for 
one window were distributed to each unit in the first hidden layer. All of the 
units had weight vectors whose components were multiplied by the input 
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Fig. 4: Normalized AR representation of data shown in Figure 6. 
Normalized data lie in the range [0,1], but for this figure the 
mean of 0.5 is subtracted from all values. 

Units Units Units 
Fig. 5: Feedforward neural network with one or two hidden layers. 

components. Each unit summed these weighted inputs and produced a value 
that was transformed by a nonlinear activation function, for which we used 
the common asymmetric sigmoid function. The second hidden layer, if there 
was one, accepted as input the activations of the first hidden layer and 
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computed its output activations. The output of the final layer was then 
computed by multiplying the output vector from the hidden layer by the 
weights into the final layer. More summations and activations at these units 
gave the actual output of the network. Given an input vector of AR 
coefficients, the network's output was calculated, and the network's 
classification of the input vector was indicated by which of the three output 
units had the largest output value. 

The network was trained by initializing all weights to small, random 
values and then performing a gradient-descent search in the network's 
weight space for a minimum of a squared error function of the network's 
output. The error was between the network's output and the target value for 
each input vector. For the three-task experiments, the three target values 
were set to 1,0, and 0 for the baseline task; 0, 1, and 0 for the letter task; 
and 0, 0, and 1 for the math task. 

The error backpropagation algorithm is derived by decomposing the 
gradient calculation into computations performed in each layer, starting with 
the final layer and passing results backwards through the network. The 
amount by which the weights are adjusted on each step is parameterized by 
learning rate constants. We used one learning rate for the hidden layers and 
a different rate for the output layer. After trying a large number of different 
values, we found that a learning rate of 0.1 for the hidden layer and 0.01 for 
the output layer produced the best performance. 

The classification performance of a neural network depends on the initial 
weight values and on the data used to train and test it. If the data contains 
noise or does not completely specify the target function, a neural network 
will over-fit the training data, and it will not correctly interpolate and 
extrapolate the training data, i.e., it will not generalize well. 

To limit the amount of over-fitting during training, the following cross-
validation procedure was performed. Eight of the ten trials were used for the 
training set, one of the remaining trials was selected for validation and the 
last trial was used for testing. The error of the network on the validation 
data was calculated after every pass, or epoch, through the training data. 
After 4,000 epochs, the network state (its weight values) at the epoch for 
which the validation error was smallest was chosen as the network that 
would most likely perform well on novel data. This best network was then 
applied to the test set and the result indicated how well the network would 
generalize to novel data. 
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With 10 trials, there are 90 ways of choosing the validation and test trials 
with the remaining eight trials combined for the training set. Results 
described in the next section are reported as the average classification 
accuracy on the test set averaged over all 90 partitions of the data. Each of 
the 90 repetitions started with different, random, initial weights. 

The neural networks were trained using a CNAPS Server II from 
Adaptive Solutions, Incorporated.2 Our CNAPS system is a parallel, SIMD 
architecture with 128, 20 MHz, processors, upgradable to 512 processors. It 
can be programmed at three levels, using assembly language, C with parallel 
programming extensions, or existing libraries that implement standard error 
backpropagation and other algorithms. The experiments described here were 
performed with a combination of MATLAB and C programs and Adaptive 
Solutions' Buildnet library of error backpropagation routines for the CNAPS 
server. Training a neural network with a single hidden layer containing 20 
hidden units (a 20-0 network) took an average of 3.2 minutes on the 
CNAPS. On a Sim SparcStation 20, training took an average of 20 minutes. 
An experiment with 90 repetitions required 4.8 hours on the CNAPS and 30 
hours on the SparcStation. Implementation details are described by 
Anderson et al. (1995a). 

4. RESULTS 

To illustrate the cross-validation procedure, Figure 6 shows the RMS error, 
averaged over output units and over patterns in the training set, validation 
set, and test sets, for the three curves, respectively. Though not plotted, the 
initial RMS error was 0.5, because the initial output of the network was 0.5 
and the desired output values were 0 or 1. The training error decreased 
throughout the training period of 4,000 epochs, but a clear minimum 
occurred in the validation error. A vertical line was drawn at epoch 481 at 
which the error for the validation set was the lowest. The error and 
classification performance on the test set was calculated at that epoch as an 
indication of how well this network would generalize to novel data. This 
plot was obtained from a 10-0 network. 

This training and testing process was repeated 89 more times for each 
network topology. To compare various networks, the number of times each 

2See http://www.asi.com for more information. 
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0.35 

Best 
Epoch 

RMS 
Error 

0.25 

0.15 

0.3 

0.2 

0.1 
0 200 1000 2000 

Epochs 
Fig. 6: RMS error versus training epochs for training, validation, and test 

sets. The epoch at which the error on the validation data is lowest 

is 481. The network's weights at epoch 481 are saved as the "best" 

weights. The error on the test set using these best weights is 

designated as the generalization error of the network. 

output value was on the correct side of 0.5 was counted and expressed as a 
percent of the number of test patterns. A network whose three output values 
were constant zero (or constant one) would result in a percent correct of 
67%. Figure 7 shows the distribution of percent correct values from the 90 
repetitions with each network topology. The graphs in rows differ-by the 
number of units in the first hidden layer while the graphs in columns differ 
by the number of units in the second hidden layer. The dark vertical line 
drawn on each histogram is at the distribution's mean. 

These histograms clearly show that performance increased with a higher 
number of units in the first hidden layer, though as the number increased 
beyond five units the performance increase was greatly reduced. Significant 
differences are determined by considering Figure 8 in which the average 
percents correct and their 90% confidence intervals are plotted. Separate 
lines are plotted for different numbers of units in the first hidden layer, and 
the horizontal axis shows the number of units in the second layer. This 
graph shows that the number of second layer units did not affect 
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Fig. 7: Distributions of the percent of test patterns correctly classified for 
each network topology. Each histogram represents 90 repetitions 
differing in initial weight values and division of data into 
training, validation, and test sets. The mean of each distribution is 
drawn as a dark vertical line. These distributions are summarized 
in Figure 8 by their means and confidence intervals. 

performance. However, differences between networks with 1, 2, and 5 units 
in the first layer were significant. The best performance was achieved with a 
20-0 network, resulting in 83% correct. 

The performance measure of most interest to us is the percent of EEG 
test windows actually classified correctly. To calculate this, we counted the 
number of windows for which the output unit with the highest output 
corresponded to the correct task. In this case, if all outputs were a constant 
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Percent of 
Test 

Patterns 
Correctly 
Classified 

h (number of units in second layer) 

Fig. 8: Average percent of test patterns correctly classified with error bars 
showing 90% confidence intervals. Figure 7 shows the actual 
distributions of the 90 samples used to calculate the means and 
confidence intervals. 

zero (or constant one), then approximately one third of the windows would 
be classified correctly. The best value for this measure of performance was 
again obtained with the 20-0 network. It resulted in 76% correct 
classification averaged over all test windows and over the 90 repetitions. 

Inspection of how the network's classification changed from one window 
to the next suggested that better performance might be achieved by 
averaging the network's output over consecutive windows. The left column 
of graphs in Figure 9 show the output values of the network's three output 
units for each window of a test data from one trial. On each graph, the 
desired value for the corresponding output is also drawn. The bottom graph 
shows the true task and the task predicted by the network. For this trial, 79% 
of the windows were classified correctly. Most of the errors occurred for 
letter task windows, and no errors occurred for baseline task windows. The 
two other columns of graphs show the network's output and predicted 
classification that resulted from averaging over four and eight consecutive 
windows. For this trial, averaging over 10 windows resulted in 100% 
correct, but performance was not improved that much on all trials. In fact, 
the best classification performance of 89% was obtained by averaging the 
output of the 20-0 network over 10 consecutive windows. 
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Fig. 9: Network output values and desired values for one test trial. The 
first three rows of graphs show the values of the three network 
outputs over the 105 test windows. Windows from the three tasks 
are concentrated in each graph, hiding the rest period between the 
recording of data from each task. Also, the order of the tasks does 
not reflect the order in which the tasks were performed. The 
fourth row of graphs plots the true task and the task predicted by 
network, determined by the output unit having the largest output. 
The first column of graphs is without averaging over consecutive 
windows, the second is for averaging the network output over four 
consecutive windows, while the third column is for averaging 
over eight windows. 

Figure 10 shows how the percent correct varied with the number of 
consecutive windows averaged for 20-0, 10-0, and 5-0 networks. The 
percent correct decreases quickly as the number of windows grows beyond 
35, because few trials contained 35 or more windows. For those trials that 
did contain more than 35 windows, averaging the outputs over that many 
windows resulted in lower performance. 

181 



Vol. 7, 1-2, 1997 Effects of Variations in Neural Network Topology.. 

90 

88 

Average 8 6 

Percent of 84 
Test 82 

Patterns 8 0 

Correctly 
Classified 7 8 

76 
74 
72 
70 

Fig. 10: The fraction of averaged windows classified correctly versus the 
number of consecutive windows averaged over. 
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5. ANALYSIS OF THE NEURAL NETWORK CLASSIFIER 

To understand what was learned by a neural network, symbolic rules can be 
extracted that capture some of the information (e.g., Alexander and Mozer, 
1995). However, we find it is more useful to numerically analyze our neural 
network classifiers for our EEG classification problem. We used graphical 
and numerical tools to interpret what was learned by the 20-0 network. First, 
we depict the weights graphically, we investigate the dimensionality of the 
representation provided by the hidden layer, and, finally, we cluster the 
hidden units' weight vectors to identify the most common hidden unit 
weights across all repetitions. 

Two of the 90, 20-0 networks are shown in Figure 11. Positive weights 
are drawn as filled boxes, negative weights as unfilled boxes. The width and 
height of a box is proportional to the weight's magnitude. The weights of the 
hidden layer are drawn as the upper matrix of boxes and the weights of the 
output layer are drawn as the lower matrix. The weights of the first hidden 
unit appear in the left-most column of the upper matrix, while the weights of 
the first output unit, the one corresponding to the baseline task, are drawn as 
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Fig. 11: Two 20-0 networks trained on different partitions of the data. In 
each network, the columns of the upper matrix represent the 
weights in each hidden unit and the rows of the lower matrix 
represent the weights in each output unit. Positive weights are 
filled, negative weights are unfilled. 
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the first row of the lower matrix. As an example of how these diagrams can 
provide clues about what was learned, consider the 18th hidden unit in the 
left network. It is connected through a strong positive weight to the output 
unit corresponding to the math task, and negative weights to the other 
output units. Thus, this hidden unit's output probably tends to be high for 
math tasks and low for the other two tasks. The most noticeable input 
weights of this unit are the two pairs of oppositely-signed weights on the 
inputs corresponding to the first and second order coefficients for the 01 
and 02 channels. 

There is much variation in the weights between the two networks. How 
many of these hidden units are significant to the classification task? One 
way to answer this question is to consider the dimensionality of the space 
defined by the hidden layer output vectors given a test set of input vectors. If 
this space is lower than the number of hidden units, then all hidden units are 
not necessary. To investigate this, the eigenvalues of the covariance matrix 
of hidden layer output vectors was calculated. Figure 12 is a plot of the 
eigenvalues, divided by the maximum eigenvalue for each repetition and 

Eigenvalue 
Normalized 

(logarithmic 
scale) 

Eigenvalue Index 

Fig. 12: Range of normalized eigenvalues of covariance matrix of hidden 
layer outputs for test set over 90 repetitions. Values are 
normalized by dividing by the maximum eigenvalue for each 
repetition. The horizontal line is at a value of 0.01, below which 
eigenvalues are considered to be insignificant. 
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Fig. 13: Results of k-means clustering for three and give clusters. 

sorted from largest to smallest. For each eigenvalue index, the maximum, 
mean, and minimum eigenvalue over all 90 networks resulting from the 90 
repetitions is plotted. If we consider only normalized eigenvalues greater 
than 0.01 to be significant (Sirovich, 1989), then the figure shows that the 
number of significant eigenvalues ranged from 7 to 16, with a mean of 11. 

The hidden layer transformation clearly produced a representation with a 
number of significant dimensions much less than 20, the number of hidden 
units in this case. What are the most common hidden unit weight vectors? 
One way to answer this is to look for the most common weight vectors. A 
simple approach to determine this is to apply the k-means clustering 
algorithm to the set of hidden unit weight vectors collected from all 90 
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repetitions. Figure 13 shows the results for clustering with k = 3 and k = 5, 
i.e., 3 and 5 clusters. The k-means algorithm was initialized by randomly 
selecting hidden unit weight vectors as the initial cluster centers. The k = 3 
results were very consistent over different initial cluster centers. One cluster 
center for both cases consisted of weights near zero. This indicates that the 
components of a fair number of weight vectors remained near zero during 
training. The other two vectors for the k = 3 case contained only four 
weights of significant magnitude. These weights were associated with the 
first and second order coefficients for the 0 1 and 02 electrodes. The fact 
that the Ol and 02 weights for a particular order were of different signs 
suggests that an asymmetry in the AR coefficients across hemispheres in the 
occipital region is relevant to the baseline, letter, and math discrimination 
problem. 

To understand how the 01 and 02 coefficients might be related to the 
tasks, we searched for vectors similar to the cluster centers in trained 
networks, such as those in Figure 6. Hidden unit 18 in the left network of 
the figure is similar to the first cluster center in both k = 3 and k = 5 cases. It 
is strongly connected with a positive weight to the math task output unit and 
with negative weights to the other tasks. 

6. CONCLUSION 

EEG signals recorded from a subject performing three mental tasks were 
discriminated with an 89% accuracy using an AR representation of the EEG 
and a multilayer neural network classifier. This required averaging the 
output of the classifier over 10 consecutive half-second windows of data, 
amounting to five seconds of EEG data. This is a fairly high accuracy, but 
five seconds may be too much time for this method to be the basis of a 
practical human-computer interface. 

Analysis of the neural networks trained to perform this discrimination 
task generated more questions than it answered. Clustering of the weight 
vectors of trained hidden units suggested that the first and second order AR 
coefficients for the 0 1 and 02 electrodes were most relevant. The clustering 
results could be used to prune away input components that do not appear to 
be relevant. The clustering results could also be used to seed the hidden unit 
weights with initial values before training. To test these ideas, the 
discrimination experiments must be repeated using only those AR 
coefficients deemed significant by the analysis. This might result in better 
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generalization to novel data. Other approaches to pruning out insignificant 
parameters in the neural network might also lead to better generalization. 

The discrimination problem studied here is really a problem of detection 
- given a window of EEG data we want to know the probability that the data 
was generated by a person doing each of the mental tasks. A probability 
threshold could then be varied to find a satisfactory balance between false 
and true detections. The procedure described here could be modified to do 
this by using an output layer of the neural network that generates a 
multinomial distribution. Then, with a small change to the error 
backpropagation procedure, the network could be trained to approximate the 
a posterior task probabilities (Rumelhart et al., 1995). This is currently 
being investigated. 

The most likely avenue to better discrimination accuracy is to continue 
the search for a better representation of the EEG signals. Here, we used 
linear predictive models to reduce the dimensionality of the signals. Perhaps 
a nonlinear predictive model would capture more of the information in the 
signals relevant to the discrimination problem. If a neural network is used as 
the nonlinear predictor, the complexity of the model could be controlled by 
varying the number of hidden units. 

The main limitations of our work are the small number of mental tasks 
and the use of data from only one subject. A key question that remains is, to 
what degree does the AR representation capture task-related information 
that is invariant across subjects? To-date, attempts to discriminate between 
mental states across subjects have been unsuccessful (Childers et al., 1987; 
Lin et al., 1993). If such an invariant representation cannot be found, then a 
human-computer interface that has an EEG component must be trained by 
each user, lowering its practicality. 

Recent developments in hardware for acquiring EEG signals and in 
parallel hardware make the construction of a portable, experimental device 
feasible. A number of data acquisition devices are available that can record 
multichannel EEG using a desktop or portable PC. If an EEG-based 
interface must be trained for each user and a low-dimensional representation 
cannot be found, then parallel hardware might be required to adapt the 
interface to a user in a reasonable amount of time. The CNAPS architecture 
that we used is currently available as a PC board, so the training procedure 
used here can be directly transferred to a PC-based system. 
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