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Abstract 

A general model of so-called 'RAM-based nodes' which uses 
continuous sites values on the hypercube and processes analogue 
inputs is developed. A closed expression is given for the node's 
functionality and is shown to be equivalent to that for the sigma-pi 
nodes described by Rumelhart and McClleland (1986) of which, the 
customary semilinear units or TLUs are a subset. This is one of 
several points of contact developed between RAM-based nodes and 
those that use sums of weights of input terms. Points of contrast are 
also discussed in the context of generalisation, training and implement-
ation. It is shown that the models may be instantiated with time 
stochastic processing and RAM implementations realised by quantising 
the site values. 

Key words: Neural Nets, Sigma-pi, Higher order, RAM nets, 
Hypercubes 

1 . Introduction 

Networks of arbitrary Boolean functions (Aleksander, 1973; 
Aleksander & Stonham, 1979; Aleksander, Thomas & Bowden, 1984; 
Martland, 1987; Milligan, 1988; Austin, 1987) and, more recently 
Probabilistic Logic Nodes (Myers & Aleksander, 1988; Myers, 1989) 
and pRAMS (Gorse & Taylor, 1990) have traditionally been viewed as 
a radical alternative to the use of nodes whose activation is defined by a 
weighted sum of inputs. Part of the motivation for their use is that they 
readily lend themselves to implementation in RAM technology, leading 
to their collective title, 'RAM-based node' and their networks as 
'RAM-nets'. This has placed them somewhat outside the mainstream 
of Neural Net research which has usually dealt with McCulloch and 
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[ 
Pitts type neurons (TLUs), or semilinear nodes which have a sigmoidal 
output function. Among the differences are that the latter can deal with 
analogue inputs and may have their functionality expressed in a closed 
analytic form, allowing proof of learning convergence in a supervised 
regime. 

It is shown in this paper that the RAM-nets may be thought of as 
having both these properties. In particular, the classic training schemes 
using Reward Penalty (Barto & Jordan, 1987) and Back-propagation 
(Rumelhart & McClelland, 1986) may be applied. The route to this 
uses models with continuous (later quantised) values at each address 
and time stochastic processing of analogue inputs. There is a closed 
form for the functionality which may be expressed in a way equivalent 
to that for the sigma-pi units described by Rumelhart & McClelland 
(1986). These higher order nodes have, of course as a subset, the 
conventional semilinear units. 

The models used are not bound to any hardware implementation 
but may still be built using RAM devices. The nodes are considered to 
be defined by a population of values at the vetices or sites of a 
hypercube and will be referred to as cube-based or cubic. The process 
of training set generalisation may be thought of as related to the 
clustering of similar site values with respect to the hypercube topology. 

One variant of this scheme is the Multi-Cube-Unit (MCU) which 
sums the activation from several cubes before producing output. This 
constrains the functionality and is the closest equivalent to the TLU or 
semilinear unit. 

2 . Boolean functions and their extension 

We shall start by considering Boolean functions and establish a 
closed expression for their functionality which lends itself naturally to a 
formal, analogue extension. First, some notation: If X is a Boolean 
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variable then χ will denote its value in the polarised representation with 

3c e {-1,1}. Its value in the more usual binary representation will be 

denoted by i , where i e {0,1}. (As a mnemonic for this notation note 

that the ««polarised form is denoted with an underscore.) The 

relationship between the two representations is given by the 

correspondence 0 <-» -1, 1 <-> 1, or 

x = 2x- I and χ = ^(χ + 1) 

A Boolean function (defined with respect to the binary representation) 

is a mapping /: {0 ,1 } " - » {0 ,1 } . This has the geometrical 

interpretation that each point in the domain gives the coordinates of a 

vertex or site on the n-dimensional hypercube so that the function is 

defined by a population of 0's and l's at the sites of this cube. Sites 

will be denoted by lower case Greek letters μ, ν, ... and will be 

identified with the bit string or address ill,U2»»-Un which gives its 

cube coordinates. The value at site μ will be denoted by 5μ. 

The main feature of the geometric picture is that it illustrates the 

natural topology on the mapping domain, or address space, defined by 

the Hamming distance between addresses. Learning generalisation can 

then 1y though of as a due to clustering of similar site values on the 

hypercube. This is discussed more fully in Section (5.1). 

2.1 A closed expression for Boolean Functionality 

In order to give insight into the meaning of the general expression 

we first examine the case of a function with two inputs, 

Y = F(Xj,X2). Using the unpolarised form for both inputs and site 

values we have 
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1 = 5oo<l - - *2> + ioid - i i f e + 

j ^ t t -£ , ) + ί ι , ί ώ ( 2 ) 

since the only one of these terms which survives for any input μ is just 
thai which contains βμ. Ullman (1973) discusses relations like (2) in 
the context of orthonormal expansion of Boolean functionality. 
However, by using the polarised representation in the input domain, 
we get a more symmetric form for this expression. 

( l - j c ^ d -x2) (1-JCJ (1 +I2) 
Z = 2 2 + 5 ) 1 2 2 + (3) 

(1 +XJ (1 - x 2 ) ( 1 + ^ ) (1 + x2) 

2 2 + 2 2 

In the general λ-D case (3) becomes 

2 · , μ ι - 1 
(4) 

2.2 Activation-Output Formulation 

It is convenient with weighted node models (TLU, sigma-pi, etc.) 
to express the overall functionality in two parts. Thus, there is an 
activation a = a(xi, wj) which is function of the inputs x/ and internal 
parameters or weights wj, and the output y = y(a) which is a function 
of the activation. Typically α is a linear weighted sum of the inputs and 
y = σ(α) where σ is the sigmoid or logistic 'squashing' function. (4) 
may be cast into activation-output form by defining the activation in 
terms of the polaised site values Sß and using the relation (1) between 
the two representations. 
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η 
(5) 

μ f . 1 

Σ = f a * 1) (6) 

Since a only takes on the values ±1, the output relation (6) may be 
represented as a step function or the limiting sigmoid, formed by letting 
the gradient at zero tend to infinity as shown in Figure 1. 

Fig. 1 Activation-output relation for Boolean functions using 

We now have the Boolean functionality in a form that lends itself to an 
analogue extension and have made the first point of contact with 
weighted node models. 

2.3 Generalisation to analogue nodes 

The modvation here is that networks of nodes with continuous site 

y 

a 
-1.0 1 . 0 

polarised binary representation for site values. 
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values are amenable to analysis, since it makes sense to define 
derivatives of an output error with respect to the sites. Further, more 
training information may be captured by allowing more than the two 
site values of the Boolean case (see section 5.3 for fuller discussion). 

We first define, quite formally, an analogue extension of (5) and 
(6), and then show how this maps onto a cube-based structure with 
stochastic dynamics. Let zj and Ξμ be two sets of real numbers with 
ζ e [-1, 1], and 5μ e [-Sm , Sm]. There is no interpretation at this 
stage of the μ as site addresses or the Ξμ as site values. However, the 
index i is integral in the range Ι,...,/t and the μ are the set of bit strings 
μΐ ,..., μη. Define the real valued activation function α(ζϊ,Ξμ) and the 
output y(a) by 

(7> m μ 1-1 

y = o(a) (8) 

y is now defined throughout the real-valued cube [- l , l ] n . A Boolean 
function may be recovered by restricting the z/ and the 8μ to the 

extremes of their intervals with = 1. 
Now it would be possible to construct a network of nodes defined 

by (7) directly but the processing involved in doing this would be 
considerable; for an «-input unit there are 2n strings μ to be summed 
over. In the next section it will be shown how we may trade-off 
computational complexity with time in a stochastic version of this node 
type. We will call a node using the direct, analogue approach of (7) the 
Α-model, and its stochastic counterpart, the S-model. 
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3 . The stochastic models 

3.1 Stochastic processing and unary representations 

It is customary to represent numbers in a weighted positional 
scheme where the digit rn at the nth position from the right stands for 
bn~lrn where b is the representation base. In contrast, in the unary 
representation, each place in the number string has the same unit weight 
and may be filled with either one or zero. For example, the number 4 
may be represented by any of the strings Ί 1 1 Γ , '111 1000', 
Ί01100Γ. One of the advantages of unary representations is their 
immunity to noise. Thus if we change one of the bits in a binary 
number then, depending on its position, we may alter its value by 
orders of magnitude. In a unary number with string length L, we alter 
the value by 1IL in any position. 

Suppose now that a stream of bits is being generated with a fixed 
probability ρ of producing a Τ and we wish to find ρ by observing the 
resulting bit-stream. If there are Nj T s in the stream of length L, an 
estimate p* of ρ is given by Nj/L. The representation of ρ is a 
stochastic unary one. 

Since Nj is binomially distributed with probability p, its standard 
deviation, std (N/)given by 

stdOVj) = -JLp(l - p) (9) 

so that 

std(p*) = ί ^ - ^ Γ 
1 > 

(10) 

which varies as iNL 
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The use of stochastic bit streams to represent numbers allows arithmetic 
to be done on pairs of streams with very simple hardware. Thus multi-
plication may be done by passing the streams through an AND gate, 
and addition performed (with some precaution) by ORing them. Mars 
and Poppelbaum (1981) have shown how to develop complete 
arithmetic units for conventional Von Neumann architectures using this 
kind of stochastic processing. Using this kind of number 
representation in an artificial neuron may therefore confer advantages in 
ease of hardware implementation. 

In the following section we show how the Α-model developed 
above may be instantiated with the help of stream processing and in 
section (5.1) how bit-streams may be used to promote generalisation. 

3.2 The S-Model 

Informally, the z[ of the Α-model will be interpreted as defining the 
probability of a Τ appearing at the 2th input to a cube which has, at its 
vertices, the site values 8μ. Estimates are made of a by time-
windowing a stream of bits, each one determined stochastically by the 
site values visited at each time step. The node structure is shown in 
Figure 2. 

Let F:{0,l}n - » [-£„, be defined at the corners of the 
«-cube by associating each ordered string μ in the Α-model with the 
cube site μ, so that F ^ ) = 5μ. Next we suppose that, at each time 

step, a new input address is formed from the set of Boolean variables 
{Xi}. These are defined via a set of probability distributions 
determined by the {zi}. 

Px{x) = i(l + zt) and PQ{x) = \(l - z) (11) 
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where Po,l(Xi) is the probability that a = 0,1. Hence the probability 
Ρμ(ίϊ) that the& is equal to the /th component of site μ is given by 

= + (12) 

Now if no two inputs come from the same unit, the bit distributions on 
all inputs are independent. The probability Ρ(μ) that the current input 
address locates site μ is then 

Ρ ( μ ) = + ^ ( 1 3 ) 

(7) now becomes 

in μ tn 

where <·> denotes expectation value. Note that -1<α<1. 
Let η be the current input address, then useS^to generate a new 

activation-stream bit (see Fig. 2), according to 

P(u = 11η) « i c y ^ + l) (15) 

Over many time steps, if the z/ are held constant 

<u> = Pl(u)=^(<S1]>lSm + 1) (16) 

so that using (14) 

a = 2<u> - 1 = <u> (17) 
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If Ν j is the number of l's in the activation stream which is L bits 
long, then an estimate for <u> is Nj/L. An estimate a* for the 
activation is now given by 

a = 2NJL - 1 (18) 

We now use this to obtain an estimate y* = σ(α*), of the output y. 
This in turn defined a distribution on a Boolean random variable Y, by 
Ρl(y) = y*, which is used to communicate the output to the next layer. 
Assuming stationary conditions, the stream of output bits generated in 
this way will, over time, transmit an estimate of the value of y for this 
node. 

The stream of bits appearing at the output may be likened to the 
trains of action-potentials transmitted along axons. Real neurones also 
time integrate their inputs (Kuffler, Nicholls & Martin, 1984) indicating 
that frequency information or probabilities are being used. 

The nodes described in this section will be referred to as Time 
Integration nodes or TINs, in contrast with the Direct Output nodes or 
DONs discussed in the next section. Note that both types have A- and 
S- model descriptions. The DON is similar in function to the pRAM 
developed by Taylor and Gorse (Taylor, 1972; Gorse & Taylor, 1990) 
with a view to modelling a certain biological neural properties. 
However, the models and results in this paper, based on a PhD thesis 
(Gurney, 1989a), were obtained independently and have their origins 
in Boolean/PLN nets as described above. 

3.3 An alternative node structure 

Consider a feedforward net of m layers of TINs and suppose that 
the input probabilities at the first layer are changed. The new outputs at 
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the final layer will be estimated after mL time steps. During this 
transient period there is no simple causal relationship among the 
contents of the streams, for the most recent few bits in the stream of a 
unit are not just a result of the corresponding bits in previous layers, 
but also of the other bits in those layers that were generated at earlier 
times. If we are to take advantage of the correlation between short term 
fluctuations in the output of nodes in subsequent layers to provide 
training information (see section 5.3) then we require that there be 
micro-temporal causality throughout the net. This is the case with 
Reward Penalty training and a new algorithm based on system 
identification (Gurney, 1989a). 

To this end we incorporate the non-linearity σ (·) into the stream 
bit generation and identify the output with the activation. Consider the 
Α-model defined by 

η 
a - i Z σ(ν Π ( 1 +^ (i9) 

μ i · 1 

so that in the 5-model 

α ^ σ ( ί / ( μ ) = < σ ^ ) > ( 2 0 ) 
μ 

The output y is just put equal to the activation a and 

P& = II η) = σ(£η) (21) 

Thus, in the TIN, y = σ( <S^Sm> ), whereas in the DON, 
y = <σ(Ξμ)>. The S-model structure for the DON is shown in Fig. 3. 
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Input address 
latch . . . . . . . . . . . ι 

I Output bit generation 

Fig. 3 S-model structure of Direct Output Node 

In DONs, bits are produced and fed straight into the unit's fan-out 
without an intermediate stream, resulting in corresponding fragments of 
the α-stream being causally related. For the forward pass the α-stream 
is redundant but is required in training whenever the activation value is 
needed. 

If the site values are quantised and there is no stochastic recording 
of activation estimates in a bit stream, the resulting node is the same as 
the Multi-level Probabilistic Logic Node (MPLN) developed by Myers 
and Aleksander (Myers & Aleksander, 1988). 

3.4 Comparison between A- and S- Models 
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* The expressions for the activation are formally the same and, given 
the following correspondence, the two models are isomorphic. 

- In the Α-model μ is just an ordered string of Boolean values, 

whereas in the S-model it is the address for a cube site. 
- The analogue input values zj of the Α-model are interpreted in 
the S-model as defining the probability of there being a Ί ' at the 
j'th input. 
- In the Α-model, 8μ are just real parameters used to define unit 
functionality; in the S-model, 5μ is associated with cube site μ. 

* The Α-model is deterministic - given a set of inputs then there is a 
unique output value. Equivalently, in the S-model - given the 
input statistics are stationary, the expectation values are well 
defined and remain constant. In this sense the S-model is 
'deterministic'. If the statistics are not stationary, the bit-streams 
act as moving average filters. 

* The Α-model uses the interior of the «-cube which corresponds in 
the S-model to averaging over a set of samples from the cube 
corners. 

* The Α-model uses instantaneously available values whereas it may 
take many time steps for the S-model stream to fill and give a good 
activation estimate. 

* The S-model lends itself to a physical implementation in RAM 
technology - see section 5.2. 

4 . Using more than one cube 

One of the problems with the cube-based approach is that the 
storage requirement grows exponentially with the number of inputs; for 
example, a 32 input Boolean function requires 2^2 bits. Intuitively it 
appears that the node functionality is far too rich here and that it could 
be pruned considerably while still maintaining a processing ability 
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useful in connectionist-type tasks. There is a simple way to do this 
which allows a similar formal description to that developed so far, has 
a biological analogue, and allows further contact to be made with 
weighted nodes. 

Figure 4(a) shows a TIN or DON where the details of the 
particular activation-output (a-o) functionality have been suppressed; 
for TINs this will be an integrating stream followed by a sigmoid, for 
DONs there is no integration but an activation recording stream as in 
Figure 3. In 4(b) is shown a natural, linear extension of this where the 
total activation is the sum of site values from several cubes. 4(c) 
shows a further extension which includes simple, linear weight factors 
in the activation, thus allowing the use of these nodes in competitive 
nets. If there are m cubes each with η inputs, there are now mn inputs 
and m2n sites. 

If the activation-output function is replaced by the identity and the 
cubes are boolean, then the structure in Figure 4(b) is the same as that 
of a single discriminator as used in the WIS ARD pattern recognition 
device (Aleksander, Thomas & Bowden, 1984). 

The biological counterpart of the cube in these nodes is a localised 
cluster of synapses which are supposed to modulate each others activity 
in a multilineal way (Kandel & Schwartz, 1985). Each cluster is then 
considered sufficiently isolated that their resulting post-synaptic 
potentials may be summed. Further realism may be introduced by 
allowing delay elements between each cube and the final summation, 
representing the consequences of finite dendritic time constants. 

5 . Aspects of cubic nodes and their networks 

5.1 Generalisation 

In this section we shall restrict the discussion to the case of binary 
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inputs to clarify the situation, although all points made here are valid in 
the general case with suitable elaboration of detail. 

Consider a cubic node which, in the untrained state, has all sites 
set to zero. Independent of the particular type of node, the output will 
be totally random with there being equal probability of a 1 or a 0. If 
this node is now trained on the two (Boolean) vectors, only the two 
sites addressed by these will have their values altered; any other vector 
will produce a random output and there has been no generalisation. 
This may be thought of as a price to pay for the increased functionality 
of this type of node. We shall call sites addressed by the training set 
centre sites or centres. In order to promote Hamming distance generali-
sation, sites close (in the Hamming distance metric) to the centres need 
to be trained to the same or similar values as the centres themselves. In 
terms of the cube structure there should be a clustering of site values 
around the centres. This may be done automatically during training or 
done offline by, for example, performing a Voronoi tessellation of the 
cube (Gurney, 1989a, 1989b). This latter type of process has recently 
been suggested independently by Aleksander and embodied in the 
GRAM (Aleksander, 1990). All online training methods rely on 
expanding the training set to include noisy copies of the original set, 
thereby visiting a selection of nearby sites. It is now shown how to 
use bit-stream structures (Fig. 5) at the input and output to auto-
matically produce noise and promote generalisation. 

At each input, new bits to the first hidden layer are obtained from 
the value in the stream by interpreting its contents as a unary represen-
tation of probability. Thus, if there are N] T s in the stream the 
probability of the next input bit being a Τ is just N]/Lin where L[n is 
the stream length. The contents of the /th stream are obtained by 
gradually shifting in the value iLi(r) the relevant bit position in the 
current external training vector v(t) under control of a clock signal φ. 

Suppose that vj(t) &vi(t -1) and that the ith input stream is 
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saturated with the value v/i - 1), so that the input bits to the first hidden 
layer all take this value. Training is now occurring on the Boolean 
vector v(t - 1). At the next signal from φ the stream is shifted right and 
a new bit inserted with value ν,.(ί). The distribution of new input bits 
now allows both Ό' and Τ although still heavily weighted towards 
Vj(t - 1). Training now takes place with the new distributions before 
clocking φ again. Eventually the stream will be full with bit value ν,(ί) 
and training will take place with respect to the Boolean vector v(t). At 
intermediate times, cube sites will be visited which are in the 
neighbourhoods of the centres defined by v(t - 1) and v(i), and 
clustering will occur. Clearly, a similar stream mechanism will be 
required at the output layer in any supervised algorithm. 

The stream-clustering technique described here fits naturally into 
the stochastic paradigm and may be thought of, alternatively, as 
extending the training set to include analogue vectors. 

5.2 Implementation 

The starting point here is the observation that the truth-table for 
any Boolean function may be realised using the locations in a RAM 
memory store. This· was the basis for the WIS ARD pattern recognition 
device developed by Aleksander et al. (Aleksander, Thomas & 
Bowden, 1984). By using several RAMs tied to the same address latch 
we may implement a cubic node with more than two values at each site. 
This may be done by interpreting the memory word addressed as either 
a binary or a unary number. In both cases site values are restricted to 
the integers m in the range -Ξμ < m < Sm and we have a 
quantised S-model. The effect of quantisation is to introduce noise into 
training, since we may not perform arbitrary changes in the site values 
as dictated by gradient descent analysis on the continuous models. 

Clearly, the binary scheme is more memory efficient, requiring 
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2n\og2Sm as opposed to 2n+^Sm, but the unary approach is closer in 

spirit to a neural paradigm and has two advantages. Firstly, the 

disruption of any randomly chosen memory cell has an equally small 

effect whereas, in a binary representation, the destruction of the msb 

may erase a significant amount of training information. This points to 

the possible use of extremely high density RAM cell technology which 

is, by conventional standards, worthless because of its bit yield but 

which may be perfectly adequate for unary storage. Secondly, the 

summation required in MCUs may be performed simply by 

concatenating the individual cube outputs and interpreting the resulting 

string accordingly. 

The unary approach will only be realistic if it can be shown that the 

number of site levels required in a quantised S-model is moderate. 

Work by the author (Gurney, 1989a) has demonstrated that as few as 

10 levels may be adequate and this is supported by other work with 

cube-based nodes (Myers, 1989). 

5.3 Training 

It is not the intention here to discuss particular algorithms in detail 

but to provide references to some of those that have been reported and 

discuss some points about training cubic nodes in general. 

It may be shown (Gurney, 1989a) that learning convergence can 

be proved for nets of cubic nodes under the Reward-Penalty (Barto & 

Jordan, 1987) and Backpropagation schemes. Myers and Aleksander 

(1988) have developed a Reward-Penalty style algorithm which, 

although having no explicit proof of convergence, has been shown 

empirically to work under a wide variety of data sets and network 

architectures. In a similar vein, R. Al-Alawi (1990) has developed a 

Backpropagation style algorithm. It is possible to show convergence 

under a hybrid algorithm which combines some of the features of the 

Myers-Aleksander scheme with the conventional Reward-Penalty 
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algorithm (Penny, Gurney & Stonham, 1990). Milligan (1988) 
discusses some strategies for training recurrent nets using ideas based 
on stimulated annealing. Filho, Bisset & Fairhurst (1990) have 
developed an algorithm which considers the search for unused sites as 
a goal for each node during training leading to their designation 'Goal 
Seeking Neurons' (GSNs). 

Convergence for DONs may also be shown under a technique 
based on System Identification in control theory (Gurney, 1989a). 
Essentially, the short term fluctuations in the stream values of a DON 
provide 'test signals' for the network (the 'plant') which is 
parametrised by the derivatives of an error with respect to the site 
values. It is the requirement for causality or correlation between sub-
streams that leads to the necessity for the Direct-Output-Node structure. 
It may be shown that special cases of this method reduce to Reward-
Penalty training. 

We now turn to some general properties of cubic nodes under 
training. As noted in section 5.1, training a cubic node with two 
vectors alone does not dichotomise the input space, or equivalently, 
there is no generalisation. On the other hand, setting the weights in a 
TLU always establishes a hyperplane across the «-cube resulting in a 
true classifier. This apparent disadvantage may be overcome using the 
techniques described in section 5.1 and may be viewed as the price to 
pay for an increased functionality, since the other sites are not 
automatically determined by two vectors. 

There is however an advantage in training cube sites individually 
in that only one node parameter (weight or site value) is updated per 
training step. If node parameters are changed in parallel this means less 
hardware and, if done serially, less time used in a realisation of the 
node. For an MCU with τη,«-input cubes, we have to update m 
parameters. This is still much better than the m2n weights in the 
equivalent sigma-pi unit. 
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In section 2.3, it was noted that multi-valued sites retain more 
training information. To see this, suppose that a site in a Boolean node 
(site values 0,1) has been trained with the sequence 1001001000001. 
Clearly we should register the preponderance of 0's by storing a 0 at 
the site addressed. However since the last digit in the sequence was a 
1, this is what is retained, resulting in an incorrect description of 
training. If, however, we have a quantised site value with Sm =10 , 
then the final site value (assuming we initialise to 0) is -5, which has 
correctly stored 'he frequency of occurrence of 0's and l's. 

6 . Comparison of weighted and cube-based nodes 

We are now in a position to make points of contact between the 
'classical' weigh ted-sum-of-inputs nodes and those based on cube 
structures. 

6.1 Sigma-pi equivalence 

By multiplying out the product terms in (7) we obtain the (A-
model) activation for a TIN as series expansion. 

η 

m μ ί=1 μ 
. + 

(22) 

Σ Ρ , μ , . μ , ζ , . ζ , · + ,...,} 
i<j μ 

which may be written as 

(23) 
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where Ijc is an index set drawn from the integers 1,...,«. There are 2n 

such sets since each integer may be either included or not included in 
the set. Now put 

Sm2" Π μ ' (24) 

so that 

This is now in sigma-pi form with weights defined by 

w k = J S / » f o r 1 < k < N : N = 2" ( 2 6 ) 

μ 

Thus given {w£}, (26) is a set of Ν equations for the Ν site values 8μ. 
It is not difficult to show that the rows and columns of the determinant 
Icfyl are linearly independent implying that the latter is non-zero and 
that there is, therefore, a solution to these equations. This means that 
TINs are functionally equivalent to sigma-pi units. Although we have 
used the Α-model for convenience, the equivalence extends to the S-
model under the conditions of the A-S isomorphism discussed above. 

A similar treatment may be given for DONs by using (19) as the 
starting point. The resulting expressions may be obtained from those 
above by replacing 5μ by σ(Ξμ) and omitting the factor Sm. 

6.2 MCUs, TLUs and perceptrons 
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Although a semilinear unit is subsumed functionally by a single 
cubic node, a more direct analogy may be drawn with a special case of 
the MCU. Consider an MCU with m TIN type 1-cubes so that each 
'cube' has only 2 sites. Denote quantities in the Ith cube by an i 

superscript. Then, working with the A-model 

= Sid ( 2 7 ) 

Now put m 

m 
(28) 

(29) 

By a suitable choice of Sm we may solve this pair of equations for any 
θ and wj. The activation of the ith cube is then 

,· -Θ V 

and that of the whole node, a is given by 

m 
_θ_ (31) 
2S„, 

We may rescale the activation by 2Sm by introducing a parameter in the 
sigmoid exponent of 1/2Sm. The scaled node activation α'is then just 
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m 

' Σ " > · · " (32) 

which is just that for a TLU. Thus the latter may be mought of as a 
special case of an MCU with TIN cubes. 

Figure 6 shows a perceptron (Rosenblatt, 1962). The φ units at 
the input are general Boolean functions. These are fixed and it is the 
weights wj which are varied during training. Formally the structure 
looks similar to an MCU and may be obtained from it by fixing the 
weights at unity, restricting the (now trainable) site values to ±1, and 
using a DON type output (sigmoid) which has an infinite slope at the 
threshold. 

In summary, the routes between the various node type are 
illustrated in Figure 7. 

7 . Summary 

By a natural extension of the expression for Boolean functionality 
to continuous site values and inputs, we obtain a node which has a time 
stochastic realisation and which has a tractable mathematical analysis in 
terms of proof of supervised learning convergence. Generalisation 
may be promoted using a structure (the bit stream) which is already an 
integral part of the node's stochastic apparatus and may be though of as 
a process of site clustering on the hypercube. The use of several cubes 
overcomes the problem of exponentially growing resources with 
increased fan-in, and provides a natural contact with TLUs and 
semilinear units. 

Cubic nodes offer an alternative approach to obtaining sigma-pi 
functionality. The use of hypercube site values, rather than the weights 
of the sigma-pi expression, offers the advantage of only having to train 
one parameter at each step and an immediate implementation in digital 
RAM hardware. The relation between site values and weights is given 
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Fig. 7 Relationship between node types 

by (26). MCUs limit the order of the multilinear input terms in a 
biologically plausible way. 

Table 1 summarises some of the comparisons made for TLUs (or 
semilinear units), Sigma-pi units and cubic nodes. 

182 



KM. Gurney Journal of Intelligent Systems 

C
U

B
IC

 N
O

D
ES

 

G
en

er
al

 
B

oo
le

an
. 

M
ul

til
in

ea
r a

na
lo

gu
e 

RA
M

 a
cc

es
s 

an
d 

su
m

 

ac
hi

ev
ed

 o
n-

lin
e 

vi
a 

st
re

am
s 

or
 o

ff
-l

in
e 

vi
a 

cu
be

 te
ss

el
at

io
n 

T
ra

in
 s

in
gl

e 
si

te
 a

t 
ea

ch
 s

te
p 

SI
G

M
A

-P
I 

G
en

er
al

 
B

oo
le

an
. 

M
ul

til
in

ea
r a

na
lo

gu
e 

C
on

vo
lv

e 
in

pu
ts

 a
nd

 
w

ei
gh

ts
 

(i
m

pl
ie

s 
m

ul
tip

lic
at

io
n)

 

A
ut

om
at

ic
 

Tr
ai

n 
2"

 w
ei

gh
ts

 a
t 

ea
ch

 s
te

p 

TL
U

s 

Fu
nc

tio
na

lit
y 

lim
ite

d 
to

 li
ne

ar
 se

pa
ra

bi
lit

y 

C
on

vo
lv

e 
in

pu
ts

 a
nd

 
w

ei
gh

ts
 

(i
m

pl
ie

s 
m

ul
tip

lic
at

io
n)

 

A
ut

om
at

ic
 

T
ra

in
 η

 
w

ei
gh

ts
 a

t 
ea

ch
 s

te
p 

fu
nc

tio
na

lit
y 

Im
pl

em
en

ta
tio

n 

Ge
ne

ra
lis

at
io

n 

Tr
ai

ni
ng

 

(Λ ω cx 
ω 
Ο 

c ο 
t /3 

α, 
ε ο 

U 

<υ $ 

183 



Vol. 2, Νos. 1-4, 1992 Weighted Nodes and RAM-Nets: A Unified Approach 

The sigma-pi viewpoint of multi-valued site RAM-based nodes 
places them in the context of mainstream connectionism and may be 
one way to foster their acceptance by a lager part of the neural-net 
community. 
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