Article
Licensed
Unlicensed
Requires Authentication
Gradient-Finite Element Method for Nonlinear Neumann Problems
-
I. Faragó
Published/Copyright:
June 7, 2010
Abstract
We consider the numerical solution of quasilinear elliptic Neumann problems. The basic difficulty is the non-injectivity of the operator, which can be overcome by suitable factorization. We extend the gradient-finite element method (GFEM), introduced earlier by the authors for Dirichlet problems, to the Neumann problem. The algorithm is constructed and its convergence is proved.
Key words and phrases.: Neumann boundary value problems; gradient-finite element method; non-injective nonlinear operator; factorization
Received: 2000-11-27
Revised: 2001-03-20
Published Online: 2010-06-07
Published in Print: 2001-December
© Heldermann Verlag
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Asymptotic Behavior of Relatively Nonexpansive Operators in Banach Spaces
- Exceptional Sets for Universally Polygonally Approximable Functions
- Some Remarks on Nonuniqueness of Minimizers for Discrete Minimization Problems
- The Nevanlinna Theorem of the Classical Theory of Moments Revisited
- Measures in Locally Compact Groups are Carried by Meager Sets
- On Sequences of Upper and Lower Semi-Quasicontinuous Functions
- Compositions of Sierpiński-Zygmund Functions and Related Combinatorial Cardinals
- Gradient-Finite Element Method for Nonlinear Neumann Problems
- On Sets Determined by Sequences of Quasi-Continuous Functions
- On Minimal Pairwise Sufficient Statistics
Keywords for this article
Neumann boundary value problems;
gradient-finite element method;
non-injective nonlinear operator;
factorization
Articles in the same Issue
- Asymptotic Behavior of Relatively Nonexpansive Operators in Banach Spaces
- Exceptional Sets for Universally Polygonally Approximable Functions
- Some Remarks on Nonuniqueness of Minimizers for Discrete Minimization Problems
- The Nevanlinna Theorem of the Classical Theory of Moments Revisited
- Measures in Locally Compact Groups are Carried by Meager Sets
- On Sequences of Upper and Lower Semi-Quasicontinuous Functions
- Compositions of Sierpiński-Zygmund Functions and Related Combinatorial Cardinals
- Gradient-Finite Element Method for Nonlinear Neumann Problems
- On Sets Determined by Sequences of Quasi-Continuous Functions
- On Minimal Pairwise Sufficient Statistics