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ABSTRACT 

The sound velocity and its temperature coefficient in 
liquid La, Ce and Pr have been estimated using an 
improved Rosenfeld's approach. The temperature 
coefficient of the sound velocity in liquid Ce is positive, 
which is quite different from that of La and Pr. To 
reproduce the positive temperature coefficient of the 
sound velocity in liquid Ce, it is necessary to take into 
account the effect caused by electrons. The present 
calculations based on Ascarelli's approach suggest an 
increase in derealization of the 4f electrons with 
temperature in the liquid state of Ce. This is consistent 
with the results given by McAlister and Crozier 
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negative, which is interpreted as a loosening of the 
structure with increasing temperature. Liquid La and Pr 
are included in this category. However, liquid Ce 
represents a very different case, as seen from a decrease 
in adiabatic compressibility with temperature/2/. Such 
anomalous behavior of the sound velocity arid 
compressibility of liquid Ce attracts our attention. 

The purpose of this work is to investigate the sound 
velocity and its temperature coefficient in liquid La, Ce 
and Pr by means of an improved Rosenfeld's approach 
/3,4/ based on the hard-sphere model. Next, we examine 
the role of electrons so as to produce the positive 
temperature coefficient of the sound velocity in liquid 
Ce using Ascarelli's approach /1,5/. The calculated 
results are compared with the experimental results of 
McAlister and Crozier /2/. Discussion of the effective 
valence will be made using free electron theory. 

1. INTRODUCTION 

The velocity of sound in liquid metals is one of the 
most basic thermodynamic properties. Although there is 
a pioneering work of Ascarelli III, information on the 
sound velocity of liquid rare earth metals has been very 
limited, because of their chemical reactivity and higher 
melting point. In nearly all liquid metals, the 
temperature coefficient of the sound velocity is 
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2. MODEL THEORIES 

2.1 Improved Rosenfeld's Approach (Hard-
Sphere Model) 

The velocity of sound, Vs »is defined by /3,4/ 

MVs2 = (dp/dn)s =(dp/dn)T 
+ Τ [(dp/dT)y]2/(n2Cy/N), (1) 

where Μ is the mass of an ion, V is the volume, Τ is the 
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absolute temperature, Ν is the total number of ions and 
η is the number density of ions, ρ and S denote the 
pressure and the entropy, respectively. Cy stands for the 
heat capacity at constant volume which is purely 
kinetic, Cy =(3/2)NkB for a system of hard spheres, with 

being the Boltzmann constant. Then the velocity of 
sound , Ks, is given by 

Vs = s($™(kBT/M)m, (2) 

where ξ is the packing fraction defined by 

ξ= ρησ*Ι6, (3) 

and 

+ (2/3X3ξρ\ξ) (51η <τ/01η7)„ + ρ(ξ))2)χα. (4) 

In Eq.(3), er is a hard-sphere diameter. ρ(ξ) and ρ\ξ) 
are given by the Carnahan-Starling expression /6/ as 

ρ(ξ) = ( 1+ξ+ξ2-ξ3)/(1-&, (5) 

and 

ρ\ξ^άρ(ξ)/άξ= 2(2+2ξ -ξ2)/(1-ξ)Α (6) 

The temperature dependence of σΐ5 estimated by the 
use of the empirical formula proposed by Protopapas et 
al. Π I: 

σ(7) = 1.126 am [1 - 0.112(ΓITm)m], (7) 

in which am is the value of ffat the melting point, Tm , 
and 
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liquid metals near the melting point on the basis of a 
hard-sphere model. 

2.2 Ascarelli's Approach 

Ascarelli /I/ used a model of hard spheres immersed 
in a uniform (without gradients) potential and the total 
binding energy Ε (per atom) of a metal can be 
conveniently separated into the following two terms 
/10,11/, when calculated to the second order in a 
perturbation scheme, 

ΝΕ = ΝΕ0 + ( \ / 2 ) Σ ν ( η ) , (9) 

where E0 is a quantity dependent on the volume of .the 
system but independent of the positions of the ions, and 
V(r) is an effective pair interaction energy. As the 
structure of liquid metals is largely determined by the 
short-range repulsive forces, we approximate V(r) by a 
simple hard-sphere potential. The total binding energy Ε 
of a metal is completely determined by E0, which while 
supplying the cohesion to the hard-sphere system, does 
not change the equilibrium configurations of the ions. 

We now approximate E0 by the sum of two terms : 
the kinetic energy of a free-electron gas, and a negative 
energy term, 

which contains the energy of the 
interaction of valence electrons with the ion, and the 
energy of the interaction of valence electrons with 
themselves. Β is a constant to be determined by 
considering the pressure of the system to be zero at the 
melting point. For simplicity in the following, we write 
Β in terms of a dimensionless constant A defined by 

B = 3A(Vm)mkBTm. (10) 

We then write the pressure as/1/ 

(θ1ησ/31η7ν = - (0.056σ^σ{Τ)\ΤITm)m, (8) 

in which σ 0 is given by σ 0 = 1.0878(/j m)",/3 with η m 

being the number density of ions at Tm. We can extract 
the value of ξ through the excess entropy, as explained 
in Refs. /8,9/, which is 0.463 for liquid metals near the 
melting point. With ξ = 0.463, as shown in Ref. /9/, we 
can reasonably well account for the structural, 
thermodynamic, transport, and surface properties of 

pV/(NkBT )= ρ /(n kBT) 
= (2/5XzEF/(AB7)) - A(VJV)m(kBTJ(kBT)) 
+ PhV/(NkBT), (11) 

where ζ is the number of valence electrons per 
atom(valency), Vm is the volume at the melting point 
and Ef is the Fermi energy, p^ is the pressure of the 
hard-sphere system, which is well described by the 
Carnahan-Starling equation of states as given by Eq. (5). 

214 



Isao Yokoyama and Y. Waseda 

Now assuming the total pressure pV/(NkBT ) = 0 
under normal condition at the melting point in Eq.(ll), 
we find 

Λ =pyJ(nmkeTm) + (VSYzE^TMTJ) 

+ V W z E A T ^ W ) , (12) 

where ξη is the packing fraction at the melting point 
which is 0.463 as mentioned in the section 2.1. A is a 
constant which is independent of η and Τ in the 
following calculations. We can then write, after a simple 
differentiation of the pressure with respect to the 
volume and the temperature, 

( φ / 0 / 7 ) , / ( k B T ) = (2/3XZEF /(*B7)) 

- ( 4 / 3 > 4 ( « In J"(k*TJ(k*T)) + ρ(ξ) + ξρ \ξ), ( 1 3 ) 

{dp/dT)y/(n kB) = ρ(ξ) 
+ 3 ξ ρ \ξ) (01ησ/δ1η7> . (14) 

In the derivation of Eq.(13), we assumed {dddn)r 

= 0 . Then, substituting Eqs. (13) and (14) into Eq.(l), 
we obtain 

l{k*TIM)m = [(2/3XzEF/(*B7)) 
-(4/3)A(n/nJ»(kBTJ(kBT)) 
+ρ(ξ) + ξρ\ξ)+{2/3){ρ(ξ) 
+ 3 ξ ρ \ξ) (91ησ/51η7)^}2]ι/2. (15) 

There are four differences between Ascarelli's 
original approach and the present one, which are 
summarized as follows: 
(1) The different values of ξη were used (0.45 by 

Ascarelli, while 0.463 in this work), 
(2) A different equation of states was used (Ascarelli 

used Reiss et al.'s /l/ but we used the Carnahan-
Starling equation of states), 

(3) The temperature dependence of σ employed in this 
work differs from Ascarelli's approach, 

(4) We did not assume that Cp/Cv = 1.15 for all metals 
employed by Ascarelli. 

3. RESULTS 

The value of σ at Tm is extracted from Eq.(3) by 
using ξη = 0.463 and the measured density. Then, the 
temperature dependences of σ and (dlna/d\nT)y are 
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estimated by Eqs.(7) and (8). The values of ξ at elevated 
temperatures are determined from Eq.(3) using Eq.(7) 
and the experimental density data. 

Using Eq.(2), the sound velocity and its temperature 
dependence were estimated for liquid La, Ce and Pr. 
The results are summarized in Tables 1, 2 and 3, 
together with the input and experimental data. The 
calculated values of Ks are found to be in reasonable 
agreement with the experimental data. A comparison of 
the calculated values with the experimental data is 
demonstrated in Figs. 1 and 2. 

The Sound velocity, Vs is described by the improved 
approach of Rosenfeld /3/, although there is a rather 
large difference ir. the temperature dependence. 
Particularly, the calculated values do not explain the 
positive temperature dependence of Vs for liquid Ce. 
This strongly suggests that the effect caused by 
electrons should be included in the case of Ce using 
Ascarelli's approach. As an effective valence, zc(T, 
(i.e.,the effective number of free electrons per atom) of 
liquid Ce, we employed 1.15 ,which was determined 
from a plasma parameter Γ of the classical one-
component plasma model ( see Ref./12 / in detail ). The 
results are shown in Table 4. As seen from the table, the 
present theoretical value at the melting point agrees well 
with the experimental one. However, no improvement 
can be obtained for the positive temperature 
dependence. Therefore, we again estimated the sound 
velocity values of liquid Ce by introducing the variation 
of the effective valence with increasing temperature. 

The results are displayed in Fig. 2 for comparison. 
When considering the variation of the effective valence 
as a function of temperature, the positive temperature 
coefficient of the sound velocity for liquid Ce can be 
reproduced in the framework of Ascarelli's approach. 

4. DISCUSSION 

From Eq.(l), the sound velocity Vs is given by 

V*2 = (1 JM)(dp /dn)s = (1/Λ/«χΐ/νν), (16) 

where ics is the adiabatic compressibility. Then, the 
temperature derivative of ks at constant pressure is 
given by 
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Table 1 
Input density data and sound velocity results of liquid La (improved Rosenfeld's approach). Experimental data are 

taken from Ref./ 2 /, but the thermal expansion coefficient is taken from Ref./13/. 

Τ Ρ a? ξ (dlna/öln7V Ksc*lc Fsexpl Fscalc/Fscxpl 

(Κ) (103kgm3) ( l o V ) (ms"') (ms ' ) 
1193 (Tm) 5.96 0.40 0.463 -0.063 1960 2023 0.97 
1240 5.95 0.459 -0.065 1948 2019 0.96 
1273 5.94 0.456 -0.066 1942 2016 0.96 
1320 5.93 0.452 -0.067 1933 2013 0.96 
1373 5.92 0.447 -0.069 1923 2008 0.96 

Table 2 
Input density data and sound velocity results of liquid Ce (improved Rosenfeld's approach). Experimental data 

and the thermal expansion coefficient are taken from Ref./ 2 /. 

Τ Ρ αΡ ξ (01ησ/31η7> Kscalc Kscxp. Ksdc /KsexP1 

(Κ) (103kgm3) (ΐο- 'κ·1) (ms ' ) (ms1) 
1068 (7-m) 6.69 0.354 0.463 -0.063 1846 1693 1.09 
1143 6.67 0.455 -0.066 1829 1706 1.07 
1250 6.65 0.446 -0.069 1815 1725 1.05 
1323 6.63 0.439 -0.072 1801 1738 1.04 

Table 3 
Input density data and sound velocity results of liquid Pr (improved Rosenfeld's approach). Experimental data 

are taken from Ref./ 2 /, but the thermal expansion coefficient is taken from Ref./13/. 

Τ Ρ «P ξ (aina/dln7V Ks«ic Vs"p' Kst,ll7Kscxpl 

(Κ) (103kgm'3) (lO^K1) (ms1) (ms1) 
1208(Tm ) 6.61 0.38 0.463 -0.063 1958 1925 1.02 
1240 6.60 0.460 -0.064 1951 1922 1.02 
1273 6.59 0.457 -0.065 1945 1920 1.01 
1320 6.58 0.453 -0.067 1937 1916 1.01 
1373 6.57 0.449 -0.068 1928 1911 1.01 
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Fig. 1: Comparison between theory and experiment for the sound velocity in liquid La and Pr. The solid lines denote 

the experimental data. The broken lines denote the calculated results. The experimental temperature coefficient 

of the sound velocity 111 (dVs/dT)p is -0.078±0.004 ms'K."1 for liquid La and - 0.084±0.007 ms'K"1 for liquid 

P r , respectively. 
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Fig. 2: Comparison between theory and experiment for the sound velocity in liquid Ce. The solid lines denote the 
experimental data, ^improved Rosenfeld's approach, o: Ascarelli's approach (z^r = 1.15; fixed), Δ Ascarelli's 
approach (zcn ; varied). The experimental temperature coefficient of the sound velocity 111 (dVs/dT) p is + 
0.17710.005 ms 'K'1. The calculated temperature coefficient of the sound velocity is + 0.175±0.005 ms 'K"1. 
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Table 4 
Input density data and sound velocity results of liquid Ce (Ascarelli's approach). Experimental data are taken from 

Ref./ 2 /. Zefris the effective valence. The value of 1.15 is taken from Ref./12/. The values given by parenthesis are the 
calculated results when considering the variation of the effective valence with temperature. 

Τ 

(Κ) 
ξ (δΙησ/ölnTV Zcff A 

(ms"') 

Ksoxpl 

(ms ' ) 

K s clc / r s «pt 

1 0 6 8 ( T m ) 0.463 -0.063 1.15 28.966 1716 1693 1.01 
1143 0.455 -0.066 1.15 

(1.19) 
1696 

(1728) 
1706 0.99 

(1.01) 
1250 0.446 -0.069 1.15 

(1.23) 
1682 

(1748) 
1725 0.98 

(1.01) 
1323 0.439 -0.072 1.15 

(1.26) 
1665 

(1760) 
1738 0.96 

(i.oi) 

( 1 /K^dKs /dT)P = ( 1 IktWkt /dT),-, ( 1 7 ) 

where *> is the isothermal compressibility and the ratio 
of the specific heats is assumed constant over the range 
of temperature of interest. We will try to explain the 
positive temperature coefficient of Vs in liquid Ce using 
the framework of the free electron theory III. For a non-
interacting free electron gas, κτ is given by /14/ 

Κ Τ = 3 / ( 2 « Ζ E F ) ( 1 8 ) 

where ζ is the valence and ΕΨ is the Fermi energy 

E F = ( Α 2 / ( 8 Λ · 2 / N ) X 3 π 1 z n f J i , ( 1 9 ) 

where m is the mass of an electron and h is the Planck 
constant. From Eq.(19), we obtain 

( 3 £ f IdT),· = (2/3) Ef ((l/ζχδζ ldT)P - a,,), (20) 

and 

(d(nzEr)"' IdT),. = -5 ( (3z /37V - za,.)l (3nz2EF), (21) 

where a,· is the thermal expansion coefficient defined 
by 

a,, = (\!V)(dVIdT),, = - (lln)(dnldT),'. ( 2 2 ) 

Therefore, the temperature derivative of ics at 
constant pressure is given by 

(1/iCsXdKs ldT)P = - 5 ((5z ldT)P - zaP)/ (3z). (23) 

On the other hand, we obtain from Eq. (16) 

(1 lK^dKS ldT)P = otp +2βΡ , (24) 

where β Ρ is defined by 

ßp^-{\IV%\dV%ldT)p. ( 2 5 ) 

Since Eq. (23) is equal to Eq. (24), the following 
relation can be obtained, 

- 5 ( ( 5 z ldT)P - zap ) / ( 3 z ) = α,, +2βΡ, ( 2 6 ) 

and 
βΡ = (1/3)α>. - (5/όχΐ/ζ) {dzldT)P. (27) 

If (3 Ks IdT)ρ > 0, βΡ < 0 from Eq. (25). Then, from 

Eq.(27), 

a,, < (5/2χΐ/ζ) (dzldT)p. (28) 

Since a,> > 0, (dz ldT)p > 0 from Eq. (28). Therefore, 
if (dVs/dT),> is positive, then (dzldT)r must be positive. 
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This enables us to provide an origin for the anomalous 
behavior of the sound velocity of liquid Ce first reported 
by McAlister and Crozier ill. 

On the other hand, (3KS ldT)P is negative for liquid 
La and Pr and then ßr is positive, so that, 

otp > (5/2)(l/z) (dz/dT)p. (29) 

From Eq. (29), the relation of (dz ldT)r = 0 is 
suggested. This means the valence for liquid La and Pr 
is found to be constant, irrespective of temperature. 

5. CONCLUSION 

The sound velocity and its temperature dependence 
in liquid La and Pr are reasonably well explained by the 
improved Rosenfeld's approach based on the hard-
sphere model. However, in order to reproduce the 
positive temperature coefficient of the sound velocity in 
liquid Ce, the effective valence given in Ascarelli's 
approach .must be introduced as a function of 
temperature. The present work for liquid Ce clearly 
supports the variation of the effective valence with 
temperature, resulting from the promotion of the 4f 
electrons into the 5d conduction band. Such an idea was 
first suggested by McAlister and Crozier 111 to explain 
the experimental data. 
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