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1. INTRODUCTION 

By the kinetic equation method it is possible to 
investigate not only the transport phenomena in liquids, 
but also various "generalized susceptibilities", 
connected with the equilibrium fluctuation kinetics. In 
order to construct the kinetic equation for a classical 
single-atom liquid, the coordinates of the atom (ion) 
mass centers Rj, where j is the number of particles and 
the conjugated momentum Ρ j = MR,·, where Μ is the 
mass of the atom (ion), are used as a dynamic variables 
basic set. It is formally possible to receive the closed 
system of equations, which would describe the kinetics 
of liquids III, but actual simplification of the collision 
integral is possible only for small parameters (or weak 
interaction, or low density). In a liquid, both approxi-
mations are invalid, and the kinetic theory expressed in 
the variables (R j, Pj) remains a formal one. 

In solid-state theory, a similar difficulty is overcome 
by the introduction of the collective coordinates -
phonons. The zero approximation (noninteracting 
oscillators ideal gas) gives a good description of the 
lattice thermodynamics, and the lowest order of inter-
action between phonons (account of the anharmonic 
term) permits description of the thermal expansion of 
solids and the lattice thermal conductivity. The phonon 
picture, however, is an approximation of small 
deviations from the fixed equilibrium states. 

In a liquid, this model is invalid, nevertheless it is 
possible to introduce the collective coordinates "as 
phonons" without any model assumptions. We 
introduce the local particle density 

Ν 
n ( r ) = £ 5 ( ? - R j ) (1.1) 

j=i 

and we determine its Fourier component with the wave 
vector q : 

p(q)=^- jdfn(?)e~ i ? (1.2) 

Substituting (1.1) in (1.2), we obtain: 

1 N --
p ( q ) = - E e ~ , q R j >p(°) = i .<p(q) >=5q,o σ .3 ) 

N j = l 

where <.. .> designates the equilibrium configurational 
average with particle distribution function W(R )...RN) 
in R-space. The set of {p (q)} may now be considered 
as new (collective) variables. They were introduced by 
Böhm in plasma physics /2/, investigated in Zubarev's 
works /3/, used in statistical physics in Yuhnovski's 
work IM, and in liquid metal physics in March's works 
151. The latter considered the liquid metal as two-
component (electron-ion) plasma. However, in the 
kinetic theory of liquids these variables have not been 
applied. 

It is convenient to use the coordinates 

Xq=p(q)-<p(q)>=p(q)-6q>0 (1.4) 
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As seen from (1.3), p(q)=p(q,t) (depends on the 
time by means of R,·). The importance of the co-
ordinates (1.4) results from their simple connection 
with the dynamic structural factor of the liquid 16/: 

<X t-Xq(x)>=-i7S(q )x) (1.5) 
4 Ν 

In order to calculate this correlator, the master 
equation will be obtained in §2, and in §3 the kinetic 
equation in the Brownian motion model. The collective 
coordinates kinetics in a liquid and the respective 
kinetic equation are discussed in §4. In §5 the main 
kinetic equation parameter, the friction coefficient, is 
found, and in §6 the dynamic structural factor of the 
liquid is calculated. The possibilities of comparison 
between theory and experiment are also discussed 
there. 

and the thermostat,satisfying by its construction the 
condition: 

(Hü* ) f = S P f ( p o f Hint )=0 (2.3) 

(If ^Hint ̂  * 0, it is always possible to redefine 
Α Α Λ /* l Α Α A / A \ 

Hs —> Hs = Hs ,Hjnt —>Hjnt =Hint -^Hjnt , 

and now ^ H U ) · = 0.) Let us assume that ρ is the 

total system density matrix, and a( t ) - the S-system 
density matrix. Then: 

a( t) = SPF ρ (2.4) 

We determine the operator r)(t), which describes 
the correlatitons between the S-system and the 
thermostat: 

2. MASTER EQUATION 

As a first step, using the projection operators 
method, we obtain the general master equation, 
describing some S-system, which is in contact with an 
equilibrium thermostat. As far as our realization of 
projection operators differs from the standard one 111, 
we give a short derivation of the master equation, using 
the quantum-mechanical designations (they are more 
compact than the classical ones). The simple transition 
to the classical theory will be realized at the end of the 
derivation. The complete Hamiltonian of the system is: 

H = Ho+H' ( t ) + Hi„t ,Ho=HF+Hs (2.1) 

where Hf is the Hamiltonian of the equilibrium 
thermostat with the related density matrix: 

POF =e"ß»F /SpFe-PHF . ß ^ k T ) " 1 (2.2) 

Ρ = Ρ OF · σ ( 0 + η ( 0 (2.5) 

A A A 

and we introduce the projection operators, V, C, I : 

VQ = POFSPFQ = POFQ(S). I Q = Q. C - I -V (2.6) 

Here Q is a certain dynamic variable of the system, and 
A A 

the projector V "cuts out" from it the S-part Q(s>, 
acting only on S-system variables. These operators 
satisfy the identities: 

V2=V, C2=C, VC=C V = 0 (2.7) 

χ J 
(i.e. C is the orthogonal addition of the projector V). 
From (2.6 - 2.7) it follows: 

p= (V+C)p = ρ of σ(1) + C ρ (2.8) 

(and SpF (...) designates averaging only on thermostat 
variables), Hs - the Hamiltonian of the subsystem, 
H'(t) - the operator of interaction between the S-
system and external alternating fields (if present) and 
Hint - the operator of interaction between the S-system 

i.e. 

Vp = P o F - ^ ( t ) , C p - ή ( 0 (2.9) 

And, using the Balesku terminology 111, it is 

274 



S.P. Dovgopol and O.I. Tutynina 

possible to name V as projector on "the subdynamics of 

vacuum", and C - on "the subdynamics of correla-
tions". 

The evolution of the total system is described by 
Liouville's equation: 

St Λ1 
= - iLp 

(Liouville's operator L= — 
h 

H„. 

(2.10) 

and the projectors 

belong to the same algebra.) According to (2.1), we 
have: 

Α Α Α A A A A 

L = L 0 + L ' ( t ) + L i n t , L 0 = L f + L s (2.11) 

From determinations of projectors and Liouville's 
operators, the following identities are obtained: 

V L S = L S V , VL'(t) = L'(t)V, V L f = 0 
(2.12) 

V L 0 = L S V , VL i n tV = 0 

which, in turn, yields the following identities: 

A A A A A A A A A A A A 

V L V = (L s + L'(t))V, V L C = VL intC 
(2.13) 

A A A A Α Α Α Α Α A A A A 

C L V = LintV, C L C = ( L o + L ' ( t )+ C L i n t ) C 

Acting in sequence on both parts of equation (2.10), 
A A 
A A 

the projector V (or C) gives with the aid of (2.13): 

ip OF M i l = pO Ff £ s +L'(t)la(t) + VLint^(t)(2.14) 
.frl(t) f -
» - T - = LintPOFCT(t) + 

öt 

|^L0+L'(t) + CLintJq(t) 

Let us write the result of equation (2.15) as: 

t 

(2.15) 

High Temperature Materials and Processes 

where the propagator U(t,t') satisfies the equation: 

3 « (& « s« > 

i—U(t,t') = L 0 +L'(t) + CLint 
Ά V ) 

U(t,t') (2.17) 

and the boundary condition: 

u(t+o+,t ) = i (2.18) 

The choice of the initial condition η (0)=0 is now 
basic; it is equivalent to the initial Bogolubov's 
correlations weakening condition 111. Actually, it 
means the existence of the temporary scales hierarchy 
with the minimum scale τ0, a characteristic 
"smoothing" interval (by Kirkwood /8/), on which the 
destruction of the correlations by thennal motion in the 
thermostat occurs. Then it is possible to pass in a 
roughened temporary scale t » τ„, in which the 
interval τ0 "is concentrated in a point". Substituting 
(2.16) with the condition ή(0)=0 in (2.14) and using 

the determination of the V projector, we obtain the 
basic master equation, the closed irreversible equation 
for the S-system density matrix in its most common 
form: 

= - i L g +L'( t ) a ( t ) -do(t) 

dt 

-jdt'Spp LfcÜaOLfctPoF 

(2.19) 

a(t') 

For practical application of equation (2.19), 
simplifications are necessary. The problem position, 
deriving from the opportunity of the division of the 
total system on the S-system and the thermostat 
(remaining in equilibrium state), assumes weakness of 
the interaction between the S-system and the 
thermostat, which allows to be limited in the relaxation 
member in (2.19) by the lowest (second) order on H;nt. 

~ Λ 

Hence, it is enough to find U(t,t') in zero on H ^ 
approximation, i.e., it is possible to write, instead of 
(2.19): 

"Hit) = ri(0)-iJdt'U(t,t ')LJntpOP0(t') (2.16) i - U ( t . t ' ) s [ L O + L ' ( t ) 1 u ( t , t ' ) , U ( t + 0 \ t ) = I (2.20) 
„ dt V 
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Hereafter we are interested in the case where the 

alternating external fields are absent, i.e., L'(t) = 0. 
Then the equation (2.20) has the form: 

U(t . t ' ) = e- i ( t - t , ) L o 

and (2.15) may be written as: 

aS(t) 

(2.21) 

at 
= - i L s a ( t ) - J d t ' K ( t - t ' ) a ( t ' ) (2.22) 

with the relaxation kernel: 

Κ(τ) = Spp L i n t e ' i L ° L i n t P O F (2.23) 

Passing to clinical physics, the quantum Liouville's 
operators have to be replaced by the classical ones: 

- iL L = {Η,...}, where {u,v} is the Poisson's 

brackets; quantum density matrices - by the classical 

distribution functions σ -» σ, and SpF(...) - by JdTF , 

where dTF is the thermostat phase volume measure. 
Then the equations (2.22 - 2.23) may be written as: 

&r(t) 

at 
= £<sa(t) + j d t & ( t ) a ( t - τ) (2.24) 

K(T) = JdrFL i n te t L°L i n tpO F (2.25) 

particles of the liquid, we have: 

Ν 
Ηρ = Σ ^ Ρ ? 4 Σ * Σ υ ( ΐ η - Τ ί ΐ ) 

i = l 2 m 2 i j 

Η8 = - 1 - ρ 2 , Η ί η ί = Σ Φ ( ϊ - ϊ ί ) 
2M 

Ν 
Σ 
i=l 

( 3 . 1 ) 

where Φ is the potential of interaction between the 
Brownian particle and particles of the liquid. From 
(3.1) it follows that 

Μ dr i φ ; i m Si-

L i n t 
i aPi SP 

(3.2) 

where: 

Ν (* i ) 
Fi j) 

dT: 

ρ = Σ Φ ( Γ - Γ ί 
ar 

: i > ] = - Z F i ( F ) 

(3.3) 

(3.4) 

(3.5) 

The relaxation kernel (2.25) is written as: 

Κ(τ) = — JdTp FeTL° 
ap mkT ; gp 

P O F ( 3 . 6 ) 

3. KINETIC EQUATION IN BROWNIAN 
MOTION MODEL 

In the beginning, we consider as an important 
methodical example the derivation of the usual Fokker-
Planck equation for a heavy Brownian particle of mass 
Μ in a thermostat - liquid of unstructured particles of 
mass m. In this case, in the usual ( r ,p ) variables for 
the Brownian particle and the (r; ,pj) variables for 

as far as the — contribution from the left-hand factor 
dp 

of Lint disappears in the integration on the thermostat 
Q 

phase space, and the —— derivative in the right-hand 
dpi 

factor of L int acts only on the equilibrium function 

POF· Now we take into account that operators LF and 

L s commutate, and 

exLs(P(r) = Φ(Γ - τ ~ τ ) Ξ φ ( τ ) Μ 
(3.7) 
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(shift operator). We designate: 

βΛΡ<ρ({η,ρ;})=φ(τ) 

Using the equality: 

Substituting (3.15) in (2.22) we obtain the function 

e x L Sa( t -x) = a( t ) (accurate to members of second 
(3.8) order on interactions). Further, in the roughened 

temporary scale x 0 « t and, therefore, γ ( τ ) (Ό « 0 at x> 
x0. Hence: 

- ^ E F . ( F ) P i = H i n t + - F . p , 

( H i n t ^ H ^ ) 

we transform (3.6) as: 

(3.9) 

Κ(τ) = · ^ / < 1 Γ ρ ^ Η ^ ( χ ) + ^ ) ( τ ) Ί 
f _ Ρ 

ΜκΤ 
(3.10) 

(as far as L F p O F = 0). We introduce the correlation 
functions: 

J dTFF® F « (x)pOF ( τ ή = 

(3.11) 

where ® is the tensor multiplication symbol, I the unit 
tensor. Further, we take into consideration that: 

J dTF F HW (X) Pop = (FH W (x)^ = 0 (3.12) 

(in consequence of isotropicity of the thermostat). We 
designate 

Y ( t ) W = ^ ( F - F W ( x ) } (3.13) 

and we write (3.11) as: 

Κ(χ) = ^ γ Μ ( χ ) 
dp 

p+kT—^ 
M f dp) 

e tLs (3.14) 

JdryW(x)=JdxyW(x)=Y(p) (3.15) 

Now the equation (2.22) may be written as: 

Y(P) 
des + 1 _ da _ d 

dt Μ cf dp 

r ι _ 
— ρ σ + k T — 

dp 
(3.16) 

- the Fokker-Planck equation in the phase space of the 
Brownian particle. 

Our formal conclusion relied on the approximation 
of weak interaction and the disparity x0<< T0, where T0 

is the characteristic time of relaxation of the 
distribution a(t) (it provides the consequence of 
disparities xD « t £ T0, i.e. the opportunity of 
introduction of the roughened temporary scale). 
Actually these conditions are not independent, since T0 

is determined by the intensity of the interaction. For 
reasons of dimension and determinations (3.13 - 3.15), 
it follows: 

T 0 ~ ^ } ~ ^ M k T / x 0 ( | F | ^ (3.17) 

where s - J ^ j - This value may be evaluated as 

= Xjnt^lF^, where is the change of 

Brownian particle momentum for the interaction time 
Xjnt· Because of conservation law validity for pair 
interactions, has the same order of pulse as that 

of the thermostat particles, ~ ^ m k T . Then from 

(3.17) we obtain that the condition x0<< T0 is 

equivalent to the condition x„ « J—τ^. As for the 
V m 

liquid, x0 ~ Xi„t, we reach the usual condition Μ » m. 
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This is the physical justification of the weak interaction 
approximation, and, besides that, it permits the making 
of just one more simplification. The dependence γ (ρ) 
arises owing to the dependence γ(τ) because of the 

temporary shift r => r - τ, as seen from (3.7). 

But F depends on r only by means of r - r j, and in 
consequence of thermostat dynamics the total shift is 

r - r r - r τ 
f _ Ρ Pi. 

Μ m 
- Δ ς ( τ ) 

which is known as Kramer's equation /10/ (since when 
we built the right-hand part of (3.15) the operator L s 

was not used in its explicit form; this fact expresses the 
universality of the Brownian model). The only change 
arises in evaluation of the shift: 

r => r-(p/Mta)sinwx 

But on averaging, only the interval τ<,τ0, and if ω « 
V 1 (which usually is valid), then sinx~wt, and again 
r => r - ( p / M ) x . 

where the contribution Δη (τ) is stipulated by the 
potential U. The order of pulses ρ and ρ , is on the 
average identical, therefore, at Μ » m it is possible to 
neglect shift τρ/Μ, i.e. to assign φ(τ>(τ)=φ(τ), and then 
it does not depend on ρ , i.e., we obtain the Kirkwood 
formula /8/ for the friction coefficient: 

1 
3kT 

w - • 
Jdt^F-F(x)y (3.18) 

and after transition to velocities V = P / M , equation 
(3.16) assumes the standard form: 

4. COLLECTIVE COORDINATES DYNAMICS 
AND KINETIC EQUATION 

We write the Hamiltonian of a classical liquid in the 
form: 

The j-ion equation of motion has the form: 

Ν 
M V - V ^ ^ R j - R , ) (4.2) 

dt 
y 
Μ dV , 

kT da Va+ 
Μ 

(3.19) 

as it was recorded for the first time by Chandrashekhar 
191. 

The Brownian model, as the universal model of 
relaxation at a weak interaction of a system with a 
thermostat, is further used in collective variables 
kinetics, and in this case we are oriented on the Fokker-
Planck equation for a Brownian oscillator: 

2 
1 -•) Μω * i d 1 - 3 

Hg = P2+ r ,LS= Μω r—- —P— (3.20) 
2M 2 dP Μ dr 

Revising the conclusion, we receive, instead of 
(3.19), the equation: 

da -do 2-da y d 
— + V ω r — = - — — 
dt dr dv M5V 

278 

Va + 
kT da 

Μ dV 
(3.21) 

Introducing a Fourier image of a pair interionic 
potential: 

U(R) = — ν ϋ ( ϋ ) β ω 

N k 
(4.3) 

U(k) = ^ J d 3 R U ( R ) e - ^ , ( Q 0 = Ω / Ν ) 

where Ω - the volume of the system, we obtain: 

MV,· = - i ^ ]kÜ (k )e i i S p (k ) (4.4) 
k k 

if (1.3) is taken into account. From it and from (4.4) we 
find: 

j 

- ^ Z ( i ^ Ü ( i O p ( k - k ' ) p ( k · ) (4.5) 
k' 



S P. Dovgopol and O.I. Tutynina High Temperature Materials and Processes 

Applying the identity variables. Respectively, in the Hamiltonian, we assume: 

(kVj )2 = [(kVj )2 - ((kVj )2 )] + ((kVj))= 

s k 2 V 2 + [ ( k V j ) 2 - ( ( k V j ) 2 ) ] 

where (...) - equilibrium averagte and V2 = w e 

write (4.5) as: 

p(k) + k2V2p(k) =—XCk.k^Ofk^pCk - k')p(k·) -
M iT 

(4.6) 

N j 

Extracting the term of k - k' from the sum ^Γ-, 

(taking into account ρ (0) = 1) and using the 
coordinates (1.4), we finally obtain: 

X k + a j ^ X j ^ + f j ; 

a>2(k) = k 2 (V 2 +Ü(k)/M)> 

1 

(4.7) 

(4.8) 

k' 

Thus, the collective coordinate Xg is the oscillator 
with a natural frequency co0(k), which interacts with 
other ones (by means of force F^) and with single-
particle excitations (by means of force f^). In other 

words, the collective variables system is not closed, but 
we shall see that it is closed "on the average" in the 
sense that on calculation of the correlator (1.5) it is 
possible to neglect the contribution of single-particle 
excitations. 

We study the equilibrium liquid, in which the 
k - m o d e is excited (by the fluctuation way) and 
behaves as a Brownian mode in a thermostat of all 
other collective coordinates and single-particle 

Hp S Ηρ(Χ)+Ηρ(Π), Hint = HintW+HintdD (4.11) 

where the index X relates to the collective coordinates, 
and the index Π to single-particle excitations. Then: 

L - V (*k ) 
L F ( X ) - L· ω 2X 9 Ρ 9 

^ k' -m k' 

^ 

5 X k V 

L ^ ö ^ X j ^ - P c 
SP- K axr k k 

(4.12) 

(4.13) 

k' ^ k ^ k 

where: 

1 r r 
I f c ( X ) — — ( k k ' J U i k O X ^ X ^ , (4.15) 

and f^-fE<II>. Further,Pg = X^. The explicit form of 

the operator Lp^^ is not important. By complete 

analogy with (2.24), accounting for (4.13), we now 
obtain the kinetic equation for the Brownian k -mode: 

do _ da 
+ P r — -CD0k2Xj- — = f « h k ( T ) o ( t - x ) (4.16) K SV K PD J dt * 3Xr k 

where 

9P-k ο 

K(x) = ^ - Jd r (x ) Jd r ( J c ) (F ! + f : ) e T ( Ü J ( x ) + L F ( x ) + L ' ) x 

(4.17) 

Ar 

k T T 
Pof 

and the measured constant Ag is defined below (it 
occurs because the physical measure of X^ does not 
coincide with the spatial measure). As far as 
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and friction coefficients: 
k· Μ 

then 

it· 

where 

(4.19) 

φ ε - Σ ^ 1 - " · 
Μ 

(kk ' )X j J ,P w .U(k· ) (4.20) 

Taking into account the fact that the operators 
A A A A 

L F ( x ) , L F ( n ) ,L s are mutually commutable, POF is LF-

invariant, Fn, ί^ ,φ^ are independent of Brownian 

mode variables, we define the correlators: 

J d r F ^ ( T ) p O F S ( F ^ ( t ) ) 

J d r f ^ ( x ) p O F S ( f ^ ( T ) ) 

J d I ^ Ä f f i ( T ) p O T - { l { Ä ! ? t ( x ) ) - 0 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(the latter equals zero because of the isotropy in the k -
space of the macro-isotropic liquid) and taking into 
account that at equilibrium cross averages equal zero, 
we transform (4.17) as: 

Κ(τ) = 
δρ£ 

(4.25) 

h ( f k f k ( T ) ) 
^ k 

Pk + 
kT d 

Ak dP, k ; 

We introduce the frequency renormalization: 

Yc(«) = 
kT 

00 

K'&w) 

γ Ε = γ £ ( Χ ) + γ Ε ( π ) 

(4.27) 

(4.28) 

(4.29) 

Then, in the same approximation as in §3, from 
(4.25) and (4.16), we finally obtain: 

da 9σ des 
— + Pk ffikxk — = Yk — dt 3Xr dp r dpr 

where 

a>k2 = ra0k2 + δω2 

5. Coefficient of Friction γ^ (π) 

Let us consider the correlator 

kT da 

A k 
(4.30) 

(4.31) 

(5.1) 

From definition (4.10) and the statistical independence 
of the single-particle coordinates and velocities at 
equilibrium, we obtain: 

κ«<ο= -̂ΣΝ Σ ([(kV-<(kV>])x 

According to Brownian model ideology, we shall 
treat single-particle velocities Vj(x) as a stationary 

Gaussian process. Then, as known / l l / , the correlation 
moments of higher orders are reduced to the second 
order moments linear combination. In particular, 
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(VjaVjp ν,γ ( τ )ν , δ ( τ ) ) = ( v j a v , 7 (x))(v jpV/T (τ)) + 
(5.3 

+ ( v j a V « (x)>(v jp ν ί γ (τ)) + ( v j a V jp )('ν,γ V« ) , 

(α, ß, y, y = χ, y, z) 

We introduce the correlator: 

K ( j f ) ( x ) = ( v i a v , p ( x ) ) (5.4) 

and we take into consideration that in consequence of 
isotropy of the liquid 

K i f } ( τ ) = δ α ρ Κ ^ ( τ ) = - δ α ρ ( ν ί ν / ( τ ) ) * 

(5.5) 

Ξ - δ α β Κ ^ ( τ ) 

and again the last term in (5.8) disappears at the 
thermodynamic limit, and the first one includes the 

factor ^p*(k)p(k,x), as results from (1.3). Because of 

taking into account (1.4) and (1.5): 

^p*(k)p(k,x)^ = l ( s ( k , x ) + 3 5 t o ) (5.9) 

From (5.6 - 5.8), we find: 

K ( n ) (x ) = - k 4 K ? 2 ( x ) - S ( k , x ) 
9 Ν 

(5.10) 

As far as Ki 2 (0) = ( v 1 , V 2 ) = 0, the correlator Ki2( 

x) «0 at all x, and, in good approximation, Κπ(χ) » 0, 
i.e. and yk(7t) = 0 (as seen from (4.27)). Hence: 

Then, u$ing (5.3), we transform (5.2) into the form: 

Ν :_, 9 \ / 

Ν 
(5.6) 

ν Σ Σ 
j * i = ι 

In a macro-homogeneous system, the velocity 
autocorrelation function Kjj(x) does not depend on the 
number of particles, i.e. it is possible to assume Kjj(x) 
= Ki i(x), and the first term in (5.6) gives: 

( T ) = Ν 9 ^ ^ ( T ) V * j ( t ) ) } 0 (5.7) 

Α Γ 00 

T £ b T E ( X ) - — J d c ^ w ) (5.11) 

and in kinetics, described by equation (4.30), the 
collective variables system becomes closed. 

Let us now examine the correlator 

K « M - ( v i * ( „ ) 

From definition (4.9) we receive: 

(5.12) 

Μ ^ 
(5.13) 

(at the thermodynamic limit Ν oo). similarly, the 
second term in (5.6) transforms as: 

K g ( x ) = - k 4 K ? 2 ( x ) 
'N J=u=l 

(5.8) 

Ν 

1 " / ik(R:-Rj(t)) 

j=l 

Using again the Ansatz like (5.3) for the stationary 
Gaussian process, and taking into account that, for 
instance: 

( X L k ' X k - k " W ) = 8 k v S ( k - k ' , x ) l 

from (5.13), we receive: 
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κ(χ) <τ> = Ü2 (k) + (kk')(k, k - k ')x 
N2M2 

xÜ(k')Ü(k-k ')]S(k ' ,x)S(k-k ' ,x) 
(5.14) 

The measured constant A^ in (5.11) and (4.30) is 
determined for the following reasons. The potential 
energy of the liquid can be expressed by means of 
collective coordinates as well as Rj-variables, and both 

expressions may be compared at the frozen lattice 
(glass) limit: 

Ν 

7 Z V > k l X k M Z Z Uf lRj -R/ l ) (5.15) 
2 Ε 

The Fourier transformation of the right-hand part gives 

—£Ü(k) |x j [ | . At the frozen lattice limit 
2 k 

V2 0,e>k -»· k2 —Ü(k), and from (5.15) we receive 
Ν 

A £ = M N ( ^ / 2 ) Therefore, (4.30) and (5.11), 

considering (5.14), finally yield the form: 

da da 
— + PL at k ax, k 

1 1 1 

dPc MN 5Pk 

MkT k 2 
—y[(kk ' ) 2 Ü 2 (k ' ) + (kk')(k,k-k')x 
N t 4 

(5.17) 

xÜ(k')Ü(k-k ')] |dTS(k' ,x)S(k-k ' ,x) 

r s in(n k ,x ) -

Yk 
2Ω, 

cos(Qk,x) 
(6.2) 

where 

(6.3) 

It should be borne in mind that <ok = cook +&ok, 
and for the frequency renormalization δω k

2 (4.26) it is 
possible to obtain: 

δω,2 = 1 1 
MkT k 

r X[(kk ' ) 2 Ü 2 (k ' ) JdxS(k ' ,x ) 
k' 

(X*k-k'Pk-k' (τ))+(kk')(k,k - k')Ü(k')Ü(|k - k'|) (6.4) 
00 

J d x S ( k - k ' , x ) ^ , , P £ , ( x ) ) 

Now (5.17) and (6.1) give the closed self-consistent 
system of equations to determine the dynamic structural 
factor. Boltzmann-Maxwell's distribution is the 
equilibrium solution (5.16) (at the limit t oo) 

2 da . kT 2 da x 
k — - < d £ X £ — = Yk(Pk + K2 — )(5.16) CT0(Pk>Xk) = C e x p 

From (6.5), it follows: 

M N | P k | 2 ' 
exp 7 exp 

2k 2 kT 

ΜΝω,.2 |XC|2 

2KZ 

\ K / Μ ΛΛ? Μ <Dk Mo»2
k+&Bk 

kT 
(6.5) 

(6.6) 

6. Dynamic Structural Factor 

The expressions of the correlators of the 
independent variables in Kramer's equation are well 
known /12/, and by analogy we write: 

(x ' rx r (x)\ = —S(k,x) = —S(k)e 
* ' Ν Ν 

χ cos(Q-,x) + Jjc_ 
2Ω, 

sin (Ω-,χ) 
(6.1) 

282 

- a useful expression for the static structural factor, as 
far as even in zero approximation (when |&Dk| is 
neglected) the nontrivial connection between S(k) and 
the pair interaction potential can be received, as seen 
from (4.8): 

SQ(k)= 
kT 1 
M V 2 + —Ü(k) 

Μ 

(6.7) 

To calculate γκ in the second order, it is enough to 
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replace S'(k,t) in (5.17) by the undamped expression 
(i.e. formally assumed yk = 0 in (6.1). Then from (5.17) 
we receive: 

Yk = — ^ - ^ [ ( ^ ' ) 2 U 2 ( k ' ) + ( iS ' ) (k ,k -k ' )x 
2MkT k 

(6.8) 
xÜ(k')Ü(|k-k' |]S(k')S(|k-k' |)5(®0(k')-ro0( |k-k' |)) 

As seen from (4.8), the condition co0(k') = ro0(|k-k'|) is 
equal to k '= |k -k ' | , and, introducing the angle 

θ = k, k ' , we may write: 

8 ( f f l 0 (k ' ) -® 0 ( | k -k ' | ) ) = 
5(k' ) 

2cos0 

2k|cos0|[V2 + — Ö ( — ) 
Μ 2cos6 

Then, proceeding to the integral in (6.8): 

Σ Γ f dk' = - A r f k '2dk' f sinGde 
k. (2 Tt)3J (2π) J 

(where Ω = QQN), we receive 

Yk = 
Ω0 k 

32π MKT 

°° 1 
J dq · qÜ2 (q)S'2 (q) — — (6. 10) 

V Η U(q) 
Μ 

This expression can be further simplified by using the 
substitution S(q)->S0(q), according to (6.7) (at the 
accuracy of the kinetic equation. Then, finally: 

Yk = 
Ω0 kT 

32π Μ3 
k j d q - qÜ2(q) 

w ( V + — Ü(q))3 
7 2 Μ 

(6.11) 

Estimation of the expression (6.4), which includes cross 
correlators ^X*Pq (τ)^, shows that the frequency shift 

&ok is small and can be neglected. Then from (6.1) we 
receive: 

ι 
—Yk* 

S(k,t) = S(k)e 2 [cos(Qokx) + 

+ - ^ - s i n ( O o k x ) 

(6.12) 

2Ω, ok 

where 

f ^ok = , | ω ο ( k ) - —Yk (6.13) 

Thus, a closed expression is received for the dynamic 
structural factor of the liquid; to calculate it from the 
formulas (6.11-6.13) we need to know only the Fourier 
image of the pair interaction potential Ü(q). 

Usually the experiments measure not the factor 
itself, but its Fourier time-image: 

(6.9) S(k,co) = JdxS(k,x)cos(ro τ) (6.14) 

From (6.12) we find 

S(k,G>) = 
1 S(k)Y k 

4 Ω; ok 

2 + 
ω 

Ω, ok 

( i + — ) 2 + r k
2 

Ω, ok 
(6.15) 

2 - -
ω 

"ok 
(0 2 

( 1 - — ) + r k
2 

Ω, ok 

where 

Γ. 1 k / 2 Ω . ok 

As the function of frequency, S(k,co) has the maximum 
at 

(6.17) 

and the scheme of S(k,oa) is shown in Fig. 1 as a 
function of υ=ω/Ω<* for different values of Γ. 
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•U. 
Fig. 1: Dynamic structural factor S versus 

^ for different values· of Γ. 
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