Home Phenolic and Lipophilic Extractives in Scots Pine Knots and Stemwood
Article
Licensed
Unlicensed Requires Authentication

Phenolic and Lipophilic Extractives in Scots Pine Knots and Stemwood

  • S. Willför , J. Hemming , M. Reunanen and B. Holmbom
Published/Copyright: June 1, 2005
Become an author with De Gruyter Brill
Holzforschung
From the journal Volume 57 Issue 4

Summary

The phenolic and lipophilic extractives in the heartwood of knots from seven Scots pine trees were analysed by GC, GC-MS and HPSEC. The knots contained large amounts of phenolic stilbenes, 1–7% (w/w), and lignans, 0.4–3% (w/w), while the stemwood contained around 1% (w/w) of stilbenes and no detectable lignans. In young trees without stem heartwood the stilbene content in the knots was up to 200 times that in the stem. Some in-tree and between-tree variation was seen in the content of phenolic compounds in the knots. The ratio of pinosylvin monomethyl ether to pinosylvin was higher in the knots than in the stemwood. The most abundant lignan was nortrachelogenin, but also matairesinol, secoisolariciresinol and liovil were present in small amounts in the knots. The knots also contained a complex mixture of lignan-like compounds, here called oligolignans. The flavonoid pinocembrin was present in both stemwood and knots in amounts below 0.02% (w/w). The stilbene concentration in the radial direction, from the pith to the outer branch, decreased or was on the same level inside the stem, while it decreased markedly in the outer branch. The lignan concentration was on the same level or decreased slightly inside the stem, while it decreased markedly in the branches and became almost non-existent within 10 cm out in the branches. The knots contained large amounts (4.5–32% (w/w)) of lipophilic extractives, mainly resin acids. Some in-tree and between-tree variation was seen for the resin acids. The abietane-type resin acids dominated over the pimarane-type acids and abietic acid was the most abundant resin acid in the knots and in stem heartwood. The amount of resin acids in the radial direction decreased or was on the same level inside the stem, while a clear decrease was detected in the branches. The profile of the distribution of resin acids and phenolic compounds was similar. The knots also contained up to 0.5% (w/w) of diterpenyl aldehydes.

:
Published Online: 2005-06-01
Published in Print: 2003-06-26

Copyright © 2003 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Topochemical Characterisation of Phenolic Extractives in Discoloured Beechwood (Fagus sylvatica L.)
  2. Detection and Species Identification of Wood-Decaying Fungi by Hybridization of Immobilized Sequence-Specific Oligonucleotide Probes with PCR-Amplified Fungal Ribosomal DNA Internal Transcribed Spacers
  3. Analysis of Protein Expression along the Normal to Tension Wood Gradient in Eucalyptus gunnii
  4. Phenolic and Lipophilic Extractives in Scots Pine Knots and Stemwood
  5. Chemical Characterisation of Wood of Roman Ships Brought to Light in the Recently Discovered Ancient Harbour of Pisa (Tuscany, Italy)
  6. Lignin Structures in Normal and Compression Wood. Evaluation by Thioacidolysis Using Ethanethiol and Methanethiol
  7. Lignin-Carbohydrate Condensation Product Formation in a Biomimetic Model Pulp Bleaching System
  8. Viscoelastic Behaviour of Wood Fibres during the Hot Pressing of Medium Density Fibreboard
  9. Measuring Relative Fibre Length in Scots Pine by Non-Destructive Wood Sampling
  10. Modelling Log-End Cracks Due to Growth Stresses: Calculation of the Elastic Energy Release Rate
  11. Modeling Ovendry Softwood Resistivity Based on the Resistor Network Theory
  12. Comparison of the TL-Shear Strength of Normal and Compression Wood of European Larch
  13. A Theoretical Analysis of Timber Drying in Oscillating Climates
  14. Comparing the Effect of Chemical and Physical Properties on Complex Electrical Impedance of Scots Pine Wood
  15. Wood-Derived Porous Ceramics via Infiltration of SiO2-Sol and Carbothermal Reduction
  16. Manufacture of Fiberboard from Wood Fibers Activated with Fentons Reagent (H2O2/FeSO4)
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/HF.2003.054/html
Scroll to top button