SYNTHESIS AND ANTIBACTERIALA CTIVITIES OF FUSED PYRANOQUINOLINE DERIVATIVES

Nariman M. Nahas and Ali A. Abdel-Hafez
Chemistry Department, Faculty of Science, Umm AlQura University, Makkah, PO
Box 5576, Saudi Arabia

Abstract

Ethyl 2-amino-4-aryl-6-chloro-4-H-pyrano[3,2-h]quinoline-3-carboxylate 1a-e was converted into ethyl 2-(1-pyrrolyl)-4-aryl-6-chloro-4H-pyrano[3,2-h]quinoline-3-carboxylate 2a-e. Several derivatives of the latter compound have been synthesized. Also, the synthesis of 7-aryl-5-chloropyrrolo[1",2":1',2']pyrazino[5,6:5',6']pyrano-[3,2-h]quinoline and other related heterocycles are described

Key words: pyrrolo-, pyrazino-, pyranoquinoline, antibacterial activities.

Introduction

Recent years have witnessed the synthesis and characterization a number of nitrogen-containing heteroaromatics. In fact, the biological activities of these compounds have drawn the attention of organic chemists for a long time. The synthesis of pyrano-quinoline derivatives has gaind very important goals to be used as antimicrobial activity (1-3). The pyrrolopyrazine derivatives were reported by Robba and his colleagues (4-8). We are presently involved in a program directed to the synthesis of pyrrolo[1,",2":1',2']pyrazino[5,6:5',6']pyrano[3,2-h]quinoline derivatives and related hexacyclic heterocycles (scheme-1).

Experimental

The time required for completion of each reaction was monitored by TLC. Melting points are uncorrected. NMR(δ , ppm) spectra were measured on an EM-360 90-MHZ spectrometer using TMS as internal standard. IR(γ , cm⁻¹) spectra were recorded on a Nicolet Jeol Technique in the rang of 4000-400 cm⁻¹ 205 FTIR with KBr. Elemental analysis were determined on a perkin Elmer 240 C microanalyser. Mass spectra were recorded on Jeol JMS 600 instrement. Physical and spectral data are presented in table-1.

Ethyl 2-amino-4-aryl-6-chloro-4H-pyrano[3,2-h]quinoline-3-carboxylate 1a-e: A mixture of cinnamonnitrile derivatives (0.01 mol) and 5-chloro-8-quinolinol (0.01 mol) was heated under reflux in absolute ethanol (50 ml) using a catalytic amount of piperidine for 6h. The solvent was evaporated under reduced pressure, cooled and the precipitates were collected by filtration and recrystallized from methanol.

Scheme 1

350

Table 1: Physical Data of Pyrrolo[1",2":1',2']pyrazino[5,6:5',6']pyrano[3,2-h]quinoline derivatives and related heterocycles **1a-e-12a-e**.

Comp.	Yield	Mp	Molecular	IR	NMR (ashuma)	Anal.Calcd/(Found)%				
No.	%	(°C)	Formula	(γ,cm ⁻¹) (KBr)andMS	(solvent) (δ,ppm)	C	Н	N	S	CI
la	65	114-116	C21H17N2O3Cl	3273- 3160(NH ₂) 1735(CO),m/z 381,383	(CDCl ₃):5.10(1H,s), 3.70(3H,t),4.20(2H,q), 7.10-8.50(9H,m),8.90 (2H,s)	66.22 (66.34)	4.50 (4.46)	7.36 (7.43)		9.32 (9.26)
16	79	101-103	C ₂₂ H ₂₉ N ₂ O ₄ Cl	3324- 3180(NH ₂), 1716(CO)	(CDCls):2.20(3H,s), 3.80(3H,t),4.25(2H,q), 5.10(1H,s),7.00-8.45 (8H,m),8.90(2H,S)	64.30 (64.44)	4.66 (4.73)	6.82 (6 73)		8.64 (8.71)
Ic	72	96-98	C ₂₁ H ₃₀ N ₃ O ₅ Cl	3390- 3242(NH ₂), 1700(CO)	(CF ₃ COOD):5.10(1H,s),3.70(3 H,t),4.15(2H,q), 7.10-8.40(8H,m)	59.22 (59.34)	3.79 (3.73	9.87 (9.94)		8,34 (8,28)
1 d	83	117-119	C ₁₉ H ₁₅ N ₂ O ₄ CI	3360- 3186(NH ₂), 1711(CO)	(CF ₃ COOD):5.00(1H,s),3.50(3 H,t),4.00(2H,q), 7.80-8.90(7H,m)	6154 (61.65)	4.08 (4.16)	7.56 (7.47)		9.57 (9.46)
le	80	83-85	C ₁₉ H ₁₅ N ₂ O ₃ CIS	3324- 3196(NH ₂), 1716(CO)	(CF ₃ COOD):5.00(1H,s),3.50(3 H,t),4.00(2H,q), 6.60-7.80(7H,m)	58.98 (58.85)	3.91 (3.83)	7.24 (7.33)	8.30 (8.22)	9.18 (9.30)
2 a	62	126	C ₂₅ H ₁₉ N ₂ O ₃ CI	1700(CO),m/z 419,421	(CDCl ₃):3.50(3H,t), 4.30(2H,q),5.10(1H,s) 6.40(2H,m),6.75(2H,m) 7.10-8.60(9H,m)	69.68 (69.82)	4.44 (4.48)	6.50 (6.41)		8.24 (8.16)
2b	71	89	C ₂₆ H ₂₁ N ₂ O ₄ C1	1710(CO)	(CDCl ₃):3.50(3H,s), 4.30(2H,t),4.30(2H,q) 5.00(1H,s),6.50(2H,m) 6.80(2H,m),7.20-8.50	67.74 (67,61)	4.59 (4.51)	6.08 (6.16)		7.70 (7.83)
2c	65	142	C ₂₅ H ₁₈ N ₃ O ₅ Cl	1700(CO)	(8H,m) (CDCl ₃):3.50(3H,t), 4.20(2H,q),5.10(2H,s) 6.50(2H,m),6.70(2H,m) 7.20-8.50(8H,m)	63.09 (63.20)	3.81 (3.76)	8.83 (8.78)		7.46 (7.35)
2d	74	176	C ₂₃ H ₁₇ N ₂ O ₄ Cl	1720(CO)	(CDCl ₃):3.50(3H,t), 4.30(2H,q),5.10(2H,s) 6.40(2H,m),6.60(2H,m) 6.80-8.20(7H,m)	65.63 (65.74)	4.07 (4.12)	6.66 (6.74)		8.44 (8.35)
2 e	68	98	C ₁₉ H ₁₅ N ₂ O ₃ CIS	1720(CO)	(CDCl ₃):3.50(3H,t), 4.30(2H,q),5.10(2H,s) 6.40(2H,m),6.60(2H,m) 6.80-8.30(7H,m)	63.21 (63.33)	3.92 (3.84)	6.41 (6.31)	7.35 (7.42)	8.12 (8.21)
3a	65	134	C23H17N4O2Cl	1700(CO), 3324- 3206(NH ₂),345 2(NH),m/z	(CF ₃ COOD):5.00(1H,s),6.40(2 H,m),6.70(2H,m),7.10- 8.60(9H,m)	66.26 (66.15)	4.11 (4.16)	13.44 (13.50)		8.52 (8.61)
3b	75	151	C24H19N4O3Cl	417,419 1716(CO), 3312- 3202(NH ₂), 3450(NH)	(CF ₃ COOD):2.40(3H,s),5.10(1 H,t),6.40(2H,m), 6.70(2H,m),7.10-8.40 (8H,m)	64.49 (64.58)	4.29 (4.34)	12.54 (12.47)		7.94 (7.85)
3с	69	121	C23H10N9O4CI	1710(CO), 3300- 3200(NH ₂), 3450(NH)	(CF ₃ COOD):5.00(1H,s),6.40(1 H,m),6.70(2H,m), 7.20- 8.20(8H,m)	59.80 (59.95)	3.49 (3.42)	15.17 (15.23)		7.69 (7.54)
3d	78	159	C ₂₁ H ₁₅ N ₄ O ₃ Cl	1700(CO), 3320-3215 (NH ₂),3435 (NH)	(CF ₃ COOD):5.10(1H,s),6.20(2 H,m),6.60(2H,m),6.80- 8.50(7H,m)	61.99 (61.86)	3.72 (3.67)	13.77 (13.69)		8.37 (8.50)
3 e	72	>340	C ₂₁ H ₁₅ N ₄ O ₂ Cl	1700(CO), 3310-3200 (NH ₂),3420 (NH)	(CF ₃ COOD):5.10(1H,s),6.20(2 H,m),6.60(2H,m),6.90- 8.40(7H,m)	59.63 (59.79)	3.58 (3.62)	13.25 (13.19)	7.59 (7.68)	8.39 (8.24)
4a	61	231	C ₂₈ H ₂₁ N ₄ O ₂ Cl	1700(CO),m/z 481,483	(CDCl ₃):1.80(6H,s), 5.00(1H,s),6.30(2H,m),6.55(2 H,m),7.10-8.50 (9H,m)	69.91 (69.79)	4.40 (4.37)	11.65 (11.72)		7.38 (7.46)
4b	70	173	C ₂₉ H ₂₃ N ₄ O ₂ CI	1700(CO),	(CDCl ₃):2.30(3H,s), 5.10(1H,s),6.30(2H,m) 6.50(2H,m),7.20-8.40 (8H,m)	70.36 (70.47)	4.68 (4.74)	11.32 (11.41)		7.17 (7.28)
4 c	65	133	C ₂₈ H ₂₀ N ₃ O ₄ CI	1710(CO)	(CDCl ₃):5.10(3H,s), 6.40(2H,m),6.60(2H,m) ,7.30-8.40(8H,m)	63.93 (63,83)	3.83 (3.77)	13.32 (13.24)		6.75 (6.65)
4d	74	>340	C ₂₆ H ₁₉ N ₄ O ₃ C1	1700(CO)	(CDCl ₃):5.0(1H,s), 6.300(2H,m),6.50 (2H,m),7.10-8.20 (7H,m)	66.30 (66.42)	7.07 (4.13)	11.90 (11.81)		7.54 (7.42)

Table-1 continued

labic-i c	.on tin ut	Lu								
4c	68	112	C ₂₀ H ₁₉ N ₄ O ₂ CIS	1722(CO)	(CDCl ₃):5.0(1H,s), 6.30(2H,m),6.50(2H,m),7.20- 8.40(7H,m)	64.11 (64.22)	3.93 (3.87)	11.51 (11.43)	6.59 (6.66)	7.29 (7.18)
5a	62	185	C ₂₃ H ₁₄ N ₃ O ₂ Cl	2213(N ₃), 1716(CO),m/z 428,430	(CDCl ₃):5.10(1H,s), 6.40(2H,m),6.60(2H,m) 7.30-8.60(9H,m)	64.56 (60.68)	3.30 (3.38)	16.37 (16.48)		8.30 (8.19)
56	67	108	C ₂₄ H ₁₀ N ₃ O ₃ CI	2218(N ₃), 1710(CO)	(CDCl ₃):2.50(3H,s), 5.10(1H,s),6.40(2H,m) 6.60(2H,m), 7.30-8.50(8H,m)	62.95 (62.82)	3.52 (3.47)	15.30 (15.43)		7.75 (7.82)
5c	61	194	C23H13N5O4Cl	2210(N ₃), 1700(CO)	(CDCl ₃):5.10(1H,s), 6.40(1H,m),6.60(2H,m), 7.30-8.60(8H,m)	60.20 (60.31)	2.86 (2.94)	15.27 (15.49)		7.74 (7.81)
5d	70	338	C ₂₁ H ₁₂ N ₅ O ₃ Cl	2214(N ₃), 1680(CO)	(CDCl ₃):5. 0(1H,s), 6.30(2H,m),6.50(2H,m), 6.80-8.10(7H,m)	60.36 (60.48)	2.90 (2.84)	16.76 (16.88)		8.50 (8 43)
5e	74	257	C ₂₅ H ₁₂ N ₅ O ₂ CIS	2216(N ₃), 1670(CO)	(CDCl ₃):5. 0(1H,s), 6.30(2H,m),6.50(2H,m), 6.80-8.10(7H,m	58.12 (58.22)	2.79 (2.87)	16.14 (16.25	7.40 (7.51)	8.18 (8.25)
6a	72	>340	C25H20N3O1CI	3375(NH), 1700(CO), m/z 446,448	(CF ₂ COOD):2.10(3H,t), 4.20(2H,q),5.10(1H,s), 6.30(2H,m),6.60(2H,m), 7.30-8.50(9H,m)	67.33 (67.47)	4.52 (4.58)	9.43 (9.36)		7.96 (8.04)
6b	76	192	C ₂₆ H ₂₂ N ₃ O ₄ C1	3457(NH), 1705(CO)	(CF ₃ COOD):2.10(3H,t), 2.90(3H,s),4.10(2H,q), 5.10(1H,s),6.30(2H,m), 6.60(2H,m),7.20-8.40 (8H,m)	65.61 (65.45)	4.66 (4.58)	8.83 (8.92)		7.46 (7.62)
6c	70	>340	C25H10N3O5Cl	3421(NH), 1700(CO)	(CF ₂ COOD):2.10(3H,t), 4.10(2H,q),5.10(1H,s), 6.30(2H,m), 7.20-8.50 (8H,m)	61.16 (61.30)	3.90 (3.78)	11.4 2 (11.28)		7.23 (7.34)
6d	79	>340	C ₂₃ H ₁₀ N ₃ O ₄ CIS	3405(NH), 1705(CO)	(CF ₃ COOD):2.20(3H,t), 4.10(2H,q),6.20(2H,m), 6.40(2H,m),7.00-8.30(7H,m)	63.37 (63.22)	4.16 (4.24)	9.64 (9.75)		8.14 (8.29)
6e	82	285	C ₂₃ H ₁₈ N ₃ O ₃ Cl	3415(NH), 1700(CO),	(CF ₃ COOD):2.20(1H,t), 420(2H,q),6.20(2H,m), 6.40(2H,m),7.00-8.30 (7H,m)	61.11 (61.24)	4.01 (4.11)	9.30 (9.21)	7.10 (7.21)	7.85 (7.93)
7a	70	325	C ₂₅ H ₁₈ N ₅ O ₂ CI	3340-3160 (NH ₂),3347 (NH), 1690 (CO),m/z 432,434	(CF ₃ COOD):5.10(1H,s), 6.20- 8.30(13H,m)	63.95 (63.81)	4.20 (4 14)	16.22 (16.15)		8.22 (8.30)
7b	75	246	C ₂₄ H ₂₀ N ₃ O ₃ Cl	3340- 3210(NH ₂),345 0(NH),1670 (CO	(Cf ₃ COOD):3.20(3H,s), 5.10(1H,s),6.25-8.30 (12H,m)	62.40 (62.55)	4.36 (4.42)	15.16 (15.29)		7.69 (7 78)
7c	69	261	C ₂₃ H ₁₇ N ₆ O ₄ Cl	3331-3230 (NH ₂),3340 (NH),1665 (CO)	(CF ₃ COOD):5.10 (1H,s),6.20- 8.40 (12H,m)	57.92 (57.97)	3.59 (3.64)	17.63 (17.74)		7.44 (7.51)
7 d	78	>340	C ₂₁ H ₁₆ N ₅ O ₃ C1	3300-3200 (NH ₂),3435 (NH),1670 (CO)	(CF ₃ COOD):5.00(1H,s), 6.30-8.45(11H,m)	59.78 (59.64)	3.82 (3.76)	16.60 (16.47)		8.42 (8.51)
7e	82	>340	C ₂₁ H ₁₀ N ₃ O ₂ ClS	3315-3203 (NH ₂),3427 (NH), 1685 (CO)	(CF ₃ COOD):5.00(1H,s), 6.30-8.40 (11H,m)	57.58 (57.46)	3.68 (3.73)	15.99 (15.82)	7.33 (7.44)	8.11 (8.20)
8a	62	>340	C23H14N3O2CI	3385(NH ₂), 1690 (CO), m/z 400,402	(CF ₃ COOD):5.10(1H,s), 6.45-8.25(12H,m)	69.0 8 (69.20)	3.53 (3 61)	10.51 (10.62)		8.77 (8.26)
8 b	65	196	C24H14N3O3CI	2416(NH), 1690(CO)	(CF ₃ COOD):2.30(1H,s), 5.10(1H,s), 6.40-8.30(11H,m)	67.05 (67.21)	3.75 (3.82)	9.78 (9.87)		8.26 (8.32)
8c	61	>340	C ₂₃ H ₁₃ N ₄ O ₄ C1	3390(NH), 1650(CO)	(CF ₃ COOD):5.10(1H,s), 6.40-8.30(11H,m)	62.09 (62.23)	2.95 (3.02)	12.60 (12.74)		7.98 (8.06)
8d	66	>340	C ₂₁ H ₁₂ N ₃ O ₁ CI	3380(NH), 1700(CO)	(CF ₃ COOD):5.00(1H,s), 6.25-8.30(10H,m)	64.70 (64.44)	3.10 (3.19)	10,7 8 (10.86)		9.11 (9.26)

Table-1 c	ontinu	ed								
8e	69	>340	CHNOC	2280/NIU)	(CE COOD) 4 00(1H a)	62.12	2.09	10.35	7.01	0.75
80	09	~3 4 0	C ₂₁ H ₁₂ N ₃ O ₂ CI	3380(NH), 1664(CO)	(CF ₃ COOD):5.00(1H,s), 6.25-8.30(10H,m)	62.13 (62.26)	2.98 (2.87)	(10.44)	7.91 (7.83)	8.75 (8.82)
9a	70	254	C23H13N3OCl2		(CDCl ₃):5.10(1H,s),	66.03	3.13	10.05		16.97
~	,,	254	C231133113OC12		6.35-8.40(12H,m)	(66.17)	(3.07)	(10.14)		(16.83)
9b	73	242	C24H15N3O2Cl2		(CDCl ₃):2.30(3H,s),	64.28	3.37	9.37		15.83
-			024.113.13020.2		5.10(1H,s),	(64.39)	(3.43)	(9.45)		(15.72)
					6.30-8.40(11H,m)					(
9с	68	228	C23H12N4O3Cl2		(CDCl ₃):5.10(1H,s),	59.61	2.61	12.09		15.32
					6.30-8.40(11H,m)	(59.74)	(2.56)	(12.18)		(15.20)
9d	74	298	C21H11N3O2Cl2		(CDCl ₃):5.00(1H,s),	61.77	2.72	10.29		17.39
					6.25-8.30(10H,m)	(61.64)	(2.68)	(10.18)		(17.27)
9e	77	291	C21H11N3OCl2S		(CDCl ₃):5.00(1H,s),	59.42	2.61	9.90	7.56	16.73
					6.25-8.30(10H,m)	(59.31)	(2.58)	(9.82)	(7.66)	(16.60)
10a	64	294	C23H10N5OCI	3320-3206	(CF ₃ COOD):5.10(1H,s),	66.74	3.90	16.92		8.58
				(NH ₂),3450	6.308.20 (12H,m)	(66.62)	(3.20)	(16.99)		(8.66)
				(NH),m/z						
				414,416						
10Ь	66	282	C24H18N5O2CI	3300-3195	(CF ₃ COOD):2.30(3H,s),	64.93	4.09	15.78		8.00
			-1411/1811/01/01	(NH ₂),3416	5.10(1H,s), 6.30-8.20 (11H,m)	(64.80)	(4.15)	(15.91)		(7.89)
				(NH)		` '	, , ,	,,		()
10-	62	267	CHNOC	2216 2202	(CC COOD), 6 10(111 a) 6 20	60.10	2 20	10 77		7.74
10c	62	257	C23H15N6O3C1	3315-3202	(Cf ₃ COOD): 5.10(1H,s), 6.30-	60.19	3.30	18.32		7,74
				(NH ₂),3430 (NH)	8.30 (11H,m)	(60.30)	(3.41)	(18.44)		(7.81)
10d	68	>340	C21H14N3O2CI	3300-3180	(CF ₃ COOD):5.00(1H,s),	62.45	3.49	17.35		8.79
.00	00	- 540	C2 11 4 13 02C1	(NH ₂),3446	6.20-8.25(10H,m)	(62.57)	(3.57)	(17.47)		(8.87)
				(NH)						
10e	71	95	C21H14N3OCIS	3310-3165	(CF ₃ COOD):5.00(1H,s),	60.05	3.36	16.68	7.64	8.45
				(NH ₂),3450 (NH)	6.20-8.25(10H,m)	(60.15)	(3.42)	(16.81)	(7.58)	(8.38)
lla	55	118	C25H16N5OCI		(CDCl ₃):2.10(3H,s),	68.56	3.68	16.00		8.11
			-1310- 7		5,10(1H,s),	(68.45)	(3.73)	(16.06)		(8 19)
					6.30-8.10(12H,m)		, ,			
116	58	234	C26H18N3O2CI		(CDCl ₃):2.10(3H,s),	66.73	3.88	14.97		7.59
		254	02811(811)0201		3.20(3H,s), 5.10(1H,s), 630-	(66.60)	(3.93)	(14.86)		(7.48)
					8.20(11H,m)	(/	(====)	()		()
11c	54	257	C25H15N3O3CI		(CDCl ₃): 2.10(3H,s),	64.03	3.22	14.94		7.57
	3.	23,	C2511[511]OJC1		5.10(1H,s),	(64.13)	(3.16)	(14.84)		(7.66)
					6.30-8.20(11H,m)	()	(=,	((,
11 d	60	>340	C23H14N5O2CI		(CDCl ₃): 2.10(3H,s),	64,56	3.30	16.37		8.30
	30		02(11)4.130201		5.00(1H,s),	(64.43)	(3.24)	(16.25)		(8.43)
					6.20-8.35(10H,m)	(,			(/
1 le	63	195	C23H14N5OCIS		(CDCl ₃): 2.10(3H,s),	62.22	3.18	15.78	7.23	8.00
116	03	173	C231114143OC13		5.00(1H,s),	(62.36)	(3.25)	(15.67)	(7.17)	(8.11)
					6.20-8.35(10H,m)	(02.50)	(3.23)	(15.57)	(7.17)	(0.11)
					`					
I 2a	59	191	C24H14N3OCIS	3330(NH),	(CF ₃ COOD):5.10(1H,s),	63.21	3.10	15.36	7.04	7.79
				1190(CS),m/z	6.30-8.25(12H,m)	(63.32)	(3.01)	(15.45)	(7.13)	(7.88)
				356,358						
12b	62	>340	C25H15N5O2CIS	3400(NH),	(CF ₃ COOD):2.50(3H,s),	61.78	3.32	14.41	6.61	7.30
				1190(CS)	5.10(1H,s),	(61.89)	(3.38)	(14.32)	(6.62)	(7.41)
					6.30-8.30(11H,m)					
12c	58	263	C24H13N9O3CIS	3350(NH),	(CF ₃ COOD):5.10(1H,s),	57.53	2.62	16.78	6.41	7 09
			0 11 11 0 612	1190(CS)	6.30-8.30(11H,m)	(57, 43)	(2.56)	(16.86)	(6.50)	(7.19)
12d	65	127	$C_{22}H_{12}N_5O_2CIS$	3325(NH),	(CF ₃ COOD):5.10(1H,s),	59.25	2.71	15.71	7.20	7.96
12e	67	>340	C22H12N5OCIS2	1195(CS) 3340(NH),	6.20-8.30(10H,m) (CF ₃ COOD):5.10(1H,s),	(59.37) 57.18	(2.65) 2.62	(15.62) 15.16	(7.12) 13.89	(7.84) 7.68
126	0/	~340	C221112143OC132	1180(CS)	6.20-8.30(10H,m)	(57.29)	(2.56)	(15.24)	(13.78)	(7.57)
				1100(03)	3.20-3.30(1011,111)	(31.27)	(2.50)	(10.24)	(15.70)	(1.51)

Ethyl 2-(1-pyrrolyl)-4-aryl-6-chloro-4H-pyrano[3,2-h]quinoline-3-carboxylate 2a-e:

A mixture of 1a-e (0.01 mol) an 2,5-dimethoxytetrahydrofuran (0.01 mol) in acetic acid (50 ml) was heated under reflux for two hours. After cooling, the precipitates formed was filtered off and recrystallized from ethanol.

2-(1-pyrrolyl)-4-aryl-6-chloro-4H-pyrano[3,2-h]quinoline-3-carbohydrazide 3a-e:

To a solution of the ester 2a-e (0.01 mol) in hot ethanol (60 ml) was added an excess of hydrazine hydrate (5 ml, 98%) and the reaction mixture was refluxed for 5h. The solid product obtained was filtered off and recrystallized from acetic acid.

2-(1-pyrrolyl)-3-[(3,5-dimethylpyrazol-1-yl)carbonyl]-4-aryl-6-chloro-4H-pyrano[3,2-h]quinolines 4a-e:

A mixture of **3a-e** (0.01 mol) and excess of acetylacetone (10 ml) was refluxed for 5h. The excess acetylacetone was eliminated in vacuo and the solid product was collected and recrystallized from ethanol.

2-(1-pyrrolyl)-4-aryl-6-chloro-4H-pyrano[3,2-h]quinoline-3-oylazide 5a-e: General Procedure:

To a solution of **3a-e** (0.01 mol) in glacial acetic acid (40 ml) a solution of sodium nitrite (0.01 mol in 10 ml water) was added at room temperature with stirring. Stirring was continued for 30 minutes and the precipitates were filtered off, washed with water and recrystallized from benzene.

Ethyl 2-(1-pyrrolyl)-4-aryl-6-chloro-4H-pyrano[3,2-h]quinoline-3-carboxylate 6a-e:

Each compound of **5a-e** (0.01 mol) was heated under reflux in excess absolute ethanol (50 ml) for 2h. The reaction mixture was concentrated and left to cool. The solid product was recrystallized from ethanol.

4-[2-(1-pyrrolyl)-4-aryl-6-chloro-4H-pyrano[3,2-h]quinoline-3-yl]semicarbazide 7a-e:

A mixture of 5a-e (0.01 mol) and hydrazine hydrate (10 ml) was refluxed for 1h. On cooling the solid product obtained was filtered off, washed with ethanol and recrystallized from ethanol.

7-Aryl-5-chloro-9-oxo-8,9-dihydropyrrolo[1",2":1',2']pyrazino[5,6:5',6']pyrano-[3,2-h]quinoline 8a-e:

Asolution of **5a-e** (0.01 mol) in xylene (15 ml) was refluxed for one hour and then allowed to cool. The formed product was filtered off and recrystallized from ethanol.

7-Aryl-5,9-dichloropyrrolo[1",2":1',2']pyrazino[5,6:5',6']pyrano[3,2-h]quinoline 9a-e:

A suspension of 8a-e (0.01 mol) in phosphoryl chloride (25 ml) was heated under reflux for 4 hours. The cold reaction mixture was poured into ice-water mixture, the residual solid product was worked up in an ammonium hydroxide-ice mixture, filtered ,washed with water and recrystallized from benzene.

7-Aryl-5-chloro-9-hydrazinopyrrolo[1",2":1',2']pyrazino[5,6:5',6']pyrano[3,2-h] quinoline 10a-e:

A mixture of 9a-e (0.01 mol) and hydrazine hydrate (5 ml, 98%) in ethanol (25 ml) was heated under reflux for 5h. The product formed after cooling was filtered, washed with ethanol and recrystallized from dioxane.

7-Aryl-5-chloro-9-methyl[1,2,4]triazolo[3",4":3',4']pyrrolo[1",2":1',2']pyrazino-[5,6:5',6']pyrano[3,2-h]quinoline 11a-e:

A solution of 10a-e (0.01mol) in acetic acid (30 ml) was heated under reflux for 6h. The reaction mixture was concentrated in vacuo and the solid product was collected, washed with water and recrystallized from acetic acid.

7-Aryl-5-chloro-9-thioxo-9,10-dihydro[1,2,4]triazolo[3",4":3',4'] pyrrolo-[1",2":1',2'] pyrazino[5,6:5',6']pyrano[3,2-h]quinoline 12a-e:

A mixture of 10a-e (0.01 mol), in carbon disulfide (3 ml) in ethanol (30 ml) and two pellets of potassium hydroxide was heated under reflux on water bath for 6h. The solid product obtained was dissolved in water then acidified with acetic acid and recrystallized from dioxane.

Antimicrobial Activity

The antimicrobial activity of the synthesized compounds was tested against *Escherichia coli* and *staphylococcus aureus* using the agar cup diffusion technique(11) and results of the biological testing are given in Table 2. The data showed that most of the newly synthesized compounds exhibited remarkable effects.

Table 2: Antimicrobial Screening of compounds 1a-e-12a-e (inhibition zones mm)

Compd.No.	Escherichia coli	Staphilococcus aureus	Compd.No.	Escherichia coli	Staphilococcus aureus
1a	18	25	7a	27	36
1b	29	33	7 b	43	32
le		17	7c	25	16
1 d	26	39	7d	31	34
1e	45	62	7e	47	29
2a	20	29	8a	22	26
2b	33	35	8b	35	24
2c	19	-	8c	-	29
2d	17	21	8d	22	25
2e	36	50	8e	33	39
3a	22	31	9a	26	31
3b	37	27	9b	40	28
3c	26	19	9c	26	35
3d	23	28	9d	31	28
3e	42	57	9e	37	44
4a	18	21	10a	21	25
4b	23	19	10b	36	22
4c	18	24	10c	22	32
4d	•	16	10d	25	23
4e	22	-	10e	31	28
5a	24	33	11a	-	21
5b	40	29	11b	29	-
5c	14	22	11c	-	19
5d	27	31	11d	18	-
5e	44	61	11e	24	21
6a	19	21	12a	31	36
6b	25	19	12b	45	31
6c	23	-	12c	30	38
6d	26	23	12d	44	32
6e	24	31	12e	39	46
Tetracycline	12	15	Tetracycline	12	15

Results and discussions

It has been found that 5-chloro-8-quinolinol reacts with ylidennitriles in ethanol and in the presence of catalytic amount of piperidine for which two products 1a-e and 1'a-e seemed possible. Structures 1a-e were establish for the reaction products based on ¹H-NMR spectra which revealed the presence of 4H-pyran proton at 5.00-5.10 ppm, thus the structure 1'a-e were ruled out (9,10).

The amino function of ethyl 2-amino-4-aryl-6-chloro-4H-pyrano[3,2-h]quinolines 1a-e were easily converted to the corresponding 1-pyrrolyl group (7) via the interaction with 2,5-dimethoxytetrahydrofuran in boiling acetic acid to give 2a-e. The latter pyrrolyl ester was reacted with hydrazine hydrate to give the pyrrolyl hydrazide 3a-e. The pyrazolyl derivatives 4a-e were the product of the reaction between the hydrazides 3a-e and acetylacetone. The treatment of the hydrazides 3a-e with nitrous acid gave the corresponding 2-(1-pyrrolyl)-4-aryl-6-chloro-4H-pyrano[3,2-h]quinolin-3-oylazides 5a-e. This acid azide is versatile compound and could be transformed into a variety of derivatives. When 5a-e were heated in boiling ethanol the ethyl carbamate 6a-e were obtained. When they were reacted with hydrazine hydrate, the products were the semicarbazides 7a-e. Obviously these reactions went through the intermediate isocyanate 5a-e formed via Curtius rearrangement of 5a-e. Heating the acid azides 5a-e in a high-boiling point inert solvent such as xylene led to Curtius rearrangement with concomitant ring closure of the isocyanate intermediate 5a-e giving 7-aryl-5-chloro-9-oxo-8,9-dihydropyrrolo[1",2":1',2']pyrazino [5,6:5',6']pyrano[3,2-h]quinolines 8a-e. The formation of 8a-e are due to the high reactivity of the isocyanate intermediate which could not be isolated under the reaction conditions used.

The latter oxo compounds 8a-e could be transformed into the corresponding chloro derivatives 9a-e by heating with phosphoryl chloride under reflux. The reactivity of the chlorine atom of 9a-e was shown by its easy displacement using various nucleophilic reagents such as hydrazine hydrate to give 10a-e. The hydrazine hydrate derivatives 10a-e proved to be a useful compound for synthetics. The triazolo

derivatives 11a-e and 12a-e were produced from the reaction of 10a-e with acetic acid and carbon disulfide respectively Table 1. All the newly synthesized compounds were tested against *Escherichia coli* and *staphylococcus aureus* and the data are listed in Table 2.

Conclusions

This work reports a facile method for the synthesis of fused pyranoquinoline derivatives.

References

- (1) K.C. Majumdar, S.K. Ghosh and P. Biswas, Monatshefte fur chemie, 131, 967, (2000).
- (2) A.A. Abdel Hafez, J. Chem. Tech. Biotechnol. 55,95,(1992).
- (3) M.S. Al-Thebeiti, Afinidad, 489,365,(2000).
- (4) M. Cugnon de Sevricourt, H. El-Kashef, S.Rault and M. Robba, Synthesis, 9,710,(1981).
- (5) S. Rault, M. Cugnon de Sevricourt, N.H. Dung and M. Robba, J. Heterocyclic Chem. 18,739,(1981).
- (6) H. El-Kashef, S. Rault, J.C. Lancelot and M. Robba, J.Heterocyclic Chem. 23,161,(1986).
- (7) Y. Effi, J.C. Lancelot, S. Rault and M. Robba, J.Heterocyclic Chem. 23,17,(1986).
- (8) Y. Effi, S. Rault, J.C. Lancelot and M. Robba, J.Heterocyclic Chem. 24,141, (1987).
- (9) S.Z.A. Sowellim, F.M.A. El-Taweel, A.A. Elagamey, Bull. Soc. Chem. Fr. 133,229,(1996).
- (10) A.A. Elagamey, F.M.A. El-Taweel, Indian J. Chem. 298,88,(1990).
- (11) C.H. Collins, "Microbiological Methods", Bullerworth, London, (1964).

Received on January 6, 2004.