NOVEL SYNTHESIS OF 1,2,4-OXADIAZOLES BY CONDENSATION OF ARYLAMIDOXIMES WITH N-SUBSTITUTED IMINOETHERS

Anis Romdhane, Rafik Gharbi and Zine Mighri

Laboratoire de Chimie des Substances Naturelles et de Synthèse Organique. Faculte des Sciences de Monastir - 5000, Monastir, Tunisia.

Abstract: A new efficient route to 3,5-disubstituted-1,2,4-oxadiazoles 4a-j has been performed via the one-step

reaction between arylamidoximes 1a-e and N-substituted iminoethers 2a-c. The structures of compounds 4 have been

elucidated by mass spectrometry, infrared and ¹H, ¹³C NMR measurements.

Keywords: arylamidoximes, *N*-substituted iminoethers, 1,2,4-oxadiazoles.

Introduction

Since the discovery of their applications as pharmaceuticals, oxadiazoles have been receiving a growing interest (1).

Particularly, the synthesis of 1,2,4-oxadiazoles derivatives represents an increasing valuable goal in view of their large

range of applications as analgesics (2), anti-inflammatory (3), hypertensives, bronchodilatory and vasodilatory agents

(4). To this aim, several publications have been reported for the synthesis of these compounds (5-7) and among these

synthetic methods; the condensation of arylamidoximes with appropriate electrophiles represents one of the most useful

route to such five membered-ring heterocycles (8,9). Tiemann et al first reported, the preparation of a series of 1,2,4-

oxadiazoles from benzotrichloride and benzamidoxime (10). Another but, lengthier, route was published by Belen'kii et

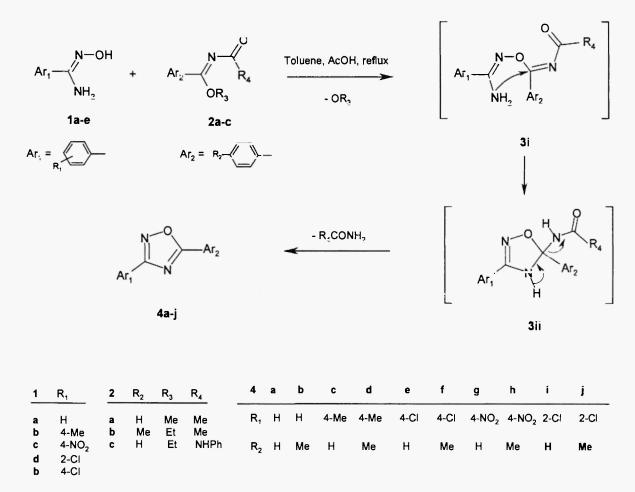
al and involved the reaction of areneamidoximes and trichloromethylarenes (11). More recently, Russian authors

realised the preparation of 1,2,4,-oxadiazoles derivatives through the trifluoroacetylation of o-vinylamidoximes with

trifluoroacetic anhydride in pyridine (12).

As a contribution to the search of efficient methodologies for the synthesis of 1,2,4-oxadiazole and in a continuation of

our studies on the preparation of heterocyclic compounds using iminoethers as starting reagents (13), we report here a


novel one-step synthesis of 3,5-disubstituted-1,2,4-oxadiazoles 4a-j by condensation of arylamidoximes 1a-e with N-

substituted iminoethers 2a-c.

151

Results and discussion

Arylamidoximes 1 constitute a class of compounds which are highly reactive towards electrophiles species such as nitriles (8) or aldehydes (9) and have been at several times used as efficacious synthon precursor to many five-membered heterocycles (10-12). For this purpose we planned and succeeded in the preparation of a series of 3,5-disubstituted-1,2,4-oxadiazoles 4a-j from arylamidoximes 1a-e and *N*-substituted iminoethers 2a-c. Our trials to optimise the experimental conditions showed that the best yields were reached on heating equimolar amounts of reactants 1 and 2 in dry toluene in the presence of few drops of acetic acid as catalyst. Under these experimental conditions, the reaction progress monitored by thin layer chromatography (petroleum ether-ethyl acetate. 8:2) revealed in all cases the formation of a single products which was, on the basis of its spectral data, assigned as the expected 3,5-diaryl-1,2,4-oxadiazoles 4 (scheme 1).

Scheme 1: Synthetic pathway for compounds 4a-j

A. Romdhane et al.

Mass spectra provided correct molecular peak [M⁺] for all the examined compounds and their infrared spectra showed essentially an absorption band at 1630-1660 cm⁻¹ characteristic of the oxadiazole ring C=N vibration [14]. ¹H NMR spectra of derivative 4a-j exhibited sets of signals relative to aromatic and alkyl groups protons for which chemical shifts and multiplicities were in good agreement with the proposed structure. Additional proofs for the suggested structure arised from the ¹³C data which are listed in table 1. Particularly the high shift-values attributed to the quaternary carbons C₃ and C₅ (166.4-169.7 ppm and 175.8-176.8 ppm, respectively) agree with the strong deshielding effects caused by nitrogens and oxygens proximities; this confirms the proposed regiochemistry and is in accordance of anteriorly described 1,2,4-oxadiazoles (1).

Table 1: 13C chemical shifts for compounds 4a-j

Comp. /δC(ppm)	$\underline{CH}_{3}(R_{1})$	$\underline{CH_3}(R_2)$	C ₃	C ₅	C _{arom} .
4a	-	-	166.4	.176.1	124.7 - 133.2
4b	-	21.7	168.8	175.8	121.5 - 143.5
4c	21.9	-	169.4	175.9	124.5 - 141.9
4d	21.9	22.1	169.7	176.3	122.3 - 142.3
4 e	-	-	168.5	176.2	124.5 - 137.7
4f	-	22.1	168.4	176.4	121.7 - 144.0
4g	-	-	167.8	176.8	124.1 - 149.8
4h	-	21.8	167.3	176.6	121.1 - 149.4
4i	-,	-	168.0	176.2	112.3 - 157.5
4j	-	22.1	168.3	176.4	115.1 - 158.6

From a mechanistic point of view, the reaction process is assumed to follow a two-steps pathway, thus according to previous studies relative to the condensation of amidoximes with electrophiles (11,15) the reaction first proceeded by the addition of arylaldoximes oxygen atom on the iminoethers C=N double bond and led to intermediate 3i, which was readily cyclised into 3ii through a nucleophilic attack of the free NH₂ group at imidic carbon. Hetero-aromatisation of 3ii took then place *via* a 1,3-proton shift with loss of amide molecule to afford the final isolable 1,2,4-oxadiazoles 4.

Conclusion

Since the condensation of arylamidoximes 1 with a variety of electrophilic species have found wide-spread uses for the synthesis of various five-membered heterocycles incorporating the N-C=N-O unit (8-9), the one-step synthesis we have described above illustrates a simple and efficient new method for the preparation of 3,5-diaryl-1,2,4-oxadiazoles 4 in good yield *via* condensation of 1 with *N*-substituted iminoethers 2.

Experimental

Melting points were taken on a Buchi-510 capillary melting point apparatus. Infrared spectra (potassium bromide) were run on a Perkin-elmer IR-197 infrared spectrometer. ¹H and ¹³C nmr spectra were recorded on a Brüker spectrometer AC-300 using CDCl₃ as solvent. Mass spectra were obtained with an Automass Multi Thermo Finnigan (electron impact mode, 70 eV) spectrometer. All the reactions were followed by TLC using aluminium sheets of Merck silica gel 60 F₂₅₄, 0.2 mm. Starting materials 1 and 2 were prepared according to the litterature (16,17).

General Procedure for the preparation of 3,5-disubstituted-1,2,4-oxadiazoles 4:

To a stirred solution of arylamidoximes 1 (1mmol) and N-substituted iminoether 2 (1.2 mmol), in dry toluene (15 mL), we added a catalytic amount of acetic acid and the mixture was heated under reflux. A TLC control showed that the reaction was completed after an hour, the solvent was then removed *in vacuo* and the obtained crude purified by chromatography on a silica gel column using petroleum ether-ethyl acetate (8:2) to give oxadiazoles 4a-j in good yield. All compounds 4 were obtained as colourless crystals, only the nitro derivative which is yellow.

3,5-diphenyl-[1,2,4]oxadiazole 4a: (yield = 75%); mp: 99 °C; IR: $v_{C=N} = 1638 \text{ cm}^{-1}$; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.35 (d, 2H_{arom}, J = 7.8 Hz), 7.52 (m, 3 H_{arom}), 8.12 (d, 2H_{arom}, J = 8.4 Hz), 8.19 (m, 3H); IE m/z (rel. Int.%) 222 (M⁺) (66), 119 (100), 103 (11), 91 (26), 77 (29), 64 (20), 51 (29).

3-(4-methyl)phenyl-5-phenyl-[1,2,4]oxadiazole 4b: (yield = 76%); mp: 123 °C; IR: $v_{C=N}$ = 1640 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 2.35 (s, 3H), 7.31 (d, 2 H_{arom}, J = 7.8 Hz), 7.45 (m, 3 H_{arom}), 8.1 (m, 2 H_{arom}), 8.15 (d, 2 H_{arom}, J - 7.8 Hz); IE m/z (rel. Int.%) 236 (M⁺·) (80), 119 (100), 103 (9), 91 (29), 77 (12), 63 (14), 51 (10).

5-(4-mehtyl)phenyl-3-phenyl-[1,2,4]oxadiazole 4c: (yield = 80%); mp: 143 °C; IR: $v_{C=N} = 1645$ cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 2.46 (s, 3H), 7.36 (d, 2 H_{arom.}, J = 7.8 Hz), 7.55 (m, 3 H_{arom.}), 8.0 (m, 2 H_{arom.}), 8.12 (d, 2 H_{arom.}, J = 8.1 Hz), IE m/z (rel. Int.%) 236 (M⁺) (80), 119 (100), 103 (9), 91 (29), 77 (12), 63 (14 %), 51 (10).

3,5-bis(4-mehtyl)phenyl-[1,2,4]oxadiazole 4d: (yield = 78%); mp: 122 °C; IR: $v_{C=N}$ = 1643 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ (ppm) 2.43 (s, 3H), 2.45 (s, 3H), 7.32 (d, 2 H_{arom.}, J = 8.1 Hz), 7.36 (d, 2 H_{arom.}, J = 8.4 Hz), 8.7 (d, 2 H_{arom.}, J = 8.1 Hz), 8.12 (d, 2 H_{arom.}, J = 8.4 Hz); IE m/z (rel. Int.%) 250 (M⁺⁻) (60), 133 (100), 119 (31), 103 (29), 91 (24), 77 (19), 65 (20), 51 (7).

3-(4-chloro)phenyl-3-phenyl-[1,2,4]oxadiazole 4e : (yield = 82%); mp:135 °C; IR: $v_{C=N} = 1648$ cm⁻¹; ¹H NMR (300 MHz, CDCI₃) δ (ppm): 7.4 (m, 5 H_{arom.}), 7.9 (d, 2 H_{arom.}, J = 8.1 Hz), 8.1 (d, 2 H_{arom.}, J = 8.1 Hz), IE m/z (rel. Int.%) 256 (M⁺·) (62), 153 (100), 137 (7), 125 (19), 103 (11), 90 (29), 77 (34), 63(19), 51 (30).

3-(4-chloro)phenyl-5-(4-methyl)phenyl-[1,2,4]oxadiazole 4f: (yield = 83%); mp: 184 °C; IR: $v_{C=N} = 1651 \text{ cm}^{-1}$; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 2.3 (s, 3H), δ 7.36 (d, 2 H_{arom}, J = 7.8 Hz), 7.5 (d, 2 H_{arom}, J = 8.1 Hz), 8.1 (m, 4 H_{arom}); IE m/z (rel. Int.%) 270 (M⁺·) (83), 153 (100), 125 (15), 116 (10), 102 (9), 90 (30), 75 (12), 65 (16), 51 (10).

3-(4-nitro)phenyl-5-phenyl-[1,2,4]oxadiazole 4g: (yield = 87%); mp: 127 °C; IR: $v_{C=N} = 1650$ cm⁻¹ ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.35 (d, 2 H_{arom}, J = 8.4 Hz), 8.10 (d, 2 H_{arom}, J = 8.4 Hz), 8.4 (m, 5 H_{arom}); IE m/z (rel. Int.%) 267 (M⁺.) (100), 164 (60), 134 (28), 105 (23), 88 (24), 77 (40), 62 (12), 51 (22).

5-(4-methyl)phenyl-3-(4-nitro)phenyl-[1,2,4]oxadiazole 4h: (yield = 73%); mp: 146 °C; IR: $v_{C=N} = 1653$ cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 2.39 (s, 3H), 7.25 (d, 2 H_{arom}, J = 8.4 Hz), 8.0 (d, 2 H_{arom}, J = 8.4 Hz), 8.28 (m, 4 H_{arom}); IE m/z (rel. Int.%) 281 (M⁺) (60), 164 (11), 117 (100), 91 (37), 77 (12), 65 (23), 51 (12).

3-(2-chloro)phenyl-5-phenyl-[1,2,4]oxadiazole 4i : (yield = 77%); mp: 195 °C; IR: $v_{C=N} = 1656$ cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.35 (m, 2 H_{arom.}), 7.5 (m, 4 H_{arom.}), 7.93 (m, 1H_{arom.}), 8.14 (m, 2 H_{arom.}); IE m/z (rel. Int.%) 256 (M⁺) (57), 153 (100), 125 (10), 105 (16), 90 (40), 77 (45), 63 (23), 51 (38).

3-(2-chloro)phenyl-5-(4-methyl)phenyl-[1,2,4]oxadiazole 4j: (yield = 75%); mp: 195 °C; IR: $v_{C=N} = 1652$ cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 2.5 (s, 3H), 7.39 (d, 2 H_{arom}, J = 8.4 Hz), 7.46 (m, 2 H_{arom}), 7.6 (m, 1H_{arom}), 8.05 (m, 1H_{arom}), 8.15 (d, 2 H_{arom}, J = 8.4 Hz); IE m/z (rel. Int.%) 270 (M⁺) (76), 153 (100), 119 (15), 102 (10), 90 (30), 77 (10), 65 (17), 51 (9).

References

- 1 W. D. Ma, L. H. Zhang, Y. Lu, F. Guo and Q. T. Zheng, Tetrahedron: Asymmetry, 11, 1527-1536, (2000).
- 2 R. M. Srivastava, G. M. Seabra, J. Braz. Chem. Soc., 8(4), 397-405, (1997).
- 3 R. M. Srivastava, L. P. F. De Morais, M. T. J. A. Catanho, G. M. L. De Souza, G. M. Sebra, A. M. Simas, M. A. L. Rodrigues, *Heterocycl. Commun.*, 6(1), 41-48, (2000).
- 4 C. Fauran, H. Bergeron, G. Raynaud, J. Thomas and J. Eberle, French Demande, 2,262,513 (CI. A61K, CO7D), 26 Sept., (1975), Appl. 74 07, 002, 31 March, 1974, Chem. Abtr., 84, P121843v, (1976).
- 5 P. Rajagopalan, Tetrahedron Lett., 311-312, (1969).
- 6 Y. Yang, F. Hiromi, O. Masatomi, E. Shoji, Synthesis, 498-500, (1995).
- 7 R. M. Srivastava, L. P. F. De Morais, M. T. J. A. Catanho, G. M. L. De Souza, G. M. Sebra, A. M. Simas, M. A. L. Rodrigues, *Heterocycl. Commun.*, 6(1), 41-48, (2000).
- 8 V. N. Yarovenko, V. K. Taralashvili, I. V. Zavarzin, M. M. Krayushkin, Tetrahedron, 46(11), 3941-3952, (1990).
- 9 D. Korbonits, P. Kolonits, Acta Chim. Hung., 127(6), 795-802, (1990).
- 10 F. Tiemann, P. Krüger, Ber., 17, 1685-1698, (1884).
- 11 L. I. Belen'kii, D. B. Brokhovetskii, M. M. Krayushkin, N. D. Zelinsky, Tetrahedron, 46(5), 1659-1668, (1990).
- 12 A. T. Boris, Y. S. Elena, M. V. Alexander, I. M. Al'bina, B. Z. Alexey, V. M. Ludmila, G. G. Alexander, H. Jochemann, A. Jan-Dirk, *Synthesis*, 16, 2427-2430, (2000).
- 13 A. Harizi, A. Romdhane, Z. Mighri, J. Tetrahedron Lett., 41, 5833-5836, (2000).
- 14 A. Terzis and D. Mentzafos, J. Heterocyclic Chem., 27, 1425-1432, (1990).
- 15 J. Stieglitz, Ber., 22, 3148, (1889).
- 16 A. Pinner; in " Die imidoather und ihre derivative " Openheim Berlin, (1892).
- 17 B. D. Repke, P. H. Albrecht, G. J. Moffat, J. Org. Chem., 40, 2481-2487, (1975).

Received on November 24, 2003.