

SYNTHESIS OF NEW 4-[4-(4-METHOXYPHENYL)-5-(2-PHENYL- QUINAZOLIN-4-YL)-1,3-THIAZOL-2-YL]MORPHOLINE AND N^4 -[5-(4-METHOXYPHENYL)-1,3-OXATHIOL-2-YLIDEN]-(2-PHENYLQUINAZOLIN- -4-YL)-AMINE

Walid Fathalla^a, Jaromír Marek^b and Pavel Pazdera^{a*}

^aDepartment of Organic Chemistry, Masaryk University, 611 37 Brno, Czech Republic

^bLaboratory of Functional Genomics and Proteomics, Masaryk University, 611 37 Brno, Czech Republic

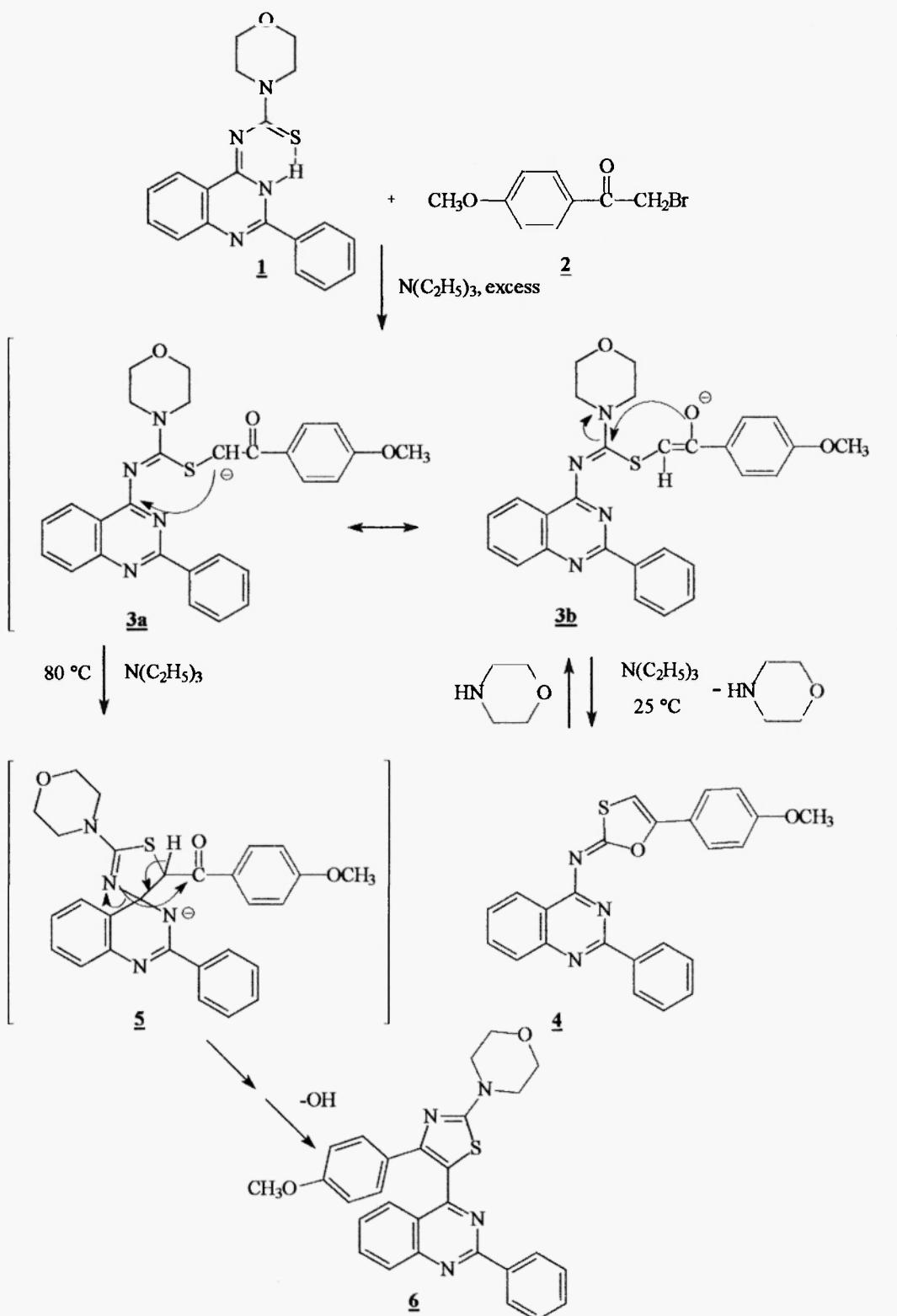
Abstract

The reaction of N^3,N^3 -(3-oxapentan-1,5-diy)- N^1 -(2-phenyl-3,4-dihydroquinazolin-4-yliden)thiourea with 4-methoxyphenacyl bromide afforded either the kinetically controlled reversible reaction product N^4 -[5-(4-methoxyphenyl)-1,3-oxathiol-2-yliden]-(2-phenylquinazolin-4-yl)-arnine or the thermodynamically controlled reaction product 4-[4-(4-methoxyphenyl)-5-(2-phenylquinazolin-4-yl)-4,5-dihydro-1,3-thiazol-2-yl]morpholine via domino-reaction by two different reaction pathways.

Keywords: quinazolines, 1,3-oxathioles, 1,3-thiazoles, domino-reaction, cyclization, retro-cyclization

Introduction

The nucleophilic S/N competition reactions with electrophiles on a thioamide structural fragment were considered as essential element for the preparation of a number of heterocyclic compounds.


Our research laboratory continued the studies of S/N thioamide nucleophilic competition reactions with electrophiles (1-3). The compound N^3,N^3 -(3-oxapentan-1,5-diy)- N^1 -(2-phenyl-3,4-dihydroquinazolin-4-ylidene)thiourea **1** is an excellent precursor for this type of studies.

Discussion

The thiourea **1** was prepared by the domino-reaction of *N*-(2-cyanophenyl)benzimidoyl isothiocyanate with morpholine (1). We now found that the reaction of 4-methoxyphenacyl bromide **2** with **1** in the presence of triethylamine afforded **4** at room temperature after ca 30 min. On the other hand, the prolongation of reaction time or a temperature elevation gave **6** via multi-step domino-reaction (Scheme 1).

*Corresponding author. Tel.: +420 5 41129305; e-mail: pazdera@chemi.muni.cz (P.Pazdera)

Scheme 1. Domino-reaction of **1** with 4-methoxyphenacyl bromide **2**

The first step of the process is a regioselective S-phenacylation of 1 by 2 and the intermediary isothiourea is formed. This is in the presence of base in equilibrium with an enolate ambident anion, which can be described by two mesomeric forms 3a and 3b. The ambident nucleophile 3 reacts further by two different pathways. A kinetically controlled reversible pathway runs *via* the oxygen hard attack of enolate anion 3b at the imino carbon and the consequent elimination of the morpholine to finally give 4. On the other hand, the extension of reaction time evoked the morpholine to reverse attack on the oxathiole derivative 4 to reform the enolate 3.

A thermodynamically controlled way proceeds by the carbanion form 3a intramolecular soft attack at the electrophilic C4 carbon atom of the quinazoline ring accompanied with a series of ring transformations to finally afford the thiazoles 6 (Scheme 1).

Identity of structures 4 and 6 was confirmed by IR, ¹H, ¹³C NMR and in the case of 6 by X-ray structural analysis, too (Figure 1).

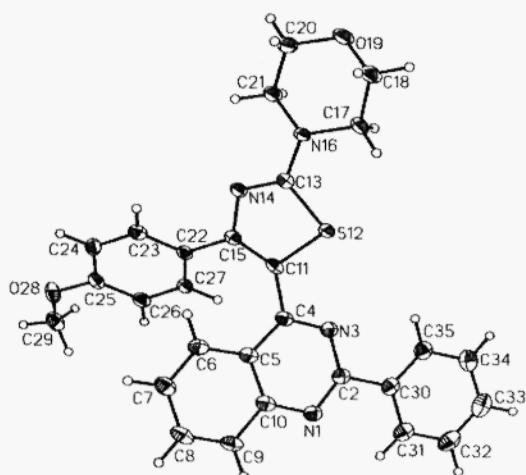


Figure 1: The ORTEP diagram of X-ray structure analysis of 4-[4-(4-methoxyphenyl)-5-(2-phenyl-quinazolin-4-yl)-1,3-thiazol-2-yl]morpholine 6.

Conclusion

The reaction of thiourea 1 with 4-methoxyphenacyl bromide 2 afforded either the kinetically controlled reversible reaction product 4 or the thermodynamically controlled reaction product 6 *via* two competition reactions of intermediary enolate 3.

Experimental

For general methods, techniques, and equipments see (4).

N*^t-[5-(4-Methoxyphenyl)-1,3-oxathiol-2-yliden]-[2-phenylquinazolin-4-yl]-amine **4*

To a solution of **1** (1.0 g, 2.8 mmol) (1) in DMF (30 mL) was added triethylamine (0.5 mL, 3.5 mmol) and 4-methoxyphenacyl bromide **2** (0.65 g, 2.8 mmol). The reaction mixture was stirred at room temperature for 30 minutes. The solvent was then evaporated under reduced pressure and a residue was crystallized from ethyl alcohol. Yield 0.78 g (66 % pure product) mp 200-201°C; ¹H NMR δ / ppm: 3.72 (s, 3H, OCH₃), 6.73 (1H, s, CH-oxathiole), 6.91-8.71 (m, 13H, Ar); ¹³C NMR δ / ppm 55.69 (OCH₃), 99.08 (CH), 120.72 (C_q), 125.34 (CH), 125.43 (CH), 126.72 (C_q), 127.88 (CH), 128.21 (CH), 128.72 (CH), 129.13 (CH), 130.03(CH), 133.86 (CH), 133.89 (CH), 138.89 (C_q), 148.59 (C_q), 152.18 (C_q), 160.18 (C_q), 161.86 (C_q).

4-[4-(4-Methoxyphenyl)-5-(2-phenylquinazolin-4-yl)-4,5-dihydro-1,3-thiazol-2-yl]-morpholine **6**

To a solution of **1** (1.0 g, 2.8 mmol) (1) in DMF (30 mL) was added triethylamine (0.5 mL, 3.5 mmol) and **2** (0.65 g, 2.8 mmol). The mixture was heated at 80 °C for 4 hours. The solvent was then evaporated and an oily residue was cooled till solidification and crystallized from ethyl alcohol. Yield 0.63 g (46 % pure product): mp 216-217°C; ¹H NMR δ / ppm: 3.67 (t, 3H, 2NCH₂, J = 5.29 Hz), 3.72 (s, 3H, OCH₃), 3.89 (t, 4H, 2OCH₂, J = 5.28 Hz), 6.59-8.62 (m, 13H, Ar); ¹³C NMR δ / ppm 48.46 (NCH₂), 55.40 (OCH₃), 66.41 (OCH₂), 113.92 (CH), 120.99 (C_q), 126.61 (CH), 127.68 (CH), 128.23 (C_q), 128.71 (CH), 128.96 (CH), 130.47 (CH), 130.70 (CH), 133.70 (CH), 138.19 (C_q), 152.21 (C_q), 152.79 (C_q), 159.82 (C_q), 160.36 (C_q), 161.99 (C_q), 171.28 (C_q), 173.11 (C_q). Crystallographic data for **6** are presented at (5).

Acknowledgments

This work was supported by a grant of the Ministry of Education of the Czech Republic (Grant No. CEZ: J07/98:143100011) and of the Grant Agency of the Czech Republic (Grant No. 203/01/1333).

References

- (1) W. Fathalla, M. Čajan, J. Marek, and P. Pazdera, *Molecules* **6**, 574 (2001).
- (2) W. Fathalla, M. Čajan, J. Marek, and P. Pazdera, *Molecules* **6**, 588 (2001).
- (3) W. Fathalla, M. Čajan, and P. Pazdera, *Molecules* **6**, 557 (2001).
- (4) W. Fathalla, J. Marek, and P. Pazdera, *Heterocyclic Commun.*, in press.
- (5) Crystallographic data for **6**: C₂₈H₂₄N₄O₂S, M = 480.57, triclinic crystal system, S.G. P-1, a = 10.2343(8) Å, b = 10.8493(6) Å, c = 11.6946(8) Å, α = 91.205(5)°, β = 113.783(7)°, γ = 100.065(6)°, V = 1163.90(14) Å³, Z = 2, D_{calc} = 1.371 Mg.m⁻³. Number of collected / independent reflections was 6647 / 3974; R_{int} = 0.0521. The final R indices [I > 2σ(I)]: R1 = 0.0454, wR2 = 0.1105, the largest diff. peak and hole were 0.281 and -0.459 e. Å⁻³. Coordination have been deposited at the CCDC, deposition number CCDC 169181.

Received on January 5, 2002