SYNTHESIS OF DIMERIC BARBITURATES

R.Nandha kumar, S. Thamarai Selvi and P.S.Mohan* Department of Chemistry Bharathiar University Coimbatore – 641 046 India

Abstract

The dimerisation reaction of 1,3-diphenyl barbituric acid 1 and 1,3-diphenyl 2-thiobarbituric acid 3 has been studied. Alkaline solution of these acids when treated with vinyl acetate, yielded 5,5'-(methyl)-methylene-bis-(6-hydroxy-1,2,3,4-tetrahydro-1,3-diphenly)-2,4-dioxo pyrimidine 2 and 5,5'-(methyl)-methylene-bis-(6-hydroxy-1,2,3,4-tetrahydro-1,3-diphenly)-4-oxo-2-thio pyrimidine 4 respectively. The structures of these compounds have been confirmed from their spectral and analytical data.

Introduction

A large number of barbiturate and thiobarbiturate derivatives have been reported to exihibit a broad spectrum of biological activities, such as anticonvulsant ^{1,2}, sedative and hypnotic ³⁻⁶, antibacterial⁷, insecticidal ^{8,9} and antineoplastic activities¹⁰. In addition, synthetic studies of fused pyrimidines have been documented extensively because of their structural diversity and to carry out further for the study of above activities. We have recently reported ^{11,12} the synthesis of novel pyranobis quinolines, pyranobis benzopyrans and benzopyrano-pyranoquinolines through the intermediate quinone methides. In continuation of our ongoing interest in the preparation of dimerized product, we now report the synthesis of 5,5'-(methyl)-methylene-bis-(6-hydroxy-1,2,3,4-tetrahydro-1,3-diphenly)-2,4-dioxo pyrimidine 2.

Experimental

General Information

Thin layer chromatography was used to access reactions and purity of products. Melting points were determined on a Boetius Microheating Table and Mettler-FP5 Melting-Point apparatus and are uncorrected. IR spectra were recorded in Shimadzu -8201 FT instrument in KBr disc and only noteworthy absorption levels(reciprocal centimeter) are listed. 1 H-NMR spectra were recorded in a AMX-400 MHz spectrometer in DMSO-d₆ solution; chemical shifts are expressed in ppm(δ) relative TMS, coupling constants (J) in Hz and signal multiplicities are represented by s(singlet), d(doublet), q(quartet) and m(multiplet). Mass spectra were recorded on a Jeol - 300 mass spectrometer.

General Procedure

1,3-Diphenyl barbituric acid(0.002mole) or 1,3-Diphenyl-2-thiobarbituric acid acid (0.002mole) was stirred at room temperature in 100 ml of 2% sodium hydroxide solution taken in a 250ml round bottom flask. To the alkaline solution vinyl acetate (0.02 mole) was added and the stirring was continued for 5-6 hours. The precipitated product was filtered carefully, washed with water and dried. The crude product was purified by recrystallising from CHCl₃-CH₃OH solution.

Results and Discussions

When a solution of 1,3-diphenyl barbituric acid in 2% sodium hydroxide was treated with vinyl acetate at room temperature, a yellow coloured solid separated out. It was filtered and recrystallised from CHCl₃-CH₃OH solution (Yield: 85%; M.P.:182.5 °C). Its IR spectrum registered >C=O absorption peaks at 1685 cm⁻¹ and 1649cm⁻¹, -OH absorption in the region 3290-3650cm⁻¹ and C-N peak at 1595 and 1544 cm⁻¹. The ¹H-NMR spectrum of the compound exihibited a doublet at δ 2.5 which might be ascribed to methyl protons, a quartet at δ 7.1 was accountable to methine proton. The low field shift of the methine proton may be due to the presence of >C=O and >C-OH groups adjacent to the proton13. All the twenty aromatic protons gave multiplet between δ 6.95 and 7.6. A singlet at δ 8.6 was assigned to -OH group. The mass spectrum illustrated the molecular ion peak at m/z 586. The elemental analysis (CHN) agreed well with the molecular formula $C_{34}H_{26}N_4O_6$. All the above spectral data accredited the compound $\underline{2a}$ as 5,5'-(methyl)-methylene-bis-(6-hydroxy-1,2,3,4-tetrahydro-1,3-diphenly)-2,4-dioxo pyrimidine(scheme 1)

Scheme 1

1 2

1,2 a: R = H b: R = 2-CH₃ c: R = 4-CH₃ d: R = 2 - OCH₁

458

Having achieved in the dimierisation reaction of 1,3-diphenyl barbituric acids, we extended our reaction technique for 1,3-diphenyl 2-thiobarbituric acid also(Scheme 2). The products obtained were substantiated through IR, ¹H-NMR, mass and elemental analysis and were given in the table 2.

Table 1. Physical and spectral data of 5, 5'-(methyl)-methylene-bis-(6-hydroxy-1,2,3,4-tetrahydro-1,3-diphenyl)-2,4-dioxo pyrimidine 2

¹ H-NMR (DMSO-d6)8/ppm	2 50(d,3H,CH ₃), 7.1(q,1H,-CH-), 6.9-7 9(m, 20H, Ar-H), 8.6(s,2H, 2XOH)	2.2(d,3H,CH ₃), 2.5(s,12E,4xCH ₃), 6.8(q,1H,-CIE), 7-8.0(m,16H,AE-H), 8.4(s,2H,2xOH)	2.3(d,3H,CH;), 2.5(s,12H,4x;CH3), 6.6(q,1H,-CH-), 7.1-8.2(m,16H,Ar-H), 8.3(s,2H,2xOH)	2.5(d,3H,CH ₃), 3.7(s,12H,4xOCH ₃), 6.8(q,1H,-CH-), 7.0·8.1(nı,16H,Ar-H), 8.8(s,2H,2xOH)
Analysis Four.d(Cac.ld.) C H N	9.56 (9.57)	8.72 (8.73)	8.72 (8.75)	7.93 (7.91)
	4.44 (4.43)	5.30 (5.32)	5.30 (5.29)	4.82 (4.85)
	69.62 (69.58)	71.03	71.03	64.59 (64.62)
Mo'ecular Formula	C31H25N4O1	C ₃₈ H ₃₄ N ₄ O ₅	C38H34N4O6	C ₃₈ H ₃₄ N ₄ O ₁₀
MS(70eV) m/e (m ¹)	586	642	642	706
IR(cm ⁻¹)	3200-36 ^{n0(O[J)} , 1695,1649(C=:O)	3200-3450(OH), 1647,1614(C=:O)	3250-3500(O!∃), 1695,1647(C=:O)	3250-3600(O!H), 1697,1£45(C=:O)
M.P. (°C)	182.5	214.8	134.1	210.3
Yield (%)	85	%95	09	62
Compound Yield M.P. (°C)	. 2a	2b	7c	2d

Table 2. Physical and spectral data of 5, 5'-(methyl)-methylene-bis-(6-hydroxy-1,2,3,4-tetrahydro-1,3-diphenyl)-4-oxo-2-thio pyrimidine 4

¹ H-NMF:(DMSO- d ₆) ⁸ ′ppm	2.4(d,3H,CH ₂), 6.8(q,1H,-CH-), 7.0-8.1(m,16.H,Ar-H), 9.2(s,2H,2xOH)	2.3(d,3H,CH ₃), 2.4(s,12H,4xCH ₃), 6.7(q,1H,-CH-), 6.9-7 8(m,16H,Ar-H), 9.5(s,2H,2xOH)	2.2(d,3H,CH ₃), 2.5(s,12H,4:rCH ₃), 6.9(q.1H, -CH-), 7.0-7.9(m,16H,Ar-H), 9.6(s,2H,2xOH)	2.3(d,3H,CH ₃), 3.9(s.12H,4xOCH ₃), 6.7(q,1H,-CH-), 7.0-8 2(m,16H.Ar-H), 9.5(s,2H,2xOH)
z	9.06 (9.08)	8.31 (8.29)	8.31 (8.32)	7.59
Analysis Found(Calcd.) H	4.21	5.05 (5.01)	5.05 (5.03)	4.61 (4.63)
Fou	66.02 (66.08)	67.66	67.66	61.79
Molecula: Formula	C ₃₄ H _{2!} N ₁ O ₄ S ₂	C ₃₈ H ₃₁ N ₄ O ₄ S ₂	C38H34N1O4S2	C38H34N4O8S2
MS(70eV) m/e(m [*])	618	674	674	738
IR(cm ⁻¹)	3200-3600(OH), 1600(C=O), 1323(C=S)	3250-3600(OH), 1612(C=O), 1323(C=S)	3150-3500(OH), 1615(C=O), 1323(C=S)	3150-3600(OH), 1620(C=O), 1325(C=S)
MP. (°C)	300	239	172	113
Yield (%)	50	64	48	62
Compound Yield (%)	4a	4 b	4c	4d

References

- L.S. Goodman and A. Gilman, The Pharmacological basis of therapeutics(McGrow-Hill New Delhi), 358, (1991).
- 2. A.N. Osman, M.M. Kandel, IJC, 35B, 1073(1996).
- 3. Andres Goth, Medical pharamacology(The CV Mosby Company, Saint Louis), 243(1976).
- 4. W.O. Foye, Principles of Medicinal Chemistry(Lea and Febiger, London), 155,(1989).
- 5. F.H. Meyer, E. Jawetz and A. Goldfield, Review of Medical Pharamacology(Lange Medical Publications, Los Altos, California, 222,(1976).
- Wilson and Gisvold's, Textbook of organic medicinal and pharmaceutical chemistry (J.B. Lippneaur Company, Phildelphia, New York), 368, (1991).
- J.A. Bares, N.J. Kurlick, S.E. Shaffer and M.G. Varner, J. Med. Chem. Chim. Ther, 15, 571,(1980);
 Chem. Abstr, 94,1981 156853g.
- 8. W. Kraemer, W. Draber, I. Hammanin and H. Scheinpt Lieg, Chem. Abstr., 84,1976,4992g.
- Y. Hirona, H. Ishikawa, I. Iwataki, M. Swaki and O. Nomura, Ger Offen, 25244578, 11 Dec 197, Chem. Abstr., 84, 1976 121891i..
- 10. A. Krewtzberger and E. Kreutzberger, Arch Pharm, 318(9),821,(1985).
- 11. C. Balasubramanian, K. Kumaraswami, N. Dharmaraj and P.S. Mohan, Ind. J. Chem., 32B,460(1993).
- 12. C. Balasubramanian, M. Sekar and P.S. Mohan, Ind. J. Chem., 35B, 1225(1996).
- 13. V. K. Ahluwalia and Umashankar Das, Ind. J. Chem., 35B, 852(1996).

Received on July 28, 2000