Home Sur le nombre d'éléments exceptionnels d'une base additive
Article
Licensed
Unlicensed Requires Authentication

Sur le nombre d'éléments exceptionnels d'une base additive

  • Alain Plagne
Published/Copyright: May 13, 2008
Become an author with De Gruyter Brill
Journal für die reine und angewandte Mathematik
From the journal Volume 2008 Issue 616

Abstract

In a paper recently published in Crelle's Journal, Deschamps and Grekos [B. Deschamps et G. Grekos, Estimation du nombre d'exceptions à ce qu'un ensemble de base privé d'un point reste un ensemble de base, J. reine angew. Math. 539 (2001), 45–53.] study asymptotically (when h tends to infinity) the quantity E(h), introduced by Erdős and Graham, and defined as the maximal number of elements which are necessary to the basicity of an additive basis of order h. They show that the maximal order of this function is (h/log h)½. The aim of this article is to show that the E function does not have oscillations but, to the contrary, does possess a regular asymptotic behaviour, that we determine explicitly. More precisely, we prove that E(h) ~ 2(h/log h)½.

Received: 2004-09-20
Revised: 2006-12-11
Published Online: 2008-05-13
Published in Print: 2008-March

© Walter de Gruyter

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2008.017/html?lang=en
Scroll to top button