Article
Publicly Available
Homocysteine research – where do we stand and where are we going?
-
Wolfgang Herrmann
Published/Copyright:
September 30, 2005
Published Online: 2005-9-30
Published in Print: 2005-10-1
©2005 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Homocysteine research – where do we stand and where are we going?
- Hyperhomocysteinemia and arteriosclerosis: historical perspectives
- Homocysteine and heart failure: a review of investigations from the Framingham Heart Study
- Homocysteine and vascular disease in diabetes: a double hit?
- Reduced adenosine receptor stimulation as a pathogenic factor in hyperhomocysteinemia
- Effects of homocysteine on vascular and tissue adenosine: a stake in homocysteine pathogenicity?
- Anti-N-homocysteinylated protein autoantibodies and cardiovascular disease
- Carotid narrowing degree and plasma thiol levels in carotid endarterectomy patients
- Impairment of homocysteine metabolism in patients with retinal vascular occlusion and non-arteritic ischemic optic neuropathy
- Hyperhomocysteinaemia in chronic kidney disease: focus on transmethylation
- Hyperhomocysteinemia and macromolecule modifications in uremic patients
- Hyperhomocysteinemia and response of methionine cycle intermediates to vitamin treatment in renal patients
- Vitamin B12 deficiency is the dominant nutritional cause of hyperhomocysteinemia in a folic acid-fortified population
- Homocysteine, folic acid and vitamin B12 in relation to pre- and postnatal health aspects
- Evaluation of the technical performance of novel holotranscobalamin (holoTC) assays in a multicenter European demonstration project
- A laboratory algorithm with homocysteine as the primary parameter reduces the cost of investigation of folate and cobalamin deficiency
- Betaine: a key modulator of one-carbon metabolism and homocysteine status
- Molecular targeting by homocysteine: a mechanism for vascular pathogenesis
- Anti-inflammatory compound resveratrol suppresses homocysteine formation in stimulated human peripheral blood mononuclear cells in vitro
- Homocysteine in relation to cognitive performance in pathological and non-pathological conditions
- Homocysteine and B vitamins in mild cognitive impairment and dementia
- Homocysteine, type 2 diabetes mellitus, and cognitive performance: The Maine-Syracuse Study
- Plasma homocysteine levels in L-dopa-treated Parkinson's disease patients with cognitive dysfunctions
- Homocysteine – a newly recognised risk factor for osteoporosis
- Relation between homocysteine and biochemical bone turnover markers and bone mineral density in peri- and post-menopausal women
- Elevated levels of asymmetric dimethylarginine (ADMA) as a marker of cardiovascular disease and mortality
- Measurement of asymmetric dimethylarginine in plasma: methodological considerations and clinical relevance
- Concentrations of homocysteine, related metabolites and asymmetric dimethylarginine in preeclamptic women with poor nutritional status
- Asymmetric dimethylarginine, homocysteine and renal function – is there a relation?
- Interactions between folate and aging for carcinogenesis
- The potential cocarcinogenic effect of vitamin B12 deficiency
- The vegetarian lifestyle and DNA methylation
Articles in the same Issue
- Homocysteine research – where do we stand and where are we going?
- Hyperhomocysteinemia and arteriosclerosis: historical perspectives
- Homocysteine and heart failure: a review of investigations from the Framingham Heart Study
- Homocysteine and vascular disease in diabetes: a double hit?
- Reduced adenosine receptor stimulation as a pathogenic factor in hyperhomocysteinemia
- Effects of homocysteine on vascular and tissue adenosine: a stake in homocysteine pathogenicity?
- Anti-N-homocysteinylated protein autoantibodies and cardiovascular disease
- Carotid narrowing degree and plasma thiol levels in carotid endarterectomy patients
- Impairment of homocysteine metabolism in patients with retinal vascular occlusion and non-arteritic ischemic optic neuropathy
- Hyperhomocysteinaemia in chronic kidney disease: focus on transmethylation
- Hyperhomocysteinemia and macromolecule modifications in uremic patients
- Hyperhomocysteinemia and response of methionine cycle intermediates to vitamin treatment in renal patients
- Vitamin B12 deficiency is the dominant nutritional cause of hyperhomocysteinemia in a folic acid-fortified population
- Homocysteine, folic acid and vitamin B12 in relation to pre- and postnatal health aspects
- Evaluation of the technical performance of novel holotranscobalamin (holoTC) assays in a multicenter European demonstration project
- A laboratory algorithm with homocysteine as the primary parameter reduces the cost of investigation of folate and cobalamin deficiency
- Betaine: a key modulator of one-carbon metabolism and homocysteine status
- Molecular targeting by homocysteine: a mechanism for vascular pathogenesis
- Anti-inflammatory compound resveratrol suppresses homocysteine formation in stimulated human peripheral blood mononuclear cells in vitro
- Homocysteine in relation to cognitive performance in pathological and non-pathological conditions
- Homocysteine and B vitamins in mild cognitive impairment and dementia
- Homocysteine, type 2 diabetes mellitus, and cognitive performance: The Maine-Syracuse Study
- Plasma homocysteine levels in L-dopa-treated Parkinson's disease patients with cognitive dysfunctions
- Homocysteine – a newly recognised risk factor for osteoporosis
- Relation between homocysteine and biochemical bone turnover markers and bone mineral density in peri- and post-menopausal women
- Elevated levels of asymmetric dimethylarginine (ADMA) as a marker of cardiovascular disease and mortality
- Measurement of asymmetric dimethylarginine in plasma: methodological considerations and clinical relevance
- Concentrations of homocysteine, related metabolites and asymmetric dimethylarginine in preeclamptic women with poor nutritional status
- Asymmetric dimethylarginine, homocysteine and renal function – is there a relation?
- Interactions between folate and aging for carcinogenesis
- The potential cocarcinogenic effect of vitamin B12 deficiency
- The vegetarian lifestyle and DNA methylation