Protein S-100B: A Serum Marker for Ischemic and Infectious Injury of Cerebral Tissue
-
Thomas Bertsch
Abstract
The S-100B protein is released by injured astrocytes. After passage through a disintegrated blood-brain barrier (BBB) the molecule can be detected in the peripheral circulation. We investigated the association between the extent of brain injury and S-100B concentration in serum in cerebral injury caused by cerebral ischemia and cerebral fungal infection.
Study I: The S-100B serum concentration was serially determined in 24 patients with ischemic stroke at 4, 8, 10, 24, 72 hours after the onset of symptoms. We observed that patients with brain lesions larger than 5 cm3 exhibited significantly increased serum levels of S-100B at 10, 24 and 72 hours compared to those with lesion volumes below 5 cm3. Furthermore, an association between S-100B serum concentration and neurological outcome was observed.
Study II: In a mouse model of systemic fungal infection with Candida albicans we observed that serum levels of S-100B increased at day 1 after intravenous infection. At this time we could histologically demonstrate brain tissue injury by invading hyphae which had crossed the BBB. Furthermore, reactive astrogliosis was demonstrated by immunohistochemistry. On day 7 we found a significant decrease of S-100B serum level compared to day 1 and 4. This was associated with a demarcation of the fungi with leukocytes in brain tissue at this late phase of infection. No further invasion through the BBB was seen on day 7.
In conclusion, serum levels of S-100B reflect the time course of tissue injury in cerebral ischemia and cerebral infection to a similar extent. Thus, S-100B may be a useful marker to assess cerebral tissue injury.
Copyright © 2001 by Walter de Gruyter GmbH & Co. KG
Articles in the same Issue
- IFCC/ Beckman Coulter Inc. Conference Frontiers in Molecular Basis of Diseases: Cell Biology of Neuronal Dysfunction, Paris, October 12-13, 2000
- Distribution of Cellular Prion Protein in Normal Human Cerebral Cortex – Does It Have Relevance to Creutzfeldt-Jakob Disease?
- Caspase-3 Apoptotic Signaling Following Injury to the Central Nervous System
- Parkinsons Disease and other α-Synucleinopathies
- Aggregation-Dependent Interaction of the Alzheimers β-Amyloid and Microglia
- β-Amyloid-Induced Cytotoxicity, Peroxide Generation and Blockade of Glutamate Uptake in Cultured Astrocytes
- Protein S-100B: A Serum Marker for Ischemic and Infectious Injury of Cerebral Tissue
- Reporting Cerebrospinal Fluid Data: Knowledge Base and Interpretation Software
- The Intrathecal Humoral Immune Response: Laboratory Analysis and Clinical Relevance
- Source of Endothelin-1 in Subarachnoid Hemorraghe
- Polymorphism of Apoprotein E (APOE), Methylenetetrahydrofolate Reductase (MTHFR) and Paraoxonase (PON1) Genes in Patients with Cerebrovascular Disease
- Neurotrophic Factor Therapy – Prospects and Problems
- Cell Therapy and Transplantation in Parkinsons Disease
- Matrix Metalloproteinases: Potential Therapeutic Target in Spinal Cord Injury
Articles in the same Issue
- IFCC/ Beckman Coulter Inc. Conference Frontiers in Molecular Basis of Diseases: Cell Biology of Neuronal Dysfunction, Paris, October 12-13, 2000
- Distribution of Cellular Prion Protein in Normal Human Cerebral Cortex – Does It Have Relevance to Creutzfeldt-Jakob Disease?
- Caspase-3 Apoptotic Signaling Following Injury to the Central Nervous System
- Parkinsons Disease and other α-Synucleinopathies
- Aggregation-Dependent Interaction of the Alzheimers β-Amyloid and Microglia
- β-Amyloid-Induced Cytotoxicity, Peroxide Generation and Blockade of Glutamate Uptake in Cultured Astrocytes
- Protein S-100B: A Serum Marker for Ischemic and Infectious Injury of Cerebral Tissue
- Reporting Cerebrospinal Fluid Data: Knowledge Base and Interpretation Software
- The Intrathecal Humoral Immune Response: Laboratory Analysis and Clinical Relevance
- Source of Endothelin-1 in Subarachnoid Hemorraghe
- Polymorphism of Apoprotein E (APOE), Methylenetetrahydrofolate Reductase (MTHFR) and Paraoxonase (PON1) Genes in Patients with Cerebrovascular Disease
- Neurotrophic Factor Therapy – Prospects and Problems
- Cell Therapy and Transplantation in Parkinsons Disease
- Matrix Metalloproteinases: Potential Therapeutic Target in Spinal Cord Injury