Startseite Proteasome-associated proteins: regulation of a proteolytic machine
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Proteasome-associated proteins: regulation of a proteolytic machine

  • Marion Schmidt , John Hanna , Suzanne Elsasser und Daniel Finley
Veröffentlicht/Copyright: 6. September 2005
Biological Chemistry
Aus der Zeitschrift Band 386 Heft 8

Abstract

The proteasome is a compartmentalized, ATP-dependent protease composed of more than 30 subunits that recognizes and degrades polyubiquitinated substrates. Despite its physiological importance, many aspects of the proteasome's structural organization and regulation remain poorly understood. In addition to the proteins that form the proteasome holocomplex, there is increasing evidence that proteasomal function is affected by a wide variety of associating proteins. A group of ubiquitin-binding proteins assist in delivery of substrates to the proteasome, whereas proteasome-associated ubiquitin ligases and deubiquitinating enzymes may alter the dynamics of ubiquitin chains already associated with the proteasome. Some proteins appear to influence the overall stability of the complex, and still others have the capacity to activate or inhibit the hydrolytic activity of the core particle. The increasing number of interacting proteins identified suggests that proteasomes, as they exist in the cell, are larger and more diverse in composition than previously assumed. Thus, the study of proteasome-associated proteins will lead to new perspectives on the dynamics of this uniquely complex proteolytic machine.

:

Corresponding author

References

Amerik, A.Y., Li, S.J., and Hochstrasser, M. (2000). Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae. Biol. Chem.381, 981–992.10.1515/BC.2000.121Suche in Google Scholar

Apcher, G.S., Heink, S., Zantopf, D., Kloetzel, P.M., Schmid, H.P., Mayer, R.J., and Kruger, E. (2003). Human immunodeficiency virus-1 Tat protein interacts with distinct proteasomal α and β subunits. FEBS Lett.553, 200–204.10.1016/S0014-5793(03)01025-1Suche in Google Scholar

Barton, L.F., Runnels, H.A., Schell, T.D., Cho, Y., Gibbons, R., Tevethia, S.S., Deepe, G.S. Jr., and Monaco, J.J. (2004). Immune defects in 28-kDa proteasome activator γ-deficient mice. J. Immunol.172, 3948–3954.10.4049/jimmunol.172.6.3948Suche in Google Scholar PubMed

Borodovsky, A., Kessler, B.M., Casagrande, R., Overkleeft, H.S., Wilkinson, K.D., and Ploegh, H.L. (2001). A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J.20, 5187–5196.10.1093/emboj/20.18.5187Suche in Google Scholar PubMed PubMed Central

Braun, B.C., Glickman, M., Kraft, R., Dahlmann, B., Kloetzel, P.M., Finley, D., and Schmidt, M. (1999). The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol.1, 221–226.10.1038/12043Suche in Google Scholar PubMed

Cagney, G., Uetz, P., and Fields, S. (2001). Two-hybrid analysis of the Saccharomyces cerevisiae 26S proteasome. Physiol. Genomics7, 27–34.10.1152/physiolgenomics.2001.7.1.27Suche in Google Scholar PubMed

Cascio, P., Call, M., Petre, B.M., Walz, T., and Goldberg, A.L. (2002). Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J.21, 2636–2645.10.1093/emboj/21.11.2636Suche in Google Scholar PubMed PubMed Central

Chernova, T.A., Allen, K.D., Wesoloski, L.M., Shanks, J.R., Chernoff, Y.O., and Wilkinson, K.D. (2003). Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of the free ubiquitin pool. J. Biol. Chem.278, 52102–52115.10.1074/jbc.M310283200Suche in Google Scholar PubMed

Chuang, S.M., Chen, L., Lambertson, D., Anand, M., Kinzy, T.G., and Madura, K. (2005). Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol. Cell. Biol.25, 403–413.10.1128/MCB.25.1.403-413.2005Suche in Google Scholar PubMed PubMed Central

Corn, P.G., McDonald, E.R. III, Herman, J.G., and El-Deiry, W.S. (2003). Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein. Nat. Genet.35, 229–237.10.1038/ng1254Suche in Google Scholar PubMed

Davy, A., Bello, P., Thierry-Mieg, N., Vaglio, P., Hitti, J., Doucette-Stamm, L., Thierry-Mieg, D., Reboul, J., Boulton, S., Walhout, A.J., et al. (2001). A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep.2, 821–828.10.1093/embo-reports/kve184Suche in Google Scholar

Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994). A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem.269, 7059–7061.10.1016/S0021-9258(17)37244-7Suche in Google Scholar

Doherty, K., Pramanik, A., Pride, L., Lukose, J., and Wood Moore, C. (2004). Expression of the expanded YFL007w ORF and assignment of the gene name BLM10. Yeast21, 1021.Suche in Google Scholar

Dong, P.D., Todi, S.V., Eberl, D.F., and Boekhoff-Falk, G. (2003). Drosophila spalt/spalt-related mutants exhibit Townes-Brocks' syndrome phenotypes. Proc. Natl. Acad. Sci. USA100, 10293–10298.10.1073/pnas.1836391100Suche in Google Scholar

Dubiel, W., Pratt, G., Ferrell, K., and Rechsteiner, M. (1992). Purification of an 11 S regulator of the multicatalytic protease. J. Biol. Chem.267, 22369–22377.10.1016/S0021-9258(18)41681-XSuche in Google Scholar

Elsasser, S., Gali, R.R., Schwickart, M., Larsen, C.N., Leggett, D.S., Muller, B., Feng, M.T., Tubing, F., Dittmar, G.A., and Finley, D. (2002). Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol.4, 725–730.10.1038/ncb845Suche in Google Scholar

Elsasser, S. and Finley, D. (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol., in press.10.1038/ncb0805-742Suche in Google Scholar

Elsasser, S., Chandler-Militello, D., Mueller, B., Hanna, J., and Finley, D. (2004). Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem.279, 26817–26822.10.1074/jbc.M404020200Suche in Google Scholar

Eytan, E., Armon, T., Heller, H., Beck, S., and Hershko, A. (1993). Ubiquitin C-terminal hydrolase activity associated with the 26 S protease complex. J. Biol. Chem.268, 4668–4674.10.1016/S0021-9258(18)53448-7Suche in Google Scholar

Fatica, A., Oeffinger, M., Tollervey, D., and Bozzoni, I. (2003). Cic1p/Nsa3p is required for synthesis and nuclear export of 60S ribosomal subunits. RNA9, 1431–1436.10.1261/rna.5130503Suche in Google Scholar PubMed PubMed Central

Febres, D.E., Pramanik, A., Caton, M., Doherty, K., McKoy, J., Garcia, E., Alejo, W., and Moore, C.W. (2001). The novel BLM3 gene encodes a protein that protects against lethal effects of oxidative damage. Cell. Mol. Biol. (Noisy-le-Grand)47, 1149–1162.Suche in Google Scholar

Fehlker, M., Wendler, P., Lehmann, A., and Enenkel, C. (2003). Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep.4, 959–963.10.1038/sj.embor.embor938Suche in Google Scholar PubMed PubMed Central

Fujimuro, M., Tanaka, K., Yokosawa, H., and Toh-e, A. (1998). Son1p is a component of the 26S proteasome of the yeast Saccharomyces cerevisiae. FEBS Lett.423, 149–154.10.1016/S0014-5793(98)00084-2Suche in Google Scholar

Funakoshi, M., Sasaki, T., Nishimoto, T., and Kobayashi, H. (2002). Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc. Natl. Acad. Sci. USA99, 745–750.10.1073/pnas.012585199Suche in Google Scholar

Funakoshi, M., Li, X., Velichutina, I., Hochstrasser, M., and Kobayashi, H. (2004). Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability. J. Cell Sci.117, 6447–6454.10.1242/jcs.01575Suche in Google Scholar

Gaczynska, M., Osmulski, P.A., Gao, Y., Post, M.J., and Simons, M. (2003). Proline- and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity. Biochemistry42, 8663–8670.10.1021/bi034784fSuche in Google Scholar

Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., et al. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415, 141–147.10.1038/415141aSuche in Google Scholar

Gerlinger, U.M., Guckel, R., Hoffmann, M., Wolf, D.H., and Hilt, W. (1997). Yeast cycloheximide-resistant crl mutants are proteasome mutants defective in protein degradation. Mol. Biol. Cell8, 2487–2499.10.1091/mbc.8.12.2487Suche in Google Scholar

Glickman, M.H., Rubin, D.M., Fried, V.A., and Finley, D. (1998a). The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol.18, 3149–3162.10.1128/MCB.18.6.3149Suche in Google Scholar

Glickman, M.H., Rubin, D.M., Coux, O., Wefes, I., Pfeifer, G., Cjeka, Z., Baumeister, W., Fried, V.A., and Finley, D. (1998b). A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell94, 615–623.10.1016/S0092-8674(00)81603-7Suche in Google Scholar

Gorbea, C., Goellner, G.M., Teter, K., Holmes, R.K., and Rechsteiner, M. (2004). Characterization of mammalian Ecm29, a 26 S proteasome-associated protein that localizes to the nucleus and membrane vesicles. J. Biol. Chem.279, 54849–54861.10.1074/jbc.M410444200Suche in Google Scholar PubMed

Gray, C.W., Slaughter, C.A., and DeMartino, G.N. (1994). PA28 activator protein forms regulatory caps on proteasome stacked rings. J. Mol. Biol.236, 7–15.10.1006/jmbi.1994.1113Suche in Google Scholar PubMed

Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H.D., and Huber, R. (1997). Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature386, 463–471.Suche in Google Scholar

Groll, M., Bajorek, M., Kohler, A., Moroder, L., Rubin, D.M., Huber, R., Glickman, M.H., and Finley, D. (2000). A gated channel into the proteasome core particle. Nat. Struct. Biol.7, 1062–1067.10.1038/80992Suche in Google Scholar

Hanna, J., Leggett, D.S., and Finley, D. (2003). Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell. Biol.23, 9251–9261.10.1128/MCB.23.24.9251-9261.2003Suche in Google Scholar

Hartmann-Petersen, R., Tanaka, K., and Hendil, K.B. (2001). Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking. Arch. Biochem. Biophys.386, 89–94.10.1006/abbi.2000.2178Suche in Google Scholar

Heinemeyer, W., Ramos, P.C., and Dohmen, R.J. (2004). The ultimate nanoscale mincer: assembly, structure and activesites of the 20S proteasome core. Cell. Mol. Life Sci.61, 1562–1578.Suche in Google Scholar

Hendil, K.B., Khan, S., and Tanaka, K. (1998). Simultaneous binding of PA28 and PA700 activators to 20 S proteasomes. Biochem. J.332, 749–754.10.1042/bj3320749Suche in Google Scholar

Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., et al. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415, 180–183.10.1038/415180aSuche in Google Scholar

Hoelzl, H., Kapelari, B., Kellermann, J., Seemuller, E., Sumegi, M., Udvardy, A., Medalia, O., Sperling, J., Muller, S.A., Engel, A., et al. (2000). The regulatory complex of Drosophila melanogaster 26S proteasomes. Subunit composition and localization of a deubiquitylating enzyme. J. Cell Biol.150, 119–130.Suche in Google Scholar

Hoffman, L., Pratt, G., and Rechsteiner, M. (1992). Multiple forms of the 20 S multicatalytic and the 26 S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate. J. Biol. Chem.267, 22362–22368.10.1016/S0021-9258(18)41680-8Suche in Google Scholar

Jaeger, S., Strayle, J., Heinemeyer, W., and Wolf, D.H. (2001). Cic1, an adaptor protein specifically linking the 26S proteasome to its substrate, the SCF component Cdc4. EMBO J.20, 4423–4431.10.1093/emboj/20.16.4423Suche in Google Scholar PubMed PubMed Central

Jelinsky, S.A., Estep, P., Church, G.M., and Samson, L.D. (2000). Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol. Cell. Biol.20, 8157–8167.10.1128/MCB.20.21.8157-8167.2000Suche in Google Scholar PubMed PubMed Central

Kajava, A.V., Gorbea, C., Ortega, J., Rechsteiner, M., and Steven, A.C. (2004). New HEAT-like repeat motifs in proteins regulating proteasome structure and function. J. Struct. Biol.146, 425–430.10.1016/j.jsb.2004.01.013Suche in Google Scholar PubMed

Kaplun, L., Tzirkin, R., Bakhrat, A., Shabek, N., Ivantsiv, Y., and Raveh, D. (2005). The DNA damage inducible UbL-UbA protein Ddi1 participates in Mec1-mediated degradation of Ho endonuclease. Mol. Cell. Biol., in press.10.1128/MCB.25.13.5355-5362.2005Suche in Google Scholar PubMed PubMed Central

Kapranov, A.B., Kuriatova, M.V., Preobrazhenskaia, O.V., Tiutiaeva, V.V., Shtuka, R., Feldmann, H., and Karpov, V.L. (2001). [Isolation and identification of PACE-binding protein rpn4 – a new transcription activator, participating in regulation of 26S proteasome and other genes]. Mol. Biol. (Moscow)35, 420–431.Suche in Google Scholar

Kim, I., Mi, K., and Rao, H. (2004). Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell15, 3357–3365.10.1091/mbc.e03-11-0835Suche in Google Scholar

Koehler, A., Cascio, P., Leggett, D.S., Woo, K.M., Goldberg, A.L., and Finley, D. (2001). The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell7, 1143–1152.10.1016/S1097-2765(01)00274-XSuche in Google Scholar

Kopp, F., Dahlmann, B., and Kuehn, L. (2001). Reconstitution of hybrid proteasomes from purified PA700-20 S complexes and PA28αβ activator: ultrastructure and peptidase activities. J. Mol. Biol.313, 465–471.10.1006/jmbi.2001.5063Suche in Google Scholar

Krogan, N.J., Lam, M.H., Fillingham, J., Keogh, M.C., Gebbia, M., Li, J., Datta, N., Cagney, G., Buratowski, S., Emili, A., et al. (2004). Proteasome involvement in the repair of DNA double-strand breaks. Mol. Cell16, 1027–1034.10.1016/j.molcel.2004.11.033Suche in Google Scholar

Lam, Y.A., Xu, W., DeMartino, G.N., and Cohen, R.E. (1997). Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature385, 737–740.10.1038/385737a0Suche in Google Scholar

Lam, Y.A., Lawson, T.G., Velayutham, M., Zweier, J.L., and Pickart, C.M. (2002). A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature416, 763–767.10.1038/416763aSuche in Google Scholar

Lee, S.J., Choi, D., Rhim, H., and Kang, S. (2005). E3 ubiquitin ligase RNF2 interacts with the S6′ proteasomal ATPase subunit and increases the ATP hydrolysis activity of S6′. Biochem J., in press.10.1042/BJ20041982Suche in Google Scholar

Leggett, D.S., Hanna, J., Borodovsky, A., Crosas, B., Schmidt, M., Baker, R.T., Walz, T., Ploegh, H., and Finley, D. (2002). Multiple associated proteins regulate proteasome structure and function. Mol. Cell10, 495–507.10.1016/S1097-2765(02)00638-XSuche in Google Scholar

Li, T., Naqvi, N.I., Yang, H., and Teo, T.S. (2000). Identification of a 26S proteasome-associated UCH in fission yeast. Biochem. Biophys. Res. Commun.272, 270–275.10.1006/bbrc.2000.2767Suche in Google Scholar PubMed

Loescher, M., Fortschegger, K., Ritter, G., Wostry, M., Voglauer, R., Schmid, J.A., Watters, S., Rivett, A.J., Ajuh, P., Lamond, A.I., et al. (2005). The U-box E3 ligase SNEV interacts with PSMB4, the β7 subunit of the 20S proteasome. Biochem. J., in press.10.1042/BJ20041517Suche in Google Scholar PubMed PubMed Central

London, M.K., Keck, B.I., Ramos, P.C., and Jurgen Dohmen, R. (2004). Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Lett.567, 259–264.10.1016/j.febslet.2004.04.078Suche in Google Scholar

Ma, C.P., Slaughter, C.A., and DeMartino, G.N. (1992a). Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain). J. Biol. Chem.267, 10515–10523.10.1016/S0021-9258(19)50047-3Suche in Google Scholar

Ma, C., Slaughter, C.A., and DeMartino, G.N. (1992b). Purification and characterization of a protein inhibitor of the 20S proteasome (macropain). Biochim. Biophys. Acta1119, 303–311.10.1016/0167-4838(92)90218-3Suche in Google Scholar

Mannhaupt, G., Schnall, R., Karpov, V., Vetter, I., and Feldmann, H. (1999). Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett.450, 27–34.10.1016/S0014-5793(99)00467-6Suche in Google Scholar

Masson, P., Andersson, O., Petersen, U.M., and Young, P. (2001). Identification and characterization of a Drosophila nuclear proteasome regulator. A homolog of human 11 S REGγ (PA28γ). J. Biol. Chem.276, 1383–1390.Suche in Google Scholar

Maytal-Kivity, V., Reis, N., Hofmann, K., and Glickman, M.H. (2002). MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem.3, 28.10.1186/1471-2091-3-28Suche in Google Scholar PubMed PubMed Central

McCutchen-Maloney, S.L., Matsuda, K., Shimbara, N., Binns, D.D., Tanaka, K., Slaughter, C.A., and DeMartino, G.N. (2000). cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J. Biol. Chem.275, 18557–18565.10.1074/jbc.M001697200Suche in Google Scholar PubMed

Murata, S., Kawahara, H., Tohma, S., Yamamoto, K., Kasahara, M., Nabeshima, Y., Tanaka, K., and Chiba, T. (1999). Growth retardation in mice lacking the proteasome activator PA28γ. J. Biol. Chem.274, 38211–38215.10.1074/jbc.274.53.38211Suche in Google Scholar PubMed

Murata, S., Udono, H., Tanahashi, N., Hamada, N., Watanabe, K., Adachi, K., Yamano, T., Yui, K., Kobayashi, N., Kasahara, M., et al. (2001). Immunoproteasome assembly and antigen presentation in mice lacking both PA28α and PA28β. EMBO J.20, 5898–5907.10.1093/emboj/20.21.5898Suche in Google Scholar PubMed PubMed Central

Ordway, G.A., Neufer, P.D., Chin, E.R., and DeMartino, G.N. (2000). Chronic contractile activity upregulates the proteasome system in rabbit skeletal muscle. J. Appl. Physiol.88, 1134–1141.10.1152/jappl.2000.88.3.1134Suche in Google Scholar PubMed

Orian, A., Schwartz, A.L., Israel, A., Whiteside, S., Kahana, C., and Ciechanover, A. (1999). Structural motifs involved in ubiquitin-mediated processing of the NF-κB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol. Cell. Biol.19, 3664–3673.10.1128/MCB.19.5.3664Suche in Google Scholar PubMed PubMed Central

Ortega, J., Heymann, J.B., Kajava, A.V., Ustrell, V., Rechsteiner, M., and Steven, A.C. (2005). The axial channel of the 20S proteasome opens upon binding of the PA200 activator. J. Mol. Biol.346, 1221–1227.10.1016/j.jmb.2004.12.049Suche in Google Scholar

Park, Y., Hwang, Y.P., Lee, J.S., Seo, S.H., Yoon, S.K., and Yoon, J.B. (2005). Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases. Mol. Cell. Biol.25, 3842–3853.10.1128/MCB.25.9.3842-3853.2005Suche in Google Scholar

Peng, Z., Shen, Y., Feng, S., Wang, X., Chitteti, B.N., Vierstra, R.D., and Deng, X.W. (2003). Evidence for a physical association of the COP9 signalosome, the proteasome, and specific SCF E3 ligases in vivo. Curr. Biol.13, R504–505.10.1016/S0960-9822(03)00439-1Suche in Google Scholar

Pickart, C.M. (2001). Mechanisms underlying ubiquitination. Annu. Rev. Biochem.70, 503–533.10.1146/annurev.biochem.70.1.503Suche in Google Scholar

Pickart, C.M. and Cohen, R.E. (2004). Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol.5, 177–187.10.1038/nrm1336Suche in Google Scholar

Preckel, T., Fung-Leung, W.P., Cai, Z., Vitiello, A., Salter-Cid, L., Winqvist, O., Wolfe, T.G., Von Herrath, M., Angulo, A., Ghazal, P., et al. (1999). Impaired immunoproteasome assembly and immune responses in PA28-/- mice. Science286, 2162–2165.10.1126/science.286.5447.2162Suche in Google Scholar

Rao, H., Uhlmann, F., Nasmyth, K., and Varshavsky, A. (2001). Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature410, 955–959.10.1038/35073627Suche in Google Scholar

Realini, C., Dubiel, W., Pratt, G., Ferrell, K., and Rechsteiner, M. (1994). Molecular cloning and expression of a γ-interferon-inducible activator of the multicatalytic protease. J. Biol. Chem.269, 20727–20732.10.1016/S0021-9258(17)32052-5Suche in Google Scholar

Realini, C., Jensen, C.C., Zhang, Z., Johnston, S.C., Knowlton, J.R., Hill, C.P., and Rechsteiner, M. (1997). Characterization of recombinant REGα, REGβ, and REGγ proteasome activators. J. Biol. Chem.272, 25483–25492.10.1074/jbc.272.41.25483Suche in Google Scholar PubMed

Rechsteiner, M. and Hill, C.P. (2005). Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol.15, 27–33.10.1016/j.tcb.2004.11.003Suche in Google Scholar PubMed

Richly, H., Rape, M., Braun, S., Rumpf, S., Hoege, C., and Jentsch, S. (2005). A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell120, 73–84.10.1016/j.cell.2004.11.013Suche in Google Scholar

Rubin, D.M., van Nocker, S., Glickman, M., Coux, O., Wefes, I., Sadis, S., Fu, H., Goldberg, A., Vierstra, R., and Finley, D. (1997). ATPase and ubiquitin-binding proteins of the yeast proteasome. Mol. Biol. Rep.24, 17–26.10.1023/A:1006844305067Suche in Google Scholar

Saeki, Y., Sone, T., Toh-e, A., and Yokosawa, H. (2002a). Identification of ubiquitin-like protein-binding subunits of the 26S proteasome. Biochem. Biophys. Res. Commun.296, 813–819.10.1016/S0006-291X(02)02002-8Suche in Google Scholar

Saeki, Y., Saitoh, A., Toh-e, A., and Yokosawa, H. (2002b). Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis. Biochem. Biophys. Res. Commun.293, 986–992.10.1016/S0006-291X(02)00340-6Suche in Google Scholar

Sakata, E., Yamaguchi, Y., Kurimoto, E., Kikuchi, J., Yokoyama, S., Yamada, S., Kawahara, H., Yokosawa, H., Hattori, N., Mizuno, Y., et al. (2003). Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep.4, 301–306.10.1038/sj.embor.embor764Suche in Google Scholar

Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W., and Madura, K. (1998). Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature391, 715–718.10.1038/35661Suche in Google Scholar

Schmidt, M., Lupas, A.N., and Finley, D. (1999). Structure and mechanism of ATP-dependent proteases. Curr. Opin. Chem. Biol.3, 584–591.10.1016/S1367-5931(99)00013-7Suche in Google Scholar

Schmidt, M., Haas, W., Crosas, B., Santamaria, P.G., Gygi, S.P., Walz, T., and Finley, D. (2005). The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat. Struct. Mol. Biol.12, 294–303.10.1038/nsmb914Suche in Google Scholar PubMed

Schwartz, A.L., and Ciechanover, A. (1999). The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med.50, 57–74.10.1146/annurev.med.50.1.57Suche in Google Scholar PubMed

Seeger, M., Hartmann-Petersen, R., Wilkinson, C.R., Wallace, M., Samejima, I., Taylor, M.S., and Gordon, C. (2003). Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins. J. Biol. Chem.278, 16791–16796.10.1074/jbc.M208281200Suche in Google Scholar PubMed

Shaeffer, J.R. and Cohen, R.E. (1996). Differential effects of ubiquitin aldehyde on ubiquitin and ATP-dependent protein degradation. Biochemistry35, 10886–10893.10.1021/bi9530705Suche in Google Scholar

Sijts, A., Sun, Y., Janek, K., Kral, S., Paschen, A., Schadendorf, D., and Kloetzel, P.M. (2002). The role of the proteasome activator PA28 in MHC class I antigen processing. Mol. Immunol.39, 165–169.10.1016/S0161-5890(02)00099-8Suche in Google Scholar

Sone, T., Saeki, Y., Toh-e, A., and Yokosawa, H. (2004). Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J. Biol. Chem.279, 28807–28816.10.1074/jbc.M403165200Suche in Google Scholar PubMed

Stebbins, C.E., Kaelin, W.G. Jr., and Pavletich, N.P. (1999). Structure of the VHL-elonginC-elonginB complex: implications for VHL tumor suppressor function. Science284, 455–461.10.1126/science.284.5413.455Suche in Google Scholar PubMed

Stone, M., Hartmann-Petersen, R., Seeger, M., Bech-Otschir, D., Wallace, M., and Gordon, C. (2004). Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast. J. Mol. Biol.344, 697–706.10.1016/j.jmb.2004.09.057Suche in Google Scholar PubMed

Strickland, E., Hakala, K., Thomas, P.J., and DeMartino, G.N. (2000). Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome. J. Biol. Chem.275, 5565–5572.10.1074/jbc.275.8.5565Suche in Google Scholar PubMed

Tanahashi, N., Murakami, Y., Minami, Y., Shimbara, N., Hendil, K.B., and Tanaka, K. (2000). Hybrid proteasomes. Induction by interferon-γ and contribution to ATP-dependent proteolysis. J. Biol. Chem.275, 14336–14345.10.1074/jbc.275.19.14336Suche in Google Scholar PubMed

Tongaonkar, P., Chen, L., Lambertson, D., Ko, B., and Madura, K. (2000). Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome. Mol. Cell. Biol.20, 4691–4698.10.1128/MCB.20.13.4691-4698.2000Suche in Google Scholar PubMed PubMed Central

Uhlmann, F., Lottspeich, F., and Nasmyth, K. (1999). Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature400, 37–42.10.1038/21831Suche in Google Scholar PubMed

Ustrell, V., Hoffman, L., Pratt, G., and Rechsteiner, M. (2002). PA200, a nuclear proteasome activator involved in DNA repair. EMBO J.21, 3516–3525.10.1093/emboj/cdf333Suche in Google Scholar PubMed PubMed Central

Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N., and Goldberg, A.L. (2004). Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell14, 95–104.10.1016/S1097-2765(04)00151-0Suche in Google Scholar

Verma, R., Chen, S., Feldman, R., Schieltz, D., Yates, J., Dohmen, J., and Deshaies, R.J. (2000). Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell11, 3425–3439.10.1091/mbc.11.10.3425Suche in Google Scholar PubMed PubMed Central

Verma, R., Aravind, L., Oania, R., McDonald, W.H., Yates, J.R. III, Koonin, E.V., and Deshaies, R.J. (2002). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science298, 611–615.10.1126/science.1075898Suche in Google Scholar PubMed

Verma, R., Oania, R., Graumann, J., and Deshaies, R.J. (2004). Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell118, 99–110.10.1016/j.cell.2004.06.014Suche in Google Scholar PubMed

Whitby, F.G., Masters, E.I., Kramer, L., Knowlton, J.R., Yao, Y., Wang, C.C., and Hill, C.P. (2000). Structural basis for the activation of 20S proteasomes by 11S regulators. Nature408, 115–120.10.1038/35040607Suche in Google Scholar PubMed

Wilk, S., Chen, W.E., and Magnusson, R.P. (2000). Properties of the nuclear proteasome activator PA28γ (REGγ). Arch. Biochem. Biophys.383, 265–271.10.1006/abbi.2000.2086Suche in Google Scholar PubMed

Wilson, S.M., Bhattacharyya, B., Rachel, R.A., Coppola, V., Tessarollo, L., Householder, D.B., Fletcher, C.F., Miller, R.J., Copeland, N.G., and Jenkins, N.A. (2002). Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat. Genet.32, 420–425.10.1038/ng1006Suche in Google Scholar PubMed

Xie, Y. and Varshavsky, A. (2000). Physical association of ubiquitin ligases and the 26S proteasome. Proc. Natl. Acad. Sci. USA97, 2497–2502.10.1073/pnas.060025497Suche in Google Scholar PubMed PubMed Central

Xie, Y. and Varshavsky, A. (2001). RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc. Natl. Acad. Sci. USA98, 3056–3061.10.1073/pnas.071022298Suche in Google Scholar PubMed PubMed Central

Xie, Y. and Varshavsky, A. (2002). UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nat. Cell Biol.4, 1003–1007.10.1038/ncb889Suche in Google Scholar PubMed

Yao, T. and Cohen, R.E. (2002). A cryptic protease couples deubiquitination and degradation by the proteasome. Nature419, 403–407.10.1038/nature01071Suche in Google Scholar

You, J. and Pickart, C.M. (2001). A HECT domain E3 enzyme assembles novel polyubiquitin chains. J. Biol. Chem.276, 19871–19878.10.1074/jbc.M100034200Suche in Google Scholar

Zaiss, D.M., Standera, S., Holzhutter, H., Kloetzel, P., and Sijts, A.J. (1999). The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett.457, 333–338.10.1016/S0014-5793(99)01072-8Suche in Google Scholar

Zaiss, D.M., Standera, S., Kloetzel, P.M., and Sijts, A.J. (2002). PI31 is a modulator of proteasome formation and antigen processing. Proc. Natl. Acad. Sci. USA99, 14344–14349.10.1073/pnas.212257299Suche in Google Scholar PubMed PubMed Central

Published Online: 2005-09-06
Published in Print: 2005-08-01

©2005 by Walter de Gruyter Berlin New York

Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2005.085/html?lang=de
Button zum nach oben scrollen