Recombinant expression, purification and cross-reactivity of chenopod profilin: rChe a 2 as a good marker for profilin sensitization
-
Rodrigo Barderas
, Mayte Villalba und Rosalía Rodríguez
Abstract
Chenopod pollen is one of the major sources of allergens in some locations in the US, southern Europe and desert countries, and pollen profilin (Che a 2) is a major allergen. Recombinant Che a 2 (rChe a 2) has been produced in Escherichia coli cells with a final yield of 25 mg/l of cell culture. The expressed protein was isolated and structurally characterized by means of mass spectrometry, Edman degradation and circular dichroism. rChe a 2 displayed a molecular mass of 13 959 Da, which agrees with that of the amino acid sequence. The N-terminal amino acid sequence indicated the correct processing of the recombinant product. The immunological analysis of rChe a 2 showed IgG- and IgE-binding capabilities equivalent to those of its natural counterpart, Che a 2, isolated from the pollen. Inhibition experiments showed high cross-reactivity degrees with different allergenic sources. Inhibition degrees of > 95% and > 80% were obtained for chenopod profilin and, respectively, latex and pollen extracts, whereas 10–95% of inhibition was observed for different plant-derived foods. Due to its close relation to other allergenic profilins from pollens, plant-derived foods and latex, rChe a 2 could be a useful tool in clinical trials to detect profilin-allergic patients and perhaps, depending on its clinical relevance, in specific immunotherapy of these hypersensitive individuals.
References
Asturias, J.A., Arilla, M.C., Gómez-Bayon, N., Martínez, J., Martínez, A., and Palacios, R. (1997). Cloning and expression of the panallergen profilin and the major allergen (Ole e 1) from olive tree pollen. J. Allergy Clin. Immunol.100, 365–372.10.1016/S0091-6749(97)70250-1Suche in Google Scholar
Barderas, R., Villalba, M., Lombardero, M., and Rodríguez, R.(2002). Identification and characterization of Che a 1 allergen from Chenopodium album pollen. Int. Arch. Allergy Immunol.127, 47–54.10.1159/000048168Suche in Google Scholar PubMed
Barderas, R., Villalba, M., Batanero, E., Pascual, C.Y., and Rodríguez, R. (2003). The role of profilin and polcalcin in chenopod pollen allergy. J. Allergy Clin. Immunol.111,1132–1133.10.1067/mai.2003.1445Suche in Google Scholar PubMed
Barderas, R., Villalba, M., Pascual, C.Y., Batanero, E., and Rodríguez, R. (2004). Profilin (Che a 2) and polcalcin (Che a 3)are relevant allergens of Chenopodium album pollen. Isolation, amino acid sequences and immunological properties. J.Allergy Clin. Immunol.113, 1192–1198.Suche in Google Scholar
Caballero, T., and Martín-Esteban, M. (1998). Association between pollen hypersensitivity and edible vegetable allergy: a review. J. Invest. Allergol. Clin. Immunol.8, 6–16.Suche in Google Scholar
Callejo, A., Sanchís, M.E., Armentia, A., Moneoa, I., and Fernández, A. (2002). A new pollen-fruit cross-reactivity. Allergy57, 1088–1089.10.1034/j.1398-9995.2002.23836_10.xSuche in Google Scholar PubMed
Daschner, A., Crespo, J.F., and Pascual, C.Y. (1998). Specific IgE to recombinant vegetal panallergen (rBet v 2) and fruit allergy in pollinic patients. Allergy53, 614–618.10.1111/j.1398-9995.1998.tb03938.xSuche in Google Scholar PubMed
Díaz-Perales, A., Lombardero, M., Sánchez-Monge, R., García-Sellés, F.J., Pernas, M., Fernández-Rivas, M., Barber, D., and Salcedo, G. (2000). Lipid-transfer proteins as potential plant panallergens: cross-reactivity among proteins of Artemisia pollen, Castanea nut and Rosaceae fruits, with different IgE-binding capacities. Clin. Exp. Allergy30, 1403–1410.10.1046/j.1365-2222.2000.00909.xSuche in Google Scholar PubMed
Fedorov, A.A., Ball, T., Valenta, R., and Almo, S.C. (1997). X-ray crystal structures of birch pollen profilin and Phl p 2. Int. Arch. Allergy Immunol.113, 109–113.10.1159/000237520Suche in Google Scholar PubMed
Feo, F., Martínez, J., Martínez, A., Galindo, P.A., Cruz, A., Garcia, R., Guerra, F., and Palacios, R. (1997). Occupational allergy in saffron workers. Allergy52, 633–641.10.1111/j.1398-9995.1997.tb01042.xSuche in Google Scholar PubMed
Fernández, J., Asturias, J.A., and Martínez, A. (2000). Biological standardization and allergen characterization of date palm pollen (Phoenix dactylifera). Allergy55, 140.Suche in Google Scholar
Florido, J.F., Quiralte, J., Saénz De San Pedro, B., and Bartolomé, B. (2000). Cross-reactivity between Olea europaea and Chenopodium album pollens. Allergy55, 158.Suche in Google Scholar
Ledesma, A., Rodríguez, R., and Villalba, M. (1998a). Olive-pollen profilin. Molecular and immunologic properties. Allergy53, 520–526.10.1111/j.1398-9995.1998.tb04090.xSuche in Google Scholar PubMed
Ledesma, A., Villalba, M., Batanero, E., and Rodríguez, R. (1998b). Molecular cloning and expression of active Ole e 3, a major allergen from olive-tree pollen and member of a novel family of Ca2+-binding proteins (polcalcins) involved in allergy. Eur. J. Biochem.258, 454–459.10.1046/j.1432-1327.1998.2580454.xSuche in Google Scholar PubMed
Lombardero, M., Duffort, O., Selles, J.G., Hernández, J., and Carreira, J. (1985). Cross-reactivity among Chenopodiaceae and Amaranthaceae. Ann. Allergy.54, 430–436.Suche in Google Scholar
Lombardero, M., Duffort, O., and Carreira, J. (1991). Allergenic significance of chenopod pollen. In: Allergenic pollen and pollinosis in Europe, G. D’Amato, F.T.M. Spieksma and S. Bonini, eds. (Oxford, UK: Blackwell Scientific Publishers), pp. 128–131.Suche in Google Scholar
Lowry, O., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275.10.1016/S0021-9258(19)52451-6Suche in Google Scholar
Rihs, H.P., Chen, Z., Rozynek, P., Baur, X., Lundberg, M., and Cremer, R. (2000). PCR-based cloning, isolation, and IgE-binding properties of recombinant latex profilin (rHev b 8). Allergy55, 712–717.10.1034/j.1398-9995.2000.00553.xSuche in Google Scholar
Rihs, H.P., Chen, Z., Rueff, F., Petersen, A., Rozynek, P., Heimann, H., and Baur, X. (1999). IgE binding of the recombinant allergen soybean profilin (rGly m 3) is mediated by conformational epitopes. J. Allergy Clin. Immunol.104, 1293–1301.10.1016/S0091-6749(99)70027-8Suche in Google Scholar
Rodríguez-Pérez, R., Fernández-Rivas, M., González-Mancebo, E., Sánchez-Monge, R., Díaz-Perales, A., and Salcedo, G. (2003). Peach profilin: cloning, heterologous expression and cross-reactivity with Bet v 2. Allergy58, 635–640.10.1034/j.1398-9995.2003.00198.xSuche in Google Scholar
Scheurer, S., Wangorsch, A., Nerkamp, J., Skov, P.S., Ballmer-Weber, B., Wuthrich, B. et al. (2001). Cross-reactivity within the profilin panallergen family investigated by comparison of recombinant profilins from pear (Pyr c 4), cherry (Pru av 4) and celery (Api g 4) with birch pollen profilin Bet v 2. J. Chromatogr. B. Biomed. Sci. Appl.756, 315–325.10.1016/S0378-4347(01)00090-1Suche in Google Scholar
Valenta, R., Dûchene, M., Vrtala, S., Birkner, T., Ebner, C., Hirschwehr, R., Breitenbach, M., Rumpold, H., Scheiner, O., and Kraft, D. (1991). Recombinant allergens for immunoblot diagnosis of tree-pollen allergy. J. Allergy Clin. Immunol.88, 889–894.10.1016/0091-6749(91)90245-JSuche in Google Scholar
Valenta, R., Duchene, M., Ebner, C., Valent, P., Sillaber, C., Deviller, P., Ferreira, F., Tejkl, M., Edelman, H., and Kraft, D. (1992). Profilins constitute a novel family of functional plant panallergens. J. Exp. Med.175, 377–385.10.1084/jem.175.2.377Suche in Google Scholar PubMed PubMed Central
Vallverdú, A., García-Ortega, P., Martínez, J., Martínez, A., Esteban, M.I., de Molina, M., Fernández, J., Bartolomé, B., and Palacios, R. (1997). Mercurialis annua: characterization of main allergens and cross-reactivity with other species. Int. Arch. Allergy Immunol.112, 356–364.10.1159/000237480Suche in Google Scholar PubMed
Van Ree, R., Fernández-Rivas, M., Cuevas, M., Van Wijngaarden, M., and Aalberse, Rc. (1995). Pollen-related allergy to peach and apple: an important role for profilin. J. Allergy Clin. Immunol.95, 726–734.Suche in Google Scholar
Vieths, S., Scheurer, S., and Ballmer-Weber, B. (2002). Current understanding of cross-reactivity of food allergens and pollen. Ann. NY Acad. Sci.964, 47–68.10.1111/j.1749-6632.2002.tb04132.xSuche in Google Scholar PubMed
Wagner, S., and Breiteneder, H. (2002). The latex-fruit syndrome. Biochem. Soc. Trans.30, 935–940.10.1042/bst0300935Suche in Google Scholar PubMed
Wensing, M., Akkerdaas, J.H., van Leeuwen, W.A., Stapel, S.O., Bruijnzeel-Koomen, C.A., Aalberse, R.C., Bast, B.J., Knulst, A.C., and van Ree, R. (2002). IgE to Bet v 1 and profilin: cross-reactivity patterns and clinical relevance. J. Allergy Clin. Immunol.110, 435–442.10.1067/mai.2002.126380Suche in Google Scholar PubMed
Wopfner, N., Willeroidee, M., Hebenstreit, D., van Ree, R., Aalbers, M., Briza, P., Thalhamer, J., Ebner, C., Richter, K., and Ferreira, F. (2002). Molecular and immunological characterization of profilin from mugwort pollen. Biol. Chem.383, 1779–1789.10.1515/BC.2002.199Suche in Google Scholar PubMed
Wurtzen, P.A., Nelson, H.S., Lowenstein, H., and Ipsen, H. (1995). Characterization of Chenopodiales (Amaranthus retroflexus, Chenopodium album, Kochia scoparia, Salsola pestifer) pollen allergens. Allergy50, 489–497.10.1111/j.1398-9995.1995.tb01184.xSuche in Google Scholar PubMed
© Walter de Gruyter
Artikel in diesem Heft
- Molecular genetics of human cervical cancer: role of papillomavirus and the apoptotic cascade
- Regulatory role of membrane-bound peptidases in the progression of gynecologic malignancies
- Functional genomics identifies novel and diverse molecular targets of nutrients in vivo
- Molecular recognition in bone morphogenetic protein (BMP)/receptor interaction
- Functional GATA- and initiator-like-elements exhibit a similar arrangement in the promoters of Caenorhabditis elegans polyamine synthesis enzymes
- Fluid shear stress induces endothelial KLF2 gene expression through a defined promoter region
- Recombinant expression, purification and cross-reactivity of chenopod profilin: rChe a 2 as a good marker for profilin sensitization
- Cellular prion protein acquires resistance to proteolytic degradation following copper ion binding
- Distinctive functional features in prokaryotic and eukaryotic Cu,Zn superoxide dismutases
- Tumour-expressed CD43 (sialophorin) mediates tumour-mesothelial cell adhesion
Artikel in diesem Heft
- Molecular genetics of human cervical cancer: role of papillomavirus and the apoptotic cascade
- Regulatory role of membrane-bound peptidases in the progression of gynecologic malignancies
- Functional genomics identifies novel and diverse molecular targets of nutrients in vivo
- Molecular recognition in bone morphogenetic protein (BMP)/receptor interaction
- Functional GATA- and initiator-like-elements exhibit a similar arrangement in the promoters of Caenorhabditis elegans polyamine synthesis enzymes
- Fluid shear stress induces endothelial KLF2 gene expression through a defined promoter region
- Recombinant expression, purification and cross-reactivity of chenopod profilin: rChe a 2 as a good marker for profilin sensitization
- Cellular prion protein acquires resistance to proteolytic degradation following copper ion binding
- Distinctive functional features in prokaryotic and eukaryotic Cu,Zn superoxide dismutases
- Tumour-expressed CD43 (sialophorin) mediates tumour-mesothelial cell adhesion