Startseite Molecular genetics of human cervical cancer: role of papillomavirus and the apoptotic cascade
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Molecular genetics of human cervical cancer: role of papillomavirus and the apoptotic cascade

  • Thokozile Ledwaba , Zodwa Dlamini , Sarala Naicker und Kanti Bhoola
Veröffentlicht/Copyright: 1. Juni 2005
Biological Chemistry
Aus der Zeitschrift Band 385 Heft 8

Abstract

Cervical cancer is rated the second most common malignant tumour globally, and is aetiologically linked to human papillomavirus (HPV) infection. Here the cellular pathology under consideration of stem/progenitor cell carcinogenesis is reviewed. Of the three causative molecular mechanisms of cervical cancer, two are associated with HPV: firstly, the effect of the viral oncogenes, E6 and E7; and secondly, integration of the viral DNA into chromosomal regions of tumour phenotype. The third process involved is the repetitive loss of heterozygosity in some chromosomal regions. HPV can be classified into high- and low-risk types; the high-risk types encode two oncoproteins, E6 and E7, which interact with tumour suppressor proteins. The association results in the inactivation of tumour suppressor proteins and the abrogation of apoptosis. Apoptosis is referred to as programmed cell death, whereby a cell deliberately commits suicide, and thus regulates cell numbers during development and maintenance of cellular homeostasis. This review attempts to elucidate the role of apoptotic genes, and considers external factors that interact with HPV in the development and progression of cervical cancer. Therefore, an in-depth understanding of the apoptotic genes that control molecular mechanisms in cervical cancer are of critical importance. Useful targets for therapeutic strategies would be those that alter apoptotic pathways in a manner where the escape of HPV from surveillance by the host immune system is prevented. Such an approach directed at the apoptotic genes maybe useful in the treatment of cervical cancer.

:

Corresponding author e-mail:

References

Ashkenazi, A., and Dixit, V.M. (1998). Death receptors: signaling and modulation. Science281, 1305–1308.10.1126/science.281.5381.1305Suche in Google Scholar

Baege, A.C., Berger, A., Schlegel, R., Veldman, T., and Schlegel, R. (2002). Cervical epithelial cells transduced with the papillomavirus E6/E7 oncogenes maintain stable levels of oncoprotein expression but exhibit progressive, major increases in Htert gene expression and telomerase activity. Am. J. Pathol.160, 1251–1257.10.1016/S0002-9440(10)62552-7Suche in Google Scholar

Basile, J.R., Zacny, V., and Munger, K. (2001). The cytokines tumor necrosis factor (TNF-alpha) and TNF related apoptosis- inducing ligand differentially modulate proliferation and apoptotic pathways in human papillomavirus 16E7 oncoprotein. J. Biol. Chem.276, 22522–22528.10.1074/jbc.M010505200Suche in Google Scholar

Brenna, S. M. F., Zeferino, L. C., Pinto, G.A., Souza, R.A., Andrande, L. A. L., Vassalo, J., Martinez, E. Z. and Syrjanen, K.J. (2002). C-Myc protein expression is not an independent prognostic predictor in cervical squamous cell carcinoma. Braz. J. Med. Biol. Med. Res.35, 425–430.10.1590/S0100-879X2002000400003Suche in Google Scholar

Butz, K., Denk, C., Ullmann, A., Scheffner, M., and Hoppe-Seyler, F. (2000). Induction of apoptosis in human pappillomavirus positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc. Natl. Acad. Sci. USA97, 6693–6697.10.1073/pnas.110538897Suche in Google Scholar

Carr, J., and Gyorfi, T. (2000). Human papillomavirus: epidemiology, transmission and pathogenesis. Clin. Lab. Med.20, 235–255.10.1016/S0272-2712(18)30060-XSuche in Google Scholar

Chakrabarti, O., and Krishna, S. (2003). Molecular interaction of ‘high risk’ human papillomaviruses E6 and E7 oncoproteins: implication for tumor progression. J. Biosci.28, 337–34810.1007/BF02970152Suche in Google Scholar

Chao, C., Sairo, S., Kang, J., Anderson, C.W., Appella, E., and Xu, Y. (2000). p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. EMBO J.19, 4967–4975.10.1093/emboj/19.18.4967Suche in Google Scholar

Chen, X.S., Garcea, R.L., Goldberg, I., Casini, G., and Harrison, S.C. (2000). Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell5, 557–567.10.1016/S1097-2765(00)80449-9Suche in Google Scholar

Chene, P. (2003). Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat. Rev. Cancer3, 102–109.10.1038/nrc991Suche in Google Scholar PubMed

Chinnaiyan, A.M., and Dixit, V.M. (1996). The cell death machine. Curr. Biol6, 555–562.10.1016/S0960-9822(02)00541-9Suche in Google Scholar

Cho, N.H., Lim, S.Y., Kim, Y.T., Kim, D., Kim, Y.S., and Kim, J.W. (2003). G2 checkpoint in uterine cervical cancer with HPV 16 E6 according to p53 polymorphism and its screening value. Gynecol. Oncol.90, 15–2210.1016/S0090-8258(03)00198-7Suche in Google Scholar

Dasgupta, S., Chakraborty, B., Roy, A., Roychowdhury, S., Panda, C.K. (2003). Differential deletions of chromosome 3p are associated with the development of uterine cervical carcinoma in Indian patients. Mol. Pathol.56, 263–269.10.1136/mp.56.5.263Suche in Google Scholar

Desaintes, C., Demeret, C., Goyat, S., Yaniv, M., and Thierry, F. (1997). Expression of the papillomavirus E2 protein in HeLa cells leads to apoptosis. EMBO J.16, 504–514.10.1093/emboj/16.3.504Suche in Google Scholar

Evan, G. and Littlewood, T. (1998). A matter of life and cell death. Science281, 1317–1322.10.1126/science.281.5381.1317Suche in Google Scholar

Fausch, S.C., Da Silva, D.M., Rudolf, M.P., Kast, K.W. (2002). Human papillomavirus-like particles do not activate Langerhans cells: a possible immune escape mechamism used by human papillomaviruses. J. Immunol.169, 3242–3249.10.4049/jimmunol.169.6.3242Suche in Google Scholar

Filippova, M., Song, H., Connolly, J.L., Dermody, T.S., and Duerksen-Hughes, P.J. (2002). The human papillomavirus 16 E6 binds to tumour necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J. Biol. Chem277, 21730–21739.10.1074/jbc.M200113200Suche in Google Scholar

Finzer, P., Aguilar-Lemarroy, A., Rosl, F. (2002). The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett.188, 15–24.10.1016/S0304-3835(02)00431-7Suche in Google Scholar

Funk, J.O., Waga, S., Harry, J.B., Espling, E., Stillman, B., and Galloway, D.A. (1997). Inhibition of CDK activating and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV 16 E7 oncoprotein. Genes Dev.11, 2090–2100.10.1101/gad.11.16.2090Suche in Google Scholar PubMed PubMed Central

Gao, Q., Kumar A., Srinivasan, S., Singh, L., Mukai, H., Ono, Y., Wazer, D.E. and Band, V. (2000). PKN binds and phosphorylates human papillomavirus E6 oncoprotein. J. Biol. Chem.275, 14824–14830.10.1074/jbc.275.20.14824Suche in Google Scholar PubMed

Goodwin, E.C., and DiMaio, D. (2001). Induced senescence in Hela cervical carcinoma cells containing elevated telomerase activity and extended telomeres. Cell Growth Differ.12, 525–534.Suche in Google Scholar

Hagensee, M.E., Olson, N.H., Baker, T.S., and Galloway, D.A. (1994). Three-dimensional structure of vaccinia virus-produced human papillomavirus type 1 capsids. J. Virol.68, 4503–4505.10.1128/jvi.68.7.4503-4505.1994Suche in Google Scholar

Hietanen, S., Lain, S., Krauz, E., Blattner, C., and Lane, D.P (2000). Activation of p53 in cervical carcinoma cells by small molecules. Proc. Natl. Acad. Sci. USA97, 8510–850610.1073/pnas.97.15.8501Suche in Google Scholar

Horikawa, I., and Barrett, J.C. (2003). Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanism. Carcinogenesis24, 1167–1176.10.1093/carcin/bgg085Suche in Google Scholar

Huh. J.J., Wolf, J.K., Fightmaster, D.L., Lotan, R., and Follen, M. (2003). Transduction of adenovirus mediated wild-type p53 after radiotherapy in human cervical cancer cells. Gynecol. Oncol.89, 243–250.Suche in Google Scholar

Israels, L.G., and Israels, E.D. (1999). Apoptosis. Stem Cells17, 306–313.10.1002/stem.170306Suche in Google Scholar

Janicek, M.F. and Averet, H.E. (2001). Cervical cancer: prevention, diagnosis and therapeutics. CA Cancer J. Clin.51, 92–114.10.3322/canjclin.51.2.92Suche in Google Scholar

Kabsch, K., and Alonso, A. (2002). The human papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated apoptosis in HaCaT cells by different mechanisms. J. Virol.76, 12162–12172.10.1128/JVI.76.23.12162-12172.2002Suche in Google Scholar

Kase, H., Aoki, Y., and Tanaka, K. (2003). Fas ligand expression in cervical adenocarcinoma relevance to lymph node metastasis and tumour progression. Gynecol. Oncol.90, 70–74.10.1016/S0090-8258(03)00206-3Suche in Google Scholar

Kehmeier, E., Rühl, H., Voland, B., Stõppler, C.M., Androphy, E., and Stöppler, H. (2002). Cellular steady-state levels of ‘high risk’ but now ‘low risk’ human papillomavirus (HPV) E6 proteins are increased by inhibition of proteasome-dependent degradation independent of their p53 and E6-AP binding capabilities. Virology299, 72–87.10.1006/viro.2002.1502Suche in Google Scholar

Kiechle, F.L., and Zhang, X. (2002). Apoptosis: biochemical aspects and clinical implications. Clin. Chim. Acta326, 27–45.10.1016/S0009-8981(02)00297-8Suche in Google Scholar

Kiechle, F.L., and Zhang, X. (2002). Apoptosis: a brief review. J. Clin. Ligand Assay21, 58–61.Suche in Google Scholar

Kim, K.Y., Seol, J.Y., Jeon, G., and Nam, M.J. (2003). The combined treatment of aspirin and radiation induces apoptosis by the regulation of Bcl-2 and caspase-3 in human cervical cancer cells. Cancer Lett.189, 157–166.10.1016/S0304-3835(02)00519-0Suche in Google Scholar

Lee, D., Kim, H.Z., Jeong, K.W., Shim, Y.S., Horikawa, L., Barrett, J.C., and Choe, J. (2002). Human papillomavirus E2 down-regulates the human telomerase reverse transcriptase promoter. J. Biol. Chem.277, 27748–27756.10.1074/jbc.M203706200Suche in Google Scholar

Ma, Y.Y., Wei, S.J., Lin, Y.C., Lung, J.C., Chang, T.C., Whang-Peng J., Liu, J.M., Yang, D.M., Yang, W.K. and Shen, C.Y. (2000). PIKC3A as an oncogene in cervical cancer. Oncogene19, 2739–2744.10.1038/sj.onc.1203597Suche in Google Scholar

Makin, G., and Dive, C. (2001). Apoptosis and cancer chemotherapy. Trends Cell Biol.11, S22–2610.1016/S0962-8924(01)02124-9Suche in Google Scholar

Mantovani, F., and Banks, L. (1999). The interaction between p53 and papillomaviruses. Semin. Cancer Biol.9, 387–395.10.1006/scbi.1999.0142Suche in Google Scholar

Matthews, C.P., Shera, K.A., and McDougall, J.K. (2000). Genomic changes and HPV type in cervical carcinoma. Proc. Soc. Exp. Biol. Med.223, 316–321.10.1046/j.1525-1373.2000.22345.xSuche in Google Scholar

Nagata, S. (1997). Apoptosis by death factor. Cell88, 355–365.10.1016/S0092-8674(00)81874-7Suche in Google Scholar

Oh, S.T., Kyo, S., and Laimins, L.A. (2001). Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through c-myc and GC rich Sp1m binding sites. J. Virol.75, 5559–5566.10.1128/JVI.75.12.5559-5566.2001Suche in Google Scholar PubMed PubMed Central

Park, I.K., Morrison, S.J. and Clarke, M.F. (2004). Bmi1, stem cells, and senescence regulation. J. Clin. Invest.113, 175–179.10.1172/JCI200420800Suche in Google Scholar

Park, J., Boyer, S., Mitchell, K., Gilfor, D., Birrer, M., Darlington, G., El Deiry, W., Firestone, G.L., Munger, K., Band, V., Fisher, P.B., and Dent, P. (2000a). Expression of human papillomavirus E7 protein causes apoptosis and inhibits DNA synthesis in primary hepatocytes via increased expression of p21. J. Biol. Chem.275, 18–28.10.1074/jbc.275.1.18Suche in Google Scholar PubMed

Park, J., Kim, E.J., Kwon, H., Hwang, E.S., Namkoony, S.E., Um, S. (2000b). Inactivation of interferon regulatory factor-1 tumour suppressor protein by HPV E7 oncoprotein. J. Biol. Chem.275, 6764–6769.10.1074/jbc.275.10.6764Suche in Google Scholar PubMed

Patel, D., Huang, S., Baglia, L.A., and McCance, D.J (1999). The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J.18, 5061–5072.10.1093/emboj/18.18.5061Suche in Google Scholar

Pelicci, P.G. (2004). Do tumor-suppressive mechanisms contribute to organism aging by inducing stem cell senescence? J. Clin. Invest.113, 4–7.10.1172/JCI200420750Suche in Google Scholar

Preston, S.L., Alison, M.R., Forbes, S.J., Direkze N.C., Poulsom, R. and Wright, N.A. (2003). The new stem biology: something for everyone. Mol. Pathol.56, 86–96.10.1136/mp.56.2.86Suche in Google Scholar

Scheffner, M., and Whitaker, N.J. (2003) Human papillomavirus-induced carcinogenesis and the ubiquitin-proteasome system. Semin. Cancer Biol.13, 59–67.10.1016/S1044-579X(02)00100-1Suche in Google Scholar

Schiffman, M., and Castle, P.E. (2003). Human papillomavirus: epidemiology and public health. Arch. Pathol. Lab. Med.127, 930–934.10.5858/2003-127-930-HPEAPHSuche in Google Scholar PubMed

Singh, B., Reddy, P.G., Goberdhan, A., Walsh, C., Dao, S., Ngai, I., Chou, T.C., O-Charoenrat, P., Levine, A.J., Rao, P.H., and Stoffel, A. (2002). p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinoma. Genes Dev.16, 984–993.10.1101/gad.973602Suche in Google Scholar PubMed PubMed Central

Thompson, D.A., Zacny, V., Belinsky, G.S., Classon, M., Jones, D.L., Schlegel, R. and Munger, K. (2001). The HPV E7 oncoprotein inhibits tumor necrosis factor α-mediated apoptosis in normal human fibroblasts. Oncogene20, 3629–3640.10.1038/sj.onc.1204483Suche in Google Scholar PubMed

Sharpless, N.E., and DePinho, R.A. (2004). Telomeres, stem cells, senescence, and cancer. J. Clin. Invest.113, 160–168.10.1172/JCI20761Suche in Google Scholar PubMed PubMed Central

Tsai, R.Y. (2004). A molecular view of stem cell and cancer self-renewal. Int. J. Biochem. Cell Biol.36, 684–694.10.1016/j.biocel.2003.10.016Suche in Google Scholar PubMed

Tsujimoto, Y. (1997). Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes. Cell Death Differ.4, 429–434.10.1038/sj.cdd.4400262Suche in Google Scholar PubMed

Veldman, T., Horikawa, I, Barrett, C.J., and Schlegel, R. (2001). Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J. Virol.75, 4467–4472.10.1128/JVI.75.9.4467-4472.2001Suche in Google Scholar PubMed PubMed Central

Published Online: 2005-06-01
Published in Print: 2004-08-01

© Walter de Gruyter

Heruntergeladen am 29.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2004.083/html?lang=de
Button zum nach oben scrollen