Home Transcriptional Regulation of Cytosol and Membrane Alanyl-Aminopeptidase in Human T Cell Subsets
Article
Licensed
Unlicensed Requires Authentication

Transcriptional Regulation of Cytosol and Membrane Alanyl-Aminopeptidase in Human T Cell Subsets

  • A. Bukowska , J. Tadje , M. Arndt , C. Wolke , T. Kähne , J. Bartsch , J. Faust , K. Neubert , Y. Hashimoto and U. Lendeckel
Published/Copyright: June 1, 2005
Biological Chemistry
From the journal Volume 384 Issue 4

Abstract

Aminopeptidase inhibitors strongly affect the proliferation and function of immune cells in man and animals and are promising agents for the pharmacological treatment of inflammatory or autoimmune diseases. Membrane alanyl-aminopeptidase (mAAP) has been considered as the major target of these anti-inflammatory aminopeptidase inhibitors. Recent evidence also points to a role of the cytosol alanylaminopeptidase (cAAP) in the immune response. In this study we used quantitative RT-PCR to determine the mRNA expression of both cAAP and mAAP in resting and activated peripheral T cells and also in CD4+, CD8+, Th1, Th2 and Treg (CD4+CD25+) subpopulations. Both mAAP and cAAP mRNAs were expressed in all cell types investigated, and in response to activation their expression appeared to be upregulated in CD8+ cells, but downregulated in Treg cells. In CD4+ cells, mAAP and cAAP mRNAs were affected in opposite ways in response to activation. The cAAPspecific inhibitor, PAQ-22, did not affect either cAAP or mAAP expression in activated CD4+ or CD8+ cells, whereas in activated Treg cells it markedly upregulated the mRNA levels of both aminopeptidases. The nondiscriminatory inhibitor, phebestin, significantly increased the amount of mAAP and cAAP mRNA in CD4+ and that of cAAP in Treg cells.

:
Published Online: 2005-06-01
Published in Print: 2003-04-10

Copyright © 2003 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Glutathione, Related Enzymology, and Leopold Flohé
  2. 'Lest I Forget Thee, Glutathione...'
  3. Glutathione Pathways in the Brain
  4. The Role of Glutathione Peroxidases in Trypanosomatids
  5. Cytoprotection against Oxidative Stress and the Regulation of Glutathione Synthesis
  6. The Parasite-Specific Trypanothione Metabolism of Trypanosoma and Leishmania
  7. Glutathione – Functions and Metabolism in the Malarial Parasite Plasmodium falciparum
  8. Oxidative Stress Caused by Inactivation of Glutathione Peroxidase and Adaptive Responses
  9. Versatility of Selenium Catalysis in PHGPx Unraveled by LC/ESI-MS/MS
  10. Modulation of the Chymotrypsin-Like Activity of the 20S Proteasome by Intracellular Redox Status: Effects of Glutathione Peroxidase-1 Overexpression and Antioxidant Drugs
  11. Microflora Trigger Colitis in Mice Deficient in Selenium-Dependent Glutathione Peroxidase and Induce Gpx2 Gene Expression
  12. Recruitment of the Interleukin-1 Receptor (IL-1RI)-Associated Kinase IRAK to the IL-1RI Is Redox Regulated
  13. Kinetics and Redox-Sensitive Oligomerisation Reveal Negative Subunit Cooperativity in Tryparedoxin Peroxidase of Trypanosoma brucei brucei
  14. Testis-Specific Expression of the Nuclear Form of Phospholipid Hydroperoxide Glutathione Peroxidase (PHGPx)
  15. Selective Recognition of Peptide Sequences by Glutathione Transferases: A Possible Mechanism for Modulation of Cellular Stress-Induced Signaling Pathways
  16. Biosynthesis of Trypanothione in Trypanosoma brucei brucei
  17. Transcriptional Regulation of Cytosol and Membrane Alanyl-Aminopeptidase in Human T Cell Subsets
  18. Regulation of Gene Transcription by a Constitutively Active Mutant of Activating Transcription Factor 2 (ATF2)
  19. Solvent Isotope Effect on the Reaction Catalysed by the Pyruvate Dehydrogenase Complex from Escherichia coli
  20. Selective Induction of Liver Parenchymal Cell Heme Oxygenase-1 in Selenium-Deficient Rats
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2003.073/pdf
Scroll to top button