The Two SH2-Domain-Containing Inositol 5-Phosphatases SHIP1 and SHIP2 Are Coexpressed in Human T Lymphocytes
-
C. Bruyns
, X. Pesesse , C. Moreau , D. Blero and C. Erneux
Abstract
The activation of many hematopoietic cells via cytokine receptors, as well as B and T cell receptors, leads to the tyrosine phosphorylation of Shc and its association with both Grb2-Sos1 complexes and with a 145 kDa protein referred to as the SH2 containing inositol 5-phosphatase (SHIP1). In a search of putative 5-phosphatase isoenzymes, we have isolated a second SH2 domain containing inositol 5-phosphatase, referred to as (SHIP2). Both SHIP1 and SHIP2 are coexpressed in human T lymphocytes. This was shown at the protein level by Western blot analysis in transformed T cell lines and in peripheral blood T lymphocytes either unstimulated or after in vitro activation through TCR-CD3 complex. SHIP1 protein level was not modulated after activation of T lymphocytes, in contrast to SHIP2, which was increased after longterm stimulation. SHIP1 was tyrosine phosphorylated in resting naive T cells. This was not observed in the transformed T cell lines. T lymphocyte is therefore a model of coexpression of the two SH2-containing inositol 5-phosphatases SHIP1 and SHIP2.
Copyright © 1999 by Walter de Gruyter GmbH & Co. KG
Articles in the same Issue
- Paul Nurse Felix Hoppe-Seyler Lecturer 1999
- Cyclin Dependent Kinases and Regulation of the Fission Yeast Cell Cycle
- Paper of the Year 1998
- Autonomous Regulation in Mammalian Mitochondrial DNA Transcription
- Prospects for the Precise Engineering of Plant Genomes by Homologous Recombination
- The Glycosphingolipidoses from Disease to Basic Principles of Metabolism
- The Dual Role of Lipopolysaccharide as Effector and Target Molecule
- A Unified Mechanism of Enzymatic Synthesis of Two Calcium Messengers: Cyclic ADP-Ribose and NAADP
- The Tranquilizing Injection of Yersinia Proteins: A Pathogens Strategy to Resist Host Defense
- IL-6 Type Cytokine Receptor Complexes: Hexamer, Tetramer or Both?
- Genetically Engineered and Synthetic Allergen Derivatives: Candidates for Vaccination against Type I Allergy
- Molecular Farming of Recombinant Antibodies in Plants
- Chimeric Restriction Enzymes: What Is Next?
- Viroids with Hammerhead Ribozymes: Some Unique Structural and Functional Aspects with Respect to Other Members of the Group
- Mutagenesis via Insertional or Restriction Enzyme-Mediated Integration (REMI) as a Tool to Tag Pathogenicity Related Genes in Plant Pathogenic Fungi
- Role of Mitochondria in Parkinson Disease
- Mitochondria Harbouring Mutant mtDNA a Cuckoo in the Nest?
- Mutant p53: Gain-of-Function Oncoproteins and Wild-Type p53 Inactivators
- The Role of Chemokines in Cutaneous Allergic Inflammation
- Mutations of Calcium Channel beta Subunit Genes in Mice
- Agonist-Stimulated Pathways of Calcium Signaling in Pancreatic Acinar Cells
- Some of the Early Events Underlying Th2. Cell Maturation and Susceptibility to Leishmania major Infection in BALB/c Mice
- Universal and Unique Features of Kinesin Motors: Insights from a Comparison of Fungal and Animal Conventional Kinesins
- Elementary Steps in Protein Folding
- Molecular Reaction Mechanisms of Proteins Monitored by Time-Resolved FTIR-Spectroscopy
- Sugars as Signal Molecules in Plant Seed Development
- Diphosphoinositol Polyphosphates: The Final Frontier for Inositide Research?
- A Role of Poly (ADP-Ribose) Polymerase in NF- B Transcriptional Activation
- Processing of Artificial Peptide-DNA-Conjugates by the Mitochondrial Intermediate Peptidase (MIP)
- The Two SH2-Domain-Containing Inositol 5-Phosphatases SHIP1 and SHIP2 Are Coexpressed in Human T Lymphocytes
- Differential Distribution of Four Hyperpolarization-Activated Cation Channels in Mouse Brain
- The Structure of the Nucleotide-Binding Site of Kinesin
- Atomic Resolution Crystal Structure of Hydroxynitrile Lyase from <I>Hevea brasiliensis</I>
- Comparative Modeling of Amoebapores and Granulysin Based on the NK-Lysin Structure Structural and Functional Implications
- A Nonspecific, Single-Stranded Nuclease Activity with Characteristics of a Topoisomerase Found in a Major Grass Pollen Allergen: Possible Biological Significance
- Functional Characterisation of Dictyostelium Myosin II with Conserved Tryptophanyl Residue 501 Mutated to Tyrosine
- Mitochondrial Nitric Oxide Synthase Regulates Mitochondrial Matrix pH
- Directed Evolution of an Esterase from Pseudomonas fluorescens. Random Mutagenesis by Error-Prone PCR or a Mutator Strain and Identification of Mutants Showing Enhanced Enantioselectivity by a Resorufin-Based Fluorescence Assay
Articles in the same Issue
- Paul Nurse Felix Hoppe-Seyler Lecturer 1999
- Cyclin Dependent Kinases and Regulation of the Fission Yeast Cell Cycle
- Paper of the Year 1998
- Autonomous Regulation in Mammalian Mitochondrial DNA Transcription
- Prospects for the Precise Engineering of Plant Genomes by Homologous Recombination
- The Glycosphingolipidoses from Disease to Basic Principles of Metabolism
- The Dual Role of Lipopolysaccharide as Effector and Target Molecule
- A Unified Mechanism of Enzymatic Synthesis of Two Calcium Messengers: Cyclic ADP-Ribose and NAADP
- The Tranquilizing Injection of Yersinia Proteins: A Pathogens Strategy to Resist Host Defense
- IL-6 Type Cytokine Receptor Complexes: Hexamer, Tetramer or Both?
- Genetically Engineered and Synthetic Allergen Derivatives: Candidates for Vaccination against Type I Allergy
- Molecular Farming of Recombinant Antibodies in Plants
- Chimeric Restriction Enzymes: What Is Next?
- Viroids with Hammerhead Ribozymes: Some Unique Structural and Functional Aspects with Respect to Other Members of the Group
- Mutagenesis via Insertional or Restriction Enzyme-Mediated Integration (REMI) as a Tool to Tag Pathogenicity Related Genes in Plant Pathogenic Fungi
- Role of Mitochondria in Parkinson Disease
- Mitochondria Harbouring Mutant mtDNA a Cuckoo in the Nest?
- Mutant p53: Gain-of-Function Oncoproteins and Wild-Type p53 Inactivators
- The Role of Chemokines in Cutaneous Allergic Inflammation
- Mutations of Calcium Channel beta Subunit Genes in Mice
- Agonist-Stimulated Pathways of Calcium Signaling in Pancreatic Acinar Cells
- Some of the Early Events Underlying Th2. Cell Maturation and Susceptibility to Leishmania major Infection in BALB/c Mice
- Universal and Unique Features of Kinesin Motors: Insights from a Comparison of Fungal and Animal Conventional Kinesins
- Elementary Steps in Protein Folding
- Molecular Reaction Mechanisms of Proteins Monitored by Time-Resolved FTIR-Spectroscopy
- Sugars as Signal Molecules in Plant Seed Development
- Diphosphoinositol Polyphosphates: The Final Frontier for Inositide Research?
- A Role of Poly (ADP-Ribose) Polymerase in NF- B Transcriptional Activation
- Processing of Artificial Peptide-DNA-Conjugates by the Mitochondrial Intermediate Peptidase (MIP)
- The Two SH2-Domain-Containing Inositol 5-Phosphatases SHIP1 and SHIP2 Are Coexpressed in Human T Lymphocytes
- Differential Distribution of Four Hyperpolarization-Activated Cation Channels in Mouse Brain
- The Structure of the Nucleotide-Binding Site of Kinesin
- Atomic Resolution Crystal Structure of Hydroxynitrile Lyase from <I>Hevea brasiliensis</I>
- Comparative Modeling of Amoebapores and Granulysin Based on the NK-Lysin Structure Structural and Functional Implications
- A Nonspecific, Single-Stranded Nuclease Activity with Characteristics of a Topoisomerase Found in a Major Grass Pollen Allergen: Possible Biological Significance
- Functional Characterisation of Dictyostelium Myosin II with Conserved Tryptophanyl Residue 501 Mutated to Tyrosine
- Mitochondrial Nitric Oxide Synthase Regulates Mitochondrial Matrix pH
- Directed Evolution of an Esterase from Pseudomonas fluorescens. Random Mutagenesis by Error-Prone PCR or a Mutator Strain and Identification of Mutants Showing Enhanced Enantioselectivity by a Resorufin-Based Fluorescence Assay