Home Paramétrisation des courbes multiples primitives
Article
Licensed
Unlicensed Requires Authentication

Paramétrisation des courbes multiples primitives

  • Jean-Marc Drézet EMAIL logo
Published/Copyright: November 22, 2007
Become an author with De Gruyter Brill
Advances in Geometry
From the journal Volume 7 Issue 4

Abstract

The primitive curves are the multiple curves that can be locally embedded in smooth surfaces (we will always suppose that the associated reduced curves are smooth). These curves have been defined and studied by C. Bănică and O. Forster in 1984. In 1995, D. Bayer and D. Eisenbud gave a complete description of the double curves. We give here a parametrization of primitive curves of arbitrary multiplicity. Let Zn = spec(ℂ[t]/(tn)). The curves of multiplicity n are obtained by taking an open cover (Ui) of a smooth curve C and by glueing schemes of type Ui × Zn using automorphisms of Uij × Zn that leave Uij invariant. This leads to the study of the sheaf of nonabelian groups Gn of automorphisms of C × Zn that leave the reduced curve invariant, and to the study of its first cohomology set. We prove also that in most cases it is the same to extend a primitive curve Cn of multiplicity n to one of multiplicity n + 1, and to extend the quasi locally free sheaf Dn of derivations of Cn to a rank 2 vector bundle on Cn.


(Communicated by K. Strambach)


Received: 2006-06-21
Published Online: 2007-11-22
Published in Print: 2007-10-19

© Walter de Gruyter

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ADVGEOM.2007.034/html
Scroll to top button