Abstract
Here we investigate the canonical Gaussian map for higher multiple coverings of curves, the case of double coverings being completely understood thanks to previous work by Duflot. In particular, we prove that every smooth curve can be covered with degree not too high by a smooth curve having arbitrarily large genus and surjective canonical Gaussian map. As a consequence, we recover an asymptotic version of a recent result by Ciliberto and Lopez and we address the Arbarello subvariety in the moduli space of curves.
Received: 2004-03-24
Published Online: 2006-08-10
Published in Print: 2006-07-01
© Walter de Gruyter
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- On the surjectivity of the canonical Gaussian map for multiple coverings
- A classification of 4-dimensional elation Laguerre planes of group dimension 10
- Completely regular ovals
- Symmetry and the farthest point mapping on convex surfaces
- Certain Roman and flock generalized quadrangles have nonisomorphic elation groups
- Similarity structures on the torus and the Klein bottle via triangulations
- On Euclidean designs
- Carnot spaces and the k-stein condition
- Simplicity of the universal quotient bundle restricted to congruences of lines in ℙ3
- Entropy of the geodesic flow for metric spaces and Bruhat–Tits buildings
Keywords for this article
Gaussian map;
Wahl map;
multiple covering;
gonality;
total ramification
Articles in the same Issue
- On the surjectivity of the canonical Gaussian map for multiple coverings
- A classification of 4-dimensional elation Laguerre planes of group dimension 10
- Completely regular ovals
- Symmetry and the farthest point mapping on convex surfaces
- Certain Roman and flock generalized quadrangles have nonisomorphic elation groups
- Similarity structures on the torus and the Klein bottle via triangulations
- On Euclidean designs
- Carnot spaces and the k-stein condition
- Simplicity of the universal quotient bundle restricted to congruences of lines in ℙ3
- Entropy of the geodesic flow for metric spaces and Bruhat–Tits buildings