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Abstract
Developing and using of software has become an increasing factor in the 
scientif ic production of knowledge and has become an indispensable 
skill for research scholars. To examine this algorithmic regime of science, 
new methodological approaches are needed. We present our method of 
computational science code studies (CSS), which focuses on the written 
code of software, and introduce two software tools we have developed to 
analyse data structures, code layers, and code genealogies. In a case study 
from computational astrophysics we demonstrate how the translation 
from mathematical to computational models in science influences the way 
research objects and concepts are conceived in the algorithmic regime of 
science. We understand CSS as a method for science studies in general.

Keywords: scientif ic programming; software; science studies; philosophy 
of science; code analysis

Introduction

Science has increasingly become an endeavour that takes place in front of 
and in computers. The development of computer-based simulations, the 
impact of software in science, big data analysis, and the arrival of machine 
learning (ML) methods have provided a new way of doing science and 
producing scientif ic knowledge that we call the “algorithmic regime of 
science.” In disciplines like particle physics, geology, or molecular biol-
ogy, the practice of scientif ic programming and in general the usage of 
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computational methods has become an essential part of everyday work. 
With computational methods, we mean approaches that not only enhance 
computing power but generate both new theoretical and experimental 
knowledge. Herein, programming as a scientif ic practice represents the 
connecting link between data, models, and the results of computer-driven 
simulations as visualizations on the screen. For scholars from philosophy of 
science and science and technology studies (STS), this ongoing growth of an 
algorithmic regime of science poses methodological challenges. How can 
we describe the impact of computational methods in scientif ic disciplines? 
How do scientists change their understanding of theories and models due to 
new practices like scientif ic programming and data-driven methods? Are 
there tensions or transmissions between approved scientif ic practices and 
computational methods that demand new skills of the scientists?

However, in the philosophy of science most of the questions about the 
status of computational science deal with epistemological issues. There 
is a vibrant discussion about the ontological status, in particular, of 
computer-based simulation: Is simulation “experimenting with theories” 
or is it another and autonomous form of knowledge production (Dowling, 
1999; Gramelsberger, 2010; Winsberg, 2010)? Is simulation- and ML-based 
knowledge production transparent and reproducible or is its epistemic status 
“opaque” (Humphreys, 2004; Lenhard, 2019)? The discussions around these 
epistemological issues barely reach a methodological dimension. We argue 
that a methodological reflection is necessary, not only for the philosophy 
of science but for science studies in general.

To do so, we will focus here on scientif ic code as our primary research 
object. We call our approach “computational science code studies” (CSS). Our 
central thesis is that scientif ic code is more than merely another scientif ic 
tool of knowledge production. We conceive programming in science as a 
complex translation from classical mathematical to computational models1 
that consist of two elements: the material basis of code and computational 
statements.2 Understanding and analysing science’s algorithmic regimes 
from the perspective of the philosophy of science as well as STS requires 

1	 With “classical mathematical models” we mean models that are based on differential 
equations, while “computational models” are based on numerical simulations. The transition 
from one to the other is initiated when classical models are applied to complex situations that 
result in equations that cannot be solved analytically. This problem is solved by doing numerical 
simulations of those equations. These simulations are then the only thing that remains visible 
in the code. For historical details of this development cf. Gramelsberger, 2010, pp. 33–36.
2	 We call the code in general, including the comment lines, the material basis of algorithmic 
regimes in science. The specif ic portions of the code that function as statements can be called 
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new methods and practices to explore the material basis and the execution 
of code but also the practices and politics which come along with science’s 
algorithmic regimes. While ML methods—expanding and transgressing big 
data analytics—are currently under exploration in science, computer-based 
simulations have become a well-established and standardized algorithmic 
regime for science and technology.

We begin with general reflections about the transformation of scientif ic 
concepts into the computational from the point of view of the philosophy 
of science. We continue this train of thought by conducting a review of past 
and current methods for studying code in science and cultural studies. 
This leads to the general idea of CSS: Reading the actual code of scientif ic 
projects to extrapolate its scientif ic content and prepare it for an analysis 
that is able to keep track of the interweaving of science and programming 
practices. In this context, we introduce the Isomorphic Comment Extractor 
(ICE) and the General Isomorphic Code Analysis Tool (GICAT), two code 
analysis tools currently in development at the CSS Lab of the Chair of Theory 
of Science and Technology at RWTH Aachen University in Germany. Both 
tools have been designed to analyse different layers of code (comments, 
hierarchies, imports, or dependencies) and different temporal stages in the 
evolution of scientif ic code.

We illustrate the range of application of these tools with a case study 
of computational astrophysics. This case study also functions as a primer 
for exploring the material basis of science’s algorithmic regimes and 
thereby to further illustrate our approach, CSS: We demonstrate how 
shifting between layers and genealogies of code enables science studies 
scholars to examine how concepts, measurements, and parameters are 
transformed with regard to the computational model. As translation 
processes never copy a model but render it in a different way, we ask with 
the help of our tools for the reconf iguration of scientif ic concepts and 
computational statements in the diverse layers of code. We show that 
with CSS, a new way of accessing scientif ic programming as a research 
object is provided that has yet only been treated marginally. This method 
of analysing scientif ic code should be useful for other science studies 
scholars as well to everybody who has to deal with challenges posed by 
programming practices that are often hard to examine. We therefore 
understand our method as combinable and extensible with other ap-
proaches from science studies.

its ideal basis, as they set up the translation of the mathematical formulations for the execution 
of software code.
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The Formation and Transformation of Scientific Concepts into 
the Computational

Computers developed from being merely auxiliary tools in scientif ic en-
deavours to being essential parts of the practice of scientif ic research itself. 
This has led to a transformation of classical scientif ic methods with their 
clear-cut distinction between theory and experiment into something that 
is governed to an increasing degree by algorithmic regimes. An important 
step in this process is the translation of classical mathematical models into 
computational models consisting of computable statements. This means that 
in many cases the mathematical modes of description employed in theories 
switch from more direct forms of representation like differential equations 
or statistical methods to numerical simulations. As most of the concepts 
in science are def ined or at least strongly dependent on their articulation 
by mathematical means, it is hard to imagine that this transformation 
process does leave the underlying scientif ic concepts unchanged. Therefore, 
the following questions arise in the context of CSS: How can we identify 
existing scientif ic concepts in the web of statements? How can we track 
changes of scientif ic concepts that are due to modif ications in the code? 
Do new scientif ic concepts arise out of the practice of scientif ic coding?

The transformation of a scientif ic concept can be understood as an 
answer to a specif ic “problem situation” (Nersessian, 2001). According to 
this idea, concepts “arise from attempts to solve specif ic problems, using 
the conceptual, analytical, and material resources provided by the cogni-
tive–social–cultural context in which they are created” (Nersessian, 2008, p. 
ix). Such new concepts are in most cases not really new; they are transforma-
tions of existing concepts, whereby this transformation can be seen as the 
integration of existing conceptual mechanisms into a new problem situation. 
The transformation of scientif ic concepts in computational sciences can 
be seen as such a “problem situation.” The problems to be mastered are not 
purely inner-theoretical (like problems of consistency) or primarily caused 
by empirical data; they are brought about by a change of the very medium 
in which science is conducted. To understand what is at stake here, let’s look 
briefly at the development of the contemporary framework that determines 
what a scientif ic concept is.

According to a now classical point of view in the philosophy of sci-
ence, the meaning of a scientif ic concept is def ined by its role in a theory 
(Poincaré, 2017; Duhem, 1914; Feyerabend, 1962). This picture implies two 
main sources for the change of the content of scientif ic concepts: The f irst 
consists of permanent modifications of a theory, and the second of temporary 
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modifications of some aspects of the theory to make it applicable to a specific 
situation. The latter kind of modification concerns parametric modifications 
of parts of the theory in experiments and in real-world applications. Here, 
the concepts prove themselves by predicting or bringing about specif ic 
outcomes from a set of given starting conditions. However, the starting 
conditions and the outcomes are always interpreted and evaluated in the 
context of the respective theory. Three developments have undermined 
this classic perspective.

First, the clear distinction between theory and experiment according to 
which theory leads and the experiments follow (cf. Popper, 1959) became 
blurred. This was not (only) done by an intricate philosophical argument 
but by analysing actual scientif ic practice (Hacking, 1983, 149ff.). The second 
development was that the propositional or syntactic view of theories (viewing 
a theory as a set of axioms) (Carnap, 1937; Hempel, 1965) was gradually 
replaced by the semantic view. According to the latter, scientif ic theories 
are f irst and foremost models (Suppes, 1960; Van Fraassen, 1980). The idea 
is that instead of seeing a specif ic scientif ic concept determined by one 
specif ic theory (implicitly def ined by a set of axioms), the content of such 
a concept can be grasped through the sum of the models it f igures in (i.e., 
the “family resemblance” of the operators that represent it in the respective 
models) (cf. Van Fraassen, 1980). Based on this picture, scientif ic concepts, 
which at the beginning of the 20th century were conceived as paradigms of 
unambiguity and exactness, became to be seen as evolving entities that not 
only secure and handle accumulated knowledge, but through their flexibility 
open up the path for new investigations (Wilson, 2006; Brandom, 2011; 
Bloch-Mullins, 2020). Third, with the rise of the computer model in science, 
the content of scientif ic concepts is spread even further apart. One of the 
most pressing problems is the translation of mathematical models as used in 
the semantic view of theories into numerical (computable) models. In more 
complex cases it is not even clear if the numerical model really instantiates 
the mathematical model of the underlying theory (Gramelsberger, 2011).

All this can be expected to lead to repercussions on the level of the scien-
tif ic concepts expressed by the theory. In extreme cases the development of 
the mathematical model and the development of the computer model can 
split up into different projects that only occasionally interact. The decoupled 
development of the computer model can rather be understood as an ongoing 
series of experiments in silico than as a case of classical model building. In 
this way, the technical aspects can come to the fore: Modif ications that are 
motivated by purely application-oriented considerations can infiltrate tacitly 
the core of the model. Diff iculties for the tracking of scientif ic concepts in 
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a web of statements range from unclean coding by the individual scientist 
to the modularity of modern-day programming and the traceability of the 
different layers of execution in the code. However, from a well-documented 
piece of software one can potentially reconstruct more references and 
cross-references than from a classical scientif ic paper.

Programming as a Research Object in Science and Software 
Studies

The rising signif icance of software in the 21st century resulted in new 
subf ields like software studies (Manovich, 2001; Fuller & Goffey, 2016), 
leading also to an increased attention on algorithms in the last f ifteen years 
(Kitchin & Dodge, 2011; Christin, 2020; Marino, 2020). Thus, scholars from 
software studies and STS have dealt with the question of how to access 
the practices of programming. One important and early claim by software 
studies was to make software visible and to detach it from the idea of a 
neutral and functional tool (Chun, 2004). Software—and therefore program-
ming practices—had an impact on people, professions, and institutions 
(Mackenzie, 2006; Chun, 2011). But software has also been shaped by social 
relations, it was therefore more a socio-technical object than merely a techni-
cal tool. This necessity of making software visible became even more urgent 
with the technical problems of archiving since older software also needs a 
special hardware and an operating system that are not always archived as 
well (Chun, 2011, p. 3; Mahoney, 2008). While these cultural and historical 
approaches highlighted the impacts of software and algorithms (Seaver, 
2017), recent STS works pay attention to the practices of programming and 
the “dulled and expanse fading of ever evolving bodies of code” (Cohn, 2019, 
p. 423). This shift of attention from the invisibility of software to the everyday 
actions of programming comes along with the use of ethnographic methods 
to follow the software. Following up on Ian Lowrie’s statement that no one 
can directly observe an algorithm since it is always a by-product of multiple 
social actions and agents (Lowrie, 2017, p. 7), STS scholars use ethnographic 
methods to lay open not only the dynamics of programming but also the 
intentions and expectations that arise throughout the development of 
software. This shift is important with regard to scientif ic programming, 
since it raises the question how the practice of programming and the way 
scientists think of their own concepts and models reciprocally impact each 
other. As Adrian Mackenzie has shown for the f ield of machine learning 
software, the increasing use of statistical computer models in science leads 
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to a state of ongoing testing of predictions as statistical hypotheses—a mode 
of reasoning he referred to as a “regime of anticipation” (Mackenzie, 2013, 
p. 393). Further research would have to examine for different disciplines 
how such “regimes of anticipation” influence the scientif ic understandings 
of prediction and probability in the algorithmic regime of science.

Ethnographic methods with qualitative interviews have also been widely 
used in the social studies of science. Considering, as we argue, the shift to 
algorithmic regimes of science, a crucial question is the relation of developers 
and users of code since not every scientist who works with computational 
methods must be a programmer. As Kuksenok et al. have shown in a qualita-
tive analysis of four oceanographic research groups, the relation of users 
and developers of scientif ic code can be summed up in three different 
groups: (1) Scientists who code, (2) computer scientists who develop code 
and tools for scientists, and (3) scientif ic programmers (Kuksenok et al., 
2017, p. 665; see also Sundberg, 2010). A methodological challenge for the 
social studies of science as well as for CSS represents the possible blurring of 
these distinctions in each discipline (Kelly, 2015; Edwards, 2010). Scientists 
learn how to program, and they extend their programming skills due to 
new programming languages like Python, e.g., which has become a widely 
used language in the natural sciences (Storer, 2017). Additionally, cultures 
of scientif ic programming change as well. The availability of libraries in 
Python, but also the possibility for scientists to add new libraries, was one 
reason for the popularity of Python in natural sciences. However, func-
tional programming, which has often been used in scientif ic programming 
languages like Fortran (Suzdalnitskiy, 2020), is not associated with Python 
in the f irst place, although it can be implemented. These developments in 
scientif ic programming cultures from functional statements to more and 
more library-oriented languages have yet to be investigated.

As we will see in the forthcoming sections, tools like GICAT offer here 
a kind of meta-perspective on scientif ic programming that enables us to 
analyse how the translation process of the scientif ic into the computational 
model has been exercised in the code. To do that, solid knowledge of the 
scientif ic project is needed, especially of the models and the data sets that 
are used.

Software Tool Development for CSS

Getting access to the material basis and the execution of science’s algo-
rithmic regimes (computer code of the computational model/scientif ic 
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computer program) is less an issue of code protection than of the complexity 
and magnitude of scientif ic computer programs. For example, an atmos-
phere model in climate science from 2003 consists of a web of statements 
of 15,891 declarative and 40,826 executable statements written down in 
65,757 code lines of the programming language Fortran90 accompanied by 
34,622 comment lines (Roeckner, 2003). The scientif ic computer program 
xgaltool, which we will take a closer look at in the next sections, consists 
of a web of statements of 46 classes and 313 def initions in 9,213 lines of the 
programming language Python, including comment lines (https://gitlab.
obspm.fr/dmaschmann/xgaltool). Furthermore, philosophers as well as 
researchers from STS usually lack programming skills and expertise. Thus, 
conducting computational science code studies is not a simple task. How 
can we make the study of computational sciences more accessible? We argue 
that one necessary step to answer this question consists in programming 
software tools designed to facilitate case studies on computational sciences 
in the subf ield of code studies (Schüttler, Kasprowicz, & Gramelsberger, 
2019). Our aim is to develop a toolbox for scientif ic code study based on 
four rules:

1.	 File structure isomorphism; i.e., under all circumstances preserving 
the f ile structure of a scientif ic computer program while analysing it, 
because even in object-oriented programming languages the ordered 
structure of f iles is meaningful. Thus, such an isomorphism guarantees 
structural identity with the scientif ic program as intended by the 
scientif ic programmer.

2.	 Modularity; i.e., based on the f ile structure isomorphism we are build-
ing up a hierarchy of ever more complex tools. Each tool can be used 
separately (e.g., Isomorphic Comment Extractor, or ICE), but can also 
be combined to a CSS toolbox for computational science code study.

3.	 Visual depth; i.e., the ability to zoom in and out of the structural layers 
of a program. On the top level only the f ile structure becomes visible, 
while zooming in unveils the class structure, its functions, and f inally 
the code and comment lines.

4.	 Analysis f ilters; i.e., depending on the specif ic aim of an analysis a 
toolbar of f ilters is increasingly developed, which can be turned on and 
off in order to analyse scientif ic computer programs like xgaltool.

While f ile structure isomorphism, modularity, and visual depth help to 
organize access to the complex and vast body of scientif ic code, the analysis 
f ilters are doing the job of code analysis from a philosophy of science and 

https://gitlab.obspm.fr/dmaschmann/xgaltool
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STS perspective. It is obvious that conceiving and successfully implementing 
interesting analysis f ilters is basic and ongoing research in CSS.

Case Study of Computational Astrophysics

Computational astrophysics provides interesting examples for a study of a 
specif ic algorithmic regime. By the 1970s the use of computers had shifted 
astronomy from observing the sky by using telescopes (empirical regime) 
to data visualization analysing images of the sky (representational regime) 
(Daston & Galison, 1992). Since the 1990s the use of CCD (charge-coupled 
device) chips in telescopes has shifted astronomy into a data-driven science 
by generating masses of photometric data (algorithmic regime) (Hoeppe, 
2014). CCD chips in cameras not only produce images of the sky, but act 
as sensors for specif ic wavelengths of light. Thus, instead of “subjectively” 
analysing the sky and images of the sky, respectively, analysing data sets 
with algorithms “objectively” has become central for today’s astronomy. 
However, if the algorithms are as objective as scientists claim is one of the 
interesting research topics in CSS by analysing the interpretative concepts 
like threshold settings of a scientif ic computer program.

One of these computational astrophysicists is Daniel Maschmann, who 
worked for one year at our Computational Science Studies Lab (CSS Lab) 
in Aachen, Germany, before he moved in 2019 to the Observatoire de Paris 
and the Sorbonne Université to start his PhD project. Since 2017, the CSS 
Lab is located at the Chair for the Theory of Science and Technology at 
RWTH Aachen University (www.css-lab.rwth-aachen.de) and is devoted 
to developing concepts, methods, and software tools for studying science’s 
algorithmic regimes, in particular, the material basis of computer code, for 
example, tools like the Isomorphic Comment Extractor (ICE) or the General 
Isomorphic Code Analysis Tool (GICAT). Daniel Maschmann used early 
versions of our CSS tools in order to improve his computer program xgaltool, 
which he had f irst programmed for his MA thesis (https://gitlab.obspm.fr/
dmaschmann/xgaltool; Maschmann et al., 2020). Xgaltool is an open-source 
computer program developed on GitLab for detecting merging galaxies in the 
Reference Catalog of galaxy Spectral Energy Distributions (RCSED)—a huge 
database containing photometric data on energy distributions of 800,299 
galaxies in 11 ultraviolet, optical, and near-infrared bands. These photometric 
data result from CCD camera-equipped telescopes. CCD telescopes were 
developed in the early 1990s to conduct the Sloan Digital Sky Survey (SDSS) 
at the Apache Point Observatory in New Mexico—a gigantic endeavour to 

http://www.css-lab.rwth-aachen.de
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https://gitlab.obspm.fr/dmaschmann/xgaltool
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scan one-third of the sky. Thus, the RCSED selects data from the SDSS for 
the spectral energy distribution. Furthermore, the RCSED data decompose 
the measured light into two components: the light emitted by the stars and 
the light of the galaxies’ gas content, which is described by emission lines.

So-called double peak (DP) emission line galaxies have been extensively 
explored, because this type of galaxy can be an indication of a galaxy merger. 
A galaxy merger can occur when galaxies collide. The galaxy merger is one 
of the states of the evolution of galaxies, as classif ied by Edwin Hubble in 
1926. Astrophysicists are still trying to understand how galaxies and stars 
form. Today they use computer-based simulation as well as indirect evidence 
from photometric data. DP emission line galaxies are relevant to empirically 
inspired galaxy evolution theory as they mostly consist of star-forming galax-
ies and “the star formation rate (SFR) of galaxies is a well-suited diagnostic 
to characterize their evolutionary state” (Maschmann et al., 2020, p. 1). Thus, 
what Daniel Maschmann was seeking with his xgaltool were DP emission 
line galaxies, whose emission line displays in a characteristic shape in the 
RCSED data. However, these galaxies are rare and represent only 0.8% of 
the RCSED data (Maschmann et al., 2020, p. 1). Thus, Daniel Maschmann 
calibrated xgaltool to the specif ic emission lines as following:

We developed an automated three-stage selection procedure to f ind DP 
galaxies. The f irst stage pre-selects galaxies with a threshold on the S/N, 
and performs successively the emission line stacking, line adjustments 
and empirical selection criteria. Some emission lines are individually 
f itted at the second stage to select f irst DP candidates. We also selected 
candidates showing no DP properties to be the control sample (CS).… At 
the third stage, we obtained the f inal DPS using the f it parameter of each 
line. (Maschmann et al., 2020, p. 2)

From this cryptic quote the computational model for his xgaltool algorithm 
can be inferred. S/N describes a ratio between S (signal) and N (noise), 
which enables a classif ication of galaxies. For S/N < 10, 276,239 galaxies 
were selected from the RCSED, for S/N < 5 only 189,152 galaxies. Within 
the latter data sample complicated f iltering methods were applied in order 
to reduce the number of selected emission lines ≥ 3 for 89,412 galaxies for 
the control sample. Reducing the number of galaxies further led to 7,479 
interesting DP candidates. Finally, stage three sorted the emission lines 
of the 7,479 interesting DP candidates depending on their S/N ratio into 
three classes: one DP line (175), two DP lines (269), more DP lines (5,219). 
“The automated selection procedure selected DP galaxies with an objective 
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algorithm. This means that we did not need any visual inspection, which 
would have been a subjective factor in the sample selection” (Maschmann 
et al., 2020, p. 6).

Based on the selected double peak (DP) emission line galaxies the scien-
tif ically interesting part of the work could start by exploiting the shape of the 
emission lines exhibited in BPT diagrams. BPT diagrams were developed in 
1981 by John A. Baldwin, Mark M. Phillips and Roberto Terlevich to classify 
emission-line spectra (Baldwin et al., 1981).3 In the case of DP emission line 
galaxies three types of BPT diagrams were explored, which were based on 
“the relative intensities of the strongest lines, into groups corresponding to 
the predominant excitation mechanisms” (Baldwin et al., 1981, p. 16). Thus, 
types of galaxies are classif iable; for instance, star-forming (SF) galaxies, 
active galactic nuclei (AGN) galaxies, and composite (COMP) galaxies. An 
important scientif ic result was that most DP galaxies are SF galaxies and 
thus intensively contribute to galaxy mergers. In this way, by analysing the 
data carefully some indirect evidence could be gained about the role of DP 
emission line galaxies in the process of galaxy formation (Maschmann et 
al., 2020). Using algorithms for automatically generated data samples of 
the rare DP emission line galaxies, the astrophysicists provide a software- 
and statistics-based method to detect galaxy mergers and to classify new 
morphological types of galaxy formations.

CSS Tools Applied: GICAT and ICE

The above case study provides an example of the algorithmic regime of 
computational astrophysics. Of course, the scientif ic concepts involved 
in xgaltool are quite advanced, combining data analysis methods, f ilter 
methods, with many other computationally interpretative methods. For 
philosophers of science as well as for researchers from STS, it is diff icult 
to grasp how scientif ic research is conducted under algorithmic regimes. 
This is simply because observational access to code is diff icult. Making 
such code accessible is an important part of CSS, and the tools we develop 
are an integral part of this endeavour.

3	 The BPT diagrams are based on the fundamental 19th-century discovery that different 
chemical elements produce different types of spectra, e.g., celestial objects like galaxies emitting 
gas. Based on emission spectroscopy the wavelengths of photons emitted by excited atoms or 
molecules of a gas can be measured and classif ied. For instance, hydrogen is characterized by 
the Balmer lines (Balmer 1885).
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The Isomorphic Comment Extractor (ICE)

Many details about a scientif ic program can be found in its comments. 
However, software documentation is more an art than a science. Software 
documentation in the code is laborious, time-consuming, effectless on 
the performance of the code itself, standards are missing, and so forth. 
Nevertheless, in computational sciences the software is the basis of research. 
Thus, a well-documented code is part of responsible science. In particular, 
in the course of the open science development the transparency of software 
has become a major topic (Aghajani et al., 2019).

In programming, comment analysers are known tools, but they are 
usually restricted to the programming language used by the programmer. 
Our ICE tool can extract comments from various programming languages 
such as C++, Python, Java Scrips, and Fortran. Extracting comments (if 
available) from scientif ic computer programs provides useful insights into 
the scientif ic process behind the coding. By “throwing” a scientific computer 
program in the ICE tool one can easily analyse it in an isomorphic mode 
the story unveiled by the comments of a well-documented software code.

The General Isomorphic Code Analysis Tool (GICAT)

It is a far more complex endeavour to analyse the execution of a scientif ic 
computer program exhibited in the web of statements. To give an example: 
xgaltool f ile analysis_tools.py alone consists of eight classes and each class 
consists of several def initions. For instance, the class EmissionLineTools 
contains 19 def initions, among these the following:

In Python a function is defined using the def keyword (Figure 3.1, line 43) 
followed by arguments and parameters inside the parentheses. Arguments 
and parameters pass information into a function. With r (line 44) and return 
(line 62), for instance, control flow is organized in Python, i.e., calculations 
are performed and results are returned. In this case lines 61 and 62 set up 
the calculation of gas metallicity based on the data called in lines 56 to 58. 
Python also accepts function recursion, i.e., a function calls itself usually 
structured by if, else, return loops. Different languages employ different 
concepts—from variations of the before mentioned to completely different 
programming paradigms. Based on such programming concepts a web 
of statements is designed by the scientif ic programmer forming up the 
intended behaviour of her/his scientif ic computer program. Each change in 
the functionality of the code that modifies its behaviour results in a slightly 
different computational result. If one is not able to grasp these complex 

http://tools.py
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interactions in the code, one is not able to recognize how the concept of 
metallicity is articulated in it. Therefore, understanding the functionality 
and its execution over time is crucial for CSS. Analysing, but also following, 
the development of a scientif ic computer program, i.e., carrying out a code 
genealogy, provides insights into changing scientif ic concepts.

Following these considerations, we started to develop the General Iso-
morphic Code Analysis Tool (GICAT). GICAT visualizes different layers of 
execution of a given software project. From class and inheritance structures 
in object-oriented languages to complex functional interdependencies in 
functional programming, GICAT can help to identify and disentangle the 
scientif ically signif icant layers and threads in the web of statements of a 
given code. GICAT is not limited to Python. Like and in accordance to ICE, 
it supports different languages under different programming paradigms. 
To visualize different layers of execution in a web of statements, GICAT 
works with a set of preconfigured as well as free-definable analysis f ilters. 
The preconfigured f ilters give the user the means to orient herself in the 
code and to identify the scientif ic relevant structures on different levels. 
Free-definable f ilters are powerful tools that enable the experienced user to 
make out where the relevant threads and layers of scientif ic code condense 
to a structure that encodes more specif ic points of interest (especially in 
the deeper analysis of scientif ic concepts).

The preconfigured f ilters are automatically adjusted to the programming 
language of the targeted software project. We can illustrate how they give a 
first overview by applying GICAT to xgaltool (Maschmann et al., 2020), which 
gives us a general idea of the structure of the program. Figure 3.2 depicts the 
global structure of xgaltool via its class relations, the standard f ilter set for 
Python projects. In this context we show the project at two different stages. 
Comparing the structure from 15.06.2021 to the structure of 23.02.2022, we 
see that a connection between two classes (EnvironmentTools and PlotBPT) 

Figure 3.1. Lines 43 to 62 of the analysis_tools.py of xgaltool. Courtesy: Daniel Maschmann.

http://tools.py
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Figure 3.2. GICAT view on xgaltool visualized under the class filter of 15.06.2021 and 23.02.2022, in 
order to study class relations in two different software versions (code genealogy).
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exists in the 2021 version that does not exist in the 2022 version anymore. This 
effectively cuts any direct connection between the groups plotting_tools and 
analysis_tools in the newer version of the program. This illustrates another 
important feature: GICAT enables the user to do a genealogical analysis, 
which makes it possible to track the development of different aspects of the 
scientif ic structures in the surveyed web of statements over time.

Making relations explicit while being able to place them into the greater 
picture of a given web of statements can yield important clues for the re-
construction of scientif ic concepts in a software project. Another example 

Figure 3.3. GICAT view on xgaltool detail under the library filter.
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of an advanced f ilter is shown in Figure 3.3. Here the imports of modules 
(libraries, in darker circles) and packages (of libraries, in lighter circles) 
is shown. This is important because as mentioned above one of the main 
hindrances of getting a clear picture of the structure of a web of statements is 
the modularity of contemporary programming. With the help of GICAT the 
user is able to keep track of the different dependencies and gets a synoptic 
overview of their overall structure.

Following our idea to create a modular toolbox for scientif ic code study, 
these features are complemented by ICE. The option to integrate this per-
formant comment extractor and code viewer into the structure of GICAT 
gives the user direct access to the corresponding parts of the raw code of the 
visualized structures. This whole package should allow a smooth transition 
between the visualization of different layers of execution that are hidden in 
the web of statements as well as between these layers and the corresponding 
chunks of raw code. Adding the possibility of genealogical analysis, the user 
can track and reconstruct the evolution of the implementations of scientif ic 
models and concepts in the web of statements of a given software. This 
concerns the modif ications that are consciously made by the developers 
in respect to the scientif ic content of their project as well as changes that 
are motivated by purely technical reasons.

Above we have seen that one of the central concepts in Maschmann et 
al. (2020) is “emission line.” The emission line is what appears in a spectrum 
depending on what specific wavelengths of radiation a source emits. It is one 
of the primary sources for the astrophysicist to identify and classify galaxies. 
To reconstruct how this concept is articulated in a web of statements, we have 
to look at how it is entangled in its different layers of execution. In this regard, 
we use a GICAT visualization under the filter that depicts the structure of class 
inheritances (Figure 3.4). If a class inherits from another, this is represented 
in GICAT by an extension arrow. We see that the class AnalyseGas inherits 
from the two base classes EmissionLineTools and SFRTools. SFR stands for 
“star formation rate,” which means the total mass of stars formed per year.

This piques our interest for further analysis, because the emission line is 
normally used to estimate the SFR, while the analysis of a gas is conducted 
through an analysis of its emission line. Therefore, although it seems natural 
that the class AnalyseGas inherits from the class EmissionLineTools (as we 
analyse gas through an analysis of its emission line), it is interesting that the 
class AnalyseGas inherits from the class SFRTools (as the SFR is estimated 
through the analysis of a gas via an analysis of its emission line). We have 
uncovered an important clue how the concept “emission line” is entangled 
in and articulated by the different layers of the given web of statements. 
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Guided by this, we can go on by looking into the relevant code, using ICE, 
the integrated code viewer, and the comment extractor. Alternatively, or 
complementary, we could dive deeper into the entangled layers of execution 
by using a f ilter that visualizes functional connections and dependencies 
or explore the structure of libraries our target draws on.

Discussion and Outlook

We have argued that the increasing use of computer simulations in science 
will reinforce the necessity for science studies to create new methodological 
approaches. As our case study from astrophysics illustrated, software like 
xgaltool needs to be analysed to explain the translation of a mathematical 
into a computational model and the decisions that have to be made during 
this programming process (as shown by the emission lines with the help 
of GICAT in 3.4). It should be emphasized that this kind of analysis is not 
limited to any specif ic programming paradigm and is also applicable to 
(seemingly) “indirect” approaches like ML. Machine learning—especially in 

Figure 3.4. Visualization of xgaltool (23.02.2022) under the class-inheritance filter, close up 
“EmissionLineTools.”
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the context of scientif ic code—does not happen in a void. Its more specif ic 
procedures or preconfigured setups (i.e., a trained neural network) are always 
embedded in an encompassing architecture (which comprises things like an 
overarching program, a concrete experimental setup, etc). Reconstructing 
the scientif ic relevance of the ML-component consists then (as for any other 
component) primarily in reconstructing its role in this architecture. For a 
preconfigured ML setup it may be necessary to look at external sources. 
If the training is part of the running implementation (like in a program 
for speech recognition that adjusts itself to its user), then the learning 
algorithm and the path of the ongoing flow of data can be analysed directly. 
For such studies in the algorithmic regime of science, our tools offer modes 
of navigation through f ile structures and f ilters for code genealogies to 
make traceable what changes in the code have occurred, at what time of the 
project, and conducted by who. As shown in 3.2, this helps also to illustrate 
the modif ications and decisions the scientists had to make during the 
programming process. These might be routine for scientists who program 
every day, but for CSS, STS, and also social studies of science, the different 
ways scientists are influenced recursively by their programming language 
and the standards how to use it post further research questions.4 In this 
sense, how does the shift in scientif ic programming from functional state-
ments to more and more library-oriented languages like Python influence 
the theoretical concepts and models of scientif ic projects? How do these 
programming practices change the expectations of scientists and their ways 
to make predictions and classify objects like galaxy mergers?

As mentioned before, our code-oriented approach and the tools we 
develop do not present the only way to explore algorithmic regimes in 
science. Additionally, to our perspective from the philosophy of science, 
methods from STS and the social studies of science can be complementary 
since both try to describe the role of software in knowledge production as 
well as the dynamics of scientif ic programming. Ethnographic methods 
and tool analysis can serve as in-depth and meta-perspectives, providing 
ways to zoom into the daily (and dull) work of coding and to zoom out 
to keep track of longer code genealogies. However, there are still some 
problems regarding the methodological solutions provided so far. First, 
it is diff icult to generalize from single case studies since coding practices 
even in one and the same scientif ic discipline are not yet standardized. We 

4	 See also Kelly (2015) for a comparative approach from software engineering where the 
characteristics of scientif ic programmers are compared to guidelines of programming in 
software engineering.
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lack categories and concepts to describe the dynamics in the translation 
process from knowledge-based scientif ic to computational models over 
different disciplines. Second, for science studies scholars not familiar with 
programming, it is diff icult to see how efficiently or how messy the program 
has been written. What we have shown here is how we can access new 
artefacts of scientif ic programming via software tools for non-programming 
experienced science studies scholars. We have argued that theses artefacts 
(comment extractions, code genealogies, visualizations of inheritances) allow 
us to study the question how scientif ic concepts and models are integrated 
into computational models via the practices of scientif ic programming. In 
this sense, our tools enable the user to identify and study the scientif ic part 
of the code and therefore permit to examine the impact of software on the 
production of knowledge in the algorithmic regime of science.
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