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Abstract

Developing and using of software has become an increasing factor in the
scientific production of knowledge and has become an indispensable
skill for research scholars. To examine this algorithmic regime of science,
new methodological approaches are needed. We present our method of
computational science code studies (CSS), which focuses on the written
code of software, and introduce two software tools we have developed to
analyse data structures, code layers, and code genealogies. In a case study
from computational astrophysics we demonstrate how the translation
from mathematical to computational models in science influences the way
research objects and concepts are conceived in the algorithmic regime of
science. We understand CSS as a method for science studies in general.
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Introduction

Science has increasingly become an endeavour that takes place in front of

and in computers. The development of computer-based simulations, the

impact of software in science, big data analysis, and the arrival of machine

learning (ML) methods have provided a new way of doing science and

producing scientific knowledge that we call the “algorithmic regime of

science.” In disciplines like particle physics, geology, or molecular biol-

ogy, the practice of scientific programming and in general the usage of
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computational methods has become an essential part of everyday work.
With computational methods, we mean approaches that not only enhance
computing power but generate both new theoretical and experimental
knowledge. Herein, programming as a scientific practice represents the
connecting link between data, models, and the results of computer-driven
simulations as visualizations on the screen. For scholars from philosophy of
science and science and technology studies (STS), this ongoing growth of an
algorithmic regime of science poses methodological challenges. How can
we describe the impact of computational methods in scientific disciplines?
How do scientists change their understanding of theories and models due to
new practices like scientific programming and data-driven methods? Are
there tensions or transmissions between approved scientific practices and
computational methods that demand new skills of the scientists?

However, in the philosophy of science most of the questions about the
status of computational science deal with epistemological issues. There
is a vibrant discussion about the ontological status, in particular, of
computer-based simulation: Is simulation “experimenting with theories”
or is it another and autonomous form of knowledge production (Dowling,
1999; Gramelsberger, 2010; Winsberg, 2010)? Is simulation- and ML-based
knowledge production transparent and reproducible or is its epistemic status
“opaque” (Humphreys, 2004; Lenhard, 2019)? The discussions around these
epistemological issues barely reach a methodological dimension. We argue
that a methodological reflection is necessary, not only for the philosophy
of science but for science studies in general.

To do so, we will focus here on scientific code as our primary research
object. We call our approach “computational science code studies” (CSS). Our
central thesis is that scientific code is more than merely another scientific
tool of knowledge production. We conceive programming in science as a
complex translation from classical mathematical to computational models’
that consist of two elements: the material basis of code and computational
statements.” Understanding and analysing science’s algorithmic regimes
from the perspective of the philosophy of science as well as STS requires

1 With “classical mathematical models” we mean models that are based on differential
equations, while “computational models” are based on numerical simulations. The transition
from one to the other is initiated when classical models are applied to complex situations that
result in equations that cannot be solved analytically. This problem is solved by doing numerical
simulations of those equations. These simulations are then the only thing that remains visible
in the code. For historical details of this development cf. Gramelsberger, 2010, pp. 33-36.

2 Wecall the code in general, including the comment lines, the material basis of algorithmic
regimes in science. The specific portions of the code that function as statements can be called
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new methods and practices to explore the material basis and the execution
of code but also the practices and politics which come along with science’s
algorithmic regimes. While ML methods—expanding and transgressing big
data analytics—are currently under exploration in science, computer-based
simulations have become a well-established and standardized algorithmic
regime for science and technology.

We begin with general reflections about the transformation of scientific
concepts into the computational from the point of view of the philosophy
of science. We continue this train of thought by conducting a review of past
and current methods for studying code in science and cultural studies.
This leads to the general idea of CSS: Reading the actual code of scientific
projects to extrapolate its scientific content and prepare it for an analysis
that is able to keep track of the interweaving of science and programming
practices. In this context, we introduce the Isomorphic Comment Extractor
(ICE) and the General Isomorphic Code Analysis Tool (GICAT), two code
analysis tools currently in development at the CSS Lab of the Chair of Theory
of Science and Technology at RWTH Aachen University in Germany. Both
tools have been designed to analyse different layers of code (comments,
hierarchies, imports, or dependencies) and different temporal stages in the
evolution of scientific code.

We illustrate the range of application of these tools with a case study
of computational astrophysics. This case study also functions as a primer
for exploring the material basis of science’s algorithmic regimes and
thereby to further illustrate our approach, CSS: We demonstrate how
shifting between layers and genealogies of code enables science studies
scholars to examine how concepts, measurements, and parameters are
transformed with regard to the computational model. As translation
processes never copy a model but render it in a different way, we ask with
the help of our tools for the reconfiguration of scientific concepts and
computational statements in the diverse layers of code. We show that
with CSS, a new way of accessing scientific programming as a research
object is provided that has yet only been treated marginally. This method
of analysing scientific code should be useful for other science studies
scholars as well to everybody who has to deal with challenges posed by
programming practices that are often hard to examine. We therefore
understand our method as combinable and extensible with other ap-
proaches from science studies.

its ideal basis, as they set up the translation of the mathematical formulations for the execution
of software code.
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The Formation and Transformation of Scientific Concepts into
the Computational

Computers developed from being merely auxiliary tools in scientific en-
deavours to being essential parts of the practice of scientific research itself.
This has led to a transformation of classical scientific methods with their
clear-cut distinction between theory and experiment into something that
is governed to an increasing degree by algorithmic regimes. An important
step in this process is the translation of classical mathematical models into
computational models consisting of computable statements. This means that
in many cases the mathematical modes of description employed in theories
switch from more direct forms of representation like differential equations
or statistical methods to numerical simulations. As most of the concepts
in science are defined or at least strongly dependent on their articulation
by mathematical means, it is hard to imagine that this transformation
process does leave the underlying scientific concepts unchanged. Therefore,
the following questions arise in the context of CSS: How can we identify
existing scientific concepts in the web of statements? How can we track
changes of scientific concepts that are due to modifications in the code?
Do new scientific concepts arise out of the practice of scientific coding?

The transformation of a scientific concept can be understood as an
answer to a specific “problem situation” (Nersessian, 2001). According to
this idea, concepts “arise from attempts to solve specific problems, using
the conceptual, analytical, and material resources provided by the cogni-
tive—social—cultural context in which they are created” (Nersessian, 2008, p.
ix). Such new concepts are in most cases not really new; they are transforma-
tions of existing concepts, whereby this transformation can be seen as the
integration of existing conceptual mechanisms into a new problem situation.
The transformation of scientific concepts in computational sciences can
be seen as such a “problem situation.” The problems to be mastered are not
purely inner-theoretical (like problems of consistency) or primarily caused
by empirical data; they are brought about by a change of the very medium
in which science is conducted. To understand what is at stake here, let’s look
briefly at the development of the contemporary framework that determines
what a scientific concept is.

According to a now classical point of view in the philosophy of sci-
ence, the meaning of a scientific concept is defined by its role in a theory
(Poincaré, 2017; Duhem, 1914; Feyerabend, 1962). This picture implies two
main sources for the change of the content of scientific concepts: The first
consists of permanent modifications of a theory, and the second of temporary
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modifications of some aspects of the theory to make it applicable to a specific
situation. The latter kind of modification concerns parametric modifications
of parts of the theory in experiments and in real-world applications. Here,
the concepts prove themselves by predicting or bringing about specific
outcomes from a set of given starting conditions. However, the starting
conditions and the outcomes are always interpreted and evaluated in the
context of the respective theory. Three developments have undermined
this classic perspective.

First, the clear distinction between theory and experiment according to
which theory leads and the experiments follow (cf. Popper, 1959) became
blurred. This was not (only) done by an intricate philosophical argument
but by analysing actual scientific practice (Hacking, 1983, 149ff.). The second
development was that the propositional or syntactic view of theories (viewing
a theory as a set of axioms) (Carnap, 1937; Hempel, 1965) was gradually
replaced by the semantic view. According to the latter, scientific theories
are first and foremost models (Suppes, 1960; Van Fraassen, 1980). The idea
is that instead of seeing a specific scientific concept determined by one
specific theory (implicitly defined by a set of axioms), the content of such
a concept can be grasped through the sum of the models it figures in (i.e.,
the “family resemblance” of the operators that represent it in the respective
models) (cf. Van Fraassen, 1980). Based on this picture, scientific concepts,
which at the beginning of the 20th century were conceived as paradigms of
unambiguity and exactness, became to be seen as evolving entities that not
only secure and handle accumulated knowledge, but through their flexibility
open up the path for new investigations (Wilson, 2006; Brandom, 2011;
Bloch-Mullins, 2020). Third, with the rise of the computer model in science,
the content of scientific concepts is spread even further apart. One of the
most pressing problems is the translation of mathematical models as used in
the semantic view of theories into numerical (computable) models. In more
complex cases it is not even clear if the numerical model really instantiates
the mathematical model of the underlying theory (Gramelsberger, zon).

All this can be expected to lead to repercussions on the level of the scien-
tific concepts expressed by the theory. In extreme cases the development of
the mathematical model and the development of the computer model can
split up into different projects that only occasionally interact. The decoupled
development of the computer model can rather be understood as an ongoing
series of experiments in silico than as a case of classical model building. In
this way, the technical aspects can come to the fore: Modifications that are
motivated by purely application-oriented considerations can infiltrate tacitly
the core of the model. Difficulties for the tracking of scientific concepts in
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a web of statements range from unclean coding by the individual scientist
to the modularity of modern-day programming and the traceability of the
different layers of execution in the code. However, from a well-documented
piece of software one can potentially reconstruct more references and
cross-references than from a classical scientific paper.

Programming as a Research Object in Science and Software
Studies

The rising significance of software in the 21st century resulted in new
subfields like software studies (Manovich, 2001; Fuller & Goffey, 2016),
leading also to an increased attention on algorithms in the last fifteen years
(Kitchin & Dodge, 2011; Christin, 2020; Marino, 2020). Thus, scholars from
software studies and STS have dealt with the question of how to access
the practices of programming. One important and early claim by software
studies was to make software visible and to detach it from the idea of a
neutral and functional tool (Chun, 2004). Software—and therefore program-
ming practices—had an impact on people, professions, and institutions
(Mackenzie, 2006; Chun, 2011). But software has also been shaped by social
relations, it was therefore more a socio-technical object than merely a techni-
cal tool. This necessity of making software visible became even more urgent
with the technical problems of archiving since older software also needs a
special hardware and an operating system that are not always archived as
well (Chun, 2011, p. 3; Mahoney, 2008). While these cultural and historical
approaches highlighted the impacts of software and algorithms (Seaver,
2017), recent STS works pay attention to the practices of programming and
the “dulled and expanse fading of ever evolving bodies of code” (Cohn, 2019,
p- 423). This shift of attention from the invisibility of software to the everyday
actions of programming comes along with the use of ethnographic methods
to follow the software. Following up on Ian Lowrie’s statement that no one
can directly observe an algorithm since it is always a by-product of multiple
social actions and agents (Lowrie, 2017, p. 7), STS scholars use ethnographic
methods to lay open not only the dynamics of programming but also the
intentions and expectations that arise throughout the development of
software. This shift is important with regard to scientific programming,
since it raises the question how the practice of programming and the way
scientists think of their own concepts and models reciprocally impact each
other. As Adrian Mackenzie has shown for the field of machine learning
software, the increasing use of statistical computer models in science leads
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to a state of ongoing testing of predictions as statistical hypotheses—a mode
of reasoning he referred to as a “regime of anticipation” (Mackenzie, 2013,
p- 393). Further research would have to examine for different disciplines
how such “regimes of anticipation” influence the scientific understandings
of prediction and probability in the algorithmic regime of science.

Ethnographic methods with qualitative interviews have also been widely
used in the social studies of science. Considering, as we argue, the shift to
algorithmic regimes of science, a crucial question is the relation of developers
and users of code since not every scientist who works with computational
methods must be a programmer. As Kuksenok et al. have shown in a qualita-
tive analysis of four oceanographic research groups, the relation of users
and developers of scientific code can be summed up in three different
groups: (1) Scientists who code, (2) computer scientists who develop code
and tools for scientists, and (3) scientific programmers (Kuksenok et al.,
2017, p. 665; see also Sundberg, 2010). A methodological challenge for the
social studies of science as well as for CSS represents the possible blurring of
these distinctions in each discipline (Kelly, 2015; Edwards, 2010). Scientists
learn how to program, and they extend their programming skills due to
new programming languages like Python, e.g., which has become a widely
used language in the natural sciences (Storer, 2017). Additionally, cultures
of scientific programming change as well. The availability of libraries in
Python, but also the possibility for scientists to add new libraries, was one
reason for the popularity of Python in natural sciences. However, func-
tional programming, which has often been used in scientific programming
languages like Fortran (Suzdalnitskiy, 2020), is not associated with Python
in the first place, although it can be implemented. These developments in
scientific programming cultures from functional statements to more and
more library-oriented languages have yet to be investigated.

As we will see in the forthcoming sections, tools like GICAT offer here
a kind of meta-perspective on scientific programming that enables us to
analyse how the translation process of the scientific into the computational
model has been exercised in the code. To do that, solid knowledge of the
scientific project is needed, especially of the models and the data sets that
are used.

Software Tool Development for CSS

Getting access to the material basis and the execution of science’s algo-
rithmic regimes (computer code of the computational model/scientific
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computer program) is less an issue of code protection than of the complexity
and magnitude of scientific computer programs. For example, an atmos-
phere model in climate science from 2003 consists of a web of statements
of 15,891 declarative and 40,826 executable statements written down in
65,757 code lines of the programming language Fortrango accompanied by
34,622 comment lines (Roeckner, 2003). The scientific computer program
xgaltool, which we will take a closer look at in the next sections, consists
of a web of statements of 46 classes and 313 definitions in 9,213 lines of the
programming language Python, including comment lines (https://gitlab.
obspm.fr/dmaschmann/xgaltool). Furthermore, philosophers as well as
researchers from STS usually lack programming skills and expertise. Thus,
conducting computational science code studies is not a simple task. How
can we make the study of computational sciences more accessible? We argue
that one necessary step to answer this question consists in programming
software tools designed to facilitate case studies on computational sciences
in the subfield of code studies (Schiittler, Kasprowicz, & Gramelsberger,
2019). Our aim is to develop a toolbox for scientific code study based on
four rules:

1. File structure isomorphism; i.e., under all circumstances preserving
the file structure of a scientific computer program while analysing it,
because even in object-oriented programming languages the ordered
structure of files is meaningful. Thus, such an isomorphism guarantees
structural identity with the scientific program as intended by the
scientific programmer.

2. Modularity; i.e., based on the file structure isomorphism we are build-
ing up a hierarchy of ever more complex tools. Each tool can be used
separately (e.g., Isomorphic Comment Extractor, or ICE), but can also
be combined to a CSS toolbox for computational science code study.

3. Visual depth; i.e., the ability to zoom in and out of the structural layers
of a program. On the top level only the file structure becomes visible,
while zooming in unveils the class structure, its functions, and finally
the code and comment lines.

4. Analysis filters; i.e., depending on the specific aim of an analysis a
toolbar of filters is increasingly developed, which can be turned on and
off in order to analyse scientific computer programs like xgaltool.

While file structure isomorphism, modularity, and visual depth help to
organize access to the complex and vast body of scientific code, the analysis
filters are doing the job of code analysis from a philosophy of science and
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STS perspective. It is obvious that conceiving and successfully implementing
interesting analysis filters is basic and ongoing research in CSS.

Case Study of Computational Astrophysics

Computational astrophysics provides interesting examples for a study of a
specific algorithmic regime. By the 1970s the use of computers had shifted
astronomy from observing the sky by using telescopes (empirical regime)
to data visualization analysing images of the sky (representational regime)
(Daston & Galison, 1992). Since the 1990s the use of CCD (charge-coupled
device) chips in telescopes has shifted astronomy into a data-driven science
by generating masses of photometric data (algorithmic regime) (Hoeppe,
2014). CCD chips in cameras not only produce images of the sky, but act
as sensors for specific wavelengths of light. Thus, instead of “subjectively”
analysing the sky and images of the sky, respectively, analysing data sets
with algorithms “objectively” has become central for today’s astronomy.
However, if the algorithms are as objective as scientists claim is one of the
interesting research topics in CSS by analysing the interpretative concepts
like threshold settings of a scientific computer program.

One of these computational astrophysicists is Daniel Maschmann, who
worked for one year at our Computational Science Studies Lab (CSS Lab)
in Aachen, Germany, before he moved in 2019 to the Observatoire de Paris
and the Sorbonne Université to start his PhD project. Since 2017, the CSS
Lab is located at the Chair for the Theory of Science and Technology at
RWTH Aachen University (www.css-lab.rwth-aachen.de) and is devoted
to developing concepts, methods, and software tools for studying science’s
algorithmic regimes, in particular, the material basis of computer code, for
example, tools like the Isomorphic Comment Extractor (ICE) or the General
Isomorphic Code Analysis Tool (GICAT). Daniel Maschmann used early
versions of our CSS tools in order to improve his computer program xgaltool,
which he had first programmed for his MA thesis (https://gitlab.obspm.fr/
dmaschmann/xgaltool; Maschmann et al., 2020). Xgaltool is an open-source
computer program developed on GitLab for detecting merging galaxies in the
Reference Catalog of galaxy Spectral Energy Distributions (RCSED)—a huge
database containing photometric data on energy distributions of 800,299
galaxies in 11 ultraviolet, optical, and near-infrared bands. These photometric
data result from CCD camera-equipped telescopes. CCD telescopes were
developed in the early 1990s to conduct the Sloan Digital Sky Survey (SDSS)
at the Apache Point Observatory in New Mexico—a gigantic endeavour to
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scan one-third of the sky. Thus, the RCSED selects data from the SDSS for
the spectral energy distribution. Furthermore, the RCSED data decompose
the measured light into two components: the light emitted by the stars and
the light of the galaxies’ gas content, which is described by emission lines.

So-called double peak (DP) emission line galaxies have been extensively
explored, because this type of galaxy can be an indication of a galaxy merger.
A galaxy merger can occur when galaxies collide. The galaxy merger is one
of the states of the evolution of galaxies, as classified by Edwin Hubble in
1926. Astrophysicists are still trying to understand how galaxies and stars
form. Today they use computer-based simulation as well as indirect evidence
from photometric data. DP emission line galaxies are relevant to empirically
inspired galaxy evolution theory as they mostly consist of star-forming galax-
ies and “the star formation rate (SFR) of galaxies is a well-suited diagnostic
to characterize their evolutionary state” (Maschmann et al., 2020, p. 1). Thus,
what Daniel Maschmann was seeking with his xgaltool were DP emission
line galaxies, whose emission line displays in a characteristic shape in the
RCSED data. However, these galaxies are rare and represent only 0.8% of
the RCSED data (Maschmann et al., 2020, p. 1). Thus, Daniel Maschmann
calibrated xgaltool to the specific emission lines as following:

We developed an automated three-stage selection procedure to find DP
galaxies. The first stage pre-selects galaxies with a threshold on the S/N,
and performs successively the emission line stacking, line adjustments
and empirical selection criteria. Some emission lines are individually
fitted at the second stage to select first DP candidates. We also selected
candidates showing no DP properties to be the control sample (CS).... At
the third stage, we obtained the final DPS using the fit parameter of each
line. (Maschmann et al., 2020, p. 2)

From this cryptic quote the computational model for his xgaltool algorithm
can be inferred. S/N describes a ratio between S (signal) and N (noise),
which enables a classification of galaxies. For S/N < 10, 276,239 galaxies
were selected from the RCSED, for S/N < 5 only 189,152 galaxies. Within
the latter data sample complicated filtering methods were applied in order
to reduce the number of selected emission lines > 3 for 89,412 galaxies for
the control sample. Reducing the number of galaxies further led to 7,479
interesting DP candidates. Finally, stage three sorted the emission lines
of the 7,479 interesting DP candidates depending on their S/N ratio into
three classes: one DP line (175), two DP lines (269), more DP lines (5,219).
“The automated selection procedure selected DP galaxies with an objective
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algorithm. This means that we did not need any visual inspection, which
would have been a subjective factor in the sample selection” (Maschmann
et al, 2020, p. 6).

Based on the selected double peak (DP) emission line galaxies the scien-
tifically interesting part of the work could start by exploiting the shape of the
emission lines exhibited in BPT diagrams. BPT diagrams were developed in
1981 by John A. Baldwin, Mark M. Phillips and Roberto Terlevich to classify
emission-line spectra (Baldwin et al., 1981).3 In the case of DP emission line
galaxies three types of BPT diagrams were explored, which were based on
“the relative intensities of the strongest lines, into groups corresponding to
the predominant excitation mechanisms” (Baldwin et al., 1981, p. 16). Thus,
types of galaxies are classifiable; for instance, star-forming (SF) galaxies,
active galactic nuclei (AGN) galaxies, and composite (COMP) galaxies. An
important scientific result was that most DP galaxies are SF galaxies and
thus intensively contribute to galaxy mergers. In this way, by analysing the
data carefully some indirect evidence could be gained about the role of DP
emission line galaxies in the process of galaxy formation (Maschmann et
al.,, 2020). Using algorithms for automatically generated data samples of
the rare DP emission line galaxies, the astrophysicists provide a software-
and statistics-based method to detect galaxy mergers and to classify new
morphological types of galaxy formations.

CSS Tools Applied: GICAT and ICE

The above case study provides an example of the algorithmic regime of
computational astrophysics. Of course, the scientific concepts involved
in xgaltool are quite advanced, combining data analysis methods, filter
methods, with many other computationally interpretative methods. For
philosophers of science as well as for researchers from STS, it is difficult
to grasp how scientific research is conducted under algorithmic regimes.
This is simply because observational access to code is difficult. Making
such code accessible is an important part of CSS, and the tools we develop
are an integral part of this endeavour.

3 The BPT diagrams are based on the fundamental 1gth-century discovery that different
chemical elements produce different types of spectra, e.g., celestial objects like galaxies emitting
gas. Based on emission spectroscopy the wavelengths of photons emitted by excited atoms or
molecules of a gas can be measured and classified. For instance, hydrogen is characterized by
the Balmer lines (Balmer 1885).
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The Isomorphic Comment Extractor (ICE)

Many details about a scientific program can be found in its comments.
However, software documentation is more an art than a science. Software
documentation in the code is laborious, time-consuming, effectless on
the performance of the code itself, standards are missing, and so forth.
Nevertheless, in computational sciences the software is the basis of research.
Thus, a well-documented code is part of responsible science. In particular,
in the course of the open science development the transparency of software
has become a major topic (Aghajani et al., 2019).

In programming, comment analysers are known tools, but they are
usually restricted to the programming language used by the programmer.
Our ICE tool can extract comments from various programming languages
such as C++, Python, Java Scrips, and Fortran. Extracting comments (if
available) from scientific computer programs provides useful insights into
the scientific process behind the coding. By “throwing” a scientific computer
program in the ICE tool one can easily analyse it in an isomorphic mode
the story unveiled by the comments of a well-documented software code.

The General Isomorphic Code Analysis Tool (GICAT)

It is a far more complex endeavour to analyse the execution of a scientific
computer program exhibited in the web of statements. To give an example:
xgaltool file analysis_tools.py alone consists of eight classes and each class
consists of several definitions. For instance, the class EmissionLineTools
contains 19 definitions, among these the following:

In Python a function is defined using the defkeyword (Figure 3.1, line 43)
followed by arguments and parameters inside the parentheses. Arguments
and parameters pass information into a function. With r (line 44) and return
(line 62), for instance, control flow is organized in Python, i.e., calculations
are performed and results are returned. In this case lines 61 and 62 set up
the calculation of gas metallicity based on the data called in lines 56 to 58.
Python also accepts function recursion, i.e., a function calls itself usually
structured by if, else, return loops. Different languages employ different
concepts—from variations of the before mentioned to completely different
programming paradigms. Based on such programming concepts a web
of statements is designed by the scientific programmer forming up the
intended behaviour of her/his scientific computer program. Each change in
the functionality of the code that modifies its behaviour results in a slightly
different computational result. If one is not able to grasp these complex
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Figure 3.1. Lines 43 to 62 of the analysis_tools.py of xgaltool. Courtesy: Daniel Maschmann.

interactions in the code, one is not able to recognize how the concept of
metallicity is articulated in it. Therefore, understanding the functionality
and its execution over time is crucial for CSS. Analysing, but also following,
the development of a scientific computer program, i.e., carrying out a code
genealogy, provides insights into changing scientific concepts.

Following these considerations, we started to develop the General Iso-
morphic Code Analysis Tool (GICAT). GICAT visualizes different layers of
execution of a given software project. From class and inheritance structures
in object-oriented languages to complex functional interdependencies in
functional programming, GICAT can help to identify and disentangle the
scientifically significant layers and threads in the web of statements of a
given code. GICAT is not limited to Python. Like and in accordance to ICE,
it supports different languages under different programming paradigms.
To visualize different layers of execution in a web of statements, GICAT
works with a set of preconfigured as well as free-definable analysis filters.
The preconfigured filters give the user the means to orient herself in the
code and to identify the scientific relevant structures on different levels.
Free-definable filters are powerful tools that enable the experienced user to
make out where the relevant threads and layers of scientific code condense
to a structure that encodes more specific points of interest (especially in
the deeper analysis of scientific concepts).

The preconfigured filters are automatically adjusted to the programming
language of the targeted software project. We can illustrate how they give a
first overview by applying GICAT to xgaltool (Maschmann et al., 2020), which
gives us a general idea of the structure of the program. Figure 3.2 depicts the
global structure of xgaltool via its class relations, the standard filter set for
Python projects. In this context we show the project at two different stages.
Comparing the structure from 15.06.2021 to the structure of 23.02.2022, we
see that a connection between two classes (EnvironmentTools and PlotBPT)


http://tools.py

70 GABRIELE GRAMELSBERGER, DANIEL WENZ, AND DAWID KASPROWICZ

i S S
e
- [T P
| e Py |
e =
P —_——
eSS —
o . 2 )
. [
~ o | e e— .
A it Ot | i
" * sq iy
-_— = - s S
i *‘l_ﬂ'ﬂpl;ﬂl
) :
e i

e ——— e e — e e e e e S =

Fpervas
i =
=" SHEN
e
=
BNt
— e Timcan o) B
:m | EE=TE
s AV : g
apin (T -
s O | G
- - -
e \ / - T
e A 3
e

Figure 3.2. GICAT view on xgaltool visualized under the class filter of 15.06.2021 and 23.02.2022, in
order to study class relations in two different software versions (code genealogy).
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Figure 3.3. GICAT view on xgaltool detail under the library filter.

exists in the 2021 version that does not exist in the 2022 version anymore. This
effectively cuts any direct connection between the groups plotting_tools and
analysis_tools in the newer version of the program. This illustrates another
important feature: GICAT enables the user to do a genealogical analysis,
which makes it possible to track the development of different aspects of the
scientific structures in the surveyed web of statements over time.
Making relations explicit while being able to place them into the greater
picture of a given web of statements can yield important clues for the re-
construction of scientific concepts in a software project. Another example
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of an advanced filter is shown in Figure 3.3. Here the imports of modules
(libraries, in darker circles) and packages (of libraries, in lighter circles)
is shown. This is important because as mentioned above one of the main
hindrances of getting a clear picture of the structure of a web of statements is
the modularity of contemporary programming. With the help of GICAT the
user is able to keep track of the different dependencies and gets a synoptic
overview of their overall structure.

Following our idea to create a modular toolbox for scientific code study,
these features are complemented by ICE. The option to integrate this per-
formant comment extractor and code viewer into the structure of GICAT
gives the user direct access to the corresponding parts of the raw code of the
visualized structures. This whole package should allow a smooth transition
between the visualization of different layers of execution that are hidden in
the web of statements as well as between these layers and the corresponding
chunks of raw code. Adding the possibility of genealogical analysis, the user
can track and reconstruct the evolution of the implementations of scientific
models and concepts in the web of statements of a given software. This
concerns the modifications that are consciously made by the developers
in respect to the scientific content of their project as well as changes that
are motivated by purely technical reasons.

Above we have seen that one of the central concepts in Maschmann et
al. (2020) is “emission line.” The emission line is what appears in a spectrum
depending on what specific wavelengths of radiation a source emits. It is one
of the primary sources for the astrophysicist to identify and classify galaxies.
To reconstruct how this concept is articulated in a web of statements, we have
tolook at how it is entangled in its different layers of execution. In this regard,
we use a GICAT visualization under the filter that depicts the structure of class
inheritances (Figure 3.4). If a class inherits from another, this is represented
in GICAT by an extension arrow. We see that the class AnalyseGas inherits
from the two base classes EmissionLineTools and SFRTools. SFR stands for
“star formation rate,” which means the total mass of stars formed per year.

This piques our interest for further analysis, because the emission line is
normally used to estimate the SFR, while the analysis of a gas is conducted
through an analysis of its emission line. Therefore, although it seems natural
that the class AnalyseGas inherits from the class EmissionLineTools (as we
analyse gas through an analysis of its emission line), it is interesting that the
class AnalyseGas inherits from the class SFRTools (as the SFR is estimated
through the analysis of a gas via an analysis of its emission line). We have
uncovered an important clue how the concept “emission line” is entangled
in and articulated by the different layers of the given web of statements.
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Figure 3.4. Visualization of xgaltool (23.02.2022) under the class-inheritance filter, close up
“EmissionLineTools.”

Guided by this, we can go on by looking into the relevant code, using ICE,
the integrated code viewer, and the comment extractor. Alternatively, or
complementary, we could dive deeper into the entangled layers of execution
by using a filter that visualizes functional connections and dependencies
or explore the structure of libraries our target draws on.

Discussion and Outlook

We have argued that the increasing use of computer simulations in science
will reinforce the necessity for science studies to create new methodological
approaches. As our case study from astrophysics illustrated, software like
xgaltool needs to be analysed to explain the translation of a mathematical
into a computational model and the decisions that have to be made during
this programming process (as shown by the emission lines with the help
of GICAT in 3.4). It should be emphasized that this kind of analysis is not
limited to any specific programming paradigm and is also applicable to
(seemingly) “indirect” approaches like ML. Machine learning—especially in
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the context of scientific code—does not happen in a void. Its more specific
procedures or preconfigured setups (i.e., a trained neural network) are always
embedded in an encompassing architecture (which comprises things like an
overarching program, a concrete experimental setup, etc). Reconstructing
the scientific relevance of the ML-component consists then (as for any other
component) primarily in reconstructing its role in this architecture. For a
preconfigured ML setup it may be necessary to look at external sources.
If the training is part of the running implementation (like in a program
for speech recognition that adjusts itself to its user), then the learning
algorithm and the path of the ongoing flow of data can be analysed directly.
For such studies in the algorithmic regime of science, our tools offer modes
of navigation through file structures and filters for code genealogies to
make traceable what changes in the code have occurred, at what time of the
project, and conducted by who. As shown in 3.2, this helps also to illustrate
the modifications and decisions the scientists had to make during the
programming process. These might be routine for scientists who program
every day, but for CSS, STS, and also social studies of science, the different
ways scientists are influenced recursively by their programming language
and the standards how to use it post further research questions.* In this
sense, how does the shift in scientific programming from functional state-
ments to more and more library-oriented languages like Python influence
the theoretical concepts and models of scientific projects? How do these
programming practices change the expectations of scientists and their ways
to make predictions and classify objects like galaxy mergers?

As mentioned before, our code-oriented approach and the tools we
develop do not present the only way to explore algorithmic regimes in
science. Additionally, to our perspective from the philosophy of science,
methods from STS and the social studies of science can be complementary
since both try to describe the role of software in knowledge production as
well as the dynamics of scientific programming. Ethnographic methods
and tool analysis can serve as in-depth and meta-perspectives, providing
ways to zoom into the daily (and dull) work of coding and to zoom out
to keep track of longer code genealogies. However, there are still some
problems regarding the methodological solutions provided so far. First,
it is difficult to generalize from single case studies since coding practices
even in one and the same scientific discipline are not yet standardized. We

4 See also Kelly (2015) for a comparative approach from software engineering where the
characteristics of scientific programmers are compared to guidelines of programming in
software engineering.



UNDERSTANDING AND ANALYSING SCIENCE’S ALGORITHMIC REGIMES 75

lack categories and concepts to describe the dynamics in the translation
process from knowledge-based scientific to computational models over
different disciplines. Second, for science studies scholars not familiar with
programming, it is difficult to see how efficiently or how messy the program
has been written. What we have shown here is how we can access new
artefacts of scientific programming via software tools for non-programming
experienced science studies scholars. We have argued that theses artefacts
(comment extractions, code genealogies, visualizations of inheritances) allow
us to study the question how scientific concepts and models are integrated
into computational models via the practices of scientific programming. In
this sense, our tools enable the user to identify and study the scientific part
of the code and therefore permit to examine the impact of software on the
production of knowledge in the algorithmic regime of science.
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