
8 Capital allocation principles as

compositional data

In Chapter 6 it was shown that given an (absolute) capital allocation princi-

ple ~K withK =∑n
j=1 K j , its relative counterpart is defined as~x , where com-

ponents are xi = Ki /K . This chapter is devoted to show that relative capital

allocation principles can be understood as belonging to the (standard) sim-

plex. Following a nomenclature often used by geologists, any vector of the

simplex is called a composition and any set of vectors in the simplex is called

compositional data. This chapter first presents themetric space structure of

the simplex. Secondly, it is shown that it is possible to move forward and

backwards from relative capital allocation principles to compositions and

the opposite. Applications of this relationship are illustrated with the data

set used all along this book. This chapter is based on the study that we car-

ried out in Belles-Sampera et al. [2016a].

8.1 The simplex and its vectorial andmetric structure

Let us define the (standard) simplex S n = {
~z ∈ Rn | z j Ê 0, j = 1, . . . ,n,∑n

j=1 z j = 1
}
providedwith aparticular structureof vector andmetric space.

Any vector~z ∈ S n is a composition and a set of vectors is called composi-

tional data. We need to define the vector space and to enrich it later with

a distance in order to be allowed to talk about this vector space as a metric

space. Any set of vectors needs two operations (often called vector addi-

tion and scalar multiplication) in order to be called a vector space over R.

These operations must satisfy a set of particular properties. The vector ad-

dition must be commutative, associative, and a neutral element is needed.

Moreover, for each vector, its additive inverse must exist. A scalar multipli-

cation for a vector space over R combines a real number with a vector and,

whatever this combination is, it is necessary that the combinationmust be-
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long again to the set of vectors. Additionally, a neutral element for the scalar

multiplicationmust exist, and the distributivity of the scalar multiplication

with respect to the vector addition and, on the other side, the distributivity

of the vector additionwith respect to the scalarmultiplicationmust be both

satisfied.

Following the notation provided in Aitchison and Egozcue [2005], a vec-

tor addition called perturbation (denoted by ⊕) and a scalar multiplication

called powering (denoted by¯) may be attached to the setS n . These oper-

ations are defined by expressions (8.1) and (8.2), respectively, where~x,~y ∈
S n and λ ∈R:

~x ⊕~y =
(

x1 · y1∑n
j=1 x j · y j

, . . . ,
xn · yn∑n

j=1 x j · y j

)
, (8.1)

λ¯~x =
(

xλ1∑n
j=1 xλj

, . . . ,
xλn∑n

j=1 xλj

)
. (8.2)

It can be proved that the simplexS n providedwith operations⊕ and¯ has

a linear vector space structure of dimension n −1. An important function

in the context of compositional data is the closure function, C . The closure

function applied to a vector in Rn returns another vector whose compo-

nents are the components of the original vector divided by the sum of all

the components of the original vector. Keeping this in mind, the following

expressions hold:

~x ⊕~y =C
[
(x1 · y1, . . . , xn · yn)

]
, λ¯~x =C

[(
xλ1 , . . . , xλn

)]
.

Moreover, assuming the vector space structure of (S n ,⊕,¯), the neutral

element~0 of ⊕ can be deduced. Given a vector~x such that xi > 0 for all i ,
the relationship~x ⊕~r =~0 informs that~r is the inverse of~x with respect to

the perturbation operation, so it should be written as~r = (−1)¯~x . In other
words,

~r =
(

1/x1∑n
j=1(1/x j )

, . . . ,
1/xn∑n

j=1(1/x j )

)
.

Then, using this last expression and (8.1),

~0 =~x ⊕~r =C

[(
1∑n

j=1(1/x j )
, . . . ,

1∑n
j=1(1/x j )

)]
=

(
1

n
, . . . ,

1

n

)
,

so the neutral element~0 of the perturbation operation is the composition

with all of its n elements equal to 1/n.
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Figure 8.1 Example of perturbation (addition) and powering (scalar
multiplication) inS 2
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Example 8.1 (Perturbation, powering and neutral element inS 2). Wepro-

vide an example in a low dimension (n = 2) in order to illustrate how the

vector spaces (S n , ⊕, ¯) work. Consider~x = (1/3,2/3) and~y = (3/4,1/4)
in S 2, and λ= 1/2 ∈R. We can ask ourselves for~x ⊕~y , λ¯~x and~0

~x ⊕~y =
(

1

4

5

12
,

1

6

5

12

)
=

(
3

5
,

2

5

)
,

λ¯~x =
( p

1/3p
1/3+p

2/3
,

p
2/3p

1/3+p
2/3

)
' (0.4142,0.5858) , and

~0 =
(

1

2
,

1

2

)
.

For instance,~x ⊕~0 =
(

1

6

1

2
,

1

3

1

2

)
=

(
1

3
,

2

3

)
=~x .

All these vectors are displayed in Figure 8.1.

Finally, a distance is needed in order to consider the vector space (S n ,⊕,¯)
as a metric space. The simplicial metric defined in Aitchison [1983] is here

considered. Given two compositions~x, ~y , the distance between them from

the point of view of the simplicial metric is

∆(~x,~y) =
[

n∑
i=1

[
ln

(
xi

GM(~x)

)
− ln

(
yi

GM(~y)

)]2
]1/2

, (8.3)
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where GM(~z) denotes the geometric mean of the components of~z vector,

this is GM(~z) =
[

n∏
i=1

zi

]1/n

.

An equivalent expression for ∆(~x,~y) is the following:

∆(~x,~y) =
[

1

2n

n∑
i=1

n∑
j=1

[
ln

(
xi

x j

)
− ln

(
yi

y j

)]2
]1/2

. (8.4)

This simplicialmetric is linked to a norm ‖·‖∆ and to an inner product 〈 , 〉∆
in a usual way. Given two vectors~x, ~y ∈S n ,

∆(~x,~y) = ‖~x ª~y‖∆ =
√
〈~x ª~y ,~x ª~y〉∆,

where~x ª~y =~x ⊕ [(−1)¯~y], and

〈~u,~v〉∆ = 1

2n

n∑
i=1

n∑
j=1

[
ln

(
ui

u j

)
· ln

(
vi

v j

)]
. (8.5)

Example 8.2 (Level curves inS 3). Once the distances are defined, we can

explore – for instance – the geometrical locus of all those elements in the

simplex with the same distance to a given element in that simplex. In other

words, we could be interested in determining a sort of level curves in S n

related to the distances of compositions~x ∈S n to a fixed composition ~y0.

Eachoneof these level curveswouldbedrivenby a certaind ∈R+, the target
distance. Formally, we could look for geometrical loci denoted lcd (~y0) and
defined by

lcd (~y0) = {
~x ∈S n |∆(~x, ~y0) = d

}
.

In Figure 8.2 several level curves are represented in a two dimensional pro-

jection of S 3. On the left, lcd (~0) for d = 0.2, 0.45, 0.8 and 1.0 are repre-

sented. As it is observed, the higher the distance to the composition of ref-

erence (in this case, ~y0 =~0 = (1/3,1/3,1/3)) the sharper the curve. Differ-
enceswith respect to theEuclideandistance are evident, because these level

curves have not circular shapes with center in the composition of reference.

The behavior is similar on the right hand side of Figure 8.2. In that case, the

composition of reference is ~y0 = (1/8,1/2,3/8) instead of the neutral ele-

ment with respect to the perturbation (addition). The corresponding level

curves lcd (~y0) for d = 0.2, 0.45, 0.8 and 1.0 are once again represented but

with this alternative reference.
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Figure 8.2 Examples of level curves lcd (~y0) inS 3 are displayed. In fact, they are
projections inR2 of the geometrical loci lcd (~y0) of the elements which distances to
point ~y0 are equal to d , where d = 0.2, d = 0.45, d = 0.8 and d = 1.0.
Left figure: ~y0 = (1/3, 1/3, 1/3) (neutral element with respect to the perturbation).
Right figure: ~y0 = (1/8, 1/2, 3/8).

Under this framework, as it was shown in De Baets [2013], the simplicial

arithmeticmeanof the compositional data~x1,~x2, . . . ,~xm maybeunderstood

as a solution of a minimization problem, in the following way:

AM∆ (~x1, . . . ,~xm) = 1

m
¯

m⊕
k=1

~xk = argmin
~z

m∑
k=1

‖~z ª~xk‖2
∆, (8.6)

where
m⊕

k=1
~xk means theperturbationof the set ofm compositions {~xk }k=1,...,m .

At first sight, this expression is equivalent to the arithmetic mean of m real

numbers u1, u2, . . . ,um :

AM(u1, . . . ,um) = 1

m
·

m∑
k=1

uk = argmin
v

m∑
k=1

‖v −uk‖2
2, (8.7)

so, the simplicialmetric presented in this section is thenaturalmetric choice

if (simplicial) arithmetic means are computed. In other words, the expres-

sion (8.6) contains theproperdefinitionof the arithmeticmeanof~x1, . . . ,~xm

in the metric space (S n ,⊕,¯,∆). From the definitions of both perturba-

tion andpowering operations, an explicit expression for the simplicial arith-

metic mean presented in (8.6) is

AM∆ (~x1, . . . ,~xm) =C [(G1, . . . ,Gn)], (8.8)

where Gk = GM(x1,k , x2,k , . . . , xm,k ), i.e. Gk = [∏m
i=1 xi ,k

]1/m
, for all k =

1, . . . ,n .
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8.1.1 From capital allocation principles to compositional data

An absolute capital allocation ~K has its relative counterpart~x computed as

xi = Ki /K for all i = 1, . . . ,n. Note that it is satisfied that
∑n

j=1 x j = 1. Note
also that when negative allocated capital amounts Ki are allowed, the rel-

ative components would be negative and then~x ∉ S n . For the rest of the

chapter it is assumed that~x has strictly positive components. That is, we as-

sume that~x is a composition with non-zero and non-negative components.

This assumption allows to avoid negative or zero values on components of

~x , which are an inconvenient for practitioners (negative allocations) and

when operating in the simplex (null compositions)1.

At this point, some concepts introduced in Chapter 6 to classify absolute

capital allocation problems can be associated to concepts introduced in this

chapter. For instance, if we consider proportional capital allocation princi-

ples as stated in expression (6.1), the relative counterpart ~y of the absolute

principle ~K = (K1, . . . ,Kn) may be interpreted as the closure of the vector

with components equal to fi (Xi ), i = 1, . . . ,n:

~K s.t. Ki = K · fi (Xi )
n∑

j=1
f j (X j )

, ∀ i = 1, . . . ,n

⇔ ~y =C
[
( f1(X1), . . . , fn(Xn))

]
.

(8.9)

When stand-alone proportional principles are considered, the previous ex-

pressionhelps to visualizewhydependence structuresbetween randomvari-

ables {Xi }i=1,...,n are not taken at all into account in the capital allocation

solution. In a first step, the amount of risk faced by each agent is assigned

to one of them, which is summarized by fi (Xi ), i = 1, . . . ,n. Subsequently,
the relative risk proportion obtained in thatmanner is scaled byK to obtain

the final capital allocation.

8.2 Perturbation inverse, simplicial distance and

simplicial arithmetic mean applied to capital

allocation problems

In the previous section, it has been shown that relative capital allocation

principles and compositionsmaybenaturally linked. Once this relationship

1 Although elements of a composition can be equal to zero, dealingwith compositionswith

null components is not an easy task in practice.
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is established, the idea is to take advantage of the geometric structure of the

simplex to enrich the description of each capital allocation principle and

each capital allocation result. Some applications of compositional methods

in the context of capital allocation problems are shown in this section.

8.2.1 The inverse of a capital allocation

Let us consider a relative capital allocation principle ~x linked to what we

have called in Chapter 6 a cost of risk goal. Amanager would want to depart

from this allocation to distribute rewards instead of costs in order to fulfill

an allocation with a reward to an objective linked to minimisation of risk.

An intuitive idea is to invert each of the relative components, in order to

reflect the inverse nature of the allocation (a relative low cost allocated to

i th agent should mean a relative high reward assigned to him). To proceed

in this direction, onemust normalize the sum of all 1/xi in order to provide

a full allocation of thewhole amount of capital,K . Note that the inversion of

the components is only feasible if all components of~x are different from 0.
This application has a natural interpretation in the simplex S n . The nor-

malization can be understood as the application of the closure function.

Given a relative capital allocation principle ~x , let ~r be the closure of the

vector with components 1/xi for i = 1, . . . ,n. As it has been shown in Sec-

tion 8.1, ~r is the inverse of ~x with respect to the perturbation operation:

~r = (−1)¯~x .
Using risk based capital allocation principles to determine penalizations or

rewards may lead to undesirable behaviors of the agents. Basically, agents

have incentives to take conservative business decisions because less risk re-

sults in a better reward. In order to prevent it, a return-on-risk measure

seems to be preferable to assign rewards. It has been indicated in Chap-

ter 6 that rewards on risk and return allocations may be of great relevance

for a sound ERM system.

Note now that there are some direct absolute reward on risk and return cap-

ital allocation principles that can be considered. For instance, if we depart

from a given ~x = C
[
~y
]
, where yi = RORAC(Xi | S)/RORAC(S), for all

i = 1, . . . ,n.
Then, we obtain the absolute capital allocation principle ~K by

Ki = K · xi = K · RORAC(Xi | S)∑n
j=1 RORAC(X j | S)

, ∀ i = 1, . . . ,n.

The underlying idea is to give a higher reward to those agents whose rel-

ative RORAC with respect to the overall RORAC of the portfolio is higher.
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Note that different definitions of return-on-risk measures than expressions

(6.3) and (6.2) in Chapter 6 for RORAC(Xi | S) and RORAC(S) may be con-

sidered, and the objective of the allocation would not change.

8.2.2 Ranking capital allocation principles

We have presented a simplicial metric or distance ∆ which helps to con-

stitute S n as a metric space. ∆ can be used to quantitatively rank capi-

tal allocation principles. Let us consider the neutral composition~0 ∈ S n

which is the composition with all of its n components equal to 1/n. So, the
distance between any relative capital allocation principle ~x and~0 can be

computed. Alternatively, the distance between any pair of relative capital

allocation principles belonging to S n can be calculated. Both uses of the

simplicial distance are useful to compare different capital allocation princi-

ples in a quantitative manner.

When the distance between the relative capital allocation ~x and~0 is com-

puted, a quantitative result shows how far the allocation principle is from

a neutral assignment. Note that~0 ∈ S n is linked to a capital allocation

principle in which no matter how much risk each agent faces, they would

all receive the same since the same amount is allocated to each one (K /n).
On the other hand, if an allocation principle is taken as a reference (for in-

stance, a gradient allocation principle as explained in Section 6.3.1 of Chap-

ter 6), the distance between the composition linked to this principle and any

other composition quantifies how far this principle is from the allocation of

reference.

Imagine that four allocation principles are in hand for the same amount K
of money and the same n agents: a haircut allocation principle (7.2), ~Kh ; a

covariance allocation principle (6.15), ~Kc ; a stand-alone proportional allo-

cation principle based on GlueVaR (7.5), ~Ks ; and a gradient allocation prin-

ciple related to (6.5), ~Kg . If their respective relative allocation principles

~xh ,~xc ,~xs and~xg are inS n andeachof the components of~xt , t ∈ {h,c, s, g }
is strictly positive, then it is possible to rank them in two different ways:

1) Compute∆(~xt ,~0) for t ∈ {h,c, s, g }. Order distances in an increasing or-
der. A higher order position indicates an allocation located further apart

from the neutral allocation;

2) Choose one of the principles as reference (for instance, the gradient allo-

cation principle). Compute∆
(
~xt ,~xg

)
for t ∈ {h,c, s}. These three values

are quantifying how far eachprinciple is from the allocation of reference.
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8.2.3 Averaging capital allocation principles

In practice, different management teams may suggest different capital allo-

cations regarding the same assignment problem. The situation sketched at

the end of the previous section could be an example of such a situation. In

those cases, wewant to stress that the set of different capital allocation prin-

ciples can be aggregated through the simplicial arithmetic mean, obtaining

a final allocation that considers each one of the available viewpoints.

Formally, let us imaginem management teamsprovidingm absolute capital

allocation principles ~Kk of amountK to the samen agents, and let~xk be the

relative capital allocation principles linked to ~Kk , k = 1, . . . ,m. Once again,

taking advantage of the geometric structure ofS n , the concept ofaveraging

the m points of view on the same allocation problem is easily derived. In

other words, the expression ~z = AM∆ (~x1, . . . ,~xm)is the proper definition

of the arithmetic mean of ~x1, . . . ,~xm in the metric space (S n ,⊕,¯,∆) as
it was shown in (8.6). Once the relative arithmetic mean is obtained, what

remains to do is to assign an amount of K̄i = K · zi monetary units to each

i th agent, i = 1, . . . ,n, in order to provide a capital allocation principle in

the adequate scale. This principle balances the opinions of all the involved

management teams.

8.2.4 An illustration

In order to illustrate the applications described in this section we are get-

ting back to the relative principles obtained in Chapter 7, which where dis-

played in Table 7.2. Recall that these relative principles were derived from

six absolute proportional allocation principles (6.1) based on three differ-

ent GlueVaR risk measures but with two different perspectives: on the one

hand, stand-alone proportional allocation principles (7.5) and, on the other

hand, partial contributions based proportional allocation principles (7.9).

Let us name them as ~xi , i = 1, . . . ,6. Then

~x1 = (50.41%,45.80%,3.79%),

~x2 = (63.51%,28.38%,8.11%),

~x3 = (54.44%,32.22%,12.22%),

~x4 = (46.42%,51.74%,1.84%),

~x5 = (68.19%,26.86%,4.95%),

~x6 = (25.11%,73.11%,1.78%).

(8.10)
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Table 8.1 Perturbation inverse relative capital allocation principles.

X1 X2 X3

Stand-alone

~y1 = (−1)¯ ~x1 6.50% 7.15% 86.35%

~y2 = (−1)¯ ~x2 9.03% 20.22% 70.75%

~y3 = (−1)¯ ~x3 14.00% 23.65% 62.35%

Based on partial contributions

~y4 = (−1)¯ ~x4 3.68% 3.30% 93.02%

~y5 = (−1)¯ ~x5 5.78% 14.67% 79.56%

~y6 = (−1)¯ ~x6 6.48% 2.22% 91.30%

From ~x1 to ~x3 the results correspond to stand-alone proportional allocation

principles and the rest may be understood as proportional allocation prin-

ciples base on partial contributions. In addition, ~x1 and ~x4 are linked to

GlueVaR11/30,2/3
99.5%,95%, ~x2 and ~x5 to GlueVaR0,1

99.5%,95% and the remaining were

calculated based on GlueVaR1/20,1/8
99.5%,95%. Note that all these relative princi-

ples belong to the simplex S 3 and have non-zero components.

Assume now that risk managers are interested in allocation principles with

a reward to conservative objctives (meaning the smaller the risk figure the

better the type of risk). However, the only available information (principles

~xi , i = 1, . . . ,6) is a set of capital allocation principles with a cost of risk goal.
The computation of the inverse of relative capital allocation principles can

be useful in this context, in order to obtain principles driven by a reward

to a risk minimization objective. So the perturbation inverses of relative

capital allocation principles ~xi , i = 1, . . . ,6, are shown in Table 8.1 and they

are denoted as ~yi , i = 1, . . . ,6.

Using the relative principles displayed in (8.10), relative allocation princi-

ples are ranked according to Section 8.2.2. As before, symbol~0 is used to

refer to the neutral allocation. The following simplicial distances are calcu-
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lated from expression (8.3):

∆(~x1,~0) =p
0.8+0.637+2.865 = 2.074,

∆(~x2,~0) =p
0.911+0.022+1.218 = 1.4669,

∆(~x3,~0) =p
0.453+0.022+0.674 = 1.0719,

∆(~x4,~0) =p
1.083+1.32+4.795 = 2.6831,

∆(~x5,~0) =p
1.404+0.064+2.068 = 1.8803,

∆(~x6,~0) =p
0.276+2.542+4.495 = 2.7045.

(8.11)

Figure 8.3 Distances between capital allocation principles.

~x0 ~x3 ~x2 ~x5 ~x1

~x4

~x6

1.0719

1.4669

1.8803

2.0740

2.6831

2.7045

Distances considered individually are not too informative. However, these

values allow to rank the principleswith respect to oneprinciple of reference,

as it is graphically shown in Figure 8.3. From results (8.11), it can be deduced

that, in this example, proportional allocation principles based on partial

contributions are generally more distant from the neutral allocation than

the rest (with ~x1 being the only exception). Additionally, when comparing

pairs of compositions with the same risk measure involved, it becomes evi-

dent that themost different behavior is the one linked to principles depend-

ing onGlueVaR1/20,1/8
99.5%,95% riskmeasure (the pair ~x3 and ~x6). So, in this exam-

ple, when using GlueVaR1/20,1/8
99.5%,95% as a risk measure, the selection of the al-

location criterion (stand-alone versus based onpartial contributions) seems

to be more relevant than when using the other two GlueVaR risk measures

under consideration.

As a final application, the three relative stand-alone allocations displayed

in (8.10) are averaged by means of the simplicial arithmetic mean. The rel-
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ative principles based on partial contributions are also averaged. Finally,

the simplicial arithmetic mean of these previous averages is obtained, just

for the sake of mixing both perspectives in one single principle following a

hierarchical approach in which the distribution criterion (as mentioned in

Section 6.1 of Chapter 6) plays an important role.

With respect to the stand-alone proportional allocation principles, the geo-

metric means of the three components (n = 3) of the three (m = 3) relative
capital allocations, denoted as G1, G2 and G3, respectively, are computed.

Their values are

G1 = (50.41% ·63.51% ·54.44)1/3 = 55.86%,

G2 = (45.8% ·28.38% ·32.22)1/3 = 34.73% and

G3 = (3.79% ·8.11% ·12.22)1/3 = 7.22%.

Following expression (8.8), we calculate the value ofC [(G1,G2,G3)], i.e. the
closure of the vector with components being the geometric means G1, G2

and G3. By doing so, the value of the simplicial average AM∆(~x1, ~x2, ~x3) is
obtained which is a relative allocation principle. Similarly, the simplicial

arithmetic mean of the relative principles based on partial contributions

AM∆(~x4, ~x5, ~x6) is also obtained. Both results are shown in Table 8.2.

Table 8.2 Simplicial means of the capital allocation principles

X1 X2 X3

AM∆(~x1, ~x2, ~x3) 57.11% 35.51% 7.38%

AM∆(~x4, ~x5, ~x6) 46.64% 50.60% 2.74%

As it can be proved, the components of the simplicial averages are not equal

to the arithmeticmean of the components of the original principles. In fact,

the components of the simplicial average are linked to the geometric mean

of the components of the original relative principles. As a final result, let us

average the two principles displayed in Table 8.2. In this case, the geometric

means of the three components (n = 3) of the two (m = 2) relative capital
allocations, denoted as G ′

1, G ′
2 and G ′

3, respectively, are computed. Their

values are

G ′
1 =

p
57.11% ·46.64% = 51.61%,
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G ′
2 =

p
35.51% ·50.62% = 42.39% and

G ′
3 =

p
7.38% ·2.74% = 4.5%.

In order to obtain the final result, we need to calculate the closure of ~w =
(G ′

1,G ′
2,G ′

3). This is

AM∆ (AM∆(~x1, ~x2, ~x3),AM∆(~x4, ~x5, ~x6)) =C [~w] .

This relative principle is

(52.40%, 43.04%, 4.57%).

Final remark. Another feasible approach to reach this unique allocation

would be to calculate the simplicial arithmetic mean of the whole set of rel-

ative principles shown in (8.10). It has to be noted that the result would

certainly be different, because this last approach would lack the specific ag-

gregation hierarchy that we have imposed herein.

8.3 Exercises

1. In the example presented in Section 8.2.4, calculate the simplicial dis-

tance between AM∆

(
AM∆(~x1, ~x2, ~x3), AM∆(~x4, ~x5, ~x6)

)
and AM∆ (~x1,

~x2, ~x3, ~x4, ~x5, ~x6)where ~xi , i = 1, . . . ,6, are the relative principles shown
in (8.10).

2. Observe the distances between principles shown in the example pre-

sented in Section 8.2.4, find a stand-alone allocation which is located be-

tween ~x1 and ~x2.

3. Assume an allocation principle in a situation of n different sources that

assigns an allocation equal to 2i /(n(n + 1)) for the risk i , i = 1, . . . ,n.
Show that this is not the neutral allocation and find the distance to this

element as a function of n. Calculate the behaviour of this distance as n
increases.

4. In the same situation as in the previous exercise, propose another allo-

cation for i , i = 1, . . . ,n, different to the neutral allocation and compare

it to 2i /(n(n +1)) for the risk i , i = 1, . . . ,n.

5. Assume a situation ofn different sources that assigns an allocation equal

to 2i /(n(n+1)) for the risk i , i = 1, . . . ,n, find an average allocation that
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summarizes the allocations provided by this one and the neutral alloca-

tion. Find the average allocation now also with the third allocation that

you proposed in the previous exercise.


