8 Capital allocation principles as
compositional data

In Chapter 6 it was shown that given an (absolute) capital allocation princi-
ple K with K = Z}’zl Kj, its relative counterpart is defined as X, where com-
ponents are x; = K; /K. This chapter is devoted to show that relative capital
allocation principles can be understood as belonging to the (standard) sim-
plex. Following a nomenclature often used by geologists, any vector of the
simplex is called a composition and any set of vectors in the simplex is called
compositional data. This chapter first presents the metric space structure of
the simplex. Secondly, it is shown that it is possible to move forward and
backwards from relative capital allocation principles to compositions and
the opposite. Applications of this relationship are illustrated with the data
set used all along this book. This chapter is based on the study that we car-
ried out in Belles-Sampera et al. [2016a].

81 The simplex and its vectorial and metric structure

Let us define the (standard) simplex .#" = {Z ER"|z;=0,j=1,...,n,
) ;1:1 zj = 1} provided with a particular structure of vector and metric space.
Any vector Z € " is a composition and a set of vectors is called composi-
tional data. We need to define the vector space and to enrich it later with
a distance in order to be allowed to talk about this vector space as a metric
space. Any set of vectors needs two operations (often called vector addi-
tion and scalar multiplication) in order to be called a vector space over R.
These operations must satisfy a set of particular properties. The vector ad-
dition must be commutative, associative, and a neutral element is needed.
Moreover, for each vector, its additive inverse must exist. A scalar multipli-
cation for a vector space over R combines a real number with a vector and,
whatever this combination is, it is necessary that the combination must be-
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long again to the set of vectors. Additionally, a neutral element for the scalar
multiplication must exist, and the distributivity of the scalar multiplication
with respect to the vector addition and, on the other side, the distributivity
of the vector addition with respect to the scalar multiplication must be both
satisfied.

Following the notation provided in Aitchison and Egozcue [2005], a vec-
tor addition called perturbation (denoted by @) and a scalar multiplication
called powering (denoted by ©) may be attached to the set . These oper-
ations are defined by expressions (8.1) and (8.2), respectively, where X, y €

"and 1 € R:

X1 Xpn-
36@":( AN Ve ) (81)
LioXjYi X %Y
A A
- xl Xn
on_( =T A). (8.2)
j=1%j j=1%;

It can be proved that the simplex " provided with operations @ and © has
a linear vector space structure of dimension 7 — 1. An important function
in the context of compositional data is the closure function, €. The closure
function applied to a vector in R” returns another vector whose compo-
nents are the components of the original vector divided by the sum of all
the components of the original vector. Keeping this in mind, the following
expressions hold:

£07=% (1 y1,e X0y, A0 =6 |(x],.x)].

Moreover, assuming the vector space structure of (&", @, ®), the neutral
element 0 of ® can be deduced. Given a vector ¥ such that x; >0 forall i,
the relationship X ® 7 = 0 informs that 7 is the inverse of X with respect to
the perturbation operation, so it should be written as ¥ = (—1) © X. In other
words,

. 1/x1 1/xy
YWy’ X (U xg)

Then, using this last expression and (8.1),

o L 1 1 1 1
O=X$r=(g[( 7 . 7 ) _(_y---)_)r
ijl(llxj) Z _,(1/x;) n n

so the neutral element 0 of the perturbation operation is the composition
with all of its 77 elements equal to 1/n.
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Figure 8.1 Example of perturbation (addition) and powering (scalar
multiplication) in 2

A

yZ

Example 8.1 (Perturbation, powering and neutral element in .#2). We pro-
vide an example in a low dimension (7 = 2) in order to illustrate how the
vector spaces (¥, @, ©) work. Consider X = (1/3,2/3) and y = (3/4,1/4)
in %2, and A = 1/2 € R. We can ask ourselves for X & ¥, AoXand 0

NN (l 5 1 5) (3 2)
X@y= “— - ~|1=l=Z|>
412°6 12 55

V1/3 V273

AoXx= , ~ (0.4142,0.5858) , and
V1/3+v2713 V1/3+V2/3
. (1 1)
o=[=,-|.
2’2

L. (11 11 12\

Forinstance,xGBO=(——,——):(—,—):x.
6232 3’3

All these vectors are displayed in Figure 8.1.

Finally, a distance is needed in order to consider the vector space (<", @, ©)
as a metric space. The simplicial metric defined in Aitchison [1983] is here
considered. Given two compositions X, ¥, the distance between them from
the point of view of the simplicial metric is

n
A%, y) = [Z

i=1

1/2

i . 2
ln( xl»)—ln( y’%)” , (8.3)
GM(®) GM(7)
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where GM(Z) denotes the geometric mean of the components of Z vector,
n 1/n

[I zi

i=1

An equivalent exp;ession for A(X, y) is the following:

o[-l

This simplicial metric is linked to anorm | - || o and to an inner product ¢, YA

this is GM(Z) =

1/2

AR, ) = (8.4)

1 n n
4|

in a usual way. Given two vectors X, y € ",

A, y)=lxeyla=/(Xey, X)),

where X 6 y=xo [(-1) Oy], and
! ( ) (le)
uj J

Example 8.2 (Level curves in .#3). Once the distances are defined, we can

(8:5)

1 n n
0= g 4

explore — for instance — the geometrical locus of all those elements in the
simplex with the same distance to a given element in that simplex. In other
words, we could be interested in determining a sort of level curves in "
related to the distances of compositions X € #" to a fixed composition j.
Each one of these level curves would be driven by a certain d € R*, the target
distance. Formally, we could look for geometrical loci denoted Ic;(3p) and
defined by

ICd(yo) = {)_(t'E " | A(X, J_;O) = d}

In Figure 8.2 several level curves are represented in a two dimensional pro-
jection of 3. On the left, lcd(ﬁ) for d = 0.2, 0.45, 0.8 and 1.0 are repre-
sented. As it is observed, the higher the distance to the composition of ref-
erence (in this case, jj = 0=(1/3,1/3, 1/3)) the sharper the curve. Differ-
ences with respect to the Euclidean distance are evident, because these level
curves have not circular shapes with center in the composition of reference.
The behavior is similar on the right hand side of Figure 8.2. In that case, the
composition of reference is jy = (1/8,1/2,3/8) instead of the neutral ele-
ment with respect to the perturbation (addition). The corresponding level
curves lc4(3) ford = 0.2, 0.45, 0.8 and 1.0 are once again represented but
with this alternative reference.
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Figure8.2 Examples of level curves Ic4(Jp) in 3 are displayed. In fact, they are

projections in [R2 of the geometrical loci lc (Jo) of the elements which distances to
point jp are equal to d, where d = 0.2, d = 0.45,d = 0.8 and d = 1.0.

Left figure: yp = (1/3,1/3,1/3) (neutral element with respect to the perturbation).

Right figure: yo = (1/8,1/2,3/8).

05

Under this framework, as it was shown in De Baets [2013], the simplicial
arithmetic mean of the compositional data X1, Xy, . . ., X, may be understood
as a solution of a minimization problem, in the following way:

- - | N L.
AMA (X1,...,Xm)=—0 @xk =argmin Z ||zexk||2A, (8.6)
m =1 Z k=1

m
where @ X means the perturbation of the set of m compositions {Xi} k=1, . m-
k=1
At first sight, this expression is equivalent to the arithmetic mean of m real

numbers Uy, Uy, ..., Um:

AM(uy,..., Um) = —- Y up=argmin y_llv—url;,  (8.7)

m =1 v k=1
so, the simplicial metric presented in this section is the natural metric choice
if (simplicial) arithmetic means are computed. In other words, the expres-
sion (8.6) contains the proper definition of the arithmetic mean of X1, ..., X,
in the metric space (", ®,®,A). From the definitions of both perturba-
tion and powering operations, an explicit expression for the simplicial arith-

metic mean presented in (8.6) is
AMR (31, %m) = B1(G, ..., Gp)l, (8.8)

where Gy = GM (X1 &, X2k, --+» Xm,k), 1.e. Gk = []‘[;’il x,-,k]llm, forall k =
1,...,n.
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8.1.1 From capital allocation principles to compositional data

An absolute capital allocation K has its relative counterpart ¥ computed as
x; = K;/Kforalli =1,...,n. Note that it is satisfied that Z;.lzl xj=1.Note
also that when negative allocated capital amounts K; are allowed, the rel-
ative components would be negative and then X ¢ .. For the rest of the
chapter it is assumed that X has strictly positive components. That is, we as-
sume that X is a composition with non-zero and non-negative components.
This assumption allows to avoid negative or zero values on components of
X, which are an inconvenient for practitioners (negative allocations) and
when operating in the simplex (null compositions)'.

At this point, some concepts introduced in Chapter 6 to classify absolute
capital allocation problems can be associated to concepts introduced in this
chapter. For instance, if we consider proportional capital allocation princi-
ples as stated in expression (6.1), the relative counterpart  of the absolute
principle K= (Ki,...,Ky) may be interpreted as the closure of the vector
with components equal to f;(X;),i=1,...,n:

nfi(i, Vizl,...,l’l
‘gﬁ“ﬁ (8.9)
< J-}:Cg[(fl(XI),...,fn(Xn))] .

When stand-alone proportional principles are considered, the previous ex-
pression helps to visualize why dependence structures between random vari-
ables {X;};=1,. » are not taken at all into account in the capital allocation
solution. In a first step, the amount of risk faced by each agent is assigned
to one of them, which is summarized by f;(X;), i = 1,..., n. Subsequently,
the relative risk proportion obtained in that manner is scaled by K to obtain
the final capital allocation.

K st K;=K-

8.2 Perturbation inverse, simplicial distance and
simplicial arithmetic mean applied to capital
allocation problems

In the previous section, it has been shown that relative capital allocation
principles and compositions may be naturally linked. Once this relationship

! Although elements of a composition can be equal to zero, dealing with compositions with
null components is not an easy task in practice.
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is established, the idea is to take advantage of the geometric structure of the
simplex to enrich the description of each capital allocation principle and
each capital allocation result. Some applications of compositional methods
in the context of capital allocation problems are shown in this section.

8.2.1 The inverse of a capital allocation

Let us consider a relative capital allocation principle X linked to what we
have called in Chapter 6 a cost of risk goal. A manager would want to depart
from this allocation to distribute rewards instead of costs in order to fulfill
an allocation with a reward to an objective linked to minimisation of risk.
An intuitive idea is to invert each of the relative components, in order to
reflect the inverse nature of the allocation (a relative low cost allocated to
ith agent should mean a relative high reward assigned to him). To proceed
in this direction, one must normalize the sum of all 1/x; in order to provide
a full allocation of the whole amount of capital, K. Note that the inversion of
the components is only feasible if all components of X are different from 0.
This application has a natural interpretation in the simplex .#". The nor-
malization can be understood as the application of the closure function.
Given a relative capital allocation principle X, let 7 be the closure of the
vector with components 1/x; for i = 1,..., n. As it has been shown in Sec-
tion 8.1, 7 is the inverse of X with respect to the perturbation operation:
F=(-1)oXx
Using risk based capital allocation principles to determine penalizations or
rewards may lead to undesirable behaviors of the agents. Basically, agents
have incentives to take conservative business decisions because less risk re-
sults in a better reward. In order to prevent it, a return-on-risk measure
seems to be preferable to assign rewards. It has been indicated in Chap-
ter 6 that rewards on risk and return allocations may be of great relevance
for a sound ERM system.
Note now that there are some direct absolute reward on risk and return cap-
ital allocation principles that can be considered. For instance, if we depart
from a given X = € [?], where y; = RORAC(X; | S)/RORAC(S), for all
i=1,...,n
Then, we obtain the absolute capital allocation principle K by

RORAC(X; | S)

Kl':K-xi:K- 7] ,Vi=1,...,n.
jZIRORAC(Xj | S)

The underlying idea is to give a higher reward to those agents whose rel-
ative RORAC with respect to the overall RORAC of the portfolio is higher.
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Note that different definitions of return-on-risk measures than expressions
(6.3) and (6.2) in Chapter 6 for RORAC(X; | S) and RORAC(S) may be con-
sidered, and the objective of the allocation would not change.

8.2.2 Ranking capital allocation principles

We have presented a simplicial metric or distance A which helps to con-
stitute " as a metric space. A can be used to quantitatively rank capi-
tal allocation principles. Let us consider the neutral composition 0 € %"
which is the composition with all of its 7 components equal to 1/ 7. So, the
distance between any relative capital allocation principle ¥ and 0 can be
computed. Alternatively, the distance between any pair of relative capital
allocation principles belonging to .#"* can be calculated. Both uses of the
simplicial distance are useful to compare different capital allocation princi-
ples in a quantitative manner.

When the distance between the relative capital allocation ¥ and 0 is com-
puted, a quantitative result shows how far the allocation principle is from
a neutral assignment. Note that 0 € " is linked to a capital allocation
principle in which no matter how much risk each agent faces, they would
all receive the same since the same amount is allocated to each one (K/n).
On the other hand, if an allocation principle is taken as a reference (for in-
stance, a gradient allocation principle as explained in Section 6.3.1 of Chap-
ter 6), the distance between the composition linked to this principle and any
other composition quantifies how far this principle is from the allocation of
reference.

Imagine that four allocation principles are in hand for the same amount K
of money and the same 7 agents: a haircut allocation principle (7.2), Kp;a
covariance allocation principle (6.15), K,; a stand-alone proportional allo-
cation principle based on GlueVaR (7.5), Ky; and a gradient allocation prin-
ciple related to (6.5), I?g. If their respective relative allocation principles
Xp, X¢, Xsand Xg arein.#" and each of the components of Xy, £ € {h, ¢, s, g}
is strictly positive, then it is possible to rank them in two different ways:

1) Compute A(?ct,ﬁ) for t € {h,c, s, g}. Order distances in an increasing or-
der. A higher order position indicates an allocation located further apart
from the neutral allocation;

2) Choose one of the principles as reference (for instance, the gradient allo-
cation principle). Compute A (56}, ?cg) for t € {h, c, s}. These three values
are quantifying how far each principle is from the allocation of reference.
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8.2.3 Averaging capital allocation principles

In practice, different management teams may suggest different capital allo-
cations regarding the same assignment problem. The situation sketched at
the end of the previous section could be an example of such a situation. In
those cases, we want to stress that the set of different capital allocation prin-
ciples can be aggregated through the simplicial arithmetic mean, obtaining
a final allocation that considers each one of the available viewpoints.
Formally, let us imagine 7 management teams providing 7 absolute capital
allocation principles K. of amount K to the same 7 agents, and let ¥ be the
relative capital allocation principles linked to K o k=1,...,m. Once again,
taking advantage of the geometric structure of #”, the concept of averaging
the m points of view on the same allocation problem is easily derived. In
other words, the expression Z = AMj (X1, ..., X;;)is the proper definition
of the arithmetic mean of Xi,...,X;, in the metric space (#",®,®,A) as
it was shown in (8.6). Once the relative arithmetic mean is obtained, what
remains to do is to assign an amount of Ki=K-z; monetary units to each
ith agent, i = 1,..., n, in order to provide a capital allocation principle in
the adequate scale. This principle balances the opinions of all the involved
management teams.

8.2.4 An illustration

In order to illustrate the applications described in this section we are get-
ting back to the relative principles obtained in Chapter 7, which where dis-
played in Table 7.2. Recall that these relative principles were derived from
six absolute proportional allocation principles (6.1) based on three differ-
ent GlueVaR risk measures but with two different perspectives: on the one
hand, stand-alone proportional allocation principles (7.5) and, on the other
hand, partial contributions based proportional allocation principles (7.9).
Let us name them as X;, i = 1,...,6. Then

X1 = (50.41%,45.80%, 3.79%),
X, = (63.51%,28.38%, 8.11%),
X3 = (54.44%,32.22%,12.22%),
Xy = (46.42%,51.74%,1.84%),
X5 = (68.19%,26.86%, 4.95%),
X6 = (25.11%,73.11%, 1.78%).

(8.10)
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Table 8.1 Perturbation inverse relative capital allocation principles.

X X X3

Stand-alone
Ji=(-1ox 6.50% 7.15% 86.35%
Jr=(-1) 0k 9.03%  20.22% 70.75%

Vs=(-1Dox; 14.00% 23.65% 62.35%

Based on partial contributions
Ja=(-1)ox 3.68% 3.30% 93.02%
Js=(-1) 0 5.78%  14.67% 79.56%
Jo=(-1)0%s 6.48% 2.22% 91.30%

From X to X3 the results correspond to stand-alone proportional allocation
principles and the rest may be understood as proportional allocation prin-
ciples base on partial contributions. In addition, X and X are linked to

11/30,2/3 = - 0,1 ..
GlueVaRgg'S% ‘959 X2 and X5 to GlueVaRgg_s% 95% and the remaining were
1/20,1/8

calculated based on GlueVaRyy ro o-q,- Note that all these relative princi-
ples belong to the simplex .# and have non-zero components.

Assume now that risk managers are interested in allocation principles with
a reward to conservative objctives (meaning the smaller the risk figure the
better the type of risk). However, the only available information (principles
Xi,i=1,...,6)isasetof capital allocation principles with a cost of risk goal.
The computation of the inverse of relative capital allocation principles can
be useful in this context, in order to obtain principles driven by a reward
to a risk minimization objective. So the perturbation inverses of relative
capital allocation principles X, i = 1,...,6, are shown in Table 8.1 and they
are denoted as j;,i =1,...,6.

Using the relative principles displayed in (8.10), relative allocation princi-
ples are ranked according to Section 8.2.2. As before, symbol 0 is used to
refer to the neutral allocation. The following simplicial distances are calcu-
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lated from expression (8.3):

A(x7,0) = v0.8+0.637 + 2.865 = 2.074,

A(%3,0) = v/0.453 +0.022 + 0.674 = 1.0719,
A(%y,0) = v/1.083 + 1.32 + 4.795 = 2.6831,

A(%5,0) = v/1.404 + 0.064 + 2.068 = 1.8803,
A(%5,0) = V0.276 + 2.542 + 4.495 = 2.7045.

(8.11)

Figure 8.3 Distances between capital allocation principles.
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Distances considered individually are not too informative. However, these
values allow to rank the principles with respect to one principle of reference,
as it is graphically shown in Figure 8.3. From results (8.11), it can be deduced
that, in this example, proportional allocation principles based on partial
contributions are generally more distant from the neutral allocation than
the rest (with X being the only exception). Additionally, when comparing
pairs of compositions with the same risk measure involved, it becomes evi-
dent that the most different behavior is the one linked to principles depend-

. 1/20,1/8 . o - oo
ing on GlueVaRgg'5, o5o, risk measure (the pair X3 and Xg). So, in this exam-
1/20,1/8

ple, when using GlueVaR99 =9 95%
location criterion (stand-alone versus based on partial contributions) seems

as arisk measure, the selection of the al-

to be more relevant than when using the other two GlueVaR risk measures
under consideration.

As a final application, the three relative stand-alone allocations displayed
in (8.10) are averaged by means of the simplicial arithmetic mean. The rel-
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ative principles based on partial contributions are also averaged. Finally,
the simplicial arithmetic mean of these previous averages is obtained, just
for the sake of mixing both perspectives in one single principle following a
hierarchical approach in which the distribution criterion (as mentioned in
Section 6.1 of Chapter 6) plays an important role.

With respect to the stand-alone proportional allocation principles, the geo-
metric means of the three components (7 = 3) of the three (1 = 3) relative
capital allocations, denoted as G, G2 and Gs, respectively, are computed.
Their values are

Gy = (50.41% - 63.51% - 54.44) /3 = 55.86%,
G, = (45.8% - 28.38% -32.22)'/% = 34.73% and
Gs = (3.79%-8.11%-12.22)'/3 = 7.22%.

Following expression (8.8), we calculate the value of € [(G1, G2, G3)], i.e. the
closure of the vector with components being the geometric means Gi, Gz
and Gs. By doing so, the value of the simplicial average AMa (X7, X2, X3) is
obtained which is a relative allocation principle. Similarly, the simplicial
arithmetic mean of the relative principles based on partial contributions
AMA (X4, X5, Xg) is also obtained. Both results are shown in Table 8.2.

Table 8.2 Simplicial means of the capital allocation principles

Xq X X3
AMQ (X7, X5, X3) 57.11% 35.51% 7.38%
AM (%3, B, %5) 46.64%  50.60%  2.74%

As it can be proved, the components of the simplicial averages are not equal
to the arithmetic mean of the components of the original principles. In fact,
the components of the simplicial average are linked to the geometric mean
of the components of the original relative principles. As a final result, let us
average the two principles displayed in Table 8.2. In this case, the geometric
means of the three components (1 = 3) of the two (m = 2) relative capital
allocations, denoted as G}, G, and G, respectively, are computed. Their
values are

Gy = V57.11%-46.64% = 51.61%,



CAPITAL ALLOCATION PRINCIPLES AS COMPOSITIONAL DATA 135

Gj = V35.51%-50.62% = 42.39% and
Gy =V7.38%-2.74% = 4.5%.

In order to obtain the final result, we need to calculate the closure of i =
(G}, G}, G}). This is

AMA (AM (X7, X2, X3), AMA (X3, X5, X)) = €[] .

This relative principle is

(52.40%, 43.04%, 4.57%).

Final remark. Another feasible approach to reach this unique allocation

would be to calculate the simplicial arithmetic mean of the whole set of rel-

ative principles shown in (8.10). It has to be noted that the result would
certainly be different, because this last approach would lack the specific ag-
gregation hierarchy that we have imposed herein.

8.3 Exercises

1.

In the example presented in Section 8.2.4, calculate the simplicial dis-
tance between AMa (AMa (X1, X2, X3), AMa (X3, X5, X)) and AMp (7,
Xy, X3, X3, X5, Xg) where X;, i = 1,...,6, are the relative principles shown
in (8.10).

. Observe the distances between principles shown in the example pre-

sented in Section 8.2.4, find a stand-alone allocation which is located be-
tween X and X5.

. Assume an allocation principle in a situation of n different sources that

assigns an allocation equal to 2i/(n(n + 1)) for therisk i, i = 1,...,n.
Show that this is not the neutral allocation and find the distance to this
element as a function of n. Calculate the behaviour of this distance as n
increases.

. In the same situation as in the previous exercise, propose another allo-

cation for i, i = 1,..., n, different to the neutral allocation and compare
itto2i/(n(n+1)) fortheriski,i=1,...,n.

. Assume a situation of n different sources that assigns an allocation equal

to2i/(n(n+1)) for therisk 7, i = 1,..., n, find an average allocation that
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summarizes the allocations provided by this one and the neutral alloca-
tion. Find the average allocation now also with the third allocation that
you proposed in the previous exercise.



