
7 Capital allocation based on

GlueVaR

In Section6.1 of theprevious chapter a set of elements to fully describe a cap-

ital allocation problemwere identified. Nonetheless, two of those elements

are of main importance: the assignment criterion and the functions used to

simplify the information provided by each random loss. So, one could think

that guidelines about how capital should be shared among firm’s units are

basically defined in terms of two components: (1) a capital allocation crite-

rion and (2) a risk measure. The choice of the specific form for each com-

ponent is essential as different capital allocation solutions result from the

specific selected combinations.

In this chapterweconsider the framework suggestedbyDhaene etal. [2012b].

Under this framework, capital allocation principles are interpreted as solu-

tions to optimization problems. This approach has been followed in the re-

cent literature [see, for instance You and Li, 2014; Zaks and Tsanakas, 2014].

7.1 A capital allocation framework

Most of theproportional allocationprinciples canbedescribed in the frame-

work suggested by Dhaene et al. [2012b]. Under this unifying framework

a capital allocation problem is represented by means of three elements: a

non-negative function (which is usually linked to a norm), a set of weights,

and a set of auxiliary random variables. However, the Haircut allocation

principle could not be fitted into this framework despite its simplicity: the

Haircut allocation principle combines a stand-alone proportional capital al-

location criterion with the classical Value at Risk.

Here, the extension of the framework due to Dhaene et al. [2012b] is de-

scribed. This was suggested in Belles-Sampera et al. [2014b]. A slight modi-

ficationof the original frameworkwas proposed, consisting in relaxing some
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of the conditions in order to allow the inclusion of the Haircut capital allo-

cation principle.

Assume that a capital K > 0 has to be allocated across n business units de-

noted by i = 1, . . . ,n. Any capital allocation problem can be described as

the optimization problem given by

min
K1,K2,...,Kn

n∑
j=1

v j ·E
[
ζ j ·D

(
X j −K j

v j

)]
s.t.

n∑
j=1

K j = K , (7.1)

with the following characterizing elements:

(a) a function D :R→R+;

(b) a set of positive weights vi , i = 1, . . . ,n, such that
∑n

i=1 vi = 1; and

(c) a set of random variables ζi , i = 1, . . . ,n, with E[ζi ] <+∞.

Unlike the original framework provided by Dhaene et al. [2012b], a distinc-

tion ismade in (c) so that each ζi is nowno longer forced to be positive with

each E[ζi ] equal to 1.

To conclude, there exist a relationshipbetween this capital allocation frame-

work and aggregation functions. Aggregation functions may be defined as

solutions to optimization problems, as proposed in De Baets [2013]. Capi-

tal allocation problems are disaggregation problems and therefore, to some

extent, the goal of capital allocation principles is the opposite of the goal of

aggregation functions, which is a summarizing purpose. Nonetheless, the

optimization perspective taken into account in expression (7.1) involves ag-

gregation operators in the objective function. For instance, one can think

of the function E

[
n∑

j=1
v j ·ζ j ·D

(
X j −K j

v j

)]
to be minimized in (7.1) as the

composition of two main aggregation operators: one aggregation operator

is given by expression
n∑

j=1
v j ·ζ j ·D

(
X j −K j

v j

)
and the other one is themath-

ematical expectation E. It has to be noted that a similar perspective is pro-

posed in Xu and Hu [2012], where the first aggregation functionmay be rep-

resented asΨ(L(~K )) =Ψ(∑n
j=1ψ(X j −K j )

)
, whereψ is a function usually

linked to a distance andΨ an increasing function (which could be the iden-

tity function, for instance).
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7.2 The Haircut capital allocation principle

Following themodification thatweproposed inBelles-Sampera etal. [2014b],

the Haircut capital allocation solution can be obtained from the minimiza-

tion problem (7.1). If a capital K > 0 has to be allocated across n business

units, the Haircut allocation principle states that the capital Ki to be as-

signed to each business unit must be

Ki = K ·
F−1

Xi
(α)

n∑
j=1

F−1
X j

(α)
, ∀ i = 1, . . . ,n, (7.2)

where Xi is the random loss linked to the i th business unit, F−1
Xi

is the in-

verse of the cumulative distribution function of Xi and α ∈ (0,1) is a given
confidence level.

Let us consider di = min
{
d Ê 1 | 0 < |M d [Xi ]| < +∞}

for all i = 1, . . . ,n,
where M d [Xi ] = E[X d

i

]
is the moment of order d > 0 of random variable

Xi . Note that di Ê 1 for each i to face a feasible capital allocation problem.

In other words, if a business unit presents a random loss with no finite mo-

ments, then the risk taken by that business unit is not insurable/hedgeable.

The approach for fitting the Haircut allocation principle in the framework

linked to the optimization problem (7.1) can be summarized as follows: if a

constant ri must be expressed as ri = E[ζi ·Xi ], then using ζi = X
di −1
i

M di [Xi ]
·ri , a

solution is found because E[ζi ·Xi ] = E[(X di

i /M di [Xi ]
)]·ri = ri . Although

this is an elegant approach, the interpretation of the transformation made

by ζi on Xi is intricate.

Proposition 7.1. Let us consider a confidence level α ∈ (0,1). Then, the three
characterizing elements required to represent the Haircut allocation principle

in the general framework defined by (7.1) are:

(a) D(x) = x2,

(b) vi = E[ζi ·Xi ]
n∑

j=1
E[ζ j ·X j ]

, i = 1, . . . ,n; and

(c) ζi =
X di−1

i

M di [Xi ]
·F−1

Xi
(α), i = 1, . . . ,n.
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Proof. In this setting, it is straightforward to show that the solution ~K =
(K1,K2, . . . ,Kn) to the minimization problem (7.1) is the Haircut allocation

solution expressed by (7.2). Dhaene et al. [2012b] show that, if function D is

the squared Euclidean norm (D(x) = x2), then any solution to (7.1) can be

written as

Ki = E[ζi ·Xi ]+ vi ·
(

K −
n∑

j=1
E[ζ j ·X j ]

)
, for all i = 1, . . . ,n. (7.3)

In this setting, vi = E[ζi ·Xi ]/
∑n

j=1E[ζ j ·X j ] for each i , so

Ki = E[ζi ·Xi ]+K · E[ζi ·Xi ]
n∑

j=1
E[ζ j ·X j ]

−E[ζi ·Xi ] = K · E[ζi ·Xi ]
n∑

j=1
E[ζ j ·X j ]

.

And, finally, for all i it holds that E [ζi ·Xi ] = F−1
Xi

(α) because of (c). There-

fore, each Ki in the solution ~K is given by

Ki = K ·
F−1

Xi
(α)

n∑
j=1

F−1
X j

(α)
.

ä

Some comments on vi weights and ζi auxiliary random variables follow.

Capital allocation principles driven by (7.3) can be thought of as two step

allocation procedures: in a first step, a particular quantity (Ci = E[ζi · Xi ])
is allocated to each business unit. As the sum of all these quantities does

not necessarily equal K (i.e.,
∑n

j=1 C j 6= K ), in the second step the differ-

ence
(
K −∑n

j=1 C j

)
is allocated to the business units considering weights

vi . From this perspective, Ci capitals are expected values of Xi losses re-

stricted to particular events of interest and, therefore, ζi auxiliary random

variables are used to select those events of interest for each business unit.

On the other hand, vi weights are related to the second step of the proce-

dure, indicating how the difference between K and
∑n

j=1 C j must be dis-

tributed among business units. For a deeper interpretation of vi weights

andζi auxiliary randomvariables inmore general cases, the interested reader

is referred to Dhaene et al. [2012b].

A remark on the gradient allocation principle. This principle can be fitted

into the framework introduced by Dhaene et al. [2012b] following a similar



CAPITAL ALLOCATION BASED ON GLUEVAR 117

strategy than the one in Proposition 7.1, but changing F−1
Xi

(α) by
∂ρ

∂ui
(S) for

all i = 1, . . . ,n. Or, in other words,

D(x) = x2, vi = E [ζi ·Xi ]
n∑

j=1
E[ζ j ·X j ]

and ζi =
(

X di−1
i

M di [Xi ]

)
· ∂ρ
∂ui

(S)

for all i = 1, . . . ,n. Therefore, we find again that the gradient allocation prin-
ciple is a proportional principle based on partial contributions, althoughwe

have now used a side track to arrive to this conclusion.

7.3 Proportional risk capital allocation principles

using GlueVaR

The three characteristic elements of the framework suggested by Dhaene

et al. [2012b] are function D , weights vi and a set of appropriate ζi , for

all i = 1, . . . ,n. According to the notation used by Dhaene et al. [2012b],

we deal with business unit driven proportional allocation principles when

ζi depends on Xi . If ζi depends on S = ∑n
i=1 Xi then we have aggregate

portfolio driven proportional allocation principles. In the former case, the

marginal risk contributions of business units to the overall risk of the port-

folio are not taken into account; in the latter, they are. Adopting the no-

tation introduced in the previous chapter, principles belonging to the first

category are here denoted as stand-alone proportional allocation principles

while principles in the second category are denoted as proportional alloca-

tion principles based on partial contributions.

In this chapter, two GlueVaR based proportional capital allocation princi-

ples that we suggested in Belles-Sampera et al. [2014b] are presented. Both

principles share the expressions for twoof the three characterizing elements:

D(x) = x2 and vi = E [ζi ·Xi ]
n∑

j=1
E
[
ζ j ·X j

] , for all i = 1, . . . ,n.

They differ in the set of random variables ζi , i = 1, . . . ,n, which are pre-

sented below for the case of continuous random variables Xi .
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7.3.1 Stand-alone proportional allocation principles using

GlueVaR

Given two confidence levels α and β in (0,1), α<β, and two distorted sur-
vival probabilities h1 and h2, if ζi is fixed as

ζi =ω1 ·
1

[
Xi Ê F−1

Xi
(β)

]
1−β +ω2 ·

1

[
Xi Ê F−1

Xi
(α)

]
1−α

+ω3 ·
X di−1

i

M di [Xi ]
·F−1

Xi
(α), for all i = 1, . . . ,n, (7.4)

then the stand-alone proportional allocation principle using as risk mea-

sure the GlueVaR
h1,h2

β,α can be represented in themodified capital allocation

framework explained in Section 7.1. Components of the solution (K1,K2, . . . ,
Kn) are expressed as

Ki = K ·
GlueVaR

h1,h2

β,α (Xi )

n∑
j=1

GlueVaR
h1,h2

β,α (X j )
, for all i = 1, . . . ,n. (7.5)

7.3.2 Proportional allocation principles based on partial

contributions using GlueVaR

Similarly, if there exists a confidence level α∗ ∈ (0,1) such that F−1
S (α) =∑n

j=1 F−1
X j

(α∗), the proportional allocation principle based on partial con-

tributionsusingGlueVaR
h1,h2

β,α canbe fitted to themodified capital allocation

framework detailed in Section 7.1. In this case, ζi has to be equal to

ζi =ω1 ·
1

[
S Ê F−1

S (β)
]

1−β +ω2 ·
1

[
S Ê F−1

S (α)
]

1−α

+ω3 ·
X di−1

i

M di [Xi ]
·F−1

Xi
(α∗), for all i = 1, . . . ,n. (7.6)

Each component of the solution (K1,K2, . . . ,Kn) is then obtained as

Ki = K ·
[
ω1 ·

E
[

Xi | S Ê F−1
S (β)

]
GlueVaR

h1,h2

β,α (S)
+ω2 ·

E
[

Xi | S Ê F−1
S (α)

]
GlueVaR

h1,h2

β,α (S)

+ω3 ·
F−1

Xi
(α∗)

GlueVaR
h1,h2

β,α (S)

]
. (7.7)
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Alternatively, another approach canbe considered. There exists a set of con-

fidence levelsα j ∈ (0,1), for all j = 1, . . . ,n, such thatF−1
S (α) =∑n

j=1 F−1
X j

(α j ).
Therefore, the proportional allocation principle based on partial contribu-

tions usingGlueVaR
h1,h2

β,α can also be fitted to themodified capital allocation

framework. In this case, ζi have to be equal to

ζi =ω1 ·
1

[
S Ê F−1

S (β)
]

1−β +ω2 ·
1

[
S Ê F−1

S (α)
]

1−α

+ω3 ·
X di−1

i

M di [Xi ]
·F−1

Xi
(αi ), for all i = 1, . . . ,n. (7.8)

Each component of the solution (K1,K2, . . . ,Kn) is then obtained as

Ki = K ·
[
ω1 ·

E
[

Xi | S Ê F−1
S (β)

]
GlueVaR

h1,h2

β,α (S)
+ω2 ·

E
[

Xi | S Ê F−1
S (α)

]
GlueVaR

h1,h2

β,α (S)

+ω3 ·
F−1

Xi
(αi )

GlueVaR
h1,h2

β,α (S)

]
. (7.9)

A final comment related to non-proportional capital allocation principles

using GlueVaR. It has to be mentioned that it is possible and straightfor-

ward to obtain non-proportional principles using any of the auxiliary ran-

dom variables ζi described in expressions (7.4), (7.6) or (7.8). If function

D(x) = x2, then the only thing that must be taken into account is that at

least one of the weights vi , i = 1, . . . ,n, must be different from E[ζi · Xi ]/(∑n
j=1E[ζ j ·X j ]

)
. Under these restrictions, whatever set of auxiliary random

variables~ζ is chosenamongexpressions (7.4), (7.6) or (7.8), non-proportional

capital allocation principles ~K using GlueVaR are obtained through expres-

sion (7.3).

7.4 An example of insurance risk capital allocation

using GlueVaR on claim costs

Data of previous chapters are used to illustrate the application of capital

allocation principles based on GlueVaR risk measures. Table 7.1 shows risk

values for this example. The last column presents diversification benefit,

which is the difference between the sum of the risks of X1, X2 and X3 and

the risk of X1 + X2 + X3. In this example, VaR95% and one of the GlueVaR

risk measures are not subadditive in the whole domain.
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Table 7.1 Risk assessment of claim costs using GlueVaR risk measures

X1 X2 X3 X1 +X2 +X3 Difference(∗)

(a) (b) (c) (d) (a)+(b)+(d)-(c)

VaR95% 2.5 0.6 1.1 5.9 −1.7

TVaR95% 12.5 8.0 1.3 19.7 2.1

TVaR99.5% 40.8 42.1 1.8 81.1 3.6

GlueVaR11/30,2/3
99.5%,95% 18.6 16.9 1.4 35.6 1.3

GlueVaR0,1
99.5%,95% 9.4 4.2 1.2 12.9 1.9

GlueVaR1/20,2/8
99.5%,95% 4.9 2.9 1.1 10.2 −1.3

(∗) Benefit of diversification.

Next, a capital allocation application is illustrated where total capital has to

be allocated between the three units of risk, X1, X2 and X3. Table 7.2 shows

particular allocation solutions for two proportional risk capital allocation

principles using GlueVaR.

Adifferent pattern is observed for the threeGlueVaR riskmeasureswhen the

stand-alone criterion or the partial contribution criterion is considered. In

the case of the stand-alone criterion, the capital is allocated primarily to risk

X1, followed by X2 and X3, respectively. Let us focus on capital allocation

solutions involving the partial contribution criterion in which confidence

levels α j , j = 1, 2, 3, are not forced to be equal across the risk units. A no-

table increase in the risk allocated to X2 is observed if a partial contribution

criterion with no constant level α j and GlueVaR
1/20,2/8
99.5%,95% is chosen1.

This result is obtained because the impact on the quantile of X2 is the op-

posite of that on X1 and X3 when α j , j = 1, 2, 3, are estimated as F−1
S

(95%) = F−1
X1

(α1)+F−1
X2

(α2)+F−1
X3

(α3). These confidence levels are equal
to α1 = 26%, α2 = 98% and α3 = 43%. So, the associated quantiles for in-

dividual variables are VaR26%(X1), VaR98%(X2) and VaR43%(X3). The risk
contribution of X1 and X3 are underweighted compared to the risk contri-

bution of X2. If we interpret the GlueVaR risk measure as a linear combina-

1 The partial contribution criterion with constant level is not calculated in this example.

However, there is a α∗ = 95,42% such that VaR95%(Z ) '∑3
j=1 VaR95,42%(X j ).
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Table 7.2 Proportional capital allocation solutions using GlueVaR for the claim
costs data

Proportion

allocated to

X1

Proportion

allocated to

X2

Proportion

allocated to

X3

Stand-alone criterion

GlueVaR11/30,2/3
99.5%,95%

50.41% 45.80% 3.79%

GlueVaR0,1
99.5%,95%

63.51% 28.38% 8.11%

GlueVaR1/20,1/8
99.5%,95%

54.44% 32.22% 12.22%

Partial contribution criterion with non constant (a) α j

GlueVaR11/30,2/3
99.5%,95%

(b) 46.42% 51.74% 1.84%

GlueVaR0,1
99.5%,95%

(b) 68.19% 26.86% 4.95%

GlueVaR1/20,1/8
99.5%,95%

(b) 25.11% 73.11% 2.78%

(a) Confidence levels α j ∈ (0,1) are selected to satisfy F−1
S (95%) = F−1

X1
(α1) +

F−1
X2

(α2)+F−1
X3

(α3). In this case α1 = 26%, α2 = 98% and α3 = 43%.

tion ofω1 ·TVaR99.5%+ω2 ·TVaR95%+ω3 ·VaR95%, the associated weights

of the GlueVaR1/20,2/8
99.5%,95% areω1 = 1/24, ω2 = 1/12 andω3 = 21/24. So, the

GlueVaR1/20,1/8
99.5%,95% reflects a risk measurement attitude just a bit more con-

servative than VaR95%, giving the largest weight to this risk value. Bearing

in mind the quantitative tools that we have proposed in Chapter 5 to assess

aggregate risk attitudes, the latter statement is reinforced by the following

fact: the area under the distortion function of GlueVaR1/20,2/8
99.5%,95% is

1

24
· 1+99.5%

2
+ 1

12
· 1+95%

2
+ 21

24
·95% = 0.042+0.081+0.831

= 95.4%

which is, effectively, slightly higher than 95%, the size of the area associated

to VaR95%.
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7.5 Exercices

1. Consider two risks that are Normally distributed withmeans, µ1 and µ2,

both non-negative and covariance matrix S. Write a program to imple-

ment the GlueVaR stand-alone allocation principle assuming that the

inputs are the distribution parameters and, in addition,α, β,ω1,ω2 and

ω3.

2. Assume n random variables, each one is uniformly distributed in the in-

terval [0,100]. Consider the GlueVaR stand-alone allocation principle,

whereω1 =ω2 =ω3, express the result of the allocation to each compo-

nent in terms of n, α and β.

3. Assume n random variables, each one is uniformly distributed in the in-

terval [0,100]. Consider the GlueVaR stand-alone allocation principle,

whereα= 0.95 andβ= 0.99, express the result of the allocation to each
component in terms ofn,ω1,ω2 andω3 and discuss the particular cases

whenω1 = 1 orω2 = 1.

4. Consider the example described in Section 7.4 and consider a change of

monetary units, which means that each variable is multiplied by a con-

stant E > 0, where E is the exchange rate. How would that modification

affect the capital allocation results if nothing else changes?


