4 GlueVaR and other new risk
measures

This chapter is structured in two parts. Analytical closed-form expressions
of GlueVaR risk measures for commonly used statistical distributions in the
insurance context are derived. These closed-form expressions should en-
able practitioners to undertake an effortless transition from the use of VaR
and TVaR to GlueVaR. Third order Cornish-Fisher approximations to Glue-
VaR risk measures for general skewed distribution functions are also intro-
duced in this chapter. Finally, the relationship between GlueVaR, Tail Dis-
tortion risk measures and RVaR risk measures are shown.

41 Analytical closed-form expressions of GlueVaR

A useful consequence of (3.4) is that when analytical closed-form expres-
sions of VaRy (X) and TVaR,(X) are known for a random variable X, the
closed-form expression of GlueVaRhl('Zh2 (X) can automatically be derived
without further complications. Otherwise, using the definition of GlueVaR
as a distortion risk measure, the Choquet Integral of X with respect to the
set function k™" o P should be calculated.

1
Ba

411 Illustration: GlueVaR expression for Student ¢ distribution

Let X be a random variable such that X = K is distributed as a Student

o
t random variable with v degrees of freedom (df). In such a case, X has u

2
Then

mean and a standard deviation equal to

VaRy(X) =pu+o-ty

T(ta) '(v+ té)

TVaRy(X)=u+o
o X)=H l-a \v-1
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where £, is the a-quantile of a Student # distribution with v df and 7 is its
density function.
Using (3.4) the GlueVaR of random variable X is

2
hushs gy t(ip) (V*ip
GlueVaRﬁjQZ(X)_wl- H+o-.1_ﬁ.
3 +12
+wr |u+o-—— ) (VHig ]+(1—w1—w2)-(u+0-ta)
l-a \v-1
2
Iy hz—h1) V+l‘ﬁ
pro (1—[5 B-—a v(tp) v—1

hy—h r2
42 l-r(ta)-(v+ “)+(1—h2)-ta .
B-a -1

4.2 Analytical expressions for other frequently used
distributions

Normal (A"), Lognormal (£ .4") and Generalized Pareto ($42?) distribu-
tions have simple closed-form expressions of GlueVaR. The same notation
conventions that were introduced in Chapter 1 are used. Namely, ¢ and
® stand for the standard Normal pdf and cdf, respectively. The standard
Normal distribution @ and 8 quantiles are denoted as g, = ®~!(@) and
qp = o! (B). For the 927 distribution, the definition provided in Hosking
and Wallis [1987] is considered, where the scale parameter is denoted by o
and k is the shape parameter. The ¢ 22 distribution contains the Uniform
(k = 1), the Exponential (k = 0), the Pareto (k < 0) and the type II Pareto
(k > 0) distributions as special cases. Closed-form expressions of GlueVaR
for several distributions are presented in Table 4.1. Note that there are some
exceptions to the general rule to deduce these closed-form expressions to
be considered. When X follows a Pareto distribution with k < 1 and for
any confidence level @, TVaR, (X) = +o0o as we have shown in Table 1.3 of
Chapter 1. But when h; =0 GIueVaRZl’ ?(X) is finite. There is a compensa-
tion effect between TVaR (X) and TVaRpg(X). This is taken into account in
Table 4.1.
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Table4.1 Closed-form expressions of GlueVaR for some selected distributions

Er)sl:rlbu— GlueVaRp, ooz €Xpression
hy — Iy I
Normal: p+0-qo-(1-h2)+0- f-a [p(ga) —p(gp)l +0- -5

JV(H»O'Z) (,b(qﬁ)

exp(i+0-qq)-(1-hy)

: 0%\ ha—hy
Lognormal: +exp|u+—|- [@(0 = ga) — D(0 — gp)]
LN (0% 022 %‘“

+exp ,u+7)~1_1’6-<1)(0—qﬁ)

Exponen- 1-p b — B B
tial: o-[h —1n(1—a)]+a-(1—ﬁ)-ln( — ) CRA ]
4P (k,0), ’ l-a) | f-a 1=
with k=0

Continued on next page
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Table 4.1: continued from previous page

g(i)sr:ribu- GlueVaRﬁ, oohe €Xpression
+00 if k<s-1, h1 #0
%-[1—(1—a)"]
hy—h
+ﬁ 2 1.a-p-— [(1 Bk — (1 - k]
h2 hl U k+1 k+1
-y
if k<-1, h1 =0
L_ll
Pareto: g }l—ah
gg(kya)r 9 — 2”7 (1_ ).0‘ _1 _—1
with k<0 B- h 1-8 l1-a
hz—]’ll l1-a . _ _
™ h’l(m) if k= 1, hl—O
Z1-a-af
g hg—hl h1 k
+ (,B—a 1—ﬁ) (A-a)*-(1-pP)]
Jo-m o k-(1-a)k+!
B—a k k+1
_ 1- k+1
+(h2 h1_ hy ) o | B if ke (1,0)
B-—a 1-8) k k+1
o (& hz—hl h1 ) k
~—.[1-Q1 - (1= (1=
k[(a)]k(ﬂ_a ) 10— -a-p)
Type I
Pareto: hy — a k-(1-a)k+!
42(k,0), B-a k k+1
with k>0 +(h2—h1_ hy ) o (1—,3)k+1
B-—a 1-8) k k+1

41.3 The Cornish-Fisher approximation of GlueVaR

General considerations about Cornish-Fisher VaR methodologies have been
pointed out in Section 1.2.2 of Chapter 1. Approximations to GlueVaR risk
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measures for general skewed distribution functions using a Cornish-Fisher
expansion of their quantiles are provided in this section. In insurance ap-
plications managers often have to face to highly skewed random variables
with right fat tails. In many of these situations, however, they do not know
whether the underlying random variable of interest is distributed according
to a known parametric distribution function. In those situations that the
distribution is unknown, the value of the common quantile-based risk mea-
sures is routinely approximated by practitioners. It is shown that approxi-
mations of GlueVaR risk measures for general unknown skewed distribution
functions can be directly obtained by means of the relationship of GlueVaR
risk measures and the standard quantile-based risk measures.

The Cornish-Fisher expansion is widely used by practitioners to approxi-
mate the VaR (X) and TVaR, (X) values when the random variable follows
a skewed unknown distribution [see Cornish and Fisher, 1937; Fisher and
Cornish, 1960; Johnson and Kotz, 1970; McCune and Gray, 1982]. The VaR
and TVaR measure values can be approximated as VaRy (X) = g+ ¢p,q0
and TVaRq (X) = U+ Gty,q0, where u = E[X], 02 = V[X] and both Gu,a
and ¢y, are modified quantiles of the standard Normal distribution that
take into account the skewness of the distribution function of X.

Following Sandstrém [2007], the modified quantiles ¢, and gy o are com-
puted as follows. Let us consider y = E[(X — )3]/0® as a measure of the
skewness of the random variable X. If g, = ® (@) and ¢ are the a-quantile
and the density function of the standard Normal distribution, respectively,
then q,,q and §;,,q can be written as,

_ a1 Y -1 2_J]_ Yi2_
qua =P (a)+6[(<I> (06)) 1]—qa+6[qa 1]’

Cp@T@) sy, 3] ) [, Y s
dra=—T—— [1+€(c1> (a))]——l_a[1+gqa].

Extensions of the Cornish-Fisher expansion that consider moments ofhigher
order than y have been provided in the literature [see, for instance, Gi-
amouridis, 2006]. More details can be found in Appendix B of Sandstrom
[2011].

Given the interpretation of a GlueVaR risk measure as a linear combination
of risk measures which was shown in (3.4), the approximation for the Glue-
VaR of the random variable X following the Cornish-Fisher expansion can
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be obtained as

h],hz ~ hl hz_hl Y 3

OVl (0 =pve (1—/5_ p-a Jotan 1+ i)
he — Y 3 Yo 2

4 S Jotaa (142 a2)+a-n (L (6 -1)+ aa)].

The error of the approximation is upper bounded by the maximum error
incurred when approximating VaR (X), TVaR (X) and TVaRg(X) using the
equivalent Cornish-Fisher expansion for skewed distributions. This result is
straightforward. It follows from the linear relationship shown in expression
(3.4) and taking into account that weights w1, w3 and w3 are lower or equal
than one, satisfying that w; + w2 + w3 = 1.

4.2 On the relationship between GlueVaR and Tail
Distortion risk measures

As it has been aforementioned, different works that pay attention to risk
measures based on distortion functions or based on several generalizations
of quantiles have appeared in recent years. See, for instance, Zhu and Li
[2012]; Bellini and Gianin [2012]; Bellini et al. [2014]; Dhaene et al. [2012a]
and Goovaerts et al. [2012].

This section is devoted to reveal the connections between GlueVaR risk mea-
sures and Tail Distortion risk measures. To the best of our knowledge, Tail
Distortion risk measures were introduced in Zhu and Li [2012]. Here the no-
tation used for these family of risk measures is adapted from that in Lv et al.
[2013]. Consider a distortion function g, this is a non-decreasing and injec-
tive function g from [0, 1] to [0, 1] such that g(0) =0 and g(1) =1, and a
confidencelevel a € (0, 1). The Tail Distortion Risk Measure Ty, o associated
to g and « is defined as the distortion risk measure with distortion function
8a, where

ga(u)=g($)-l[0<u<1—a]+11[1—LxSLts1].

Note that 1[0 < u < 1 — a] is a function that takes value 1 in the interval
[0 < u <1-a] and 0 elsewhere. In other words, if X is a random variable
representing a loss in a probability space (€2, o/, P) and its survival function
is Sx(x) = P(X > x), then

+00

0
Tg,a(X):f [ga(Sx(x))—l]dx+f0 8a(Sx(x))dx. (4.1)
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Note that g, is continuous in 1 — & or, alternatively, g, (1 — @) = 1.

Proposition 4.1. Consider a GlueVaRwl’w2 risk measure with parameters a,
B, w1 and w». This GlueVaR is equalent to a Tail Distortion risk measure Tg o

if, and only if, w2 =1 — w1 and

g(n = %;m+l—w1 - 1fost<1-a)7t-(1-P)]

++A-w)-0-1[0-o)-a-p<t<1]. (42)

The proof is provided in Section A.3 of the Appendix.

Note that only GlueVaR risk measures with w3 = 0 can be represented as
Tail Distortion risk measures, because w; + w3 + w3 = 1 must hold as part of
the definition of a GlueVaRwl'w2 risk measure. In other words, one can only
represent as Tail Distortion rlsk measures those GlueVaR that do not weight
the part corresponding to the VaR,,.

The origin of GlueVaR risk measures can be found in Belles-Sampera [2011].
As a curiosity, the definition of a parametric family of risk measures named
PUp-TVaR can also be found therein, which are exactly the Tail Distortion
risk measures linked to Proportional Hazards Distortion functions g(u) =
wa, a> 1 from the perspective of Zhu and Li [2012].

4.3 On the relationship between GlueVaR and RVaR
risk measures

To the best of our knowledge RVaR risk measures were introduced in Cont
et al. [2010]. This section is dedicated to show a close relationship between
GlueVaR risk measures and the RVaR family. We have recently discovered
this connection. It is highly probable that some synergies between the re-
search associated to both families are going to arise. For instance, existing
results related to capital allocation principles using RVaR [see, for instance,
Embrechts et al, 2016] and the ones obtained with GlueVaR (which we are
going to present in Chapter 7) may be interconnected. Another example of
these synergies may be found in the analysis of risk attitudes that we present
in Chapter 5 because, as we will show, the application of our assessment
tools are straightforward in RVaR risk measures.

Let X be an absolutely continuous random variable, which positive values
represent losses. Let a, § € [0,1]. The value of the risk measure RVaR,, B
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applied to X is, by definition, the following:

1 ra+p

Bf VaRy (X)dy if >0
a

VaR, (X) if =0

RVaR, g(X) = { (4.3)

The notation used for VaR is not the one used when defining GlueVaR risk
measures, because VaRy (X) in (4.3) refers to the 100(1—a)% quantile while
in GlueVaR definition the notation VaR, (X) is used to representing the
100a% quantile. In order to find relationships between RVaR and GlueVaR
risk measures it is convenient to rewrite expression (4.3) as

1 ra+p

5 f VaR;_,(X)dy if >0
a

VaR;_q (X) if =0

RVaRy p(X) = { (4.4)

The notation used in definition of GlueVaR risk measures for VaR is incor-
porated in (4.4).
Note that

l1-a

1 a+f 1
—f VaRl_Y(X)dy= — VaR) (X)dA
BJa B 1-(a+p)

1 1 1
=— U VaR, (X)dA — VaR,l(X)d/l]
ﬁ 1-(a+p) l1-a

notation used in def. of 1
GlueVaR = B [(@+ B)TVaR;_(q4+p (X) — aTVaR;_4(X)]

:a+ﬁ

TVaR)_ (g (X) %TVaRl_a(X) (45)

Let us introduce some additional notation: a=1-a and b=1-f. So it
can be deduced that 1 — (¢ + 8) =a+b—1and that a + =2 — (a+ b).
Therefore, last expression in (4.5) may be rewritten as

2—(a+Db) l-a

WTVawa—l (X) - mTVaRa(X) (4.6)
Note now that a+ b —1 < a because a, b € [0,1], and this implies that
TVaR,(X) = TVaR ;4 -1 (X). Additionally, if

o1 = l1-a do _2—-(a+b)

1= -7 adwz = —— (4.7)
1 1-b

thenwy+wy=——[a-1+2—a-bl=——=1.

1-b 1-b
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Recall that a usual way to write the value of a GlueVaR risk measure applied
to X is as follows:

GlueVaRZ"hZ (X) = @1 TVaR5(X) + @ TVaRg (X)
+(1-@7-@3)VaRa(X)  (48)

where @7 and @; depend on parameters &, B, h; and hy.
Taking into account the previous expressions and notations, consider

d=a+b-1
p=a
l—a
@:wlz—l— (4.9)
. 2—(a+Db)
wWr=@Wy)=——
2 2 1-b

As long as @7 and @3 are related to h1 and hy by the next expression (as it
is shown in Section A.2 of the Appendix)

hy ) 1 =2 ( o )
= |= I- .
R[5 w
it is deduced from (4.9) and (4.10) that
—~ l-a [2-(a+Db) l-a -(0-a+0-a)
hl + =0
“1-b 1-b —(a+b) 1-b (41)
™ 1- a. 2—(a+b) _1 b_1 4
2T 1o 1-b | 1-b
So, putting (4.8), (4.9) and (4.11) altogether the following expression holds:

1-
GlueVaRg Ly (X =— Tb 2 TvaR,,(X)
—(a+b)
+ WTVEIRtH_b_I(X). (4.12)

The right-hand side of expression (4.12) is exactly expression (4.6). This
means that, for § > 0 (or, equivalently, for b < 1),

RVaR, s = GluevaR"!

a,a+b-1"

For f =0 (or b = 1), expression (4.12) isnot well defined, but a+b—1 = ain
such a case and it can be checked that GlueVaRg’,la =VaRy,. To get the feel-
ing that this is correct, let us plot the distortion function of GlueVaRg’; b1
in Figure 4.1.
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Figure 4.1 Distortion function of GIueVaR?l'lu p distortion risk measure.

+

1

GluevaR*!

a,a+b=1

1-a 2-(a+Db) 1

Looking at the plot of the distortion function in Figure 4.1, if b = 1 then
2 —(a+ b) = 1— a and then the distortion function of VaR, would appear.
In addition, if @ = 1 (which means that @ = 0) then the distortion function
of TVaR, is obtained. As it is one of the purposes of RVaR g risk measures,
it is possible to continuously moving from VaR; 4 to TVaR;_g.

Taking all the previous comments into account, the following equivalence
holds:

RVaRg 5 = GlueVaR), | (3.13)

4.4 Example

The example of risk quantification shown in Chapter 3 is followed to es-
timate GlueVaR risk measures considering alternative distributions. Out-
comes are shown in Table 4.2. The table is divided into four blocks, each
block representing the corresponding risk figures for the cost of claims for
property damage (Xj), the cost of claims of bodily injuries (Xz), the cost
of claims of medical expenses (X3) and the aggregate cost of claims (X; +
X> + X3). Risk measure values using the empirical distribution (first row)
are compared with outcomes when Normal, Lognormal, Student ¢ with 4
df and Generalized Pareto distributions are fitted to data. In the last two
rows of each block results are shown when risk measure values are approx-
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imated by a Cornish-Fisher expansion. The sample mean (fi = z), the sam-
ple deviation (62 = Y;(Z; — 2)?/(n — 1)) and the sample skewness (calcu-
latedasy = 573 ( Y (Zi— z2)3/ n)) are considered as estimators of i1, o and y
when Z is one of the four random variables X;, X», X3, X; + X» + X3. Sam-
ple statistics were computed using observations that fall below the 99.5%
quantile in order to exclude the effect of extreme losses on estimates (first
Cornish-Fisher approximation). That means, a subsample of the first 348 in-
creasingly ordered elements of the random variable were used to estimate
parameters. Therefore, the two highest values were considered as extreme
losses and were not included. Outcome values of risk measures were com-
pared with the risk measure approximations when all the observations are
included on sample estimates (second Cornish-Fisher approximation). All
the calculations were made in R and MS Excel.

Table4.2 Examples of risk measurement of costs of insurance claims using
quantile-based risk measures

GlueVaRgé";lé),%%

Model VaRgsy, TVaResy, TVaRegsn (35,2) 0,1 (55.3)

Xy
Empirical 2.5 12.5 40.8 186 94 49
Normal 6.9 8.5 11.6 90 81 72
Lognormal 2.7 8.7 32.7 14.5 5.4 4.4
Student £ (4 d.f.) 8.8 12.8 24.6 154 115 98
Pareto 2.5 5.5 18.1 87 41 34
Cornish-Fisher'® 8.5 27.8 128.4 549 16.6 15.1
Cornish-Fisher'?  16.3 59.1 284.0 1198 341 31.0

Xo
Empirical 0.6 8.0 42.1 169 42 29
Normal 6.0 7.4 10.2 79 71 63
Lognormal 1.6 5.8 25.7 11.0 3.6 3.0
Student (4 d.f.) 7.6 11.2 21.7 135 101 85
Pareto 1.6 3.5 11.9 57 26 22
Cornish-Fisher®® 2.2 2.7 3.7 29 26 23
Cornish-Fisher®” 6.1 7.5 10.3 80 72 64

X3
Empirical 1.1 1.3 1.8 1.4 1.2 1.1

Continued on next page
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Table 4.2: continued from previous page

GlueVaRSé::%,gs%
Model VaRgss, TVaResy, TVaRegsw (35,2) (0,1) (35.3)
Normal 0.9 1.0 1.3 1.1 1.0 09
Lognormal 0.8 1.4 3.2 1.8 1.2 1.0
Student ¢ (4 d.f.) 1.0 1.4 2.5 1.7 1.3 1.1
Pareto 0.9 1.4 3.0 1.8 12 10
Cornish-Fisher®® 1.0 2.1 7.6 36 15 14
Cornish-Fisher®? 1.1 2.0 6.1 31 15 14
X1+ Xo+ X3
Empirical 5.9 19.7 81.1 356 129 10.2
Normal 12.6 15.4 21.1 164 148 132
Lognormal 5.5 15.8 60.7 273 10.8 8.6
Student £ (4 d.f.) 16.0 23.2 44.4 278 208 177
Pareto 5.0 11.0 36.0 173 81 6.7
Cornish-Fisher®®  11.0 34.3 155.5 66.9 20.8 19.0
Cornish-Fisher*?  34.6 134.0 659.7 276.1 756 689

a) 17

£=0.5,0=

2.3 and ¥ = 6.4. Subsample without extreme losses.

The two largest values of X; are excluded.

ab) i

1=0.7,0=
R 1=026=

3.8 and ¥ = 8.7. Full sample.

1.2 and ¥ = 0. Subsample without extreme losses.

The two largest values of X, are excluded.

@b 1=0.5,6=
Ba §=03,6=

3.4 and ¥ = 0. Full sample.

0.3 and ¥ = 2.6. Subsample without extreme losses.

The two largest values of X, are excluded.

G p=03,6=
@0 1=1.0,6=

0.4 and ¥ = 1.4. Full sample.

3 and ¥ = 5.9. Subsample without extreme losses.

The two largest values of X; + X + X3 are excluded.

“b)

0=14,0=

6.8 and ¥ = 11.4. Full sample.

Some comments related to outcome values for Cornish-Fisher approxima-
tions of the quantile-based risk measures should be made. According to the
results, one could think that this kind of risk measurement corresponds to
a conservative attitude for the two types of approximations shown in Ta-
ble 4.2. The exception would be risk values obtained when Xj, is evaluated.
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Relevant differences are observed depending on the approximation finally
used on right skewed data. Outcome values related to the second Cornish-
Fisher approximation (full sample) are drastically large when the data are
severely right skewed distributed, as in the case of X; and Xj + X, + X3.
These outcome values would be associated to a excessively conservative (un-
realistic) attitude. If the first Cornish-Fisher approximation is considered,
i.e. when sample statistics were estimated excluding extreme losses, a sig-
nificant drop is observed although the outcome values for this approxima-
tion are still larger than those values associated with the empirical or the
parametric distributions for right-skewed random variables. Note that only
the two largest losses are not included in the sample estimates involving the
first approximation. When the data are slightly right skewed distributed,
as in the case of X3, the two Cornish-Fisher approximations show a bet-
ter performance. In other words, the Cornish-Fisher approximation should
be used with certain caution when the data are severely right skewed dis-
tributed. Probably higher order moments should be taken into account.
An important issue that arises from these results is the model risk. Even
when the same risk measure is used, huge differences are observed depend-
ing on the hypothesis about the underlying distribution of the claim cost
random variables. Let us assume that the regulator is focused on the VaRgsg,
for the aggregate cost X7 + X» + X3 as a measure of pure underwriting risk
(without taking into account the premium paid by the policyholders). Ifit is
supposed that the random variable is Pareto distributed, then the institution
will need 5 thousands of euros for regulatory solvency purposes. The com-
pany should set aside almost 3.2 times this economic amount whether the
underlying distribution is Student ¢ with 4 degrees of freedom. This topic
is out of the scope of this chapter. The interested reader is addressed, for
instance, to the study of Alexander and Sarabia [2012] which deals with VaR
model risk or to the reference Aggarwal et al. [2016] suggested at the end of
Chapter 1.

4.5 [Exercises

. 11/30,2/3
1. Determine if the GlueVaRgg‘s% 959 ©

able X with A (u = 5,02 = 16) satisfies the expressions related to the
properties of Translation invariance, Positive homogeneity and Strictness.

f a Normal distributed random vari-

2. Consider the Normal distributed random variable X; with A (u = 5,02 =
16) and the Normal distributed random variable X, with A (i = 4, 0?=
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20). Show that:

- VaR,(Z) is equal to VaR, (X1) + VaR (X») for any « in the case that
vy =1, where Z = Xj + X5 and ryy is the Pearson linear correlation
coefficient.

* When ryy <1, then VaR, (Z2) < VaRq (X1) + VaRq (Xa).

. 1/20,1/8 .
Repeat the analysis for the GlueVaRyg'5. 455 risk measure.

3. Check that if X is distributed as a Pareto (X ~ 922(k,0), with k < 0),
the expression for TVaR (X) shown in Table 1.3 may be obtained either:

1 1
- From Definition 1.9 (i.e, TVaRy(X) = 1—] VaR) (X)dA), or
—-a Jq

- From the expression of TVaR (X) as a distortion risk measure shown
in Section 3.2 (i.e.

0

TVaR, (X) = f

—00

+00
[ya (Sx(x) - 1] dx+ fo Ya (Sx () dx,

where Y, is the distortion function displayed in Table 3.2).

Hint: Note that, in this case,
k 1/k
(1——VaRa(X)) =Sxy(VaRgy(X) =1-a.
g

0,1

4. Obtain the RVaR risk measure equivalent to the GlueVaRgo g0,



