
4 GlueVaR and other new risk

measures

This chapter is structured in two parts. Analytical closed-form expressions

of GlueVaR risk measures for commonly used statistical distributions in the

insurance context are derived. These closed-form expressions should en-

able practitioners to undertake an effortless transition from the use of VaR

and TVaR to GlueVaR. Third order Cornish-Fisher approximations to Glue-

VaR risk measures for general skewed distribution functions are also intro-

duced in this chapter. Finally, the relationship between GlueVaR, Tail Dis-

tortion risk measures and RVaR risk measures are shown.

4.1 Analytical closed-form expressions of GlueVaR

A useful consequence of (3.4) is that when analytical closed-form expres-

sions of VaRα(X ) and TVaRα(X ) are known for a random variable X , the

closed-form expression of GlueVaR
h1,h2

β,α (X ) can automatically be derived

without further complications. Otherwise, using the definition of GlueVaR

as a distortion risk measure, the Choquet Integral of X with respect to the

set function κ
h1,h2

β,α ◦P should be calculated.

4.1.1 Illustration: GlueVaR expression for Student t distribution

Let X be a random variable such that X̃ = X −µ
σ

is distributed as a Student

t random variable with ν degrees of freedom (df). In such a case, X has µ

mean and a standard deviation equal to

√
ν ·σ2

ν−2
. Then

VaRα(X ) =µ+σ · tα

TVaRα(X ) =µ+σ · τ(tα)

1−α ·
(
ν+ t 2

α

ν−1

)
,
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where tα is the α-quantile of a Student t distribution with ν df and τ is its

density function.

Using (3.4) the GlueVaR of random variable X is

GlueVaRh1,h2

β,α (X ) =ω1 ·
[
µ+σ · τ(tβ)

1−β ·
(
ν+ t 2

β

ν−1

)]

+ω2 ·
[
µ+σ · τ(tα)

1−α ·
(
ν+ t 2

α

ν−1

)]
+ (1−ω1 −ω2) · (µ+σ · tα)

=µ+σ ·
[(

h1

1−β − h2 −h1

β−α
)
·τ(tβ) ·

(
ν+ t 2

β

ν−1

)

+ h2 −h1

β−α ·τ(tα) ·
(
ν+ t 2

α

ν−1

)
+ (1−h2) · tα

]
.

4.1.2 Analytical expressions for other frequently used

distributions

Normal (N ), Lognormal (L N ) and Generalized Pareto (GP ) distribu-

tions have simple closed-form expressions of GlueVaR. The same notation

conventions that were introduced in Chapter 1 are used. Namely, φ and

Φ stand for the standard Normal pdf and cdf, respectively. The standard

Normal distribution α and β quantiles are denoted as qα = Φ−1(α) and
qβ =Φ−1(β). For the GP distribution, the definition provided in Hosking

and Wallis [1987] is considered, where the scale parameter is denoted by σ

and k is the shape parameter. The GP distribution contains the Uniform

(k = 1), the Exponential (k = 0), the Pareto (k < 0) and the type II Pareto

(k > 0) distributions as special cases. Closed-form expressions of GlueVaR

for several distributions are presented in Table 4.1. Note that there are some

exceptions to the general rule to deduce these closed-form expressions to

be considered. When X follows a Pareto distribution with k É 1 and for

any confidence level α, TVaRα(X ) = +∞ as we have shown in Table 1.3 of

Chapter 1. But when h1 = 0 GlueVaR
h1,h2

β,α (X ) is finite. There is a compensa-

tion effect between TVaRα(X ) and TVaRβ(X ). This is taken into account in
Table 4.1.
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Table 4.1 Closed-form expressions of GlueVaR for some selected distributions

Distribu-

tion
GlueVaR

β,αh1,h2 expression

Normal:

N (µ,σ2)

µ+σ ·qα · (1−h2)+σ · h2 −h1

β−α · [φ(qα)−φ(qβ)]+σ · h1

1−β ·
φ(qβ)

Lognormal:

L N (µ,σ2)

exp(µ+σ ·qα) · (1−h2)

+exp

(
µ+ σ2

2

)
· h2 −h1

β−α · [Φ(σ−qα)−Φ(σ−qβ)]

+exp

(
µ+ σ2

2

)
· h1

1−β ·Φ(σ−qβ)

Exponen-

tial:

GP (k,σ),
with k = 0

σ·[h2−ln(1−α)]+σ·(1−β)·ln
(

1−β
1−α

)
·
[

h2 −h1

β−α − h1

1−β
]

Continued on next page



54 RISK QUANTIFICATION AND ALLOCATION METHODS FOR PRACTITIONERS

Table 4.1: continued from previous page

Distribu-

tion
GlueVaR

β,αh1,h2 expression

Pareto:

GP (k,σ),
with k < 0



+∞ if k É−1, h1 6= 0

σ

k
· [1− (1−α)k

]
+h2 −h1

β−α · (1−β) · σ
k
· [(1−β)k − (1−α)k

]
+h2 −h1

β−α · σ

k +1
· [(1−α)k+1 − (1−β)k+1

]
if k <−1, h1 = 0

σ ·
[

1

1−α −1

]
−h2 −h1

β−α · (1−β) ·σ ·
[

1

1−β − 1

1−α
]

+h2 −h1

β−α ·σ · ln

(
1−α
1−β

)
if k =−1, h1 = 0

σ

k
· [1− (1−α)k ]

+σ
k
·
(

h2 −h1

β−α − h1

1−β
)
· [(1−α)k · (1−β)]

+h2 −h1

β−α · σ
k
·
[

k · (1−α)k+1

k +1

]

+
(

h2 −h1

β−α − h1

1−β
)
· σ

k
·
[

(1−β)k+1

k +1

]
if k ∈ (−1,0)

Type II

Pareto:

GP (k,σ),
with k > 0

σ

k
· [1− (1−α)k ]+ σ

k
·
(

h2 −h1

β−α − h1

1−β
)
· [(1−α)k · (1−β)]

+h2 −h1

β−α · σ
k
·
[

k · (1−α)k+1

k +1

]

+
(

h2 −h1

β−α − h1

1−β
)
· σ

k
·
[

(1−β)k+1

k +1

]

4.1.3 The Cornish-Fisher approximation of GlueVaR

General considerations about Cornish-Fisher VaRmethodologies have been

pointed out in Section 1.2.2 of Chapter 1. Approximations to GlueVaR risk
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measures for general skewed distribution functions using a Cornish-Fisher

expansion of their quantiles are provided in this section. In insurance ap-

plications managers often have to face to highly skewed random variables

with right fat tails. In many of these situations, however, they do not know

whether the underlying random variable of interest is distributed according

to a known parametric distribution function. In those situations that the

distribution is unknown, the value of the common quantile-based riskmea-

sures is routinely approximated by practitioners. It is shown that approxi-

mations of GlueVaR riskmeasures for general unknown skewed distribution

functions can be directly obtained by means of the relationship of GlueVaR

risk measures and the standard quantile-based risk measures.

The Cornish-Fisher expansion is widely used by practitioners to approxi-

mate the VaRα(X ) and TVaRα(X ) values when the random variable follows

a skewed unknown distribution [see Cornish and Fisher, 1937; Fisher and

Cornish, 1960; Johnson and Kotz, 1970; McCune and Gray, 1982]. The VaR

and TVaR measure values can be approximated as VaRα(X ) ' µ+ qv,ασ

and TVaRα(X ) ' µ+ qt v,ασ, where µ = E[X ], σ2 = V[X ] and both qv,α

and qt v,α are modified quantiles of the standard Normal distribution that

take into account the skewness of the distribution function of X .

FollowingSandström[2007], themodifiedquantilesqv,α andqt v,α are com-

puted as follows. Let us consider γ = E[(X −µ)3]/σ3 as a measure of the

skewness of the randomvariable X . Ifqα =Φ−1(α) andφ are theα-quantile

and the density function of the standard Normal distribution, respectively,

then qv,α and qt v,α can be written as,

qv,α =Φ−1(α)+ γ

6

[(
Φ−1(α)

)2 −1
]
= qα+ γ

6

[
q2
α−1

]
,

qt v,α = φ
(
Φ−1(α)

)
1−α

[
1+ γ

6

(
Φ−1(α)

)3
]
= φ(qα)

1−α
[

1+ γ

6
q3
α

]
.

Extensionsof theCornish-Fisher expansion that considermoments of higher

order than γ have been provided in the literature [see, for instance, Gi-

amouridis, 2006]. More details can be found in Appendix B of Sandström

[2011].

Given the interpretation of a GlueVaR risk measure as a linear combination

of risk measures which was shown in (3.4), the approximation for the Glue-

VaR of the random variable X following the Cornish-Fisher expansion can
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be obtained as

GlueVaRh1,h2

β,α (X ) 'µ+σ
[(

h1

1−β − h2 −h1

β−α
)
φ(qβ)

(
1+ γ

6
q3
β

)
+

(
h2 −h1

β−α
)
φ(qα)

(
1+ γ

6
q3
α

)
+ (1−h2)

(γ
6

(
q2
α−1

)+qα
)]

.

The error of the approximation is upper bounded by the maximum error

incurredwhen approximatingVaRα(X ), TVaRα(X ) andTVaRβ(X )using the
equivalent Cornish-Fisher expansion for skewed distributions. This result is

straightforward. It follows from the linear relationship shown in expression

(3.4) and taking into account that weightsω1,ω2 andω3 are lower or equal

than one, satisfying thatω1 +ω2 +ω3 = 1.

4.2 On the relationship between GlueVaR and Tail

Distortion risk measures

As it has been aforementioned, different works that pay attention to risk

measures based on distortion functions or based on several generalizations

of quantiles have appeared in recent years. See, for instance, Zhu and Li

[2012]; Bellini and Gianin [2012]; Bellini et al. [2014]; Dhaene et al. [2012a]

and Goovaerts et al. [2012].

This section is devoted to reveal the connectionsbetweenGlueVaR riskmea-

sures and Tail Distortion risk measures. To the best of our knowledge, Tail

Distortion riskmeasures were introduced in Zhu and Li [2012]. Here the no-

tation used for these family of risk measures is adapted from that in Lv et al.

[2013]. Consider a distortion function g , this is a non-decreasing and injec-
tive function g from [0,1] to [0,1] such that g (0) = 0 and g (1) = 1, and a

confidence levelα ∈ (0,1). The Tail DistortionRiskMeasureTg ,α associated

to g andα is defined as the distortion riskmeasure with distortion function

gα, where

gα(u) = g
( u

1−α
)
·1[0 É u < 1−α]+1[1−αÉ u É 1].

Note that 1[0 É u < 1−α] is a function that takes value 1 in the interval

[0 É u < 1−α] and 0 elsewhere. In other words, if X is a random variable

representing a loss in a probability space (Ω,A ,P ) and its survival function
is SX (x) = P (X > x), then

Tg ,α(X ) =
∫ 0

−∞
[
gα (SX (x))−1

]
d x +

∫ +∞

0
gα (SX (x))d x . (4.1)
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Note that gα is continuous in 1−α or, alternatively, gα(1−α) = 1.

Proposition 4.1. Consider a GlueVaRω1,ω2

β,α risk measure with parameters α,

β,ω1 andω2. ThisGlueVaR is equivalent to aTailDistortion riskmeasureTg ,α

if, and only if,ω2 = 1−ω1 and

g (t ) =
(
ω1 · (1−α)

1−β +1−ω1

)
· t ·1[

0 É t < (1−α)−1 · (1−β)
]

+ (ω1 + (1−ω1) · t ) ·1[
(1−α)−1 · (1−β) É t É 1

]
. (4.2)

The proof is provided in Section A.3 of the Appendix.

Note that only GlueVaR risk measures with ω3 = 0 can be represented as

Tail Distortion riskmeasures, becauseω1+ω2+ω3 = 1 must hold as part of

the definition of aGlueVaRω1,ω2

β,α riskmeasure. In other words, one can only

represent as Tail Distortion riskmeasures those GlueVaR that do not weight

the part corresponding to the VaRα.

The origin of GlueVaR risk measures can be found in Belles-Sampera [2011].

As a curiosity, the definition of a parametric family of risk measures named

PUp-TVaR can also be found therein, which are exactly the Tail Distortion

risk measures linked to Proportional Hazards Distortion functions g (u) =
u

1
a , a Ê 1 from the perspective of Zhu and Li [2012].

4.3 On the relationship between GlueVaR and RVaR

risk measures

To the best of our knowledge RVaR risk measures were introduced in Cont

et al. [2010]. This section is dedicated to show a close relationship between

GlueVaR risk measures and the RVaR family. We have recently discovered

this connection. It is highly probable that some synergies between the re-

search associated to both families are going to arise. For instance, existing

results related to capital allocation principles using RVaR [see, for instance,

Embrechts et al., 2016] and the ones obtained with GlueVaR (which we are

going to present in Chapter 7) may be interconnected. Another example of

these synergiesmay be found in the analysis of risk attitudes thatwe present

in Chapter 5 because, as we will show, the application of our assessment

tools are straightforward in RVaR risk measures.

Let X be an absolutely continuous random variable, which positive values

represent losses. Let α, β ∈ [0,1]. The value of the risk measure RVaRα,β
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applied to X is, by definition, the following:

RVaRα,β(X ) =


1

β

∫ α+β

α
VaRγ(X )dγ if β> 0

VaRα(X ) if β= 0
(4.3)

The notation used for VaR is not the one used when defining GlueVaR risk

measures, becauseVaRα(X ) in (4.3) refers to the100(1−α)%quantilewhile

in GlueVaR definition the notation VaRα(X ) is used to representing the

100α% quantile. In order to find relationships betweenRVaR andGlueVaR
risk measures it is convenient to rewrite expression (4.3) as

RVaRα,β(X ) =


1

β

∫ α+β

α
VaR1−γ(X )dγ if β> 0

VaR1−α(X ) if β= 0
(4.4)

The notation used in definition of GlueVaR risk measures for VaR is incor-

porated in (4.4).

Note that

1

β

∫ α+β

α
VaR1−γ(X )dγ= 1

β

∫ 1−α

1−(α+β)
VaRλ(X )dλ

= 1

β

[∫ 1

1−(α+β)
VaRλ(X )dλ−

∫ 1

1−α
VaRλ(X )dλ

]
notation used in def. of

GlueVaR
= 1

β

[
(α+β)TVaR1−(α+β)(X )−αTVaR1−α(X )

]
= α+β

β
TVaR1−(α+β)(X )− α

β
TVaR1−α(X ) (4.5)

Let us introduce some additional notation: a = 1−α and b = 1−β. So it

can be deduced that 1− (α+β) = a +b −1 and that α+β = 2− (a +b).
Therefore, last expression in (4.5) may be rewritten as

2− (a +b)

1−b
TVaRa+b−1(X )− 1−a

1−b
TVaRa(X ) (4.6)

Note now that a + b − 1 É a because a, b ∈ [0,1], and this implies that

TVaRa(X ) Ê TVaRa+b−1(X ). Additionally, if

ω1 =−1−a

1−b
andω2 = 2− (a +b)

1−b
(4.7)

thenω1 +ω2 = 1

1−b
[a −1+2−a −b] = 1−b

1−b
= 1.



GLUEVAR AND OTHER NEW RISK MEASURES 59

Recall that a usual way towrite the value of aGlueVaR riskmeasure applied

to X is as follows:

GlueVaRĥ1,ĥ2

β̂,α̂
(X ) = ω̂1TVaRβ̂(X )+ ω̂2TVaRα̂(X )

+ (1− ω̂1 − ω̂2)VaRα̂(X ) (4.8)

where ω̂1 and ω̂2 depend on parameters α̂, β̂, ĥ1 and ĥ2.

Taking into account the previous expressions and notations, consider

α̂= a +b −1
β̂= a

ω̂1 =ω1 =−1−a

1−b

ω̂2 =ω2 = 2− (a +b)

1−b
.

(4.9)

As long as ω̂1 and ω̂2 are related to ĥ1 and ĥ2 by the next expression (as it

is shown in Section A.2 of the Appendix)(
ĥ1

ĥ2

)
=

(
1 1−β̂

1−α̂
1 1

)(
ω̂1

ω̂2

)
(4.10)

it is deduced from (4.9) and (4.10) that

ĥ1 =−1−a

1−b
+

[
2− (a +b)

1−b

]
1−a

2− (a +b)
= −(1−a)+ (1−a)

1−b
= 0

ĥ2 =−1−a

1−b
+

[
2− (a +b)

1−b

]
= 1−b

1−b
= 1

(4.11)

So, putting (4.8), (4.9) and (4.11) altogether the following expression holds:

GlueVaR0,1
a,a+b−1(X ) =−1−a

1−b
TVaRa(X )

+ 2− (a +b)

1−b
TVaRa+b−1(X ). (4.12)

The right-hand side of expression (4.12) is exactly expression (4.6). This

means that, for β> 0 (or, equivalently, for b < 1),

RVaRα,β = GlueVaR0,1
a,a+b−1.

Forβ= 0 (orb = 1), expression (4.12) is notwell defined, but a+b−1 = a in

such a case and it can be checked that GlueVaR0,1
a,a = VaRa . To get the feel-

ing that this is correct, let us plot the distortion function ofGlueVaR0,1
a,a+b−1

in Figure 4.1.
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Figure 4.1 Distortion function of GlueVaR0,1
a,a+b−1 distortion risk measure.

1

11−a 2− (a +b)

GlueVaR0,1
a,a+b−1

Looking at the plot of the distortion function in Figure 4.1, if b = 1 then

2− (a +b) = 1−a and then the distortion function of VaRa would appear.

In addition, if a = 1 (which means that α= 0) then the distortion function

of TVaRb is obtained. As it is one of the purposes of RVaRα,β risk measures,

it is possible to continuously moving from VaR1−α to TVaR1−β.
Taking all the previous comments into account, the following equivalence

holds:

RVaRα,β = GlueVaR0,1
a,a+b−1 (4.13)

4.4 Example

The example of risk quantification shown in Chapter 3 is followed to es-

timate GlueVaR risk measures considering alternative distributions. Out-

comes are shown in Table 4.2. The table is divided into four blocks, each

block representing the corresponding risk figures for the cost of claims for

property damage (X1), the cost of claims of bodily injuries (X2), the cost

of claims of medical expenses (X3) and the aggregate cost of claims (X1 +
X2 + X3). Risk measure values using the empirical distribution (first row)

are compared with outcomes when Normal, Lognormal, Student t with 4
df and Generalized Pareto distributions are fitted to data. In the last two

rows of each block results are shown when risk measure values are approx-
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imated by a Cornish-Fisher expansion. The sample mean (µ̂= z̄), the sam-

ple deviation (σ̂2 = ∑
i (Zi − z̄)2/(n −1)) and the sample skewness (calcu-

lated as γ̂= σ̂−3
(∑

i (Zi −z̄)3/n
)
) are considered as estimators ofµ,σ andγ

when Z is one of the four random variables X1, X2, X3, X1+X2+X3. Sam-

ple statistics were computed using observations that fall below the 99.5%
quantile in order to exclude the effect of extreme losses on estimates (first

Cornish-Fisher approximation). Thatmeans, a subsample of the first 348 in-

creasingly ordered elements of the random variable were used to estimate

parameters. Therefore, the two highest values were considered as extreme

losses and were not included. Outcome values of risk measures were com-

pared with the risk measure approximations when all the observations are

included on sample estimates (second Cornish-Fisher approximation). All

the calculations were made in R and MS Excel.

Table 4.2 Examples of risk measurement of costs of insurance claims using
quantile-based risk measures

GlueVaR
h1,h2
99.5%,95%

Model VaR95% TVaR95% TVaR99.5%
( 11

30 , 2
3

)
(0,1)

( 1
20 , 1

8

)
X1

Empirical 2.5 12.5 40.8 18.6 9.4 4.9

Normal 6.9 8.5 11.6 9.0 8.1 7.2

Lognormal 2.7 8.7 32.7 14.5 5.4 4.4

Student t (4 d.f.) 8.8 12.8 24.6 15.4 11.5 9.8

Pareto 2.5 5.5 18.1 8.7 4.1 3.4

Cornish-Fisher(1a) 8.5 27.8 128.4 54.9 16.6 15.1

Cornish-Fisher(1b) 16.3 59.1 284.0 119.8 34.1 31.0

X2

Empirical 0.6 8.0 42.1 16.9 4.2 2.9

Normal 6.0 7.4 10.2 7.9 7.1 6.3

Lognormal 1.6 5.8 25.7 11.0 3.6 3.0

Student t (4 d.f.) 7.6 11.2 21.7 13.5 10.1 8.5

Pareto 1.6 3.5 11.9 5.7 2.6 2.2

Cornish-Fisher(2a) 2.2 2.7 3.7 2.9 2.6 2.3

Cornish-Fisher(2b) 6.1 7.5 10.3 8.0 7.2 6.4

X3

Empirical 1.1 1.3 1.8 1.4 1.2 1.1

Continued on next page
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Table 4.2: continued from previous page

GlueVaR
h1,h2
99.5%,95%

Model VaR95% TVaR95% TVaR99.5%
( 11

30 , 2
3

)
(0,1)

( 1
20 , 1

8

)
Normal 0.9 1.0 1.3 1.1 1.0 0.9

Lognormal 0.8 1.4 3.2 1.8 1.2 1.0

Student t (4 d.f.) 1.0 1.4 2.5 1.7 1.3 1.1

Pareto 0.9 1.4 3.0 1.8 1.2 1.0

Cornish-Fisher(3a) 1.0 2.1 7.6 3.6 1.5 1.4

Cornish-Fisher(3b) 1.1 2.0 6.1 3.1 1.5 1.4

X1 +X2 +X3

Empirical 5.9 19.7 81.1 35.6 12.9 10.2

Normal 12.6 15.4 21.1 16.4 14.8 13.2

Lognormal 5.5 15.8 60.7 27.3 10.8 8.6

Student t (4 d.f.) 16.0 23.2 44.4 27.8 20.8 17.7

Pareto 5.0 11.0 36.0 17.3 8.1 6.7

Cornish-Fisher(4a) 11.0 34.3 155.5 66.9 20.8 19.0

Cornish-Fisher(4b) 34.6 134.0 659.7 276.1 75.6 68.9

(1a) µ̂= 0.5, σ̂= 2.3 and γ̂= 6.4. Subsample without extreme losses.

The two largest values of X1 are excluded.
(1b) µ̂= 0.7, σ̂= 3.8 and γ̂= 8.7. Full sample.
(2a) µ̂= 0.2, σ̂= 1.2 and γ̂= 0. Subsample without extreme losses.

The two largest values of X2 are excluded.
(2b) µ̂= 0.5, σ̂= 3.4 and γ̂= 0. Full sample.
(3a) µ̂= 0.3, σ̂= 0.3 and γ̂= 2.6. Subsample without extreme losses.

The two largest values of X2 are excluded.
(3b) µ̂= 0.3, σ̂= 0.4 and γ̂= 1.4. Full sample.
(4a) µ̂= 1.0, σ̂= 3 and γ̂= 5.9. Subsample without extreme losses.

The two largest values of X1 +X2 +X3 are excluded.
(4b) µ̂= 1.4, σ̂= 6.8 and γ̂= 11.4. Full sample.

Some comments related to outcome values for Cornish-Fisher approxima-

tions of the quantile-based riskmeasures should bemade. According to the

results, one could think that this kind of risk measurement corresponds to

a conservative attitude for the two types of approximations shown in Ta-

ble 4.2. The exception would be risk values obtained when X2 is evaluated.
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Relevant differences are observed depending on the approximation finally

used on right skewed data. Outcome values related to the second Cornish-

Fisher approximation (full sample) are drastically large when the data are

severely right skewed distributed, as in the case of X1 and X1 + X2 + X3.

Theseoutcomevalueswouldbeassociated to a excessively conservative (un-

realistic) attitude. If the first Cornish-Fisher approximation is considered,

i.e. when sample statistics were estimated excluding extreme losses, a sig-

nificant drop is observed although the outcome values for this approxima-

tion are still larger than those values associated with the empirical or the

parametric distributions for right-skewed random variables. Note that only

the two largest losses are not included in the sample estimates involving the

first approximation. When the data are slightly right skewed distributed,

as in the case of X3, the two Cornish-Fisher approximations show a bet-

ter performance. In other words, the Cornish-Fisher approximation should

be used with certain caution when the data are severely right skewed dis-

tributed. Probably higher order moments should be taken into account.

An important issue that arises from these results is the model risk. Even

when the same riskmeasure is used, huge differences are observed depend-

ing on the hypothesis about the underlying distribution of the claim cost

randomvariables. Let us assume that the regulator is focused on the VaR95%

for the aggregate cost X1 + X2 + X3 as a measure of pure underwriting risk

(without taking into account the premiumpaid by the policyholders). If it is

supposed that the randomvariable is Paretodistributed, then the institution

will need 5 thousands of euros for regulatory solvency purposes. The com-

pany should set aside almost 3.2 times this economic amount whether the

underlying distribution is Student t with 4 degrees of freedom. This topic

is out of the scope of this chapter. The interested reader is addressed, for

instance, to the study of Alexander and Sarabia [2012] which deals with VaR

model risk or to the reference Aggarwal et al. [2016] suggested at the end of

Chapter 1.

4.5 Exercises

1. Determine if the GlueVaR11/30,2/3
99.5%,95% of a Normal distributed random vari-

able X with N (µ = 5,σ2 = 16) satisfies the expressions related to the

properties of Translation invariance, Positive homogeneity and Strictness.

2. Consider theNormaldistributed randomvariable X1 withN (µ= 5,σ2 =
16) and the Normal distributed random variable X2 withN (µ= 4,σ2 =
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20). Show that:

• VaRα(Z ) is equal to VaRα(X1)+VaRα(X2) for any α in the case that

rx y = 1, where Z = X1 + X2 and rx y is the Pearson linear correlation

coefficient.

• When rx y < 1, then VaRα(Z ) < VaRα(X1)+VaRα(X2).

• Repeat the analysis for the GlueVaR1/20,1/8
99.5%,95% risk measure.

3. Check that if X is distributed as a Pareto (X ∼ GP (k,σ), with k < 0),
the expression for TVaRα(X ) shown in Table 1.3 may be obtained either:

• From Definition 1.9 (i.e, TVaRα(X ) = 1

1−α
∫ 1

α
VaRλ(X )dλ), or

• From the expression of TVaRα(X ) as a distortion risk measure shown

in Section 3.2 (i.e.

TVaRα(X ) =
∫ 0

−∞
[
γα (SX (x))−1

]
d x +

∫ +∞

0
γα (SX (x))d x,

where γα is the distortion function displayed in Table 3.2).

Hint: Note that, in this case,(
1− k

σ
VaRα(X )

)1/k

= SX (VaRα(X )) = 1−α .

4. Obtain the RVaR risk measure equivalent to the GlueVaR0,1
95%,90%.


