3 A family of distortion risk
measures

Value at Risk (VaR) has been adopted as a standard tool to assess the risk and
to calculate capital requirements in the insurance industry. As it has been
shown in Chapter 1, VaR at level « is the a-quantile of a random variable X
(which is often called loss). Recalling Definition 1.8

VaRy (X) = inf{x | Fx(x) = a} = Fy' (@),

where Fyx is the cumulative distribution function (cdf) of X and « is the con-
fidence or the tolerance level 0 < a < 1. However, VaR is known to present
a number of pitfalls when applied in practice. A disadvantage when using
VaR in the insurance or financial contexts is that the capital requirements
for catastrophic losses based on this measure can be underestimated, i.e. the
necessary reserves in adverse scenarios may well be less than they should be.
The underestimation of capital requirements may be aggravated when fat-
tailed losses are incorrectly modeled by mild-tailed distributions, such as
the Normal distribution. There are attempts to overcome this kind of model
risk when using VaR or, at least, to quantify the risk related to the modelling
[Alexander and Sarabia, 2012]. But, in addition, a second drawback is that
the VaR may fail the subadditivity property. As it has been shown in Ta-
ble 1.2 of Chapter 1, a risk measure is subadditive when the aggregated risk
is less than or equal to the sum of individual risks. Subadditvity is an ap-
pealing property when aggregating risks in order to preserve the benefits of
diversification. VaR is subadditive for elliptically distributed losses [McNeil
et al., 2005]. However, the subadditivity of VaR is not granted, as indicated
in Artzner et al. [1999] and Acerbi and Tasche [2002].

Remember now Definition 1.9 from Chapter 1. In there Tail Value at Risk
(TVaR) has been defined as

1 1
TVaR,(X) = —f VaR) (X)dA.
l-aJq
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Table3.1 VaRgs5¢ and TVaRgs5¢; illustration

VaR95% TVaRg 5%

Empirical 47.6 125.5
Normal 87.0 105.9
Lognormal 48.9 119.1

* Cost of claims in thousands of Euro

Roughly speaking, the TVaR is understood as the mathematical expectation
beyond VaR. The TVaR risk measure does not suffer the two drawbacks dis-
cussed above for VaR and, as such, would appear to be a more powerful mea-
sure for assessing the actual risks faced by insurance companies and finan-
cial institutions. However, TVaR has not been widely accepted by practition-
ers in the financial and insurance industry. VaR is currently the risk measure
contemplated in the European solvency regulation for the insurance sector
(Solvency II), and this is also the case of solvency regulation for the bank-
ing sector (Basel accords'). The TVaR measures average losses in the most
adverse cases rather than just the minimum adverse loss, as the VaR does.
Therefore, capital reserves based on the TVaR have to be considerably higher
than those based on VaR and significant differences in the size of capital re-
serves can be obtained depending on which risk measure is adopted.

An illustration of the risk value obtained for the VaRgs59, and TVaRgs9, con-
sidering three alternative distributions is provided in Table 3.1. Note that
huge differences in risk amounts can be obtained.

This chapter is motivated by the following question. Can a risk measure be
devised that would provide a risk assessment that lies somewhere between
those offered by the VaR and the TVaR? To this end, a new family of risk
measures (GlueVaR) is proposed, which forms part of a wider class referred
to as distortion risk measures.

GlueVaR risk measures are defined by means of a four-parameter function.
By calibrating the parameters, GlueVaR risk measures can be matched to a
wide variety of contexts. Specifically, once a confidence level has been fixed,
the new family contains risk measures that lie between those of VaR and

!t Although it seems that changing VaR by TVaR with a lower confidence level is something
that is really under consideration for regulatory capital requirements in the Banking sec-
tor.
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TVaR and which may adequately reflect the risk of mild-tailed distributed
losses without having to resort to VaR. In certain situations, however, even
more conservative risk measures than TVaR may be preferred. It is shown
that these highly conservative risk measures can also be defined by means
of the GlueVaR family. In order to preserve the benefits of diversification
when aggregating risks, subadditivity is an appealing property of a risk mea-
sure. As it has been shown in Chapter 1, the subadditivity property ensures
that the risk measure value of the aggregated risk is lower than or equal to
the sum of individual risk measure values. In this chapter the subadditivity
property of GlueVaR risk measures is investigated.

3.1 Overview on risk measures

Two main groups of axiom-based risk measures are coherent risk measures,
as stated by Artzner et al. [1999], and distortion risk measures, as introduced
by Wang [1996]. Concavity of the distortion function is the key element to
define risk measures that belong to both groups [Wang and Dhaene, 1998].
Suggestions on new desirable properties for distortion risk measures are
proposed in Balbas et al. [2009], while generalizations of this kind of risk
measures can be found, among others, in Hiirlimann [2006] and Wu and
Zhou [2006]. As shown in Goovaerts et al. [2012], it is possible to link dis-
tortion risk measures with other interesting families of risk measures devel-
oped in the literature.

The axiomatic setting for risk measures has extensively been developed since
seminal papers on coherent risk measures and distortion risk measures. Each
set of axioms for risk measures corresponds to a particular behavior of deci-
sion makers under risk, as it has been shown, for instance, in Bleichrodt and
Eeckhoudt [2006] and Denuit et al. [2006]. Most often, articles on axiom-
based risk measurement present the link to a theoretical foundation of hu-
man behavior explicitly. For example, Wang [1996] shows the connection
between distortion risk measures and Yaari’s dual theory of choice under
risk; Goovaerts et al. [2010] investigate the additivity of risk measures in
Quiggin’srank-dependent utility theory; and Kaluszka and Krzeszowiec [2012]
introduce the generalized Choquet integral premium principle and relate it
to Kahneman and Tversky’s cumulative prospect theory.

Many articles have appeared in recent years that pay attention to risk mea-
sures based on distortion functions or on generalizations of the quantiles.
An example of the first group is Zhu and Li [2012]. Bellini and Gianin [2012]
and Bellini et al. [2014] fit to second group. An interplay between both groups
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is found in Dhaene et al. [2012a] and Goovaerts et al. [2012].

3.2 Distortion risk measures

Distortion risk measures were introduced by Wang [Wang, 1995, 1996] and
they are closely related to the distortion expectation theory [Yaari, 1987]. A
review on how risk measures can be interpreted from several perspectives
is provided in Tsanakas and Desli [2005], and a clarifying explanation of the
relationship between distortion risk measures and distortion expectation
theory is included. A detailed literature review of distortion risk measures
is available in [Denuit et al., 2005; Balbas et al., 2009]. There are two key
elements to define a distortion risk measure: first, the associated distortion
function; and, second, the concept of the Choquet [Choquet, 1954] Integral.
The distortion function, Choquet Integral and the distortion risk measure
concepts can be defined as follows:

- Distortion function. Let g: [0,1] — [0, 1] be a function such that g(0) =
0, g(1) =1 and g is injective and non-decreasing. Then g is called a dis-
tortion function.

- Choquet Integral. The (asymmetric) Choquet Integral with respect to
a set function p of a y-measurable function X : Q — R is denoted as

f Xdp and is equal to

+00

0
fXdp=[ [S,J,X(x)—p(Q)]d“fo Sux(x)dx,

if u(Q) < oo, where S, x(x) = u({X > x}) denotes the survival function
of X with respect to . Note that 2 denotes a set, which in financial and
insurance applications is the sample space of a probability space. A set
function  in this context is a function defined from 2 (the set of all sub-
sets of Q) to R. A p-measurable function X is, widely speaking, a function
defined on Q such that expressions like u({X > x}) or p({X < x}) make
sense. See Denneberg [1994] for more details.

- Distortion risk measure. Let g be a distortion function. Consider a ran-
dom variable X and its survival function Sx(x) = P(X > x). Then, func-
tion pg defined by pg(X) = [°_[g(Sx(x) —1]dx + [ g(Sx(x))dx
is called a distortion risk measure.

From the previous definitions, it is straightforward to see that for any ran-
dom variable X, p¢(X) is the Choquet Integral of X with respect to the set
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function p = g o P, where P is the probability function associated with the
probability space in which X is defined.

The mathematical expectation is a distortion risk measure whose distortion
function is the identity function [Denuit et al., 2005], this is, pjq(X) = E(X).
Therefore, a straightforward way to interpret a distortion risk measure is
as follows: first, the survival function of the random variable is distorted
(goSx); second, the mathematical expectation of the random variable with
respect to this distorted probability is computed. From a theoretical point
of view, note that this interpretation fits the discussion that risk may be de-
fined as an expected value in many situations [Aven, 2012].

VaR and TVaR measures are in fact distortion risk measures. The associated
distortion functions of these risk measures are shown in Table 3.2.

Table3.2 VaRand TVaR distortion functions

Risk measure Distortion function

0 if0su<l-a

VaR Yalu) =
1 fl-a<sus<l,
u
— if0<su<l-a
TVaR Yew)={ 1@
1 ifl-a<u<l1

For a confidence level a € (0, 1).

Based on the distortion functions shown in Table 3.2, once a is fixed it can
be proved that VaR, (X) < TVaR, (X)for any random variable X.

Remark 3.1. Let g and g* be two distortion functions and let pg and pg-
be their respective distortion risk measures. Suppose that g(u) < g* (u) for
all u € [0,1]. Then pg(X) < pg+(X) for any random variable X.

This result follows immediately from the definition of distortion risk mea-
sures, because

0 +00
pg(X)=f [g(Sx(x))—I]dx+fO g(Sx(x))dx

= pg+ (X).

0 +00
<f [g*(Sx(x))—llcflirf0 g" (Sx(x)dx
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Many articles have recently examined risk measures based on either distor-
tion functions [Zhu and Li, 2012; Belles-Sampera et al., 2013a, 20144, 2016b;
Guillen et al, 2016; Tsanakas and Millossovich, 2016] or generalizations of
the quantiles [Bellini and Gianin, 2012; Bellini et al, 2014]. The interplay be-
tween both of these two groups of risk measures has been examined [ Dhaene
et al., 2012a; Goovaerts et al., 2012].

3.3 Anew family of risk measures: GlueVaR

A new family of distortion risk measures, named GlueVaR, is here defined.
Originally, we introduced this family in Belles-Sampera et al. [2014a]. The
main reason for defining these GlueVaR risk measures is a response to the
concerns expressed by risk managers regarding the choice of risk measures
in the case of regulatory capital requirements. However, as it has been al-
ready mentioned, an axiomatic approach to define or represent risk mea-
sures is more frequent in the literature [Artzner et al, 1999; Follmer and
Schied, 2002; Frittelli and Rosazza Gianin, 2002; Denuit et al.,, 2006; Song
and Yan, 2009; Cerreia-Vioglio et al., 2011; Ekeland et al., 2012; Goovaerts et al.,
2012; Grechuk et al., 2012].
Any GlueVaR risk measure can be described by means of its distortion func-
tion. Given a confidence level a, the distortion function for GlueVaR is:
h
1-p "
hz;zl-[u—(l—ﬁ)] ifl-f<u<i-a 6

if0su<l-p

ol () =

Ba ]’ll +

1 fl-a<sus<l

where «, f € [0,1] such that a < §, h; € [0,1] and h» € [h,1]. Parameter
P is the additional confidence level besides @. The shape of the GlueVaR
distortion function is determined by the distorted survival probabilities /1
and hy atlevels 1 — § and 1 — a, respectively. We call parameters i) and hy
the heights of the distortion function.

A wide range of risk measures may be defined under this framework. Note
thatVaR, and TVaR, are particular cases of this new family of risk measures.
Namely, VaR,, and TVaR,, correspond to distortion functions K‘;’fﬁx and x¥ ‘lx,’lw
respectively. By establishing suitable conditions on the heights h; and hy,
the GlueVaR family is very flexible. For example, risk managers might like
to select a, B, h; and hy so that

VaRq (X) < GlueVaRyg!:" (X) < TVaRq (X).
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This can be achieved by selecting a set of parameters for their associated
distortion functions to ensure that 4 (1) < Kzlt'xhz (1) < yq(u) forany u €

1 —
[0, 1], following remark 3.1, i.e. by forcing condition i1; < l—ﬁ An example
a

of such a case is shown in Figure 3.1 (left-hand side).
The GlueVaR family also allows us to define a highly conservative risk mea-
sure GlueVaRzll'xhz, such that

TVaRq (X) < GlueVaRy"" (X) < TVaRp(X)

lth

o is concave in

for any X and that the associated distortion function KZ

[0,1]. In this case, < hj and hy = 1 must be fulfilled, as occurs in the

a
example shown in Figure 3.1 (right-hand side).

Figure 3.1 Examples of GlueVaR distortion functions.
Left. Distortion function is concave in [0,1 — @) and VaR (X) < GIueVaRle’lh2 (X) <
TVaR (X) for a random variable X;

Right. Distortion function is concave in the whole range [0, 1] and TVaR, (X) <
hy,ho
Ba

GlueVaR (X) < TVaRg (X) for arandom variable X.

. Wh . . . . R
Distortion function for GlueVaR[i‘“” risk measure — « « Distortion function for TVaR , risk measure

----- Distortion function for TVaRy risk measure = = = Distortion function for VaR,, risk measure

3.4 Linear combination of risk measures

Given a random variable X and for fixed tolerance levels a and 3 so that a <
B, GlueVaRZ‘(’xh2 (X) can be expressed as a linear combination of TVaRg(X),
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TVaR, (X) and VaR4 (X). This result allows us to translate the graphical-
based construction of GlueVaR risk measures into an algebraic construction
based on standard risk measures.

If the following notation is used,

(ho—hy)-1-P)

wlzhl— ,B—a
wy = M.(l_a) (3-2)
B—a

w3=1—w1—w2=1—h2,

then the distortion function Kzll'xhz () in (3.1) may be rewritten as (details
can be found in Section A.1 of the Appendix):

KZ,I&hZ(U) = w1 yp(U) + w2 ya(t) + w3 Yo (u) (33)
where Y, Ya, ¥ are the distortion functions of TVaR at confidence lev-
els § and @ and of VaR at confidence level a, respectively (see Table 3.2).
Therefore GlueVaR is a risk measure that can be expressed as a linear com-
bination of three risk measures: TVaR at confidence levels f and « and VaR
at confidence level «,

GlueVaRZ,ll'zh2 (X) = w1-TVaRg(X) +w2-TVaRy (X) +w3-VaRq (X). (3.4)

Given this relationship, an alternative notation for GlueVaRth’xh2 (X) and its

related distortion function can be used. The notation GlueV.':lR(;;,];'2 (X) or
c/é),lc;wz (1) may, on occasions, be preferred to that based on heights h; and
hy. The bijective relationship between pairs (h1, ) and (w1, ws) is also
shown in Section A.2 of the Appendix.

Specifically, in order to simplify the statement of Proposition 4.1, the expres-

. w1, .
sion OfKﬁ,a () is

K

w w
[ L 2 |u if0su<l-p
01,0, l—ﬁw l-«a
Kpa () = w1+ 7 ifl-f<su<l-a (35)
1 ifl-a<us<l

An interesting interpretation of (3.4) in the context of decision making and
risk management is that GlueVaR risk measures arise as a linear combina-
tion of three possible scenarios. So, two levels of severity tolerance can be
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fixed, namely a and f, with @ < . Then, the risk can be measured in the
highly conservative scenario with TVaR at level §; in the conservative sce-
nario with TVaR at level a; and in the less conservative scenario with VaR at
level a.

Each combination of these risk scenarios reflects a concrete risk attitude.
Therefore, it can be said that the combination of these risk scenarios in this
context is something that is directly identified by an explicit GlueVaR risk
measure. To some extent, these risk attitudes could be related to risk ap-
petite [Aven, 2013].

From the practitioner’s point of view, four parameters must be fixed in or-
der to define the GlueVaR risk measure. The a and S values correspond to
the confidence levels used for bad and very bad scenarios, respectively. For
instance, @ = 95% and 8 = 99.5% could be selected, which are equivalent
to one bad event every twenty years or one bad event every two hundred,
respectively. The other two parameters are directly related to the weights
given to these scenarios. For instance, it could be said that the three com-
ponents of GlueVaR in expression (3.4) are equally important. This would
imply w1 = w2 = w3 = 1/3, so the corresponding h; and hy parameters
could be found. When w; = w» = w3 =1/3 and a = 95%, = 99.5%, these
parameters are 1 = 11/30 and hy =2/3.

3.5 Subadditivity

In a seminal article [Artzner et al.,, 1999] the following set of axioms that a
risk measure should satisfy was established: positive homogeneity, trans-
lation invariance, monotonicity and subadditivity. Authors referred to such
risk measures as coherent risk measures. Distortion risk measures always sat-
isfy the first three properties, but subadditivity is only guaranteed when the
distortion function is concave [Denneberg, 1994; Wang and Dhaene, 1998;
Wirch and Hardy, 2002]. Therefore, VaR, unlike TVaR, is not coherent. In
some situations, coherence of risk measures is a requirement [Cox, 2012]
but, nonetheless, some criticisms can be found [Dhaene et al.,, 2008]. Addi-
tional properties for distortion risk measures are provided in [Jiang, 2008;
Balbas et al, 2009], which may complement the list of properties for risk
measures shown in Tables 1.2 and 1.4 of Chapter 1. In this section we focus
on the subadditivity property.

In order to preserve the benefits of diversification when aggregating risks,
subadditivity is an appealing property of a risk measure. As it has been
shown in Chapter 1, the subadditivity property ensures that the risk mea-
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sure value of the aggregated risk is lower than or equal to the sum of indi-
vidual risk measure values. For distortion risk measures, subadditivity may
be defined as follows.

Definition 3.1. Given a confidence level a € [0, 1], a distortion risk measure
Pg is subadditive if, for any pair X, Y,

f(X+ Y)d(gOP)SfXd(goP)+de(goP),

where the integral symbol stands for Choquet Integrals with respect to the
set function go P.

The Choquet integral condition used in the definition can be rewritten, in
terms of survival functions and Lebesgue integrals, as

+00

+oo +o0o
fo g(SX+y(Z))dZSfO g(Sx(x))dx+fO g(Sy»)dy.

As shown, GlueVaR risk measures may be interpreted as a linear combina-
tion of VaR and TVaR risk measures. Therefore, a GlueVaR risk measure is
coherent when the weight assigned to VaR is zero and the weights of the
TVaRq and TVaRg are non-negative. In terms of the parameters of the dis-
tortion function, GlueVaR is subadditive (and thus coherent) if 4, = 1 and

1-p

-
will be inherited by GlueVaR if w; = 0 and w3 = 0 in expression (3.2).
Subaddtitivity in the whole domain is a strong condition. When dealing

< hy. More generally, any property satisfied by TVaR but not by VaR

with fat tail losses (i.e. low-frequency and large-loss events), risk managers
are especially interested in the tail region. Fat right-tails have been exten-
sively studied in insurance and finance [Wang, 1998; Embrechts et al., 2009a,b;
Degen et al.,, 2010; Nam et al., 2011; Chen et al.,, 2012] and the behavior of ag-
gregate risks in the tail region has received huge attention by researchers in
last years [Cheung, 2009; Song and Yan, 2009; Hua and Joe, 2012]. To the
best of our knowledge, however, previous studies of the subadditivity of risk
measures in the tail region are scarce [Danielsson ef al., 2005; Hua and Joe,
2012].

3.6 Concavity of the distortion function

The subadditivity characteristic in the whole domain is in general not sat-
isfied by GlueVaR risk measures. It was showed that GlueVaR risk measures
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can be interpreted as alinear combination of a highly conservative scenario,
a conservative scenario and a less conservative scenario. We argued that a
particular risk attitude is reflected depending on how these scenarios are
weighted.

Given a and f3, the other two parameters are directly related to the weights
given to these scenarios. The shaded areas in Figure 3.2 delimit feasible
weights (w1, w) for GlueVaRwl’w2 For instance, it could be said that the
three components of GlueVaR i in expression (3.4) are equally important, that
is, w1 = w2 = w3 = 1/3. The point (1/3,1/3) in Figure 3.2 corresponds to the
balanced risk attitude on the part of risk managers when faced by the three
components shown in (3.4). The corresponding distortion function le'wz
is concave on [0,1 — @) in the lightly shaded area. Yet, the distortion func—
tion is not concave on [0,1 — @) in the darkly shaded area. The distortion
function is concave in [0, 1] in the boldest continuous segment and, thus,
the associated GlueVaR risk measure is subadditive.

Note that any pair of weights (w1, w2) on the boldest line in Figure 3.2 leads
to w3 = 0. This means that a zero weight is allocated to the least conserva-
tive scenario, i.e. the one associated with the VaR,(X). This is indicative
of the decision makers’ conservative approach. Nonetheless, differences in
just how restrictive this conservative attitude is can be found among the
E, l—_a)’ the less
f-a p-a

restrictive it is, while the nearer to (w1, w2) = (1,0), the more conservative

weights lying on this line: the nearer to (w1, w2) = (

it is.
If w1 < 0, risk managers are optimistic regarding the impossibility of the
occurrence of the worst case scenario, and so attach a negative weight to it.

3.7 Example of risk measurement with GlueVaR

Data for the cost of claims involving three type of damages described in
the previous chapter are used to illustrate the application of GlueVaR risk
measures in risk measurement. The sample consists of 7 = 350 observa-
tions of the cost of individual claims in thousands of euros. In Table 3.3 a
set of quantile-based risk measures including three different GlueVaR are
displayed. The table displays the corresponding risk figures for the cost of
claims for property damage (X ), the cost of claims of bodily injuries (Xz),
the cost of claims of medical expenses (X3) and the aggregate cost of claims
(Xl +Xo + Xg).

The selection of the three GlueVaR risk measures included in Table 3.3 de-
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Figure3.2 Given & and f§, the shaded areas delimits feasible weights (w1, w2) for

wi,w
GluevaR: V"2,
pa

pf-1 l—-«a N
N

(/]—a p-a
™

(f]1
var,,[(0.0) (I;P .OJ (.0)

-«

serves further explanation. The two confidence levels considered are @ =
95% and f = 99.5%. The heights (h1, hy) are (11/30,2/3), (0,1) and (1/20,
1/8) respectively. Different attitudes in front of the three scenarios of risk as-
sessment are represented. GlueVaR;é./;%;/;’% corresponds to a balanced at-
titude because the three quantile-based risk measures TVaRgg 59, TVaRgs9
and VaRgsy, are equally important, i.e. w1 = wy = w3 = 1/3. A different atti-
tude is symbolized by GlueVaRg’; 59%,95%
w2 =10/9 and w3 = 0. It corresponds to a scenario in which the manager

with associated weights w; = —1/9,

overweights TVaRgs¢, and allocates the lowest feasible weight to TVaRgg 5%,
given that a zero weight is allocated to VaRgsy. Finally, GlueVaRéggg/j ,g%%
reflects a risk measurement attitude just a bit more conservative than the
one represented by using VaRgsg, assigning low weights to TVaRgg 59, and

TVaRg5q, (a)1 =1/24 and Wy = 1/12).

i . 11/30,2/3
As it is shown in Table 3.3, GlueVaRyg -5 '95%

other two selected GlueVaR risk measures. This result can be generalized to
all situations because the associated distortion function of GlueVaRé;/;%ZS/;%
is greater than the other two distortion functions in the whole domain. Note

that it is also observed in Table 3.3 that

is more conservative than the

1/20,1/8 0,1
GlueVaRgg 5 g50, < GlueVaRgg 5o, o5o;.-

It is only valid to these data and an ordering between them can not be gen-
eralized. However, a relationship between these two GlueVaR risk measures
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Table3.3 Quantile-based risk measures and subadditivity

X X X3 X;+Xo+X3 Difference(*)

@ () (¢ (d)  (atbred)
VaRgss, 25 06 11 5.9 -1.7
TVaRgs0, 125 80 13 19.7 2.1
TVaRgg 5% 408 421 1.8 81.1 3.6
GlueVaRgy o2 18.6 169 1.4 35.6 1.9
GlueVaRy oo, 4.9 29 11 10.2 -1.3
GlueVaR)y o gsr 94 4.2 12 12.9 1.9

) Benefit of diversification.

and quantile-based risk measures can be established. It has been shown that

1 —
VaR, < GluevaRZl;;‘2 <TVaR, if h < 1_/3

That means,

0,1
VaRgsy, < GlueVaRgg‘S%'%% < TVaRgs9, because 0 < 0.1, and

1/20,1/8
VaRgs5¢, < GlueVaRgg.S%'%% < TVaRgsg, because 0.05 < 0.1.

Although results in Table 3.3 may suggest that

11/30,2/3
TVaRg59, < GlueVaR99.5%,95% < TVaRgg 59,

this can not be asserted in general because conditions on the parameters of
the GlueVaR risk measure to satisfy

TVaR, < GlueVaRZl;f2 <TVaRg
1 —
are 2 < hjand hy = 1.

In this case it holds that 0.1 < 0.37 but hy # 1.
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Let us analyze the subadditivity property. Like the VaRgsg, note that the
GlueVaRégggzj g85% fails to be subadditive for X7, X, and X3 since 4.9+2.9+
1.1 < 10.2. Let us emphasize that these three GlueVaR risk measures have
not associated a concave distortion function in the whole domain, so the
subadditivity property can not be guaranteed for any of them. The fact that
. . 11/30,2/3 0,1
risk values are subadditive for the GlueVaRyg -, '95% and GlueVaRy -, 95%
is a characteristic attributable to this data but cannot be generalized to all
11/30,2/3 1/20,1/8
contexts. In the case of the GlueVaRgg‘S% '95% and GlueVaRgg.S%,%% , the
associated distortion function is concave in [0,1 — @).

3.8 Exercises
1. Consider the following empirical distribution
13, 15, 26, 26, 26, 37, 37, 100
Determine the GlueVaRéég’ g’gof and GlueVaRgg% 50%

Hint: The heights (h1, h2) equal to (11/30,2/3) and (0, 1) correspond to
(w1 =1/3, wp =1/3) and (w1 = —1/9, w2 = 10/9), respectively.

2. Consider the following distribution function F(x) = %2 for0 < x <3.

. 1/20,1/8
Find the GlueVaRgg 5o, e,

Hint: The heights (hy, hy) equal to (1/20,1/8) correspond to w; = 1/24
and wy = 1/12.

3. (Exemple 6.7 in [McNeil et al., 2005]) Consider a defaultable corporate
bond. The default probability is equal to 2%. The current price of the
bond is 100. If there is no default, a bond pays in ¢+ 1 an amount of 105,
otherwise there is no payment. Hence L the loss of bond is equal to 100
when the bond defaults and to —5 otherwise. Compute the VaRgsy, of
the following two portfolios:

- Portfolio A consists of 100 units of this bond.

- Portfolio B consists of 100 independent bonds with the same charac-
teristics that this bond.

Hint: The loss function of a bond can be expressed as L =100Y —5(1 —
Y) =105Y — 5, where Y is a indicator variable that takes value 1 if the
bond defaults and 0 otherwise.
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4. Let X and Y be two independent random variables uniformly distributed
between [0,1] and Z = X + Y their sum. Analyze if it holds that VaRys,

(Z£) < VaRps59(X7) + VaRos59 (X2).
Hint: The cumulative distribution function of Z is

22
— if0<z<l1
Fz(z) = Zz 2

—?+2z—1 ifl<z<2






