
3 A family of distortion risk

measures

Value at Risk (VaR) has been adopted as a standard tool to assess the risk and

to calculate capital requirements in the insurance industry. As it has been

shown in Chapter 1, VaR at level α is the α-quantile of a random variable X
(which is often called loss). Recalling Definition 1.8

VaRα(X ) = inf{x | FX (x) Êα} = F−1
X (α) ,

whereFX is the cumulativedistribution function (cdf) of X andα is the con-

fidence or the tolerance level 0 ÉαÉ 1. However, VaR is known to present

a number of pitfalls when applied in practice. A disadvantage when using

VaR in the insurance or financial contexts is that the capital requirements

for catastrophic losses basedon thismeasure canbeunderestimated, i.e. the

necessary reserves in adverse scenariosmaywell be less than they should be.

The underestimation of capital requirements may be aggravated when fat-

tailed losses are incorrectly modeled by mild-tailed distributions, such as

the Normal distribution. There are attempts to overcome this kind ofmodel

risk when using VaR or, at least, to quantify the risk related to themodelling

[Alexander and Sarabia, 2012]. But, in addition, a second drawback is that

the VaR may fail the subadditivity property. As it has been shown in Ta-

ble 1.2 of Chapter 1, a risk measure is subadditive when the aggregated risk

is less than or equal to the sum of individual risks. Subadditvity is an ap-

pealing property when aggregating risks in order to preserve the benefits of

diversification. VaR is subadditive for elliptically distributed losses [McNeil

et al., 2005]. However, the subadditivity of VaR is not granted, as indicated

in Artzner et al. [1999] and Acerbi and Tasche [2002].

Remember now Definition 1.9 from Chapter 1. In there Tail Value at Risk

(TVaR) has been defined as

TVaRα(X ) = 1

1−α
∫ 1

α
VaRλ(X )dλ.
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Table 3.1 VaR95% and TVaR95% illustration

VaR95% TVaR95%

Empirical 47.6 125.5

Normal 87.0 105.9

Lognormal 48.9 119.1

* Cost of claims in thousands of Euro

Roughly speaking, the TVaR is understood as themathematical expectation

beyond VaR. The TVaR risk measure does not suffer the two drawbacks dis-

cussed above for VaR and, as such, would appear to be amore powerfulmea-

sure for assessing the actual risks faced by insurance companies and finan-

cial institutions. However, TVaRhas not beenwidely acceptedbypractition-

ers in the financial and insurance industry. VaR is currently the riskmeasure

contemplated in the European solvency regulation for the insurance sector

(Solvency II), and this is also the case of solvency regulation for the bank-

ing sector (Basel accords1). The TVaR measures average losses in the most

adverse cases rather than just the minimum adverse loss, as the VaR does.

Therefore, capital reserves basedon theTVaRhave tobe considerably higher

than those based on VaR and significant differences in the size of capital re-

serves can be obtained depending on which risk measure is adopted.

An illustration of the risk value obtained for the VaR95% and TVaR95% con-

sidering three alternative distributions is provided in Table 3.1. Note that

huge differences in risk amounts can be obtained.

This chapter is motivated by the following question. Can a risk measure be

devised that would provide a risk assessment that lies somewhere between

those offered by the VaR and the TVaR? To this end, a new family of risk

measures (GlueVaR) is proposed, which forms part of a wider class referred

to as distortion risk measures.

GlueVaR risk measures are defined by means of a four-parameter function.

By calibrating the parameters, GlueVaR risk measures can be matched to a

wide variety of contexts. Specifically, once a confidence level has been fixed,

the new family contains risk measures that lie between those of VaR and

1 Although it seems that changing VaR by TVaR with a lower confidence level is something

that is really under consideration for regulatory capital requirements in the Banking sec-

tor.
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TVaR and which may adequately reflect the risk of mild-tailed distributed

losses without having to resort to VaR. In certain situations, however, even

more conservative risk measures than TVaR may be preferred. It is shown

that these highly conservative risk measures can also be defined by means

of the GlueVaR family. In order to preserve the benefits of diversification

when aggregating risks, subadditivity is an appealing property of a riskmea-

sure. As it has been shown in Chapter 1, the subadditivity property ensures

that the risk measure value of the aggregated risk is lower than or equal to

the sum of individual risk measure values. In this chapter the subadditivity

property of GlueVaR risk measures is investigated.

3.1 Overview on risk measures

Two main groups of axiom-based risk measures are coherent risk measures,

as stated by Artzner et al. [1999], and distortion riskmeasures, as introduced

by Wang [1996]. Concavity of the distortion function is the key element to

define risk measures that belong to both groups [Wang and Dhaene, 1998].

Suggestions on new desirable properties for distortion risk measures are

proposed in Balbás et al. [2009], while generalizations of this kind of risk

measures can be found, among others, in Hürlimann [2006] and Wu and

Zhou [2006]. As shown in Goovaerts et al. [2012], it is possible to link dis-

tortion risk measures with other interesting families of risk measures devel-

oped in the literature.

Theaxiomatic setting for riskmeasureshas extensively beendeveloped since

seminal papers oncoherent riskmeasures anddistortion riskmeasures. Each

set of axioms for risk measures corresponds to a particular behavior of deci-

sionmakers under risk, as it has been shown, for instance, in Bleichrodt and

Eeckhoudt [2006] and Denuit et al. [2006]. Most often, articles on axiom-

based risk measurement present the link to a theoretical foundation of hu-

man behavior explicitly. For example, Wang [1996] shows the connection

between distortion risk measures and Yaari’s dual theory of choice under

risk; Goovaerts et al. [2010] investigate the additivity of risk measures in

Quiggin’s rank-dependentutility theory; andKaluszka andKrzeszowiec [2012]

introduce the generalized Choquet integral premium principle and relate it

to Kahneman and Tversky’s cumulative prospect theory.

Many articles have appeared in recent years that pay attention to risk mea-

sures based on distortion functions or on generalizations of the quantiles.

An example of the first group is Zhu and Li [2012]. Bellini and Gianin [2012]

andBellini etal. [2014] fit to secondgroup. An interplaybetweenbothgroups
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is found in Dhaene et al. [2012a] and Goovaerts et al. [2012].

3.2 Distortion risk measures

Distortion risk measures were introduced by Wang [Wang, 1995, 1996] and

they are closely related to the distortion expectation theory [Yaari, 1987]. A

review on how risk measures can be interpreted from several perspectives

is provided in Tsanakas andDesli [2005], and a clarifying explanation of the

relationship between distortion risk measures and distortion expectation

theory is included. A detailed literature review of distortion risk measures

is available in [Denuit et al., 2005; Balbás et al., 2009]. There are two key

elements to define a distortion risk measure: first, the associated distortion

function; and, second, the concept of the Choquet [Choquet, 1954] Integral.

The distortion function, Choquet Integral and the distortion risk measure

concepts can be defined as follows:

• Distortion function. Let g : [0,1] → [0,1] be a function such that g (0) =
0, g (1) = 1 and g is injective and non-decreasing. Then g is called a dis-

tortion function.

• Choquet Integral. The (asymmetric) Choquet Integral with respect to

a set function µ of a µ-measurable function X : Ω → R is denoted as∫
X dµ and is equal to∫

X dµ=
∫ 0

−∞
[
Sµ,X (x)−µ(Ω)

]
d x +

∫ +∞

0
Sµ,X (x)d x,

if µ(Ω) <∞, where Sµ,X (x) = µ({X > x}) denotes the survival function

of X with respect to µ. Note thatΩ denotes a set, which in financial and

insurance applications is the sample space of a probability space. A set

functionµ in this context is a function defined from 2Ω (the set of all sub-

sets ofΩ) toR. Aµ-measurable function X is, widely speaking, a function

defined on Ω such that expressions like µ({X > x}) or µ({X É x}) make

sense. See Denneberg [1994] for more details.

• Distortion risk measure. Let g be a distortion function. Consider a ran-

dom variable X and its survival function SX (x) = P (X > x). Then, func-
tion ρg defined by ρg (X ) = ∫ 0

−∞
[
g (SX (x))−1

]
d x + ∫ +∞

0 g (SX (x))d x
is called a distortion risk measure.

From the previous definitions, it is straightforward to see that for any ran-

dom variable X , ρg (X ) is the Choquet Integral of X with respect to the set



A FAMILY OF DISTORTION RISK MEASURES 39

function µ= g ◦P , where P is the probability function associated with the

probability space in which X is defined.

Themathematical expectation is a distortion riskmeasurewhose distortion

function is the identity function [Denuit et al., 2005], this is, ρid(X ) = E(X ).
Therefore, a straightforward way to interpret a distortion risk measure is

as follows: first, the survival function of the random variable is distorted

(g ◦SX ); second, themathematical expectation of the random variable with

respect to this distorted probability is computed. From a theoretical point

of view, note that this interpretation fits the discussion that risk may be de-

fined as an expected value in many situations [Aven, 2012].

VaR and TVaRmeasures are in fact distortion risk measures. The associated

distortion functions of these risk measures are shown in Table 3.2.

Table 3.2 VaR and TVaR distortion functions

Risk measure Distortion function

VaR ψα(u) =


0 if 0 É u < 1−α

1 if 1−αÉ u É 1,

TVaR γα(u) =


u

1−α if 0 É u < 1−α

1 if 1−αÉ u É 1

For a confidence level α ∈ (0,1).

Based on the distortion functions shown in Table 3.2, once α is fixed it can

be proved that VaRα(X ) É TVaRα(X )for any random variable X .

Remark 3.1. Let g and g∗ be two distortion functions and let ρg and ρg∗

be their respective distortion risk measures. Suppose that g (u) É g∗(u) for
all u ∈ [0,1]. Then ρg (X ) É ρg∗(X ) for any random variable X .

This result follows immediately from the definition of distortion risk mea-

sures, because

ρg (X ) =
∫ 0

−∞
[g (SX (x))−1]d x +

∫ +∞

0
g (SX (x))d x

É
∫ 0

−∞
[g∗(SX (x))−1]d x +

∫ +∞

0
g∗(SX (x))d x

= ρg∗(X ).
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Many articles have recently examined risk measures based on either distor-

tion functions [Zhu and Li, 2012; Belles-Sampera et al., 2013a, 2014a, 2016b;

Guillen et al., 2016; Tsanakas and Millossovich, 2016] or generalizations of

the quantiles [Bellini and Gianin, 2012; Bellini et al., 2014]. The interplay be-

tweenbothof these twogroupsof riskmeasureshasbeenexamined [Dhaene

et al., 2012a; Goovaerts et al., 2012].

3.3 A new family of risk measures: GlueVaR

A new family of distortion risk measures, named GlueVaR, is here defined.

Originally, we introduced this family in Belles-Sampera et al. [2014a]. The

main reason for defining these GlueVaR risk measures is a response to the

concerns expressed by risk managers regarding the choice of risk measures

in the case of regulatory capital requirements. However, as it has been al-

ready mentioned, an axiomatic approach to define or represent risk mea-

sures is more frequent in the literature [Artzner et al., 1999; Föllmer and

Schied, 2002; Frittelli and Rosazza Gianin, 2002; Denuit et al., 2006; Song

andYan, 2009;Cerreia-Vioglio etal., 2011; Ekeland etal., 2012;Goovaerts etal.,

2012; Grechuk et al., 2012].

Any GlueVaR riskmeasure can be described bymeans of its distortion func-

tion. Given a confidence level α, the distortion function for GlueVaR is:

κ
h1,h2

β,α (u) =


h1

1−β ·u if 0 É u < 1−β

h1 + h2 −h1

β−α · [u − (1−β)] if 1−βÉ u < 1−α
1 if 1−αÉ u É 1

(3.1)

where α, β ∈ [0,1] such that αÉ β, h1 ∈ [0,1] and h2 ∈ [h1,1]. Parameter

β is the additional confidence level besides α. The shape of the GlueVaR

distortion function is determined by the distorted survival probabilities h1

and h2 at levels 1−β and 1−α, respectively. We call parameters h1 and h2

the heights of the distortion function.

A wide range of risk measures may be defined under this framework. Note

thatVaRα andTVaRα areparticular cases of this new family of riskmeasures.

Namely, VaRα and TVaRα correspond to distortion functionsκ
0,0
α,α andκ

1,1
α,α,

respectively. By establishing suitable conditions on the heights h1 and h2,

the GlueVaR family is very flexible. For example, risk managers might like

to select α, β, h1 and h2 so that

VaRα(X ) É GlueVaRh1,h2

β,α (X ) É TVaRα(X ).
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This can be achieved by selecting a set of parameters for their associated

distortion functions to ensure that ψα(u) É κ
h1,h2

β,α (u) É γα(u) for any u ∈
[0,1], following remark 3.1, i.e. by forcing conditionh1 É 1−β

1−α . An example

of such a case is shown in Figure 3.1 (left-hand side).

The GlueVaR family also allows us to define a highly conservative risk mea-

sure GlueVaR
h1,h2

β,α , such that

TVaRα(X ) É GlueVaRh1,h2

β,α (X ) É TVaRβ(X )

for any X and that the associated distortion function κ
h1,h2

β,α is concave in

[0,1]. In this case,
1−β
1−α É h1 and h2 = 1 must be fulfilled, as occurs in the

example shown in Figure 3.1 (right-hand side).

Figure 3.1 Examples of GlueVaR distortion functions.
Left. Distortion function is concave in [0, 1−α) and VaRα(X ) ÉGlueVaRh1,h2

β,α (X ) É
TVaRα(X ) for a random variable X ;
Right. Distortion function is concave in the whole range [0, 1] and TVaRα(X ) É
GlueVaRh1,h2

β,α (X ) É TVaRβ(X ) for a random variable X .

3.4 Linear combination of risk measures

Given a randomvariable X and for fixed tolerance levelsα andβ so thatα<
β, GlueVaR

h1,h2

β,α (X ) can be expressed as a linear combination of TVaRβ(X ),
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TVaRα(X ) and VaRα(X ). This result allows us to translate the graphical-

based construction of GlueVaR riskmeasures into an algebraic construction

based on standard risk measures.

If the following notation is used,
ω1 = h1 − (h2 −h1) · (1−β)

β−α
ω2 = h2 −h1

β−α · (1−α)

ω3 = 1−ω1 −ω2 = 1−h2,

(3.2)

then the distortion function κ
h1,h2

β,α (u) in (3.1) may be rewritten as (details

can be found in Section A.1 of the Appendix):

κ
h1,h2

β,α (u) =ω1 ·γβ(u)+ω2 ·γα(u)+ω3 ·ψα(u) (3.3)

where γβ, γα, ψα are the distortion functions of TVaR at confidence lev-

els β and α and of VaR at confidence level α, respectively (see Table 3.2).

Therefore GlueVaR is a risk measure that can be expressed as a linear com-

bination of three risk measures: TVaR at confidence levels β andα and VaR

at confidence level α,

GlueVaRh1,h2

β,α (X ) =ω1 ·TVaRβ(X )+ω2 ·TVaRα(X )+ω3 ·VaRα(X ). (3.4)

Given this relationship, an alternative notation for GlueVaR
h1,h2

β,α (X ) and its

related distortion function can be used. The notation GlueVaR
ω1,ω2

β,α (X ) or

κ
ω1,ω2

β,α (u) may, on occasions, be preferred to that based on heights h1 and

h2. The bijective relationship between pairs (h1,h2) and (ω1,ω2) is also
shown in Section A.2 of the Appendix.

Specifically, in order to simplify the statement of Proposition 4.1, the expres-

sion of κ
ω1,ω2

β,α (u) is

κ
ω1,ω2

β,α (u) =


[
ω1

1−β + ω2

1−α
]
·u if 0 É u < 1−β

ω1 + ω2

1−α ·u if 1−βÉ u < 1−α
1 if 1−αÉ u É 1

(3.5)

An interesting interpretation of (3.4) in the context of decision making and

risk management is that GlueVaR risk measures arise as a linear combina-

tion of three possible scenarios. So, two levels of severity tolerance can be
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fixed, namely α and β, with α < β. Then, the risk can be measured in the

highly conservative scenario with TVaR at level β; in the conservative sce-

nario with TVaR at levelα; and in the less conservative scenario with VaR at

level α.

Each combination of these risk scenarios reflects a concrete risk attitude.

Therefore, it can be said that the combination of these risk scenarios in this

context is something that is directly identified by an explicit GlueVaR risk

measure. To some extent, these risk attitudes could be related to risk ap-

petite [Aven, 2013].

From the practitioner’s point of view, four parameters must be fixed in or-

der to define the GlueVaR risk measure. The α and β values correspond to

the confidence levels used for bad and very bad scenarios, respectively. For

instance, α = 95% and β = 99.5% could be selected, which are equivalent

to one bad event every twenty years or one bad event every two hundred,

respectively. The other two parameters are directly related to the weights

given to these scenarios. For instance, it could be said that the three com-

ponents of GlueVaR in expression (3.4) are equally important. This would

imply ω1 = ω2 = ω3 = 1/3, so the corresponding h1 and h2 parameters

could be found. Whenω1 =ω2 =ω3 = 1/3 andα= 95%, β= 99.5%, these

parameters are h1 = 11/30 and h2 = 2/3.

3.5 Subadditivity

In a seminal article [Artzner et al., 1999] the following set of axioms that a

risk measure should satisfy was established: positive homogeneity, trans-

lation invariance, monotonicity and subadditivity. Authors referred to such

riskmeasures as coherent riskmeasures. Distortion riskmeasures always sat-

isfy the first three properties, but subadditivity is only guaranteed when the

distortion function is concave [Denneberg, 1994; Wang and Dhaene, 1998;

Wirch and Hardy, 2002]. Therefore, VaR, unlike TVaR, is not coherent. In

some situations, coherence of risk measures is a requirement [Cox, 2012]

but, nonetheless, some criticisms can be found [Dhaene et al., 2008]. Addi-

tional properties for distortion risk measures are provided in [Jiang, 2008;

Balbás et al., 2009], which may complement the list of properties for risk

measures shown in Tables 1.2 and 1.4 of Chapter 1. In this section we focus

on the subadditivity property.

In order to preserve the benefits of diversification when aggregating risks,

subadditivity is an appealing property of a risk measure. As it has been

shown in Chapter 1, the subadditivity property ensures that the risk mea-
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sure value of the aggregated risk is lower than or equal to the sum of indi-

vidual risk measure values. For distortion risk measures, subadditivity may

be defined as follows.

Definition 3.1. Given a confidence levelα ∈ [0,1], a distortion riskmeasure

ρg is subadditive if, for any pair X , Y ,∫
(X +Y )d(g ◦P ) É

∫
X d(g ◦P )+

∫
Y d(g ◦P ),

where the integral symbol stands for Choquet Integrals with respect to the

set function g ◦P .

The Choquet integral condition used in the definition can be rewritten, in

terms of survival functions and Lebesgue integrals, as∫ +∞

0
g (SX+Y (z))d z É

∫ +∞

0
g (SX (x))d x +

∫ +∞

0
g

(
SY (y)

)
d y .

As shown, GlueVaR risk measures may be interpreted as a linear combina-

tion of VaR and TVaR risk measures. Therefore, a GlueVaR risk measure is

coherent when the weight assigned to VaR is zero and the weights of the

TVaRα and TVaRβ are non-negative. In terms of the parameters of the dis-

tortion function, GlueVaR is subadditive (and thus coherent) if h2 = 1 and
1−β
1−α É h1. More generally, any property satisfied by TVaR but not by VaR

will be inherited by GlueVaR ifω1 Ê 0 andω3 = 0 in expression (3.2).

Subaddtitivity in the whole domain is a strong condition. When dealing

with fat tail losses (i.e. low-frequency and large-loss events), risk managers

are especially interested in the tail region. Fat right-tails have been exten-

sively studied in insurance and finance [Wang, 1998; Embrechts etal., 2009a,b;

Degen et al., 2010; Nam et al., 2011; Chen et al., 2012] and the behavior of ag-

gregate risks in the tail region has received huge attention by researchers in

last years [Cheung, 2009; Song and Yan, 2009; Hua and Joe, 2012]. To the

best of our knowledge, however, previous studies of the subadditivity of risk

measures in the tail region are scarce [Danielsson et al., 2005; Hua and Joe,

2012].

3.6 Concavity of the distortion function

The subadditivity characteristic in the whole domain is in general not sat-

isfied by GlueVaR risk measures. It was showed that GlueVaR risk measures
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can be interpreted as a linear combination of a highly conservative scenario,

a conservative scenario and a less conservative scenario. We argued that a

particular risk attitude is reflected depending on how these scenarios are

weighted.

Given α and β, the other two parameters are directly related to the weights

given to these scenarios. The shaded areas in Figure 3.2 delimit feasible

weights (ω1,ω2) for GlueVaRω1,ω2

β,α . For instance, it could be said that the

three components ofGlueVaR in expression (3.4) are equally important, that

is,ω1 =ω2 =ω3 = 1/3. Thepoint (1/3,1/3) in Figure 3.2 corresponds to the
balanced risk attitude on the part of risk managers when faced by the three

components shown in (3.4). The corresponding distortion function κ
ω1,ω2

β,α
is concave on [0,1−α) in the lightly shaded area. Yet, the distortion func-

tion is not concave on [0,1−α) in the darkly shaded area. The distortion

function is concave in [0,1] in the boldest continuous segment and, thus,

the associated GlueVaR risk measure is subadditive.

Note that any pair of weights (ω1,ω2) on the boldest line in Figure 3.2 leads
to ω3 = 0. This means that a zero weight is allocated to the least conserva-

tive scenario, i.e. the one associated with the VaRα(X ). This is indicative
of the decision makers’ conservative approach. Nonetheless, differences in

just how restrictive this conservative attitude is can be found among the

weights lying on this line: the nearer to (ω1,ω2) =
(
β−1

β−α ,
1−α
β−α

)
, the less

restrictive it is, while the nearer to (ω1,ω2) = (1,0), the more conservative

it is.

If ω1 < 0, risk managers are optimistic regarding the impossibility of the

occurrence of the worst case scenario, and so attach a negative weight to it.

3.7 Example of risk measurement with GlueVaR

Data for the cost of claims involving three type of damages described in

the previous chapter are used to illustrate the application of GlueVaR risk

measures in risk measurement. The sample consists of n = 350 observa-

tions of the cost of individual claims in thousands of euros. In Table 3.3 a

set of quantile-based risk measures including three different GlueVaR are

displayed. The table displays the corresponding risk figures for the cost of

claims for property damage (X1), the cost of claims of bodily injuries (X2),

the cost of claims of medical expenses (X3) and the aggregate cost of claims

(X1 +X2 +X3).

The selection of the three GlueVaR risk measures included in Table 3.3 de-
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Figure 3.2 Givenα andβ, the shaded areas delimits feasible weights (ω1,ω2) for
GlueVaRω1,ω2

β,α .

serves further explanation. The two confidence levels considered are α =
95% andβ= 99.5%. The heights (h1,h2) are (11/30,2/3), (0,1) and (1/20,
1/8) respectively. Different attitudes in front of the three scenarios of risk as-
sessment are represented. GlueVaR11/30,2/3

99.5%,95% corresponds to a balanced at-

titude because the three quantile-based risk measures TVaR99.5%, TVaR95%

and VaR95% are equally important, i.e. ω1 =ω2 =ω3 = 1/3. A different atti-

tude is symbolizedbyGlueVaR0,1
99.5%,95% with associatedweightsω1 =−1/9,

ω2 = 10/9 and ω3 = 0. It corresponds to a scenario in which the manager

overweights TVaR95% and allocates the lowest feasible weight to TVaR99.5%

given that a zero weight is allocated to VaR95%. Finally, GlueVaR
1/20,1/8
99.5%,95%

reflects a risk measurement attitude just a bit more conservative than the

one represented by using VaR95%, assigning low weights to TVaR99.5% and

TVaR95% (ω1 = 1/24 andω2 = 1/12).

As it is shown in Table 3.3, GlueVaR11/30,2/3
99.5%,95% is more conservative than the

other two selected GlueVaR risk measures. This result can be generalized to

all situationsbecause the associateddistortion functionofGlueVaR11/30,2/3
99.5%,95%

is greater than the other two distortion functions in thewhole domain. Note

that it is also observed in Table 3.3 that

GlueVaR1/20,1/8
99.5%,95% É GlueVaR0,1

99.5%,95%.

It is only valid to these data and an ordering between them can not be gen-

eralized. However, a relationship between these twoGlueVaR riskmeasures
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Table 3.3 Quantile-based risk measures and subadditivity

X1 X2 X3 X1 +X2 +X3 Difference
(∗)

(a) (b) (c) (d) (a+b+c-d)

VaR95% 2.5 0.6 1.1 5.9 −1.7

TVaR95% 12.5 8.0 1.3 19.7 2.1

TVaR99.5% 40.8 42.1 1.8 81.1 3.6

GlueVaR11/30,2/3
99.5%,95% 18.6 16.9 1.4 35.6 1.9

GlueVaR1/20,1/8
99.5%,95% 4.9 2.9 1.1 10.2 −1.3

GlueVaR0,1
99.5%,95% 9.4 4.2 1.2 12.9 1.9

(∗) Benefit of diversification.

andquantile-based riskmeasures canbeestablished. It has been shown that

VaRα É GlueVaRh1,h2

β,α É TVaRα if h1 É 1−β
1−α .

That means,

VaR95% É GlueVaR0,1
99.5%,95% É TVaR95%, because 0 É 0.1, and

VaR95% É GlueVaR1/20,1/8
99.5%,95% É TVaR95%, because 0.05 É 0.1.

Although results in Table 3.3 may suggest that

TVaR95% É GlueVaR11/30,2/3
99.5%,95% É TVaR99.5%,

this can not be asserted in general because conditions on the parameters of

the GlueVaR risk measure to satisfy

TVaRα É GlueVaRh1,h2

β,α É TVaRβ

are
1−β
1−α É h1 and h2 = 1.

In this case it holds that 0.1 É 0.37 but h2 6= 1.
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Let us analyze the subadditivity property. Like the VaR95%, note that the

GlueVaR1/20,1/8
99.5%,95% fails to be subadditive for X1, X2 and X3 since 4.9+2.9+

1.1 < 10.2. Let us emphasize that these three GlueVaR risk measures have

not associated a concave distortion function in the whole domain, so the

subadditivity property can not be guaranteed for any of them. The fact that

risk values are subadditive for the GlueVaR11/30,2/3
99.5%,95% and GlueVaR0,1

99.5%,95%
is a characteristic attributable to this data but cannot be generalized to all

contexts. In the case of the GlueVaR11/30,2/3
99.5%,95% and GlueVaR1/20,1/8

99.5%,95%, the

associated distortion function is concave in [0,1−α).

3.8 Exercises

1. Consider the following empirical distribution

13, 15, 26, 26, 26, 37, 37, 100

Determine the GlueVaR11/30,2/3
85%,50% and GlueVaR0,1

85%,50%.

Hint: The heights (h1,h2) equal to (11/30,2/3) and (0,1) correspond to
(ω1 = 1/3,ω2 = 1/3) and (ω1 =−1/9,ω2 = 10/9), respectively.

2. Consider the following distribution function F (x) = x2

9 for 0 < x É 3.

Find the GlueVaR1/20,1/8
99.5%,95%.

Hint: The heights (h1,h2) equal to (1/20,1/8) correspond toω1 = 1/24
andω2 = 1/12.

3. (Exemple 6.7 in [McNeil et al., 2005]) Consider a defaultable corporate

bond. The default probability is equal to 2%. The current price of the

bond is 100. If there is no default, a bond pays in t +1 an amount of 105,
otherwise there is no payment. Hence L the loss of bond is equal to 100
when the bond defaults and to −5 otherwise. Compute the VaR95% of

the following two portfolios:

• Portfolio A consists of 100 units of this bond.

• Portfolio B consists of 100 independent bonds with the same charac-

teristics that this bond.

Hint: The loss function of a bond can be expressed as L = 100Y −5(1−
Y ) = 105Y −5, where Y is a indicator variable that takes value 1 if the

bond defaults and 0 otherwise.
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4. Let X andY be two independent randomvariables uniformlydistributed

between [0,1] and Z = X +Y their sum. Analyze if it holds that VaR25%

(Z ) < VaR25%(X1)+VaR25%(X2).

Hint: The cumulative distribution function of Z is

FZ (z) =


z2

2
if 0 < z É 1

−z2

2
+2z −1 if 1 < z É 2




