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Abstract Voice assistants (VAs) in households are becoming increasingly commonplace,
with many users expressing their appreciation of the devices’ convenience. Nonetheless, a
notable number of users have raised concerns that the devices are ‘always listening, and
that there is a lack of clear information from providers about the data collected and pro-
cessed through their microphones. Adopting a socio-informatics research perspective, we
used the living lab approach to work with users over three years to investigate their un-
certainties regarding the data collected by VAs in everyday usage. Based on our findings
from interviews, fieldwork, and participatory design workshops with 35 households, we
developed the web tool “CheckMyVA” to support users to access and visualize their own
VA data. This chapter presents the observations and findings of the three-year study by
outlining the implemented features of the tool and reflecting on how its design can help
improve data literacy and enable users to reflect on their long-term interactions with VAs,
ultimately serving to demystify’ the technology.

1. Introduction and Background

Since their launch in 2015, voice assistants (VAs) for home use such as Google
Assistant or Amazon's Alexa have been steadily gaining prevalence (Bohn 2016),
with the global market estimated to exceed 200 million devices in 2023 (Laric-
chia 2023). While users appreciate the usefulness and convenience of VAs, the
ability to control these devices by voice also serves as a gateway to a growing
ecosystem of data-based services (Stritver 2023a). Initial studies have shown
that users are often unaware of what data these devices capture and whether
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or how their data is stored (Abdi, Ramokapane, and Such 2019; Alepis and Pat-
sakis 2017; Jakobi et al. 2020; Pins et al. 2020). One reason for this is the lack
of opportunities provided to users to learn about, understand, or manage the
data collected by companies (Jakobi et al. 2020; Pins et al. 2020; 2021).

Figure 1: Extracts of vaw data transcription files from data takeouts, received a) as a
JSON file for Google Assistant and b) as a CVS file for Amazon Alexa

When it comes to tracking what VAs have captured or processed, providers
do offer options such as interaction logs, which can be accessed in users’ ac-
count settings (see an analysis of the log data by Habscheid et al. (2021)), or,
in the case of Amazon, users can ask Alexa directly why it performed in a cer-
tain way (Alizadeh, Pins, and Stevens 2023). However, studies have shown that
while these options make it quite easy to access recent interactions, they do
not offer an overall view of interactions over longer periods, nor are they suit-
able for conducting in-depth data work (Pins et al. 2020). For this reason, we
leveraged the right to access data guaranteed by the General Data Protection
Regulation (GDPR) in order to obtain raw interaction data from a longer pe-
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riod of time with which we could explore different visualization methods. Fig-
ure 1 shows how the interactions were presented in the data takeouts supplied
by Google and Amazon respectively. The interaction data for Google Assistant
(shown in JSON format in Figure 1) exhibit a uniform structure for each inter-
action. However, the individual labels at the beginning of each line are not self-
descriptive: laypersons would not necessarily find them helpful to understand
the subsequent information. Amazon provides the transcription of Alexa in-
teractions as a CVS file, which includes the timestamp, the user command, the
name of the audio file, and the response from Alexa for each interaction, listed
line by line. As can be seen, both of these formats lack legibility, especially for
laypersons, and interpreting them requires a deeper understanding of the data
structure (Pins et al. 2021).

Figure 2: Dashboard for data visualization — (exemplary view)
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Our aim was to examine, in a living lab study, how users of VAs integrate
the devices into their daily lives and, in particular, how they deal with uncer-
tainties regarding VAs’ recordings of everyday life in their homes — whether
intentional or accidentally activated, for example, by TV or human conversa-
tions. Our approach was guided by the understanding that the appropriation
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of technology is a social process, whereby artifacts are incorporated into one’s
everyday life (Draxler et al. 2012; Stevens, Pipek, and Wulf 2010; Wulf 2018);
this incorporation influences behavior and can lead to new practices, thought
patterns, and design approaches as reciprocal effects (Rohde et al. 2017).

This contribution reflects upon our development of CheckMyVA: a web tool
intended to empower users of VAs from different providers by preparing and
visualizing their interaction data. Figure 2 shows some of CheckMyVA’s visu-
alization options that allow users to view the recordings and corresponding
transcriptions stored by VA providers, thereby demystifying what VAs are lis-
tening to and helping users to reflect on their usage behavior.

2. State of the Art
2.1. Privacy Concerns About the Use of VAs

VAs are valued highly for their convenience and for the captivating way they
enable users to operate music, connected devices, and entire home systems
by means of voice commands (Purington et al. 2017; Abdi, Ramokapane, and
Such 2019; Briiggemeier et al. 2020). However, for many people, their usage
is also associated with opacity, concern, and mistrust (Lau, Zimmerman, and
Schaub 2018). Additionally, users have expressed disappointment that VAs do
not always react and respond reliably, and more complex tasks are not always
completed successfully (Bentley et al. 2018; Luger and Sellen 2016; Pins et al.
2020).

The reasons for these negative sentiments often lie in users’ uncertainty
about what exactly VAs ‘understand’ or record and how they process data (Luger
and Sellen 2016; Malkin et al. 2019). Recent research has shown that most pri-
vacy concerns are associated with accidental activations (Schonherr et al. 2020;
Malkin et al. 2019; Ford and Palmer 2019) along with anxiety about the presence
of a device that is ‘always listening’ (Alepis and Patsakis 2017; Lau, Zimmer-
man, and Schaub 2018). However, disappointment and frustration were also
expressed about providers’ failure to provide appropriate support to deal with
problems, such as by suggesting repair strategies to clarify why a VA acted in a
certain way or to successfully resolve misleading interactions (Kiesel et al. 2019;
Pins et al. 2020; Pins and Alizadeh 2021). Studies have shown that users are of-
ten unaware that they can view interaction-related data and review or delete
them (Malkin et al. 2019; Pins et al. 2021; Sciuto et al. 2018).
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Asaresult of these operational difficulties and privacy concerns, users tend
to adapt their use behavior by trying to make their voice commands as trivial,
uninteresting, or short as possible (Lau, Zimmerman, and Schaub 2018; Mal-
kin et al. 2019; Pins et al. 2020). This behavior can also be explained by rational
fatalism (Kerwin 2012) or resignation as an attempt to protect one’s data from
companies (Pins et al. 2021; Xie, Fowler-Dawson, and Tvauri 2019).

2.2. Usable Privacy for Greater Data Literacy

Advocates of ‘usable privacy’ argue for the need to design secure systems from
the user’s perspective (Cranor 2008) and to support consumers to manage their
own data privacy (Adams and Sasse 1999). This includes aspects such as im-
proving privacy awareness (Langheinrich 2002), making security tools usable
(Whitten and Tygar 1999), and making privacy notices understandable (Angulo
et al. 2012; Schaub et al. 2018).

Against the backdrop of increasingly comprehensive and complex data col-
lection, current research in usable privacy focuses on adapting the data literacy
concept (Zhang 2018). This concept, which originated in the educational sci-
ences, has been defined in various ways (see Koltay (2015) for an overview). In
summary, data literacy involves the ability to access, interpret, critically eval-
uate, manage, and process data, so that it can be transformed into actionable
knowledge to make informed decisions (Calzada Prado and Marzal 2013; Koltay
2015; Mandinach and Gummer 2016).

In our contemporary data-driven economy and society, data literacy is not
only a key skill for individuals, but also a prerequisite for informed data pro-
tection regulation. The GDPR right to access data has created an important
technical basis for promoting data literacy by enabling individuals to access in-
formation stored about them. However, there is a lack of complementary mea-
sures to ensure that accessed data can be understood and effectively managed.
To address this gap and promote data literacy among consumers, it is expedi-
ent to draw on methods such as information visualization (InfoViz) (Shneider-
man 1996), data citizen science (Marr 2016) and data work (Tolmie et al. 2016),
and combine them with playful data exploration techniques (Jakobi et al. 2017).

Inthe research field of digital consumer behavior, artificial intelligence and
data science methods such as deep learning (Chapman and Feit 2019; Feldman
and Sanger 2006; Igual Mufioz and Segui Mesquida 2017) are increasingly used
alongside classical statistical methods to identify relevant information in user
data and to derive behavioral patterns. However, such methods are typically
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available only to companies and data scientists; there is a lack of usable solu-
tions for consumers that enable automated analysis for different fields of ap-
plication (Fischer et al. 2016).

InfoViz methods facilitate the visualization of time series, networks, and
hierarchical data (Aigner et al. 2007; Ware 2013), which can reflect users’ be-
haviors back to them (Castelli et al. 2017; Jakobi et al. 2017; Stevens et al. 2017).

Initially, we were aware of just three further studies that had explicitly used
log files of interactions to investigate the use of VAs (Malkin et al. 2019; Sciuto
etal. 2018; Bentley et al. 2018). During our study, additional research examined
interaction data to draw conclusions about human-VA interaction within the
smart home ecosystem (Habscheid et al. 2021) and to assess privacy sensitiv-
ity and intimacy using data sharing scenarios (Gémez Ortega, Bourgeois, and
Kortuem 2023).

While these studies primarily analyzed data for research purposes, our aim
was to design a tool that could directly help consumers themselves to explore
and understand their data, ultimately empowering them by improving their
data literacy relating to VA use. The findings presented in this chapter build on
a previous study that tested the process for requesting interaction data and
evaluated an initial prototype for data visualization (Pins et al. 2021). Since
then, we have completed the research project and are able to present the re-
sults of the iterative design process here.

3. Methodology

In this study, we adopted the living lab’ approach to investigate ways to pro-
mote data sovereignty in the use of VAs. A living lab can be understood as a
user-centered research methodology for sensing, prototyping, validating, and
refining complex solutions in evolving real-life contexts (Eriksson and Kulkki
2005). Our procedure also incorporated the practice-orientated problem-solv-
ing strategy deployed in design case studies (Wulf et al. 2011). This approach
takes into consideration the user, their (social) practices, institutional arrange-
ments, and technological infrastructures, thereby exploring the design of in-
novative IT artifacts in situ (Wulf et al. 2015).
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Figure 3: Project Timeline
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Our aim was thus to study participants and their behavior in real-world
settings, gaining insights into their use and understandings of voice in-
teraction data. For the living lab study, we used mixed methods including
interviews, fieldwork, and (design) workshops, in order to identify and val-
idate users’ needs and requirements. This iterative process enabled us to
design, develop, and optimize a prototypical web tool (see Figure 3 for an
overview of the research phases).

Parallel to the living lab study, we used several data donations from our
participants to test the efficacy of various machine learning (ML) models to
draw conclusions about users based on their data (digital consumer analytics),
for example, to identify characteristics of users or their households. Unfor-
tunately, the data set proved too small for the models to be trained precisely
enough to be of practical use in the prototype.

Shortly after project launch in February 2020, we recruited households for
the living lab via digital and social media.' By summer 2020, we were able to
begin an initial needs assessment and evaluation of our first prototype with a
sample of 12 households.

Over the course of the project, we worked with a total of 35 households.
With each household we were in contact with a main participant who was the
administrator of the VA and had access to the interaction data. These partici-
pants ranged in age from 18 to 56, with a mean age of 33. The sample included
24 males and 11 females, who lived in single and partner households, family
households, and shared apartments. Sixteen households were ‘beginners’ who
had never used a VA at home before joining the research project (for greater
detail, see Table 1).

1 Due to the contact restrictions imposed by the simultaneous outbreak of the Covid-19
pandemic, no other recruitment strategies were practicable.
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4. Findings and Implementation

Figure 4: Main Menu of the CheckMyVA tool
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The living lab study led us to design and produce CheckMyVA, a web tool
that offers consumers two services: a data export wizard and a dashboard for
data visualization, which can be accessed from a main menu (shown in Figure
4). The data export wizard directs users to VA providers’ export websites and
guides them with helpful dialogues through the often laborious and obscure
export process. The dashboard enables consumers to display various data visu-
alizations of the interaction data once they have accessed it. The tool is freely
available as a browser extension for Google Chrome and Mozilla Firefox and
can process data from Alexa and Google Assistant.?

4.1. Data Export Wizard

Figure 5: Guidelines for requesting a data takeout from Amazon

In our previous study, users had reported experiencing difficulties in find-
ing user data, and that the process of retrieving it was very cumbersome and
user-unfriendly (Pins et al. 2021). Hence, we created the data export wizard
with the aim of supporting users through the process of exporting data from

2 For Google Chrome: https://chrome.google.com/webstore/detail/checkmyva-browse
r-erweite/kpllpbalbkdcdoklbnjlbbbeapfhoodp (18.05.2024) For Mozilla Firefox: https
://addons.mozilla.org/de/firefox/addon/checkmyva/ (18.05.2024)


https://chrome.google.com/webstore/detail/checkmyva-browser-erweite/kpllpbalbkdcdoklbnjlbbbeapfhoodp
https://chrome.google.com/webstore/detail/checkmyva-browser-erweite/kpllpbalbkdcdoklbnjlbbbeapfhoodp
https://addons.mozilla.org/de/firefox/addon/checkmyva/
https://addons.mozilla.org/de/firefox/addon/checkmyva/
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Google and Amazon. With a single click, users are directed to the appropriate
export web pages and are guided by help dialogues in boxes highlighted in red
(see Figure 5), making it easy for them to request data exports from their VAs.

Once the user has received the data takeout, the wizard processes and
reads the data locally in the background. The stored data is then made avail-
able through an interface between the web tool and the dashboard. This
ensures that data remain secure in the browser without needing to be up-
loaded to other services. Users do not have to unpack data archives or search
for and open the relevant files themselves.

Obtaining a data takeout from Alexa can take from several days to several
weeks, and to obtain the latest interaction data, a new takeout request must
be made each time. To address this issue, we explored alternative methods to
make the latest interaction data available to participants more quickly. We suc-
cessfully implemented a system that enables interactions to be synchronized
with our dashboard in real time. This real-time approach was well-received by
participants. To make the process even simpler, we implemented another func-
tion that synchronizes data each time the browser is started.’ In addition to
data request and synchronization, we added the following features to the wiz-
ard (see also Figure 4):

« Importdata: Users can import locally-stored interaction data.

 Delete data: Users can delete the data stored in the browser and the proto-
type.

« Privacy settings: After viewing the data, some users wanted to check their
settings. For this reason, we added a link that directs users to the privacy
settings in their Google or Amazon accounts so that they can make quick
adjustments.

. Datadonation: This feature allows users to transmit their data stored in the
prototype (transcribed voice commands, responses, timestamps, devices,
etc.)* to an internal server for further research within our research project,
including user evaluation and training of ML models. Users must explicitly
opt in to this procedure.

3 For Google Assistant data, this took a few minutes to a few hours, which participants
considered acceptable. However, we have not found a way to synchronize the data
in a similar way to Amazon.

4 Due to the large size of audio files, and because the dashboard could not process
audio data anyway, we limited the data donation to textual data only.
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4.2. Data Visualization Dashboard

The initial prototype for data visualization featured a timeline that helped par-
ticipants gain an overview of their interactions over a longer period of time
(Pins et al. 2021). This visualization was evaluated by participants as very useful
and informative. Furthermore, the categorization of interactions according to
specific terms enables the data points to be structured along the timeline in rel-
evant ways, helping users to identify frequent or typical usage times and situa-
tions. Step-by-step categorization also facilitates the identification of further
interaction patterns and of unusual or unexpected interactions or recordings.
For instance, participants often expressed their surprise at discovering unex-
pected activities at night, or mentioned that they became aware that in view-
ing the visualization they were surveilling the interactions of other household
members at times during which they themselves had been absent, e.g., when
they had been at work (Pins et al. 2021).

Based on the results of the ongoing iterative process, we continued to op-
timize and extend the initial prototype. Like the data export wizard, the dash-
board is implemented as a web application. It can access the user’s data via the
data export wizard automatically and offline, performing like a native desktop
application. A screenshot of the final version of the visualization dashboard is
shown in Figure 2.

In the process of preparing data for visualization, transcription errors
(such as miscoded umlauts or punctuation marks) and VA command words
(“Google”, “Alexa” or “said”) are removed to facilitate the visualization. Once
the preparation is complete, users can create categories based upon individual
command words using the Boolean operations (AND or OR). Each category
can be assigned a color and a theme (see Figure 6). Additionally, we created a
catalog of predefined categories that users can select from and customize.

The categorized data thus forms the starting point for different visualiza-
tions and analyses. A scatter chart (timeline) displays each command as a dot
in the color of the defined category (see Figure 2; bottom left of screen). This
visualization shows the frequency of commands per category and thus helps
users identify behavioral patterns associated with frequently-used categories.
Users can zoom in on specific areas by dragging a frame over them with the
mouse. Finally, by clicking on a category in the legend, all the corresponding
dots on the timeline can be shown or hidden.
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Figure 6: Widget for creating new categories based on terms.

Over the course of the project, we added various widgets based on users’
needs and interests. Widgets are tiles with data visualizations that can be freely
arranged on the dashboard, allowing users to customize their views and pri-
oritize the information most important to them. Each widget also offers the
option to display data from an individually-defined time period. The following
widgets were implemented:

«  Word list: Following evaluation of the initial prototype, we modified the
sorting options for the list of words spoken so that they could be presented
either in order of frequency or alphabetically. The list also shows which cat-
egories a term has been assigned to.

- Command list: To meet participants’ requests for a list of spoken com-
mands, we added another list with the same presentation options as the
word list. It helps users to identify speech patterns.

. Usage occasions and their frequency: A pie chart and bar chart showing
the relative distribution of categories (see Figure 7, top left).

- Device usage: A pie chart showing the relative distribution of devices used
(see Figure 7, right). This enables users to check the frequency of device use
and draw conclusions about the associated rooms in the home.

« Occasions of use per day and time: A heat map that shows the number of
commands in a given category aggregated into hours per week. Each field
is displayed in varying intensity of the category color depending on the fre-
quency of use (see Figure 7, bottom left). This helps users identify typical
usage times per category.
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Figure 7: Widgets for data visualization: Relative frequency of each category within the total data
set (top left), heatmap with clusters of interactions of a selected category (bottom left), and relative
frequency of device usage by (assigned) device name (right).
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We also conceptualized some additional widget designs in participatory
design workshops in which participants expressed their needs and inter-
ests. The limited project timeframe prevented these widgets from being
implemented into the tool, but participants’ request for them nonetheless
constitutes a significant research outcome. The following three design con-
cepts for widgets would help users to gain a better understanding of VAs’ data
processing procedures:

« Speech analysis: A widget for categorizing and detailing commands in
order to correct interaction/pronunciation differences and recognize
changes in interaction behavior.

« Data flows: A widget to show how (and with whom) data is shared, identi-
fying critical or personal data and providing user action options.

- Memories: A widget for saving interaction data as material that can evoke
memories of appointments, special occasions, or situations; supported by
images or sound if these are available or linked to the data.

Finally, we conducted internal tests with ML models to explore how the data
could be used in digital consumer analytics. The main goal was to identify pro-
files of users or their households. The users as well as our research team were
interested whether the data could convey information about household size,
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age, gender, or a speaker’s mood when interacting with the VA. We asked par-
ticipants for data donations to test various ML models.

Due to the small size of the donated data set we were unable to train the
models precisely enough to achieve conclusive results. Nevertheless, to give
users a sense of what information could potentially be extrapolated from the
data, we generated mock-ups based on the available data. These mock-ups pre-
sent insights in the following widgets:

« Household widget: A list of all VA users, distinguishing individual voices
and creating profiles that record their age, gender, and frequency of use of
the VA (see Figure 8, left).

« Sentiment widget: A pie chart showing how often a particular command
is executed with a positive, neutral, or negative intonation (see Figure 8,
center).

« Politeness widget: Emojis indicating how politely users speak to the VA.

- Healthwidget: A scatter chart showing how often a user is sick, based upon
audible symptoms like coughing, sneezing, hoarseness, or fatigue.

« Background noise widget: A scatter chart showing the frequency of certain
background sounds and any incorrect activations they may have caused.
For example, it indicates how often media (TV, radio, music), other conver-
sations, or other sounds are present in the background.

«  Advertising widget: A word cloud visualization of the brand names men-
tioned in voice commands.

- Profiling widget: A spider chart ranking inferred personality traits (see
Figure 8, right).

Figures 8-10: Widgets for the household/user profile: Amount of use per household member (leff),
inferred personality traits of a user (center), and inferred positive, neutral, or negative mood when
articulating a voice command (right).
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5. Discussion
5.1. Data Work Promotes Data Awareness and Literacy

In our living lab study, participants expressed great interest to try out the
CheckMyVA tool for the first time, and reported that using it made them
feel reassured (Pins et al. 2021). Over the course of the study, however, only a
small number of participants continued to use the tool regularly on their own
initiative. In final interviews, the following reasons for using the tool were
mentioned:

« Curiosity about what new interactions had been detected or stored by the
VA.

- Coming across the tool icon by chance while using the browser.

«  Checking for funny answers given by the VA.

«  Checking for interactions including insults by others (and deleting them).

While the first two reasons indicate curiosity or the ‘accidental rediscovery’ of
the tool, the last two are motivated by the desire to review unusual situations
and interactions. This might explain why the majority of participants did not
use the tool again; they may not have expected any new insights or unusual
interactions, and therefore felt no subsequent need to explore the data. When
asked in which situations they thought the tool might be helpful, several partic-
ipants mentioned reviewing unexpected or incorrect responses. This suggests
that after an initial ‘awareness’ check, users’ interest in the data shifts over
time, with the most attention concerning deviant activities. Such a shift has
also beenidentified in other studies with different data work contexts (Castelli,
Stevens, and Jakobi 2019; Jakobi et al. 2018).

5.2. Towards Better Support in Requesting Data
(According to Article 15 of the GDPR)

The study has shown that the procedures of requesting data collected by VAs are
neither simple nor easily comprehensible from the user’s perspective (Pins et
al. 2021). Tools like our prototype that can guide users through the data request
process thus make a valuable contribution to increasing data literacy and users’
knowledge. Easily locatable and accessible guidance on how to view or request
data from each provider can help users overcome barriers to addressing the
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issue of data collection, thereby increasing their competence to use products,
services, and systems, as well as to manage their collected data.

It also became apparent that different corporations deal with the volume
and format of users’ data in very different ways (Cena et al. 2016; Shafagh and
Hithnawi 2017; Pins et al. 2022). Even between the two VA systems considered
in this project, approaches vary significantly. Initially, we had planned to in-
clude interaction data from Siri (Apple), but that proved to not be possible due
to their pseudonymization process, which prevents access to usable interaction
data. Additionally, the ongoing development of these systems appears very in-
constant. For instance, in response to public criticism, Google suspended the
automatic storage of audio recordings for a while. Since then, it changed its
policy so that Google Assistant users can currently opt in to anonymized data
storage to improve speech and audio recognition, which may involve human
review.’

While such pseudonymization (or anonymization) practices are to be wel-
comed from a data protection perspective, their effectiveness remains ques-
tionable if conclusions can still be drawn from the content of audio or tran-
script data, even when it has been separated from user profile data. Amazon
also allows Alexa users the option to disallow the storage of interaction data,
but this requires deliberate deactivation by the user — if the default settings
are not adjusted, users implicitly consent to data storage.

Policy makers should work to generate more guidelines for the storage
of user data and should make corporations accountable for providing easily-
accessible, relevant information about the collection and processing of users’
data, especially regarding the companies’ evaluation and analysis processes for
consumer analytics purposes. For example, information should be provided on
how sensitive information is handled when recordings are subject to human
review.

5.3. Towards Demystification: Visualization and Sense-making of Data

In accordance with Article 15 of the GDPR, companies are obliged to provide
consumers with information about their personal data collected by the com-
pany, and to transmit it upon request in a machine-readable format for the
purpose of data portability in accordance with Article 20 (European Parliament

5 https://www.cnet.com/home/smart-home/googles-privacy-controls-on-recordings-c
hanges-what-that-means-for-your-google-home/
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and the Council 2018). The personal data of our participants that we requested
for this project was raw data, which consumers without technical knowledge
would barely understand (see Figure 1). Previous studies have shown that users
expect a more human-readable format (Alizadeh et al. 2019; Pins et al. 2021).
This highlights the need for solutions like our visualization dashboard, which
enables users to make sense of their data and to better understand what it can
show about their usage behavior (Castelli et al. 2017; Jakobi et al. 2017; Stevens
and Bossauer 2017). While some information from the raw data takeout was
clear and actionable, a major challenge for us was to identify significant in-
sights that could potentially be derived from the data in order to draw conclu-
sions about users and their behavior. These relevancies are not clearly evident
within the raw data sets, which makes it difficult for users to understand the
profiles created about them, and there are no end-user options that would en-
able them to create their own analyses.

In order to meet our aim to empower VA users to understand and interpret
the data that companies collect from them, we needed a sample data set with
which we could demonstrate in an exemplary way to users the potential ana-
lytical capabilities of companies. Our ability to do this was limited by the small
size of the data set that we were able to obtain voluntarily from the few house-
holds that were willing to donate their data. We believe that companies should
make it more transparent how a user’s profile is compiled and what criteria
are used to generate such profiles, so that users can understand and adjust
settings accordingly if they so wish. This transparency could balance the infor-
mation and power disparity between the user and provider, without requiring
corporations to disclose their algorithms, but nonetheless helping to clarify or
‘demystify’ the opacity of technologies like VAs. Indeed, the few households
in our study that agreed to donate us their data only did so once they under-
stood what it included, suggesting that transparency might influence users’
decisions about sharing data, especially when they feel uncertain about how
the data could be analyzed and interpreted.

During the study and data analysis, certain inconsistencies in the data
takeouts became apparent. For example, Amazon provides information about
the device used for each interaction in the accounts’ interaction log, which can
be found in the account settings. However, we could not find corresponding
information in the data takeouts. This suggests that some data correlations
are not included in the takeouts, even though some connections between
transcripts and recordings are traceable. Similarly, with Apple, it cannot be
ruled out that personal data may still be found in the data records that are
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stored pseudonymously. Previous studies (Malkin et al. 2019; Pins et al. 2021),
found that consumers were surprised to learn that voice commands were
stored long-term. Figure 9 illustrates two activities of the VA shown on the
dashboard that were included in the data set that users were surprised to
discover had been stored, especially as such activities had an unclear purpose
or occurred at unusual times.

Figure 9: Unusual activities of the VA without intelligible clarification.

Providers should therefore be held to account to make their data storage
‘transparent’ in the sense that users should be able to understand which ele-
ments of the data are interlinked for companies’ analytical purposes (without
firms having to disclose their algorithms or methods used). Companies should
also be required to delete data that no longer serves a purpose.

5.4. Raising Awareness of the Technological Infrastructure in Which
the VA is Embedded

For most participants, our study provided their first ever chance to view and
engage with the data collected by their VAs. On the one hand, they said they
felt reassured, because they had gained more clarity about what data the VA
was collecting and how they could exert control over its transmission. In par-
ticular, it became clear that the majority of the data and usage situations (e.g.,
setting timers or playing music) that the participants learned about were not
considered risky, concerning, or sensitive. This enabled them to act more self-
determinedly when talking or acting near to a smart speaker at home. But on
the other hand, viewing the data raised new questions, as they had expected to
be able to obtain more information directly from the (raw) data received about
the extent to which data was exchanged between various services. Instead, they
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initially found themselves confronted with a folder directory comprising in-
comprehensible data records that first had to be ‘decoded’ (Pins et al. 2021).

Research on VA systems should never consider them in isolation, but
always in the context of the environment and linked services within which
they are embedded (Striiver 2023a). Consumers express particular uncertainty
regarding the extent of corporations’ access to and exchange of data (Huang,
Obada-Obieh, and Beznosov 2020; Luger and Sellen 2016; Malkin et al. 2019).
Recent research and our study indicate the importance of viewing the home
holistically, as a network of different players, in order to understand various
links and activities in context (Striiver 2023b; Hiufiling 2017). For example,
further research could distinguish between smart home products and services
used (or their manufacturers) to provide more differentiated information
about their general usage or integration in everyday practices.

A holistic view of the infrastructures or platform systems (Plantin et al.
2018) would also help consumers to create transparent and trustworthy envi-
ronments for themselves, which is particularly important for private and in-
timate areas like the home. Recent studies have furthered understanding of
the basicintentions behind data collection/processing (Sadowski 2020; Stritver
2023a;2023b). Our approach also focuses on showing users what the storage of
interaction data can mean for them, their household, and their usage behav-
ior. Further research should link these aspects more closely to help users better
understand how their data is affected by corporations’ intentions. To conduct
such research effectively would require a larger data set than was available to
us for this study.

Current data work practices offered by companies usually only address the
account owner/administrator (Meng, Kekiilliioglu, and Vaniea 2021). There-
fore, a more holistic view of the home (technology) ecosystem is needed to
achieve a multi-user-centric design, creating more productive, convenient,
and inclusive IoT environments for other household members, visitors, etc.
(Stritver 2023b). This approach would allow more people to gain insights into
the interaction data and learn what the VA has captured about them and their
households (Meng, Kekiilliioglu, and Vaniea 2021; Striiver 2023b; Waldecker,
Hector, and Hoffmann 2023).

b.5. Limitations and Reflections

The scope of this study was limited by the sample. First, we engaged primarily
with the administrators of the devices who had direct access to the interac-
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tion data via their user accounts; hence we focused mainly on their needs. As
our study showed, and as other studies have demonstrated in greater depth
(Thakkar et al. 2022; Sun et al. 2021), other residents in a household are also af-
fected by a VA's data collection — but they were not included in the study. These
individuals should also be able to view the interaction data to see what the VA
provider or account holder can see about them. Our tool provides an initial in-
dication of how this could be achieved by making the dashboard accessible to
other household members, for example, via a shared device (e.g., a tablet or
PC) with the tool’s browser application installed.

Second, by only working with administrators, our sample could have been
affected by a demographic imbalance in terms of age and gender. Previous stu-
dies (Geeng and Roesner 2019; Pins et al. 2020; 2021; Shin, Park, and Lee 2018)
suggest that administrators tend to be male and tech-savvy, which may influ-
ence their interest in using VAs. However, this study did not aim to be repre-
sentative but rather to support consumers who use a VA. Nonetheless, other
user groups might express different needs and interests relating to data access
from that we were not able to take into account in our study.

Another limitation arises from the dynamic nature of data usage and the
services available to consumers at any specific time, which is constantly chang-
ing in response to ongoing developments, public criticism, and policy changes.
Hence, replicating this study at a later time might yield different results.

6. Conclusion

In this chapter, we presented the features of a web tool created with the aim to
empower VA users by increasing their data literacy, and reflected on the tool’s
development. This involved conducting a three-year living lab study to inves-
tigate VA use and data work practices, identifying what users need in order to
better understand how VAs collect and process interaction data. The tool in-
cludes a data export wizard that guides users through the process of request-
ing interaction data as well as assisting them in viewing and managing privacy
settings. It also offers a dashboard that allows the data to be structured and vi-
sualized in different ways (e.g., according to user-defined categories) to help
users better understand and reflect on their usage.

Previous studies have shown that users often express uncertainty and skep-
ticism about what their VA is listening to and storing; similar sentiments were
voiced by our participants. Our tool addresses this by demystifying VA systems
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for users, enabling them to explore their own behavioral patterns through visu-
alizations and to recognize unconscious or accidental activations. Ultimately,
the tool helped participants to assess what data the VA collects and what it can
reveal about a person or household.
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