Inhaltsverzeichnis

Beze	ichnungen
Kapi	tel I. Ergänzungen zur Integrationstheorie
1.	Maßtheorie
1.1.	Die Grundmenge
1.2.	Der Maßbegriff
1.3.	Die Familie der meßbaren Teilmengen
1.4.	Beispiele für Maße
2.1.	Definition eines Maßes mittels einer Massenverteilung 2
2.2.	Eigenschaften des Maßes
2.3.	Durch eine Bijektion definiertes Maß
2.4.	Beispiel
3.1.	Produkt zweier Maße
3.2.	Beispiel
2.	Mit Hilfe eines Maßes definierte Integrale 2
4 .1.	Bemerkungen zum klassischen Integralbegriff 2
4.2 .	Grundsumme bezüglich eines Maßes
4.3 .	Integrierbare Funktionen
4.4.	Beispiele
5.1.	Bedingungen für die Existenz eines Integrals 2
5.2.	Ein Beispiel, das die Notwendigkeit der Einschränkung
	bezüglich der Unstetigkeiten zeigt 2
6.1.	Linearität bezüglich des Integranden
6.2.	Das Vorzeichen des Integrals einer positiven Funktion 2
7.1.	Der Mittelwertsatz
7.2.	Die Schwarzsche Ungleichung
7.3.	Der Mittelwert
7.4.	Der Effektivwert
7.5.	Relation zwischen dem Mittelwert und dem Effektiv-
	wert
8,1.	Additivität bezüglich der Teilmengen

Inhal	tsverzeichnis	7
9.1.	Stetigkeit bezüglich der Teilmengen	33 34
9.2.	Ein Maß, das mit Hilfe eines Integrales über eine nicht	
^ ^	negative Funktion definiert ist	35
9.3.	Unendlich kleine Integrale	35
	Die Reziprozitätsbeziehung	37
	Wechsel des Maßes	38 38
9.0.	Anwendungen	38 40
	Beispiele	41
10.2.	Änderung der Variablen in einem orientierten Integral	41
10.0.	Andereng der variabien in emem orienteren integral	#1
3.	Das Dirac-Maß	44
11.1.	Das Dirac-Maß	44
11.2.	Integrale bezüglich des DIRAC-Maßes	45
12.1.	Der Einheitssprung	4 5
12.2.	Genaueres Studium der physikalischen Phänomene, die auf Einheitssprünge führen	47
12.3.	Die Stoßfunktion	48
12.4.	Der Satz vom Integral	49
12.5.	Interpretation als Grenzwert von Maßen	50
13.1.	Die Redensart "Dibac-Funktion"	51
13.2.	Theorie der Distributionen	52
4.	Von Parametern abhängige Integrale	54
14.1.	Problemstellung	54
14.2.	Vertauschung von \int und lim bei einem Integral über	
	einen festen Bereich	54
14.3.	Ein Beispiel, in dem Integral und Grenzwert nicht ver-	
	tauscht werden dürfen	56
14.4.	Folgen	57
15.1.	Stetigkeit des Integrals über eine beschränkte und	F 0
4 - 0	stetige Funktion	58
	Beispiel	59 50
	Stetigkeit eines Integrals mit variablen Grenzen	59 60
10.1.	Integration bezüglich des Produktes zweier Maße	60
10.2.	Interpretation	62 63
	Beispiel	64 64
	Ableitung unter dem Summenzeichen	04
	leitung unter dem Summengeichen	64

	Andere hinreichende Bedingungen für die Ableitung unter dem Summenzeichen	66
10.1.	reich	67
Kapi	tel II. Uneigentliche Integrale. Unendliche Reihen	
1.	Problemstellung	85
1.1.	Grenzen der Integrationstheorie	85
1.2.	Unendliche Reihen	86
1.3.	Mehrfache Reihe	86
1.4.	Plan für das weitere Studium	87
2.	Allgemeine Theorie	87
2.1.	Problemstellung	87
2.2.	Reguläre Folge von Teilmengen	88
2.3.	Uneigentliches Integral im Sinne der Konvergenz	89
2.4.	Haupteigenschaften der Konvergenz	90
3.1.	Additivität bezüglich der Teilmengen	91
3.2.	Anwendungen	92
3.	Studium einer positiven Funktion	93
4.1.	Hinweis auf bekannte Eigenschaften nicht abnehmen-	
	der Folgen	93
4.2.	Eigenschaften von Integralen über positive Funktionen	93
4.3.	Notwendige und hinreichende Bedingung für die Kon-	
	vergenz einer positiven Funktion	95
5.1.	Vergleichstheorem	96
5.2.	Folgerungen für die Praxis	96
5.3.	Verwendung von äquivalenten Funktionen	97
4.	Regeln für die Praxis im Falle einer positiven Funktion	
6.1.	Vereinfachungen	100
6.2.	Verwendung einer stetigen Familie von Teilmengen	100
6.3.	Einfache Integrale von Funktionen über eine Halb-	
	gerade $[a, \infty)$	101
6.4.	Folgerungen	102
7.1.	Integrale über unbeschränkte Funktionen in einem be-	
	schränkten Intervall	104
7.2.	Beispiel für ein Vergleichsintegral	104
8.1.	Beispiel für einfache konvergente Reihen	104

Inhaltsverzeichnis 9

8.2.	Eine Reihe, die einem einfachen Integral zugeordnet	
	ist	105
8.3.	Oft gebrauchte Vergleichsreihen	105
9.1.	Abgeleitete Kriterien	106
9.2.	Das Cauchysche Kriterium	107
9.3.	Das Kriterium von d'Alembert	107
	Doppelintegrale über einen unendlichen Bereich	108
	Doppelintegrale über im Urpsrung nicht beschränkte	
	Funktionen	110
10.3.	Doppelintegral über eine in der Umgebung einer Ge-	
	raden nicht beschränkte Funktion	110
11.1.	raden nicht beschränkte Funktion	111
5.	Absolute Konvergenz $\dots \dots \dots \dots \dots$	
12.1.	Absolute Konvergenz	114
12.2.	Beziehungen zur Konvergenz	114
12.3.	Beziehungen zur Konvergenz	116
a	Semikonvergenz	116
	S .	
	Semikonvergenz	117
	Eigenschaften der Semikonvergenz	117
	Beispiele für semikonvergente Integrale	
	Semikonvergente Reihen	
14.2.	Die Abelsche Transformation	
l 4 .3.	Anwendung auf die Untersuchung von Reihen	119
14.4.	Alternierende Reihen	120
15.1.	Hauptwert	121
7.	Numerische Behandlung der uneigentlichen Integrale	
**	und der unendlichen Reihen	124
101	Problemstellung	124
	Vergleichstheorem für den positiven Fall	125
	Bestimmung einer oberen Schranke für das Restglied	126
	Bestimmung einer unteren Schranke für das Restglied	
	Konvergenztyp	127
	Beschleunigung der Konvergenz	129
	Verwendung des Hauptteils des Restgliedes	129
	Verwendung des Hauptteiles eines Gliedes der Reihe	
10.0.	Absolute Kennegers	132
10.1.	Absolute Konvergenz	132
1 <i>0.2</i> .	Der Fall der Semikonvergenz	
90.1. 90.1.	Reigniel	133
ພປ.⊿. ວດ ຈ	Beispiel	134
4 ∪.∂.	Der Ban der albermerenden fremen	104

10 Inhaltsverzeichnis

Kapitel III. Durch uneigentliche Integrale und unendlich	
Reihen definierte Funktionen	153
1.1. Vorbemerkungen	. 153
1. Stetigkeit	. 153
2.1. Problemstellung	. 153
2.2. Beispiele	. 155
3.1. Normale Konvergenz	. 157
3.2. Studium der normal konvergenten uneigentlichen Inte- grale über stetige Funktionen im Rahmen des An-	
wendungsbereiches der Regeln für die Praxis	158
"Oznama governous des regent des realités :	- 100
2. Integration	. 160
4.1. Formel für die Integration unter dem Summenzeicher	160
4.2. Einschränkung des Problems	. 160
4.3. Regel für die Praxis im Falle eines normal konvergen	
ten uneigentlichen Integrals über eine stetige Funktion	
5.1. Anwendung	. 162
5.2. Eine andere Anwendung	. 10 4 165
5.5. INCORREM Zum angementen Fan	. 100
3. Ableitung	. 166
6.1. Problemstellung	. 166
6.2. Formulierung einer Regel für die Praxis	. 166
4. Das Fehlerintegral $Er(x)$	172
7.1. Definition von $Er(x)$. 172
7.2. Variation von $Er(x)$. 173
7.3. Verhalten im Unendlichen	. 175
7.4. Der Wert einiger oft gebrauchter Integrale	. 176
7.5. Vorhandene numerische Tafeln	. 177
8.2. Gebrauchsanweisung für die asymptotische Entwick	
lung	
5. Die Faktorielle	
9.1. Definition	. 181
9.2. Funktionalbeziehung für die Faktorielle	. 183
9.3. Oft benutzte Werte von $x!$. 183
10.1. Erweiterung der Definition für $x < -1$ und ungleich	
einer ganzen Zahl	. 184

Inhaltsverzeichnis		11
10.2. Schaubild der Funktion x!		 185
10.3. Tabellen für die Faktorielle		 187
11.1. Einige Formeln, in denen Faktorielle auftreten		 189
11.2. Formel für das Komplement	,	 190
11.3. Die Wallissche Formel		
11.4. Die Stirlingsche Formel		 190
Literatur		 207
Numerische Tafeln		 209
Sachverzeichnis		 211