CONTENT

1.	Introduction	9
	1.1. The adiabatic approximation	9
	1.2. Density functional theory	11
	1.3. Quasi-particles	20
2.	The LCAO formalism	29
	2.1. Atomic one-particle wavefunctions	30
	2.2. The LCAO secular equations	38
	2.3. The case of the bandstructure of a crystalline solid	41
	2.4. Multi-centre integrals	46
з.	Optimization of the basis	53
	3.1. Parametrization of the basis states	53
	3.2. Empty lattice tests	55
	3.3. Optimum basis LCAO band calculation for real crystals	68
4.	Wannier functions	73
	4.1. LCAO interpolation	73
	4.2. One-band Wannier functions	77
	4.3. Multi-band Wannier functions	83
	4.4. An example	87
	4.5. The recursion method for resolvent operator matrix elements	90
	4.6. The chemical pseudo-potential	96
5.	The local basis representations of the electron density	98
	5.1. Symmetry	98
	5.2. The total electron density	104
	5.3. The case of a crystal lattice	106
	5.4. Core, net, and overlap densities	109

8		Content
6.	. Simplex methods for k-space integrations in d dimensions	113
	6.1. Integrals containing one singular function	114
	6.2. Integrals containing two singular functions	119
	6.3. An example	124
	6.4. Comparison with the proximity volume method	127
7.	Potential construction and iteration	130
	7.1. Principles of potential construction	130
	7.2. The Hartree part of the potential	132
	7.3. The exchange and correlation potential	135
	7.4. Iteration of a high-dimensional non-linear vector equati	on 137
Appendix 1. Spherical harmonics and their transformations		141
Ap	opendix 2. Some useful theorems on basis function expansions	144
Ap	opendix 3. Results of DFT-LCAO band structure calculations	
	for element metals	146
Re	eferences	216
Su	abject index	220

Notation:

Bold-face type is used for vectors $\mathbf{R} = (\mathbf{R}_1, \mathbf{R}_2, \mathbf{R}_3)$ or matrices $\mathbf{A} = [[\mathbf{A}_{ij}]]$. The absolute value (Euklidean norm) of a vector \mathbf{R} is \mathbf{R} . A roof $\hat{}$ on a letter in ordinary type, $\hat{\mathbf{H}}$, denotes an operator, on a bold-face type, $\hat{\mathbf{r}}$, it means the unit vector in the direction of \mathbf{r} . For technical reasons, the centre Γ of the Brillouin zone (B.Z.) is denoted by $\hat{\mathbf{O}}$ in bandstructure plots. All other notations are explained in the text.