

Contents

Preface — V

Chapter 1

Introduction to composite materials — 1

- 1.1 Introduction to materials — 3
- 1.1.1 Classification of materials — 3
- 1.2 Introduction to composite materials — 3
- 1.2.1 What are composites? — 3
- 1.2.2 History of composite materials — 4
- 1.2.3 Advantages and disadvantages — 5
 - 1.2.3.1 Advantages of composite materials — 5
 - 1.2.3.2 Disadvantages of composite materials — 6
- 1.2.4 Applications of composite materials — 7
 - 1.2.4.1 Space applications — 8
 - 1.2.4.2 Automotive applications — 9
 - 1.2.4.3 Sporting industry applications — 9
 - 1.2.4.4 Marine applications — 10
 - 1.2.4.5 What can be made using composite materials? — 10
 - 1.2.4.6 What is the world market for composites? — 10
- 1.2.5 Classification of composite materials — 11
 - 1.2.5.1 Particulate composites — 11
 - 1.2.5.2 Flake composites — 11
 - 1.2.5.3 Fiber composites — 12
 - 1.2.5.4 Polymer matrix composites — 13
 - 1.2.5.5 Metal matrix composites — 13
 - 1.2.5.6 Ceramic matrix composites — 13
 - 1.2.5.7 Carbon–carbon composites — 13

Chapter 2

Basic concepts and terminology — 15

- 2.1 Fibers and matrix — 15
- 2.1.1 Matrix materials — 15
- 2.1.2 Functions of a matrix — 15
- 2.1.3 Properties of a matrix — 16
- 2.1.4 Factors considered for the selection of matrix — 16
- 2.1.5 General types of matrix materials — 17
 - 2.1.5.1 Thermosetting matrices (resin) — 17
 - 2.1.5.1.1 Comparison of common thermosetting resins — 17
 - 2.1.5.2 Thermoplastic matrices (resin) — 18
 - 2.1.6 Fiber materials — 20

2.1.7	Functions of a fibers — 20
2.1.7.1	Glass fibers — 21
2.1.7.2	Carbon fibers — 21
2.1.7.3	Aramid fibers — 21
2.1.7.4	Silicon carbide — 21
2.1.7.5	Organic fibers — 22
2.2	Styles of reinforcement — 23

Chapter 3

Design concepts for composite materials/structures — 24

3.1	Introduction — 24
3.1.1	Design considerations — 24
3.1.2	Designing the laminate — 25
3.1.3	Establishing property data — 25
3.1.4	Designing for the environment — 26
3.1.5	Designing for joints and assemblies — 26
3.1.6	Designing for robustness and through-life performance — 27
3.1.7	Designing for manufacture — 27
3.1.8	Designing for cost — 27
3.2	The need for design management — 28
3.3	The design process — 28

Chapter 4

Composite manufacturing, fabrication, and processing — 32

4.1	Introduction — 32
4.2	Classification of manufacturing processes — 33
4.2.1	Open mold process — 33
4.2.1.1	Wet layup/hand layup — 33
4.2.1.2	Spray layup — 35
4.2.1.3	Filament winding — 35
4.2.1.4	Sheet molding compound — 37
4.2.1.5	Expansion tool molding — 37
4.2.1.6	Contact molding — 38
4.2.2	Closed mold process — 39
4.2.2.1	Compression molding — 39
4.2.2.2	Vacuum bag processing — 40
4.2.2.3	Pressure bag molding — 40
4.2.2.4	Injection molding — 41
4.2.2.5	Cold press molding — 41
4.2.2.6	Resin transfer molding — 41

4.2.2.7	Autoclave molding — 42
4.2.3	Continuous processes — 43
4.2.3.1	Pultrusion — 43
4.2.3.2	Continuous laminating processes — 43
4.2.3.3	Braiding — 44
4.3	Defects in manufactured polymeric composites — 45

Chapter 5

The mechanical behavior of composite materials — 46

5.1	Introduction — 46
5.1.1	Isotropic material — 46
5.1.2	Orthotropic material — 46
5.1.3	Anisotropic material — 46
5.2	Lamina and laminates — 47
5.3	Failure modes of composite materials — 48
5.3.1	Microcracking of the matrix — 48
5.3.2	Fiber pull-out and debonding (separation of fibers and matrix) — 49
5.3.3	Delamination — 49
5.3.4	Breaking of fibers — 50
5.4	Failure mechanisms of composite materials — 51
5.5	Fatigue behavior of composite materials — 52
5.6	Factors affecting the fatigue behavior of composite materials — 54
5.7	Failure criteria of fatigue loading — 54

Chapter 6

Structural health monitoring of composite structures — 57

6.1	Introduction — 57
6.1.1	Capability of nondestructive testing techniques for structural health monitoring — 59
6.1.2	Characteristics of piezoelectric sensors for structural health monitoring — 59
6.2	Lamb wave technique-based structural health monitoring of composite structures — 65
6.2.1	History and literature behind the Lamb wave technique — 66
6.2.2	Lamb wave modeling and simulation — 68
6.2.3	Lamb wave application in structural health monitoring — 70
6.2.4	Optimal number and configuration of piezoelectric transducers — 71
6.2.5	Lamb wave-based damage identification principle — 72
6.3	Electrical capacitance sensor technique-based structural health monitoring of composite structures — 77

6.3.1	History and literature behind the electrical capacitance sensor technique — 79
6.3.2	Electrical capacitance sensor modeling and simulation — 80
6.3.3	Electrical capacitance sensor electrode excitation strategy — 82
6.3.4	3D electrical capacitance sensor governing equation — 82
6.3.5	Factors affecting the electrical capacitance sensor technique — 84
6.3.6	Effect of the number of electrodes on the performance of electrical capacitance sensors — 84
6.3.7	The life of electrical capacitance sensor — 84
6.4	Fiber-optic sensor technique-based structural health monitoring of composite structures — 85
6.4.1	History and literature behind the fiber-optic technique — 88
6.4.2	Common types of fiber-optic sensors — 88
6.4.3	Description of fiber Bragg grating sensors — 89
6.4.4	Working principle of fiber Bragg grating sensors — 89
6.4.5	Improve the design of the fiber Bragg grating for large-strain sensor — 91
6.5	Artificial intelligence — 92
6.5.1	Machine learning — 93
6.5.2	Deep learning — 96
6.5.3	Artificial neural networks — 96
6.5.4	Damage identification with artificial neural networks in composite structures — 98
6.5.4.1	Gray-box model — 98

Chapter 7

Case studies on structural health monitoring of composite structures — **103**

7.1	Structural health monitoring of composite pipelines — 103
7.1.1	Case study (1): predicting water absorption in composite pipes using electrical capacitance sensors integrated with deep learning approach — 103
7.1.2	Methodology — 104
7.1.2.1	The geometric model — 104
7.1.2.2	Numerical work — 107
7.1.2.2.1	System assumptions — 107
7.1.2.3	The structural-thermal-electrostatic (multi-physics) coupled field modeling — 107
7.1.2.3.1	The static model analysis — 107
7.1.2.3.2	Electrostatic field results — 108
7.1.2.4	The mass of water absorption (M%) monitoring — 109
7.1.2.5	Deep neural networks — 112

7.1.2.5.1	Architecture of the developed deep neural network — 112
7.1.2.5.2	Deep neural network training and test sets — 112
7.1.2.5.3	The training and testing algorithm — 117
7.1.2.5.4	The developed deep neural network predicted data of $M\%$ — 117
7.1.2.6	Validity of the proposed technique — 118
7.1.2.6.1	Theoretical validation — 118
7.1.2.6.2	Experimental validation — 119
7.1.2.6.3	Evaluation of present algorithm accuracy and reliability — 119
7.1.2.7	Summary — 121
7.1.3	Case study (2): predicting long-term creep thermomechanical fatigue behavior monitoring in composite pipelines using electrical capacitance sensors integrated with deep learning approach — 123
7.1.3.1	Methodology — 124
7.1.3.2	The geometric model — 124
7.1.3.3	Numerical work — 126
7.1.3.3.1	The structural–thermal–electrostatic modeling analysis — 126
7.1.3.3.2	$S-N$ curve of fatigue behavior for basalt fiber-reinforced polymer composite pipeline — 127
7.1.3.3.3	$D-N$ curve of fatigue damage model for basalt fiber-reinforced polymer composite pipeline — 128
7.1.3.4	Deep neural networks — 130
7.1.3.4.1	Deep neural network configuration for LTCTMF behavior in basalt fiber-reinforced polymer composite pipeline — 130
7.1.3.4.2	Deep neural network training and testing — 132
7.1.3.4.3	The training and testing algorithms — 135
7.1.3.5	Electrical capacitance sensor results for LTCTMF behavior in basalt fiber-reinforced polymer composite pipelines — 135
7.1.3.6	Validity of the proposed technique — 137
7.1.3.6.1	Theoretical validation — 137
7.1.3.6.2	Experimental validation — 142
7.1.3.7	The deep neural network predicted data of $S_f(t)$ — 143
7.1.3.8	Utilizing the trained deep neural network for predicting nonfinite element model data — 146
7.1.3.9	Summary — 148
7.1.4	Case study (3): structural health monitoring of composite pipelines utilizing fiber optic sensors and machine learning approach — 149
7.1.4.1	Methodology — 150
7.1.4.2	The geometric model — 150
7.1.4.2.1	Damaged pipeline system modeling — 152
7.1.4.2.2	Modal analysis of the pipeline — 154

7.1.4.2.3	Stress-strain analysis in a stressed thick-walled pipe — 154
7.1.4.3	Pipeline monitoring-based fiber Bragg grating sensor technology — 156
7.1.4.4	Design theory of fiber Bragg grating strain sensor array — 157
7.1.4.5	The basalt fiber-reinforced polymer pipeline damage identification model — 159
7.1.4.5.1	A k-nearest neighbor algorithm — 161
7.1.4.5.2	The convolutional neural network modeling — 163
7.1.4.6	The displacement response identification — 166
7.1.4.7	Experimental validation of the proposed method — 167
7.1.4.8	Hybrid convolutional neural network + k-nearest neighbor (ECNN) architecture as a surrogate model — 169
7.1.4.9	The displacement response prediction based on ECNN — 172
7.1.4.10	Summary — 174
7.2	Structural health monitoring of composite ducts — 176
7.2.1	Case Study (4): structural health monitoring of composite dual-chamber muffler using deep learning algorithm for predicting acoustic behavior — 177
7.2.1.1	Methodology — 178
7.2.1.2	Materials and methods — 178
7.2.1.2.1	The geometric model — 178
7.2.1.2.2	Basic acoustic equations of the dual-chamber muffler — 179
7.2.1.2.3	Acoustic properties of composite laminated muffler — 181
7.2.1.2.4	Acoustic transmission loss — 182
7.2.1.3	Artificial neural networks — 184
7.2.1.3.1	Convolutional neural network — 185
7.2.1.3.2	Recurrent neural network with long short-term memory (RNN-LSTM) blocks — 185
7.2.1.3.3	Bayesian genetic algorithm optimization — 187
7.2.1.4	The work description — 187
7.2.1.5	Validation of the proposed method — 188
7.2.1.6	Data collection — 190
7.2.1.7	The established algorithm — 193
7.2.1.8	Development of artificial neural network models — 193
7.2.1.9	Performance evaluation of artificial neural network models — 194
7.2.1.10	Acoustic DCLCM geometry design optimization — 195
7.2.1.11	Summary — 197
7.3	Structural health monitoring of composite plates — 199
7.3.1	Case Study (5): structural health monitoring of composite plates using electrical capacitance sensors and system control theory — 199
7.3.1.1	Methodology — 199
7.3.1.2	The geometric model — 200

- 7.3.1.3 Damage monitoring of basalt fiber-reinforced polymer composite plate using electrical capacitance sensors — **202**
- 7.3.1.3.1 Voltage signal analysis in the frequency domain — **203**
- 7.3.1.3.2 Frequency domain analysis methods — **207**
- 7.3.1.4 Summary — **208**

Notations — **211**

References — **215**

Index — **239**

