Contents

Preface — V

Preface to the third edition — VII

Preface to the second edition —— IX

About the authors — XI

1	Crystal density —— 1
1.1	Group additivity method —— 2
1.1.1	The method of atomic contributions — 7
1.1.2	Benzene-derived energetic compounds using atomic volumes ——7
1.1.3	The method of group additivity for estimating densities of energetic
	ionic liquids and salts —— 9
1.2	Quantum mechanical approach —— 11
1.2.1	Quantum mechanical approach for neutral energetic compounds —— 11
1.2.2	Energetic ionic liquids and salts as room-temperature energetic
	materials —— 13
1.3	Empirical methods for the calculation of the crystal density of
	different classes of energetic materials —— 14
1.3.1	Nitroaromatic energetic compounds —— 14
1.3.2	Acyclic and cyclic nitramines, nitrate esters, and nitroaliphatic
	compounds —— 16
1.3.3	Improved method for the prediction of the crystal densities of
	nitroaliphatics, nitrate esters, and nitramines —— 18
1.3.4	Reliable correlation for the prediction of the crystal densities of
	polynitroarenes and polynitroheteroarenes —— 19
1.3.5	The extended correlation for the prediction of the crystal density of
	energetic compounds —— 21
1.3.6	Energetic azido compounds —— 23
1.3.7	High-nitrogen-content organic compounds —— 24
1.4	Empirical methods for the assessment of the crystal density of
	hazardous ionic molecular energetic materials using the molecular
	structures —— 31
1.4.1	Two general empirical methods —— 32
1.4.2	The effects of various substituents on the density of tetrazolium
	nitrate salts —— 33
1.4.3	Predicting the density of tetrazole- <i>N</i> -oxide salts —— 34
1.4.4	High-nitrogen-containing salts and ionic liquids (HNCSILs) —— 35
1.5	Machine learning for predicting properties of energetic materials —— 39

1.5.1	Machine learning for predicting density in energetic materials —— 39				
1.5.2	Limitations of ML in predicting energetic compound densities —— 41				
1.6	Summary —— 42				
2	Heat of formation —— 44				
2.1	Gas-phase heats of formation of energetic compounds —— 44				
2.1.1	The evolution of computational thermochemistry from semiempirical to composite quantum methods —— 45				
2.1.2	ML advances in predicting formation enthalpies outperform				
	traditional quantum methods —— 46				
2.2	Condensed phase heats of formation of energetic compounds —— 48				
2.2.1	Thermochemical prediction of condensed phase heats of formation in energetic materials —— 49				
2.2.2	Empirical approaches or QSPR methods on the basis of structural parameters —— 51				
2.3	Energetic compounds with high nitrogen contents —— 63				
2.3.1	Using the molecular structure —— 64				
2.3.2	Gas-phase information —— 64				
2.4	The condensed phase heat of formation of energetic ionic liquids and				
	salts —— 66				
2.4.1	Complex approach —— 66				
2.4.2	QSPR methods —— 67				
2.5	Summary —— 73				
3	Melting point —— 74				
3.1	Group additivity, QSPR, ML, and quantum mechanical methods —— 75				
3.2	Simple empirical methods on the basis of molecular structure — 78				
3.2.1	Nitroaromatic compounds —— 79				
3.2.2	Polynitroarene and polynitroheteroarene compounds —— 80				
3.2.3	Nitramines, nitrate esters, nitrate salts, and nitroaliphatics —— 82				
3.2.4	Nonaromatic energetic compounds —— 82				
3.2.5	Improved method for predicting the melting points of energetic compounds —— 84				
226					
3.2.6	Organic molecules containing hazardous peroxide groups —— 87				
3.2.6	Organic azides —— 89				
3.2.7	Organic azides —— 89 General method for the prediction of melting points of energetic compounds including organic peroxides, organic azides, organic nitrates, polynitroarenes, polynitroheteroarenes, acyclic and cyclic nitramines, nitrate esters, and nitroaliphatic compounds —— 90 Cyclic saturated and unsaturated hydrocarbons —— 99				
3.2.7 3.2.8	Organic azides — 89 General method for the prediction of melting points of energetic compounds including organic peroxides, organic azides, organic nitrates, polynitroarenes, polynitroheteroarenes, acyclic and cyclic nitramines, nitrate esters, and nitroaliphatic compounds — 90				

3.3.2	QSPR approaches based on complex descriptors —— 109				
3.3.3	Simple approach based on the structure of cations and anions —— 111				
3.4	Summary —— 114				
4	Enthalpy and entropy of fusion —— 116				
4.1	Different approaches for the prediction of the enthalpy of fusion —— 116				
4.1.1	Group additivity method for prediction of the enthalpy of fusion —— 117				
4.1.2	Nitroaromatic carbocyclic energetic compounds —— 119				
4.1.3	Nitroaromatic energetic compounds —— 120				
4.1.4	Nonaromatic energetic compounds containing nitramine, nitrate, and				
	nitro functional groups —— 121				
4.1.5	Improved method for the reliable prediction of the enthalpy of fusion				
	of energetic compounds —— 122				
4.1.6	A reliable method to predict the enthalpy of fusion of energetic				
	materials —— 125				
4.1.7	A generalized predictive model for enthalpy of fusion in diverse				
	hydrocarbons —— 127				
4.2	Different methods to predict the entropy of fusion —— 134				
4.3	A group contribution approach incorporating cation-anion				
	interactions and structural effects for ionic liquids —— 138				
4.4	Summary —— 141				
5	Heat of sublimation —— 142				
5.1	Group additivity method for prediction of the heat of sublimation —— 143				
5.2	O				
J	Quantum mechanical and complex approaches for predicting the				
J.L	heat of sublimation —— 151				
5.3	heat of sublimation —— 151 The use of structural parameters —— 152 Nitroaromatic compounds —— 152				
5.3 5.3.1	heat of sublimation —— 151 The use of structural parameters —— 152				
5.3 5.3.1 5.3.2 5.3.3	heat of sublimation —— 151 The use of structural parameters —— 152 Nitroaromatic compounds —— 152 Nitramines —— 153 Nitroaromatics, nitramines, nitroaliphatics, and nitrate esters —— 154				
5.3 5.3.1 5.3.2 5.3.3	heat of sublimation — 151 The use of structural parameters — 152 Nitroaromatic compounds — 152 Nitramines — 153 Nitroaromatics, nitramines, nitroaliphatics, and nitrate esters — 154 General method for polynitroarenes, polynitroheteroarenes, acyclic				
5.3 5.3.1 5.3.2 5.3.3	heat of sublimation — 151 The use of structural parameters — 152 Nitroaromatic compounds — 152 Nitramines — 153 Nitroaromatics, nitramines, nitroaliphatics, and nitrate esters — 154 General method for polynitroarenes, polynitroheteroarenes, acyclic and cyclic nitramines, nitrate esters, nitroaliphatics, cyclic and acyclic				
5.3 5.3.1 5.3.2 5.3.3	heat of sublimation — 151 The use of structural parameters — 152 Nitroaromatic compounds — 152 Nitramines — 153 Nitroaromatics, nitramines, nitroaliphatics, and nitrate esters — 154 General method for polynitroarenes, polynitroheteroarenes, acyclic and cyclic nitramines, nitrate esters, nitroaliphatics, cyclic and acyclic peroxides, as well as nitrogen-rich compounds — 155				
5.3 5.3.1 5.3.2 5.3.3 5.3.4	heat of sublimation — 151 The use of structural parameters — 152 Nitroaromatic compounds — 152 Nitramines — 153 Nitroaromatics, nitramines, nitroaliphatics, and nitrate esters — 154 General method for polynitroarenes, polynitroheteroarenes, acyclic and cyclic nitramines, nitrate esters, nitroaliphatics, cyclic and acyclic				
5.3 5.3.1 5.3.2 5.3.3 5.3.4	heat of sublimation — 151 The use of structural parameters — 152 Nitroaromatic compounds — 152 Nitramines — 153 Nitroaromatics, nitramines, nitroaliphatics, and nitrate esters — 154 General method for polynitroarenes, polynitroheteroarenes, acyclic and cyclic nitramines, nitrate esters, nitroaliphatics, cyclic and acyclic peroxides, as well as nitrogen-rich compounds — 155				
5.3 5.3.1 5.3.2 5.3.3 5.3.4	heat of sublimation — 151 The use of structural parameters — 152 Nitroaromatic compounds — 152 Nitroaromatics, nitramines, nitroaliphatics, and nitrate esters — 154 General method for polynitroarenes, polynitroheteroarenes, acyclic and cyclic nitramines, nitrate esters, nitroaliphatics, cyclic and acyclic peroxides, as well as nitrogen-rich compounds — 155 Summary — 158				
5.3 5.3.1 5.3.2 5.3.3 5.3.4	heat of sublimation — 151 The use of structural parameters — 152 Nitroaromatic compounds — 152 Nitramines — 153 Nitroaromatics, nitramines, nitroaliphatics, and nitrate esters — 154 General method for polynitroarenes, polynitroheteroarenes, acyclic and cyclic nitramines, nitrate esters, nitroaliphatics, cyclic and acyclic peroxides, as well as nitrogen-rich compounds — 155 Summary — 158 Impact sensitivity — 159 Complex computational methods — 160 Advances in modeling impact sensitivity: phonon-vibration coupling				
5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.4 6 6.1	heat of sublimation — 151 The use of structural parameters — 152 Nitroaromatic compounds — 152 Nitroaromatics, nitramines, nitroaliphatics, and nitrate esters — 154 General method for polynitroarenes, polynitroheteroarenes, acyclic and cyclic nitramines, nitrate esters, nitroaliphatics, cyclic and acyclic peroxides, as well as nitrogen-rich compounds — 155 Summary — 158 Impact sensitivity — 159 Complex computational methods — 160 Advances in modeling impact sensitivity: phonon-vibration coupling and multi-phonon interactions in energetic materials — 166 Simple methods on the basis of molecular structure for neutral				
5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.4 6 6.1 6.2	heat of sublimation — 151 The use of structural parameters — 152 Nitroaromatic compounds — 152 Nitroaromatics, nitramines, nitroaliphatics, and nitrate esters — 154 General method for polynitroarenes, polynitroheteroarenes, acyclic and cyclic nitramines, nitrate esters, nitroaliphatics, cyclic and acyclic peroxides, as well as nitrogen-rich compounds — 155 Summary — 158 Impact sensitivity — 159 Complex computational methods — 160 Advances in modeling impact sensitivity: phonon-vibration coupling and multi-phonon interactions in energetic materials — 166				

6.3.2	Elemental composition and molecular moieties —— 169		
6.4	Impact sensitivity of quaternary ammonium-based energetic ionic		
	liquids or salts —— 181		
6.5	Quantitative impact sensitivity prediction: multiplicative incremental		
	theory for energetic materials —— 183		
6.5.1	Aromatic systems exhibit distinct behavior —— 191		
6.5.2	Understanding symmetry in fused ring systems —— 193		
6.5.3	Identifying trigger bonds in symmetric structures —— 193		
6.5.4	Handling complex cases: when structures defy simple analysis —— 194		
6.5.5	Breaking down the approach —— 194		
6.5.6	When the rules don't apply: unexplained cases in impact		
	sensitivity —— 196		
6.5.7	The puzzling case of compounds (I)–(IV) —— 196		
6.5.8	Nitrogen's subtle influence: compounds (II) vs. (V) —— 196		
6.5.9	The azo-linked surprise: compounds (VI)–(VII) —— 198		
6.5.10	The curious case of salt (VIII) —— 198		
6.5.11	Looking ahead —— 198		
6.6	Summary —— 198		
	ectric spark sensitivity —— 200		
7.1	Measurement of electric spark sensitivity —— 200		
7.2	Different methods for predicting electric spark sensitivity —— 201		
	Different methods for predicting electric spark sensitivity —— 201 Simple methods for predicting electrostatic spark sensitivity based on		
7.2 7.3	Different methods for predicting electric spark sensitivity —— 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument —— 202		
7.27.37.3.1	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202		
7.2 7.3 7.3.1 7.3.2	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203		
7.27.37.3.1	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic		
7.2 7.3 7.3.1 7.3.2 7.3.3	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204		
7.2 7.3 7.3.1 7.3.2	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204 Simple prediction of electrostatic spark sensitivity based on the new		
7.2 7.3 7.3.1 7.3.2 7.3.3 7.4	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204 Simple prediction of electrostatic spark sensitivity based on the new ESZ KTTV instrument — 205		
7.2 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204 Simple prediction of electrostatic spark sensitivity based on the new ESZ KTTV instrument — 205 Polynitroarenes based on ESZ KTTV — 205		
7.2 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1 7.4.2	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204 Simple prediction of electrostatic spark sensitivity based on the new ESZ KTTV instrument — 205 Polynitroarenes based on ESZ KTTV — 205 Nitramines based on ESZ KTTV — 207		
7.2 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204 Simple prediction of electrostatic spark sensitivity based on the new ESZ KTTV instrument — 205 Polynitroarenes based on ESZ KTTV — 205 Nitramines based on ESZ KTTV — 207 Quaternary ammonium-based energetic ionic liquids or salts based		
7.2 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1 7.4.2 7.4.3	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204 Simple prediction of electrostatic spark sensitivity based on the new ESZ KTTV instrument — 205 Polynitroarenes based on ESZ KTTV — 205 Nitramines based on ESZ KTTV — 207 Quaternary ammonium-based energetic ionic liquids or salts based on ESZ KTTV — 209		
7.2 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1 7.4.2	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204 Simple prediction of electrostatic spark sensitivity based on the new ESZ KTTV instrument — 205 Polynitroarenes based on ESZ KTTV — 205 Nitramines based on ESZ KTTV — 207 Quaternary ammonium-based energetic ionic liquids or salts based on ESZ KTTV — 209 Electrostatic discharge (ESD) sensitivity of nitrogen-rich heterocyclic		
7.2 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1 7.4.2 7.4.3 7.5	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204 Simple prediction of electrostatic spark sensitivity based on the new ESZ KTTV instrument — 205 Polynitroarenes based on ESZ KTTV — 205 Nitramines based on ESZ KTTV — 207 Quaternary ammonium-based energetic ionic liquids or salts based on ESZ KTTV — 209 Electrostatic discharge (ESD) sensitivity of nitrogen-rich heterocyclic energetic compounds (NRHECs) — 211		
7.2 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1 7.4.2 7.4.3 7.5	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204 Simple prediction of electrostatic spark sensitivity based on the new ESZ KTTV instrument — 205 Polynitroarenes based on ESZ KTTV — 205 Nitramines based on ESZ KTTV — 207 Quaternary ammonium-based energetic ionic liquids or salts based on ESZ KTTV — 209 Electrostatic discharge (ESD) sensitivity of nitrogen-rich heterocyclic energetic compounds (NRHECs) — 211 Influence of functional groups on ESD sensitivity — 211		
7.2 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1 7.4.2 7.4.3 7.5 7.5.1	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204 Simple prediction of electrostatic spark sensitivity based on the new ESZ KTTV instrument — 205 Polynitroarenes based on ESZ KTTV — 205 Nitramines based on ESZ KTTV — 207 Quaternary ammonium-based energetic ionic liquids or salts based on ESZ KTTV — 209 Electrostatic discharge (ESD) sensitivity of nitrogen-rich heterocyclic energetic compounds (NRHECs) — 211 Influence of functional groups on ESD sensitivity — 211 Predictive modeling via MLR — 212		
7.2 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1 7.4.2 7.4.3 7.5 7.5.1 7.5.2 7.5.3	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204 Simple prediction of electrostatic spark sensitivity based on the new ESZ KTTV instrument — 205 Polynitroarenes based on ESZ KTTV — 205 Nitramines based on ESZ KTTV — 207 Quaternary ammonium-based energetic ionic liquids or salts based on ESZ KTTV — 209 Electrostatic discharge (ESD) sensitivity of nitrogen-rich heterocyclic energetic compounds (NRHECs) — 211 Influence of functional groups on ESD sensitivity — 211 Predictive modeling via MLR — 212 Practical implications — 213		
7.2 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1 7.4.2 7.4.3 7.5 7.5.1	Different methods for predicting electric spark sensitivity — 201 Simple methods for predicting electrostatic spark sensitivity based on the RDAD instrument — 202 Polynitroaromatic compounds — 202 Cyclic and acyclic nitramines — 203 General correlation for polynitroaromatics as well as cyclic and acyclic nitramines — 204 Simple prediction of electrostatic spark sensitivity based on the new ESZ KTTV instrument — 205 Polynitroarenes based on ESZ KTTV — 205 Nitramines based on ESZ KTTV — 207 Quaternary ammonium-based energetic ionic liquids or salts based on ESZ KTTV — 209 Electrostatic discharge (ESD) sensitivity of nitrogen-rich heterocyclic energetic compounds (NRHECs) — 211 Influence of functional groups on ESD sensitivity — 211 Predictive modeling via MLR — 212		

8	Shock sensitivity —— 216				
8.1	Small-scale gap test —— 217				
8.2	Large-scale gap test —— 219				
8.3	Critical diameter of solid pure and composite high explosives —— 220				
8.4	Summary —— 223				
9	Friction sensitivity —— 224				
9.1	Friction sensitivity of nitramines —— 226				
9.2	Friction sensitivity of quaternary ammonium-based energetic ionic				
	liquids —— 227				
9.3	Summary —— 229				
10	Heat sensitivity —— 230				
10.1	Thermal kinetics correlations —— 230				
10.1.1	Nitroparaffins —— 231				
10.1.2	Nitramines —— 232				
10.1.3	Polynitroarenes —— 232				
10.1.4	Organic energetic compounds —— 234				
10.2	Heat of decomposition and temperature of thermal				
	decomposition —— 235				
10.2.1	Heat of decomposition of nitroaromatics —— 238				
10.2.2	Heats of decomposition of organic peroxides —— 239				
10.2.3	Onset temperature of polynitroarenes and organic peroxides as well				
	as maximum loss temperature of organic azides —— 240				
10.3	Deflagration temperature —— 244				
10.3.1	F _{nonadd} —— 245				
10.3.2	F _{nonadd} —— 245				
10.3.3	Energetic compounds containing both F_{nonadd}^+ and F_{nonadd}^- 245				
10.4	Thermal stability of selected classes of energetic ionic liquids and				
	salts —— 246				
10.4.1	Predicting activation energy of thermolysis of some selected ionic				
	liquids —— 246				
10.4.2	Decomposition temperature of imidazolium-based energetic ionic				
	liquids or salts —— 248				
10.5	Decomposition temperature of azole-based energetic compounds —— 252				
10.6	Predictive model for thermal decomposition onset in heterocyclic				
	aromatic compounds and salts, incorporating elemental composition				
	and structural features salts —— 255				
10.7	Summary —— 263				

11	Relationships between different sensitivities —— 265
11.1	Relationship between impact sensitivity of energetic compounds and
	activation energies of thermal decomposition —— 265
11.1.1	Nitroaromatics —— 265
11.1.2	Nitramines —— 266
11.2	Relationship between electric spark sensitivity and impact sensitivity of nitroaromatics —— 267
11.3	A general correlation between electric spark sensitivity and impact
	sensitivity of nitroaromatics and nitramines —— 267
11.4	Relationship between electric spark sensitivity and activation energy
44 5	of the thermal decomposition of nitramines — 269
11.5	Correlation of the electrostatic sensitivity and activation energies for the thermal decomposition of nitroaromatics —— 270
11.6	Relationship between the activation energy of thermolysis and friction
11.0	sensitivity of cyclic and acyclic nitramines —— 271
11.7	Relationship between shock sensitivity of nitramine energetic
,	compounds based on small-scale gap test and their electric spark
	sensitivity — 272
11.8	Summary —— 274
	,
12	Estimation of the properties of metal-containing energetic
	complexes and energetic metal-organic frameworks (MOFs) —— 275
12.1	A molecular weight-dependent model for predicting the density of
	EMOFs —— 276
12.2	Predictive model for condensed-phase heat of formation in
	EMOFs —— 280
12.3	A reliable predictive model for the onset temperature of energetic
	complexes —— 283
12.4	Summary —— 289
13	Estimating the properties of energetic polymers —— 290
13.1	Predicting solubility of energetic polymers: computational models,
	group contribution methods, and experimental validation —— 291
13.2	Characterization and prediction of intrinsic viscosity in energetic
	polymer solutions —— 294
13.3	Glass transition in energetic polymers: experimental characterization,
	predictive modeling, and performance implications —— 296
13.4	Energetic polymers with engineered refractive index for
	- , ,
	multifunctional applications —— 299 Summary —— 302

14 14.1	Prediction of the properties of energetic materials — 304 Computational prediction of energetic materials: methods,				
14.2	challenges, and applications —— 304 Summary —— 315				
	ems — 316				
	ers to Problems —— 331				
List of	symbols —— 337				
Α	Glossary of compound names and heats of formation for pure as well as composite explosives —— 347				
В	Calculation of the gas-phase standard enthalpies of formation —— 351				
С	Glossary of compound names, as well as the measured and calculated values of the condensed-phase heats of formation for some energetic ionic liquids and salts —— 359				
D	Common ligand abbreviations in energetic metal-organic frameworks (EMOFs) —— 363				
Biblio	graphy —— 365				

Index —— 403