

Contents

Preface — V

About the book — XIII

Chapter 1

Basic metals and alloys: properties and applications — 1	
1.1	Introduction: mechanical properties of materials — 1
1.1.1	Basic properties of materials — 1
1.1.2	Fracture, fatigue, and creep — 2
1.1.3	Ductile fracture — 3
1.1.4	Brittle fracture — 4
1.1.5	Fatigue fracture (failure) — 5
1.1.6	Creep fracture — 5
1.2	Ferrous material — 8
1.2.1	Wrought iron — 9
1.2.2	Cast iron with properties and applications — 9
1.2.3	Carbon steels — 12
1.3	Heat treatment — 15
1.3.1	Elementary introduction — 15
1.3.2	Purpose of heat treatment — 15
1.3.3	Classification of heat treatment process — 16
1.3.4	Form of steel on the basis of % C and temperature — 22
1.3.5	Temperature-carbon phase diagram — 24
1.3.6	Case hardening — 24
1.4	Non-ferrous metals — 28
1.4.1	Aluminum — 28
1.4.2	Copper — 28
1.4.3	Magnesium — 29
1.4.4	Zinc — 30
1.4.5	Lead — 30
1.4.6	Tin — 31
1.4.7	Nickel — 31
1.5	Non-ferrous alloys — 32
1.5.1	Brass alloy — 32
1.5.2	Bronze — 33
1.5.3	Aluminum alloys — 33
1.5.4	Nickel alloys — 34
1.5.5	Bearing metal — 35

Chapter 2

Metal forming processes and applications — 40
2.1 Introduction to hot and cold working — 40
2.2 Basic metal forming process — 43
2.2.1 Forging process — 43
2.2.2 Forging operations — 47
2.2.3 Forging defects — 48
2.2.4 Rolling operation — 50
2.2.5 Cold rolling — 51
2.2.6 Extrusion process, products, and applications — 53
2.2.7 Wire and tube drawing — 56
2.3 Basic press working operation — 59
2.3.1 Die and punch assembly — 59
2.3.2 Cutting process (sheet metal working/press working/shearing operation) — 61
2.3.3 Application of sheet metal working — 65
2.3.4 Defects in sheet metal working — 66
2.4 Bench work and fitting — 67
2.4.1 Study of hand tool — 69
2.4.2 Measuring instruments — 79

Chapter 3

Machining processes and their applications — 83
3.1 Introduction to cutting tools — 83
3.1.1 Nomenclature of single-point cutting tools — 83
3.2 Basic principles of lathe machines — 83
3.2.1 Parts of a lathe machine — 85
3.2.2 Operations performed on a lathe machine — 87
3.3 Basic description of another machine tool — 89
3.3.1 Shaper — 89
3.3.2 Planer — 93
3.3.3 Milling machine — 94
3.3.4 Grinding — 98
3.3.5 Drilling operation — 102
3.4 Mechanics of metal cutting — 104
3.4.1 Mechanics of chip formation — 104
3.4.2 Tool wear — 105
3.4.3 Cutting fluid and lubricants — 107
3.5 Unconventional machining — 108
3.5.1 Electro-discharge machining (EDM) — 108
3.5.2 Electrochemical machining (ECM) — 110
3.5.3 Electron beam machining (EBM) — 118

3.5.4	Laser beam machining (LBM) — 122
3.5.5	Ultrasonic machining — 127
3.5.6	Abrasive jet machining (AJM) — 132
3.5.7	Water jet machining — 137

Chapter 4

Metal casting process and their applications — 145

4.1	Introduction to foundry process — 145
4.1.1	Casting terminology — 145
4.1.2	Steps in making sand castings — 146
4.2	Pattern making — 147
4.2.1	Pattern materials — 147
4.2.2	Types of patterns — 148
4.2.3	Pattern allowances — 151
4.3	Molding sand and its desirable properties — 153
4.3.1	Constituents of molding sand — 153
4.3.2	Desirable properties of molding sands — 153
4.4	Mold making with the use of a core — 156
4.4.1	Element of mold — 156
4.4.2	Core making — 156
4.4.3	Molding procedure steps — 158
4.4.4	Principles of machine molding operation — 158
4.4.5	Classification of molds — 159
4.4.6	Methods of making molds — 161
4.5	Die casting — 161
4.5.1	Hot chamber die casting — 161
4.5.2	Cold chamber die casting — 161
4.5.3	Centrifugal casting process — 162
4.5.4	Investment casting — 164
4.6	Gating system — 166
4.6.1	Basic purpose of gating system — 166
4.6.2	Types of gating systems — 167
4.7	Cupola furnace — 168
4.7.1	Construction and working of cupola furnace — 168
4.7.2	Operation of a cupola furnace — 169
4.7.3	Technical specifications — 169
4.8	Casting defects — 171
4.8.1	Surface defects — 171
4.8.2	Internal defects — 172
4.8.3	Applications of casting processes — 173
4.9	Casting treatment — 173

4.9.1	Purpose of annealing in casting treatment — 174
4.10	Inspection of castings — 174
4.11	Quality control of casting — 175

Chapter 5

Welding processes — 179

5.1	Importance and basic concepts of welding — 179
5.2	Classification of welding process — 180
5.3	Fusion welding — 181
5.3.1	Gas welding (oxyacetylene welding) — 181
5.3.2	Electric arc welding — 184
5.4	Resistance welding — 187
5.4.1	Resistance spot welding — 187
5.4.2	Resistance seam welding — 189
5.4.3	Resistance projection welding — 189
5.4.4	Flash welding (FW) — 191
5.4.5	Resistance butt welding — 192
5.4.6	Percussion welding — 194
5.5	Soldering and brazing — 195
5.5.1	Soldering — 195
5.5.2	Brazing — 198
5.6	Welding defects and remedies — 199
5.7	Welded joint and edge preparation — 199

Chapter 6

Advanced additive manufacturing — 206

6.1	Concept of digital twin — 206
6.1.1	Applications of digital twin in manufacturing — 207
6.1.2	Benefits of digital twin technology — 208
6.1.3	Key characteristics of digital twin technology — 209
6.1.4	Challenges and considerations — 209
6.1.5	Key applications of digital twins in product development — 209
6.1.6	Benefits of using digital twins in product development — 211
6.2	Case studies on digital twin implementations in industry — 212
6.3	Overview of additive manufacturing technologies — 214
6.3.1	Types of additive manufacturing technologies — 215
6.3.2	Applications of additive manufacturing technologies — 221
6.3.3	Additive manufacturing: materials and their properties — 222
6.3.4	Emerging trend in additive manufacturing — 225
6.4	Understanding 3D printing — 226

- 6.4.1 Application of tolerances and fitments considering 3D printing processes — 227
- 6.4.2 Understanding process algorithm of slicing software and slicing techniques — 229
- 6.4.3 Different applications of 3D printing — 231

Chapter 7

Manufacturing-related topics — 238

- 7.1 Material, manufacturing, and socio-economic development — 238
- 7.1.1 Importance of manufacturing in socio-economic development — 238
- 7.1.2 Importance of materials in socio-economic development — 238
- 7.2 Plant location — 239
- 7.3 Plant layout — 240
 - 7.3.1 Objectives of a good layout — 240
 - 7.3.2 Factors affecting plant layout — 240
 - 7.3.3 Types of plant layout — 241
- 7.4 Production — 244
 - 7.5 Production vs. productivity — 246
 - 7.6 Non-metallic material — 247
 - 7.6.1 Common types and uses of wood — 247
 - 7.6.2 Seasoning of wood — 248
 - 7.6.3 Cement concrete — 250
 - 7.6.4 Ceramics — 251
 - 7.6.5 Rubber or elastomers — 252
 - 7.6.6 Composite material — 253
 - 7.7 Powder metallurgy process and application — 255
 - 7.7.1 Introduction to powder metallurgy — 255
 - 7.7.2 Powder manufacturing — 255
 - 7.7.3 Powder processing — 257
 - 7.8 Plastic product manufacturing — 260
 - 7.8.1 Introduction — 260
 - 7.8.2 Types of plastic — 260
 - 7.8.3 Plastic processing method — 261
 - 7.8.4 Basic elements of a two-plate metal mold — 264
 - 7.9 Galvanizing and electroplating — 266
 - 7.10 Modern trends in manufacturing — 268
 - 7.11 Automation — 270
 - 7.11.1 Computer-aided design/computer-aided manufacturing (CAD/CAM) — 270
 - 7.12 Industrial safety and health — 273
 - 7.12.1 Safety concept and definition — 273
 - 7.12.2 Causes and common sources of accidents — 274

- 7.12.3 Industrial accidents — **274**
- 7.12.4 Types of accidents — **274**
- 7.12.5 Methods to enhance safety in industry — **276**
- 7.12.6 First aid — **276**

Bibliography — 281

About the authors — 285

Index — 287