

Contents

About the author — VII

Prologue — XI

Part I: Thermodynamics of crystallization

1 Introduction — 3

- 1.1 The importance of thermodynamics for crystal growth — 3
- 1.2 Equilibrium and nonequilibrium thermodynamics — 4

2 The potential of Gibbs — 7

- 2.1 The principle of Gibbs free energy minimization — 7
- 2.2 Phase transition and enthalpy of transformation — 8

3 Phase equilibrium and phase diagrams — 16

- 3.1 Two phases of one component — 16
- 3.2 Two phases of two (or more) components — 19
 - 3.2.1 Basic principles — 19
 - 3.2.2 Ideal mixed systems — 26
 - 3.2.3 Real mixed systems — 31
 - 3.2.4 Selected binary phase diagrams — 40
 - 3.2.4.1 Mixed crystals with nearly ideal solid solution — 40
 - 3.2.4.2 Systems with congruent melting compounds — 42
 - 3.2.4.2.1 Stoichiometry and region of homogeneity — 42
 - 3.2.4.2.2 The problem of incongruent evaporation — 48
 - 3.2.4.2.3 The control of stoichiometry via *in situ* vapor–liquid–solid-phase equilibration — 53
 - 3.2.4.2.4 Vapour pressure controlled Czochralski growth without liquid encapsulant — 63
 - 3.2.4.3 Systems with incongruent melting compounds — 65
 - 3.2.4.4 Systems with solid–solid transition — 67
 - 3.2.5 Ternary systems — 70
 - 3.2.6 The thermodynamic equilibrium segregation coefficient — 73
 - 3.2.6.1 Segregation at melt–solid phase transitions — 73
 - 3.2.6.2 Segregation at solution–solid phase transition — 84
 - 3.2.6.3 Segregation at vapor–solid phase transition — 88
 - 3.2.6.4 Segregation at vapor–liquid–phase transition — 89

4	Surfaces, phase boundaries, and interfacial effects — 91
4.1	Determination of the surface free energy — 91
4.2	Gibbs–Thomson equation — 95
4.3	Equilibrium shape of crystals — 98
4.4	Selected effects of surface energy on crystal growth processes — 106
4.4.1	Growth angle at crystal pulling from the melt — 106
4.4.2	Faceting and ridge formation at melt growth — 108
4.4.3	Surface energetic effects at epitaxy — 112
4.4.3.1	Surface reconstruction — 113
4.4.3.2	Ordering effects in mixed semiconductor thin films — 117
4.4.3.3	Surface patterning by self-assembling — 120
5	Deviation from equilibrium — 125
5.1	Driving force of crystallization — 125
5.2	Nucleation — 130
5.2.1	Homogeneous nucleation — 133
5.2.1.1	Classical approach — 134
5.2.1.2	Nonclassical concept — 143
5.2.2	Heterogeneous nucleation — 145
5.2.2.1	Basic considerations — 145
5.2.2.2	Application in epitaxial processes — 149
5.2.2.3	Nonequilibrium nucleus distribution — 152
5.2.3	Uncontrolled nucleation in crystal growth containers — 154
5.2.4	Precipitation in cooling crystals — 156
5.3	Ostwald ripening and grain coarsening — 158
5.4	Nonequilibrium (kinetic) phase diagrams — 161
5.5	Nonequilibrium thermodynamics: basic principles for crystal growth — 163
6	Conclusions — 173
Recommended literature — 175	
Abbreviations — 179	
Spec boxes — 181	
Index — 183	