de Gruyter Lehrbuch
Mégerle - Programmieren in BASIC

Einfihrung in das

Programmieren in BASIC

von

Erich W. Migerle

Walter de Gruyter - Berlin - New York 1974

©

Copyright 1974 by Walter de Gruyter & Co., vormals G. J. Géschen’sche Verlagshandlung,
J. Guttentag, Verlagsbuchhandlung Georg Reimer, Karl J. Triibner, Veit & Comp., Berlin 30.

Alle Rechte, insbesondere das Recht der Vervielfiltigung und Verbreitung sowie der Uber-
setzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (durch Photokopie,
Mikrofilm oder ein anderes Verfahren) ohne schriftliche Genehmigung des Verlages repro-

duziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfiltigt oder ver-
breitet werden. Printed in Germany.

Satz: Composer Walter de Gruyter & Co., Berlin. — Druck: Mercedes-Druck, Berlin
Bindearbeiten: Wiibben & Co., Berlin

Library of congress catalog card number 74-76079.

ISBN 311 004801 9

Inhaltsverzeichnis

0. Einleitung i i e 7
1. BASIC-Ausdriicke, e 13
LlKonstantenttt ittt i e 13
1.1.1 Arithmetische Konstanten 13
1.1.2 Zeichenkonstanten v e veee et un oo 14
1.1.3Systemkonstantenttt ittt 14
L2Variablen. i e e e e 14
1.2.1 Arithmetische Variable 14
1.2.2 Zeichenvariable i e 15
1.2.3 Arithmetische Bereichsvariablen 15
1.2.4 Zeichenbereichsvariablen 15
1.3 Arithmetische Formeln. 16
2. Eingabe-Anweisungen. e 18
2.1 INPUT-ANWEISUNE ¢ i ittt et et et ottt e v e s e e 18
22MATINPUT-Anweisung0 vt ittt ittt ittt e 19
23DATA-ANWEISUNE o ottt e e e e e e e e e 21
24READ-ANWEISUNE i ittt ettt et e 21
2.5 MAT READ-Anweisungt i ittt it it i e 23
26 RESTORE-ANWeEisSUNg v vt vttt ittt sttt s o eeoae s 24
2.7 GET-ANWEISUNE. i ettt e e o s e et et n i e 25
28MATGET-ANWEISUNE &ttt ittt ettt e ettt ee et e e 27
29RESET-ANWeISUNE o i ittt e et e e m et et 28
210 CLOSE-AnWEisSUNgt i it it i i et et e e e 28
3. Ausgabe-Anweisungen I 30
31 PRINT-AnWeisung i ittt it e et et e e ee e 30
3.2 PRINT USING-ANWEISUNE i vt vt e e et e e ettt e e aee e eae 34
33IMATPRINT-ANWEISUNZ ottt it ittt e e e et e te e an e 39
3.4 MATPRINT USING-Anweisungt eennwnennnn. 40
3 S PUT-ANWeISUNE i i ittt it it e e et e e e e 41
BO6MATPUT-ANWeIsSUNg ittt ittt ettt e e e e 41
4. ERGIBT-Anweisungenuuveneneneeenneneen.. 43
Gl LET-ANWEISUNE v i i v i vt et et et e e e e e et en e 43
4.2 Auflosung arithmetischer Formeln 44
43DEF-AnWeisung.t e e e e e e e 45
4.4 Die Benutzung von Systemfunktionen 47
4.5 MATERGIBT-AnWeisung. v vt i et it et tn i tnonenn 49
4.5.1 Matrix-Addition e e e 50
4.5 2EinsermatriX e e e e e 50
4.53 IdentitdtsmatriX L. e e e e e e e e e e 51
4.5.4 Matrix-Inversion e e e 51
4.5.5 Matrix-Multiplikation o oL, 52
4.5.6 Skalare Matrix-Multiplikation 53
4.5.7 Matrix-Subtraktion o it e 53
4.5.8 Transponiereneiner Matrix 54
4.59NullmatriX. i e e e e 54

5. Schieifen-Steuerung-Anweisung
5.1 FOR-und NEXT-AnWeisung e v enenonenenens 56

5.2 Schachtelungvon FOR-Schleifen 57

6 Inhaltsverzeichnis

6. Verzweigungs-Anweisungen 59
6.1 GOTO-ANWEISUNE v v ittt et e ettt e e e e et e eens 59
6.2 Computed GO TO-ANWeEISUNE. . . .« o o v v v vt et e et e o e eee e eenns 59
6.3IF-Anweisung i i e e e e e e e e 60

7. Das Definieren von Bereichen 62
T DIM-ANWeEISUNE i e e e e e e e 62

8. Kommentierung eines Programmes 63
81 REM-ANWeisung i ittt ittt et et e e 63

9. Hinzufiigen von Programmsegmenten 65
9.1 GOSUB-und RETURN-Anweisung c0veuuuennn. 65

10. Stoppen der Programmausfihrung 66
10.1 END-ANWeisungttt i ittt et et et ee e 66
10.2 STOP-ANWEIiSUNE i i i ittt e e i et ettt et e eeee eaean 66
10.3 PAUSE-AnWeEISUNE ittt ittt et et e 67

11. Verbindung von Hauptprogrammen 68
ILLICOM-ANWEISUNE ittt et et it s et e e 68
11.2 PICK-Anweisung e e e e e e e e e e e e e e e e 70

12. Anhang e 71
12.1 Zusammenfassung der BASIC-Anweisungen 71
12.2 Ubersicht der Systemfunktionen 77
12.3 Ubersicht der BASIC-Ausdriicke.« v v v i v i 81
124 System-Konstanten it 81
12.5 Arithmetische Operatoren v it i it oo v v annns 82
126 Syntax-Symbole e e e e e 82
12.7 Ausgetestete Programmierbeispiele0 83
12.8 Aufgabenzum Selbstlosen 95

Stichwortverzeichnis. 111

Einleitung

BASIC entstand Anfang der siebziger Jahre und zihlt zu den jiingsten problem-
orientierten Programmiersprache. Sie ist in eine Reihe etwa mit PL/1 und
FORTRAN einzustufen, 1383t sich jedoch bedeutend einfacher erlernen und ist
aulerdem wegen des geringeren Programmieraufwandes wirtschaftlicher als
andere Programmiersprachen.

BASIC eignet sich besonders fiir die Losung technisch-wissenschaftlicher Pro-
bleme und wird deshalb vornehmlich von Ingenieuren, Konstrukteuren, Physi-
kern, Chemikern, Mathematikern und von Statistikern und Planern angewandt.
Jedoch lassen sich auch Finanz-, Planungs- und Budgetprobleme mit dieser
Sprache formulieren. Nicht zuletzt ist sie nutzbar fiir vielfltigste Routine-Be-
rechnungen, die hiufig einen groen Zeitaufwand erfordern.

BASIC ist eine Dialogsprache. Spezielle Befehle ermoglichen Dateneingabe iiber
Datenstationen wihrend der Programmdurchfiihrung. In der Matrizenrechnung
ist BASIC besonders gut ausgebaut. Mit einem einzigen Befehl konnen folgende
Matrix-Operationen ausgefiihrt werden:

— Addition — Identititsmatrix

— Subtraktion — Einsermatrix

— Multiplikation — Matrixeingabe iiber Datenstation
— Skalare Multiplikation oder als Datei

— Transponieren — Matrixausgabe drucken

— Inversion oder abspeichern

BASIC kann auf verschiedenen Betriebssystemen verwendet werden. Erwihnt
seien hier CALL/360 und S/3—6 IBM. In diesem Buch wird jedoch kein bestim-
mtes Betriebssystem behandelt, da dieses vom jeweils verwendeten Computer
abhingt.

Programmiersprachen

Grundsitzlich werden zwei Gruppen von Programmiersprachen unterschieden:

a) Maschinenorientierte Programmiersprachen

Hier sind die Instruktionen in Ablehnung an die technische Struktur der Maschine
aufgebaut. Sie bestehen aus hexadezimalen Codes, die folgende Aussagen liefern
miissen:

[was | WIEVIEL | WOHIN | WOHER |

WAS ist zu tun (auszufiihrende Operation) @
WIEVIEL Bytessind zu verarbeiten (Feldlinge) @
WOHIN kommen die Daten (Adresse von Feld 1) @
WOHER kommen die Daten (Adresse von Feld 2) @

8 Einleitung

Allerdings sind solche Programme, bei denen die Rechenoperationen maschinen-
intern geschrieben werden, sehr aufwendig und setzen detaillierte Kenntnisse
des technischen Aufbaus der Maschine voraus. Man hat deshalb Sprachen ent-
wickelt, die sich weniger an der Maschine als vielmehr am zu 16senden Problem
orientieren:

b) Problemorientierte Programmiersprachen

Zu diesen Sprachen gehort auch BASIC. Sie haben den groien Vorteil, dafd
symbolische Formulierungen verwendet werden konnen, die der iiblichen Sprach-
regelung dhnlich sind. Eine Multiplikation z.B. hat die gleiche Form wie in der Mathe-
matik, etwa: X=A * F, usw.

Dialog mit dem Computer

BASIC ermoglicht weiterhin als sog. Dialogsprache ein Frag-Antwort-Verfahren
mit dem Computer. Voraussetzung dafiir ist die Verwendung von Betriebssyste-
men, die nach dem Time Sharing-Prinzip gestaltet sind. Es sind dies Teilnehmer-
systeme, in denen der Computer gleichzeitig fiir mehrere Benutzer arbeitet. Mog-
lich wird das durch rdumliche Aufteilung der Arbeitsspeicher und Zerlegung

jeder Arbeit in kleinste Abschnitte. So kénnen die verschiedenen Arbeiten in
kurzen Zeitriumen abwechselnd abgewickelt werden. Durch die hohe Arbeits-
geschwindigkeit und die langsame Dateniibertragung der Telefonleitung entsteht
der Eindruck der Gleichzeitigkeit, die eine gleichzeitige Benutzung des Computers
iiber verschiedene Datenstationen (Terminal) gestattet:

Terminal 1 Terminal 2 Terminal 3
Time Sha:>/\ ’ . Magnetband
System / \
Y
Platte ! Drucker ~ l Kartenstanzer

Einleitung 9

Problemstellung und Losung

Nachstehend wird gezeigt, wie man z. B. ein mathematisches Problem anpacken
muf}, damit ein BASIC-Programm aufgebaut werden kann (kein allgemeingiil-
tiges ,,Rezept*):

L.

Problem definieren = Analyse
Festlegen der bekannten und unbekannten Grofien. Randbedingungen formu-
lieren.

. Mathematische Formulierung

Zusammenstellen der Berechnungsformeln. Dazu gehért auch die Formulie-
rung von Algorithmen bzw. die entsprechenden Iterationen.

(Beispiel: Mit Rechenanlagen 18t sich eine Integration nicht durchfiihren.
Es muf} daher ein Niherungsverfahren gesucht werden z.B. Trapezregel.)

. Blockdiagramm erstellen

Rechenanlagen kénnen jeden logischen Schritt ausfiihren. Diese Logik mufl
in einem Blockdiagramm dargestellt werden. Gerade ein diesem Schritt lohnt
es sich, sehr genau zu arbeiten.

. Programm codieren

Mit Hilfe des erstellten Blockdiagramms wird das Programm erstelit (vercoden).
Dieses BASIC-Programm nennt man Quellen- oder Sourceprogramm.

. Eingabe an der Datenstation

Das codierte BASIC-Programm kann direkt an der Datenstation eingetippt
werden. Dies ist ein weiterer Vorteil von BASIC und dem Time Sharing-Ver-
fahren.

. Maschinenprogramm erstellen

Das erstellte Programm ist jetzt in einer personlichen Bibliothek im Rechen-
zentrum abgespeichert und zu jedem Zeitpunkt sofort aufrufbar. Dieses Quellen-
programm musB in eine fiir die Rechenanlage gerechte Form umgewandelt
werden mit Hilfe des Compilers. Es entsteht damit das Maschinenprogramm,
auch Objectprogramm genannt. Sind im BASIC-Programm formale Fehler
(Syntax) vorhanden, so werden diese auf der Datenstation gedruckt. Die Er-
klirung dazu ermoglicht die Korrektur der Fehler. Dieser Schritt mufl wieder-
holt werden, bis keine Fehlermeldungen mehr entstehen.

. Testen auf logische Fehler

Ein formal fehlerfreies Programm gibt uns noch keine Gewilheit, dafl e auch
in der Logik ,,stubenrein® ist. Man gibt dem Programm nun Eingabedaten,
damit eine Berechnugng durchgefiihrt werden kann. Das gleiche Beispiel muf3
auch ,,von Hand* berechnet werden. Stimmen die Resultate iiberein, so sind
keine logischen Fehler vorhanden.

. Durchlauf aktueller Berechnungen = Produktion

In diesem Schritt hilft die Rechenanlage immer wiederkehrende Arbeiten
sicher und genau durchzufiihren. Der Zeitgewinn hier kann die vorangegange-
nen Arbeiten kompensieren, da ein Programm immer wieder verwendbar ist.

10

Verwendete Symbole

Symbole fiir die Darstellung von Programmablaufplinen

>IN Ugo

Verarbeitung

Verzweigen,
Entscheid

Verwendung von
Subroutinen

Eingabe/Ausgabe

Manuelle Eingabe
im Zeitpunkt der
Verarbeitung

Eingreifen von Hand

Mischen

Extrahieren,
Selektieren

OBYU U

Einleitung

Abgleichen
mehrerer Daten
Zu einem einzigen
Teil (Collate)

Datenfernverar-
beitung

Anschlugi-Stelle,
Verbindungspunkt

Anfang, Ende, Stop

Lochkarte

Lochstreifen

Liste

Magnetband

Einleitung

Magnettrommel Display
(Bildschirm)

Magnetplatte —— = FluBlinie

Mathematischen Symbole

+ Addition, positives Vorzeichen

— Subraktion, negatives Vor-
zeichen

* Muitiplikation
/ Division
1 oder ** Potenzieren

z Summe

ANIAN

VvV V

kleiner

kleiner oder gleich
gleich

grofer oder gleich
grofier

ungleich

verschieben nach

11

1. BASIC-Ausdriicke

1.1 Konstanten

Die Konstante ist ein Ausdruck, der sich wihrend der Ausfithrung eines Program-
mes nicht verindert. Wir unterscheiden drei Arten von Konstanten:

* arithmetische Konstanten
* Zeichenkonstanten
* Systemkonstanten

1.1.1 Arithmetische Konstanten

Eine arithmetische Konstante ist eine Folge von Ziffern, die mit einem Vorzeichen
versehen werden kann. Sie hat entweder einfache oder doppelte Genauigkeit. Die
einfache Genauigkeit besteht aus 17 Dezimalziffern, die doppelte Genauigkeit
aus 115 Dezimalziffern. Fithrende Nullen werden immer ignoriert. Man kann
eine beliebige Anzahl von Ziffern angeben. Es werden jedoch nur die entspre-
chend genauen Ziffern verwendet. Alle iibrigen Ziffern gehen verloren. Das Glei-
che gilt fiir die doppelte Genauigkeit. Arithmetische Konstanten kénnen folgende
Formate aufweisen:

* Integer-Zahlen (enthilt keinen Dezimalpunkt)
* Festkomma-Zahlen (enthilt einen Dezimalpunkt)
* Gleitkomma-Zahlen (Exponentform)

Weiterhin gilt aber, dal die Konstanten entsprechend ihrer Genauigkeit gedruckt
werden. Die Genauigkeit wird durch einen Betriebssystembefehl angegeben. Da-
mit ein Exponent definiert werden kann, muf} der Konstante ein E folgen. Der
Wert des Exponenten darf 99 nicht iibersteigen.

Beispiele von arithmetischen Konstanten:
580
- 79
1732.51
- 847
2.5E49
- 6.26E-12
Arithmetische Konstanten miissen sich innerhalb der Grenzen
10792 <X <10%°

bewegen. Es darf nur mit arithmetischen Konstanten gerechnet werden.

14 1. BASIC-Ausdriicke

1.1.2 Zeichenkonstanten

Die Zeichenkonstante ist eine Folge von beliebigen Zeichen (einschlieflich Leer-
zeichen). Apostrophs in Zeichenkonstanten miissen immer doppelt aufgefiihrt
werden.

Beispiele von Zeichenkonstanten:

’DAS ERGEBNIS BETRAEGT’
’JOHN BROWN”’S’

Zeichenkonstanten konnen beliebig lang sein. Das System verwendet immer nur
die ersten 18 Stellen, Alle Zeichen, die diese Zahl iibersteigen, werden ignoriert.

1.1.3 Systemkonstanten

Vielverwendete Konstanten sind im System abgespeichert. Es handelt sich um
folgende Konstanten:

e w 2

Man hat dafiir Spezialnamen festgelegt:
&PI = 3.141593

&E =2.718282
&SQR2 = 1.414214

Systemkonstanten konnen iiberall anstatt arithmetischer Konstanten verwendet
werden.

1.2 Variablen

Eine Variable wird entsprechend ihrer Art auf Null oder Blank gesetzt. Der Wert
einer Variable kann wihrend der Programmausfiihrung verindert werden. Wir
unterscheiden vier Variablenarten in BASIC:

* arithmetische Variable

* arithmetische Bereichsvariable
* Zeichenvariable

* Zeichenbereichsvariable

1.2.1 Arithmetische Variable

Der arithmetische Variablenname besteht aus einem alphabetischen Zeichen.
A-Z,@ #,8%
Diesem Namen kann noch eine Zahl folgen, die zwischen O und 9 liegen darf.

1.2 Variablen 15

Beispiele fiir arithmetische Variablennamen:
F X1 $7 YO Z3

1.2.2 Zeichenvariablen
Die Zeichenvariable besteht aus einem alphabetischen Zeichen, das von einem
$-Zeichen gefolgt sein mufl.
Beispiele von Zeichenvariablen:
A #§ @ HS$

Es konnen nur Zeichendaten dargestellt werden, Wir diirfen also mit Zeichen-
variablen nicht rechnen.

1.2.3 Arithmetische Bereichsvariablen

Arithmetische Bereiche konnen zweidimensional dargestellt werden. Die arithme-
tischen Bereichsnamen bestehen aus einem einzigen Zeichen:
A-Z,@ #,$

Der Bereich kann nur arithmetische Daten enthalten. Auf das entsprechende
Element des Bereichs bezieht man sich durch ein oder zwei Indizes, die in
Klammern stehen miissen.

Beispiele von arithmetischen Bereichsvariablen:

K(16)

Q7,3)
Die Indizes diirfen ganze Zahlen, arithmetische Variablen oder Formeln sein.
Beispiel fiir den Zugriff auf eine zweidimensionale Tabelle:

X(8,4)

8. Zeile, 4. Spalte von Bereich X

Y(K,F+1) K=3

F=7
3. Zeile, 8. Spalte von Bereich Y
Z(H) H=5

5. Element von Bereich Z

1.2.4 Zeichenbereichsvariablen

Der Zeichenbereich kann nur eindimensional dargestellt werden. Der Name
einer Zeichenbereichsvariablen besteht immer aus einem alphabetischen
Zeichen:

A-Z,@, #,8

16 1. BASIC-Ausdriicke

Diesem Buchstaben muf ein $-Zeichen folgen. Mit der Zeichenbereichsva-
riablen darf nie gerechnet werden. Der Zeichenbereich kann nur Zeichen
enthalten, Der Bereich kann maximal 100 Elemente enthalten. Es gelten
sonst die gleichen Regeln wie bei den arithmetischen Bereichsvariablen.

Beispiele, wie man sich auf Zeichenbereiche bezieht:

K$(6)

AS(H)
I$(B+7)

#$(80)
@$(A+B)

1.3 Arithmetische Formeln

Eine arithmetische Formel ist eine Reihe arithmetischer Operationen, die in
einer Druckzeile enthalten sein miissen. Das Ergebnis arithmetischer Opera-
tionen wird entsprechend der Genauigkeit gerundet. Die Genauigkeit wird
durch einen Betriebssystembefehl erreicht.

Beispiele arithmetischer Formeln:

Di2s&prs & T

K*(SIN(B)-COS(F)) K(SIN(B)-COS(F))
X+Z#(G+H)+K/3 X+Z(G+H)+-‘§(

17

1.3 Arithmetische Formeln

[EUOISUSUITP
-1oMz

IT 0T &6 8 L 9 ¢
JeUOISUSWITPULD
JINIWITH
I¢C 07 61 81 LT 9T ¢1T #I €1 ¢TI 11 O 6 8 L 9 S
NALTIVdS

01

NATIIZ

2 Maigerle, Programmieren in BASIC

2. Eingabe-Anweisungen

Eingabe-Anweisungen sind Befehle, die zum Definieren und Lesen von Daten
wihrend der Ausfilhrung eines Programmes gebraucht werden. Es stehen 10 Ein-
gabe-Anweisungen zur Verfiigung:

MAT INPUT
INPUT
DATA
READ

MAT READ
RESTORE
GET

MAT GET
RESET
CLOSE

2.1. INPUT-Anweisung

Die INPUT-Anweisung erlaubt uns, wihrend der Programmausfithrung Daten
einzulesen.

Schreibweise:

arith. Var. arith. Var.
arith. Ber. Var. arith. Ber. Var.
INPUT Y Zeich. Var. > | Zeich. Var.

Zeich. Ber. Var. Zeich. Ber. Var,
Beispiele:
100 INPUT A,B,C
200 INPUT X,L$(8).K
300 INPUT Z,Y M(2,5)
400 INPUT N,T(N)
Die INPUT-Anweisung bewirkt folgendes:

1. System druckt ein Fragezeichen
2. Systempause, damit Daten eingegeben werden kénnen.

100 INPUT A ,B,C bewirkt
System: ?
Benutzer: 7,12,23

Die Werte werden durch Kommata getrennt

2.2 MAT INPUT-Anweisung 19

Die eingegebenen Konstanten miissen vom gleichen Typ sein. Die Anzahl dieser
Konstanten muf} gleich der Zahl der Variablen in der INPUT-Anweisung sein.

Znsammenhingendes Beispiel:

0100 INFUT A

0110 X=X+1

0120 PRINT A

0130 PUT 'LIN'sA
0140° IF X=4 THEN 0150
Q150 GO T0 0100

0160 CLOSE 'LIN'

0170 STOF

0180 END

READY
ALLOCATE EINGARE (L.IN) yNEW

READY
KUN

“y

4

Die Variablen in der INPUT-Anweisung konnen auch indexiert erscheinen.
Beispiel:
100 INPUT Z,X(Z+4)

System: ?
Benutzer: 6,38.76

Dem 10. Element der Tabelle X wird 38.76 zugeordnet.

2.2 MAT INPUT-Anweisung

Die MAT INPUT-Anweisung bewirkt dasselbe wie die INPUT-Anweisung. Hier
wird eine Matrix mit Daten gefiillt.

Allgemeine Schreibweise:
MAT INPUT Matrix-Name [(arith. Ausdr. [, arith. Ausdr.])
[, Matrix-Name [(arith. Ausdr. [, arith. Ausdr.])]}. ..

2%

20 2. Eingabe-Anweisungen

Fine Matrix mufl am Programmanfang stets definiert sein. In der MAT INPUT-
Anweisung kann die Matrix redefiniert werden. Die neue Matrixdimension ist
dann verbindlich.

Beispiel:
100 DIM F(4,6),G(3,7)
200 MAT INPUT F(2,6),G(J.K)

Erkennt das System wihrend der Programmausfithrung eine MAT INPUT-An-
weisung, druckt es ein Fragezeichen und stoppt, damit die Matrix mit Daten
gefiillt werden kann. Die Werte miissen durch ein Komma getrennt sein. Durch
Driicken der RETURN-Taste wird das Ende einer Zeile gekennzeichnet. Werden
noch weitere Daten benétigt, zeigt das System dieses durch ein gedrucktes Fra-
gezeichen.

Beispiel:
080 INPUT IJ
100 DIM A(3,3),B(3),C(3,3)
120 PRINT, ’INPUT MATRIX A’
140 MAT INPUT A(L,J)

Ablauf im System
?
2,2 Redefinition des Matrixindex
7
780,1493 Matrix A (2,2) fiillen 1. Zeile
77
1234,52 2. Zeile

Ist das Ende einer Druckzeile erreicht, bevor alle Daten eingegeben sind, muf}

am Zeilenende ein Komma stehen. Nach dem Bedienen der RETURN-Taste kann
in der folgenden Zeile fortgefahren werden. Fehlerhafte, zuwenig oder zuviel
eingegebene Daten zeigt das System durch eine Fehlermeldung an.

Vollstindiges Beispiel:

100 DIM F(2,2),G(10,5)
110 MAT INPUT F,G(2,3)
120 MAT PRINT F,G

130 END

RUN

?

136,17

7

24,98

7

2.4 READ-Anweisung 21

2360,7965,15
2?

43,8570,113

Die Matrix G wurde urspriinglich mit der Dimension 10,5 definiert. In der MAT
INPUT-Anweisung wird G immer redimensioniert. Die neue Dimension der
Matrix G lautet jetzt 2,3. Der Austausch der Daten zwischen Benutzer und
System wird so lange fortgesetzt, bis simtliche Matrizen gefiillt sind. Ist das
letzte Element der Matrix gefiillt, setzt das System die Programmausfithrung
fort.

2.3 DATA-Anweisung

Mit dieser Anweisung bekommen die Variablen einen bestimmten Wert. Da diese
Daten direkt im Programm enthalten sind, werden die Werte direkt den Variablen
zugeordnet. Dabei kommt das System auf keinen Stop.

Diese Anweisung kann iiberall in einem Programm stehen.

Schreibweise:
arith. Konst. - arith. Konst. }
DATA {Zeich. Konst.} l" {Zeich. Konst.]

Die Zeichenkonstante muf} in Apostroph eingeschlossen sein.
Beispiele von DATA-Anweisungen:

10 DATA 40,75,3,7,1783

20 DATA "JAN’FEB’’MAERZ’’APRIL’
30 DATA 30,KOSTEN’,2380,’SALDO’
40 DATA "DIFF’,’SUM’,5739,3450

50 DATA ’1960°,’JAHR’,’23.9°,29

Die Werte einer DATA-Anweisung konnen mit READ oder MAT READ gelesen
werden. Zu Beginn der Programmausfithrung wird ein Datenhinweiszeiger auf
das erste Datenelement gesetzt.

30 KOSTEN 2380 SALDO

Aenhinweiszeiger)

2.4 READ-Anweisung

Die READ-Anweisung wird verwendet, um die Daten aus der DATA-Anweisung
zu lesen.

22 2. Eingabe-Anweisungen

Schreibweise:
arith. Var. arith. Var.
arith. Ber. Var. arith. Ber. Var.
READ Zeich. Var. i Zeich. Var.
Zeich. Ber. Var. Zeich. Ber. Var.
Die READ-Anweisung kann mehrere Variablen enthalten.
Beispiele:
100 READ AB,.CD
200 READ A9,F$ H
300 READ X
400 READ Z$ K, L. M8 N2
500 READ Q$,#%.@

Der ersten Variablen wird das erste Datenelement zugeordnet. Das wird in der
gleichen Sequenz fortgefiihrt, d. h. die zweite Variable erhilt das zweite Daten-
element usw. Variable und Datenelement miissen vom gleichen Typ sein. Genau
formuliert heifit das: Einer arithmetischen Variablen kann nur eine arithmetische
Konstante zugeordnet sein und nicht etwa eine Zeichenkonstante, denn diese
gehort nur zu einer Zeichenvariablen. Sind mehr Variablen vorhanden als Kon-
stanten, wird eine Fehlermeldung gedruckt. Die Programmausfiihrung wird da-

durch gestoppt.
Beispiel:
READY
1187
0100 REM RUNGE - KUTTA - VERFAHREN
0110 DATA 05~0.5,0.05,4
0120 READ XsYsHyM
G136 PRINT *x*,7y?
0140 FRINT
0150 PRINT XsY
0160 LET A=HX(X-Y12)
0170 LET X=xX+H/2
0180 LET Z1i=Y
0190 LET Y=Y+A/2
0200 LET B=H¥(X-113)
02106 LET v=71
0220 REM
0230 LET V=Y+B/2
0240 LET C=H*(X~-Y%2)
020 LET KaX+H/72
LET Y=Z1
LET Vavy+0/2
LET D=H®{(X-Y12)
LET E=(a+InBe2%(+l) /6
LET v=Z1
LET YaY+E
PRINT X»Y
IF %=t THEN 0350
GO TO 0160
5TOF
END

2.5 MAT READ-Anweisung 23

Selbstverstindlich ist es gestattet, eine vorher mit READ eingelesene Konstante
nachher in einer Bereichsvariablen als Index zu verwenden.
Beispiel:

100 DATA 10,3450

110 READ K S(K,K+3)

120 PRINT K,S(K ,K+3)

130 STOP

140 END

System druckt:
10 3450
Die READ-Anweisung ist ungiiltig, wenn keine DATA-Anweisung vorhanden ist.

2.5 MAT READ-Anweisung

Die Anweisung ist dhnlich der READ-Anweisung im vergangenen Abschnitt.
Auch hier werden die Daten in einer DATA-Anweisung definiert. Die MAT
READ-Anweisung setzt die Daten in eine vorher dimensionierte Matrix (da-
durch ist Kernspeicherplatz reserviert).

Schreibweise:
MAT READ Matrix Name [(arith. Ausdr. [, arith. Ausdr.])]
[, Matrix Name [(arith. Ausdr. [, arith, Ausdr.])]] ...

Hier miissen arithmetische Konstanten bzw. Variablen verwendet werden. Die
Matrixnamen miissen aus einem einzelnen alphabetischen Zeichen bestehen,

A-Z,#3%,@
dem ein Index folgen kann.
Beispiel:

100 MAT READ F

200 MAT READ L(3,4) K
300 MAT READ X,Y,Z

Wie die Beispiele zeigen, ist auch mit der MAT READ-Anweisung eine Redefini-
tion moglich. Die Daten werden reihenweise eingelesen. Auch die Reihenfolge
der Matrizen wird eingehalten.

Beispiel:
100 DIM X(2,2),N(10,10)
110 DATA 8,17,25,33,41,49,78,69,14,18,35,57,60,63

24 2. Eingabe-Anweisungen

8117|2533 |41(49]| 78169 141835 |57}60 63

T — "]

120 MAT READ X,N(2,5)

100 DIM X(2,2),N(10,10)

110 DATA 8,17,25,33,41,49,78,69,14,18,35,57,60,63
120 MAT READ X,N(2,5)

130 MAT PRINT S,N

140 END

System:

8 17
25 33
41 49 78 69 14
18 35 57 60 63

Die Matrix N, die in der DIMENSION-Anweisung auf 10,10 definiert wird, ist
in der MAT READ-Anweisung auf 2,5 redefiniert.
Ist die Anzahl der Konstanten in der DATA-Anweisung kleiner als die zulissige”
Grofle der Matrix, so wird eine Fehlermeldung geschrieben. Die MAT READ-An-
weisung ist ungiiltig, wenn keine DATA-Anweisung vorhanden ist.
Beispiel:
100 DIM X(3,7),Y(4,5)
110 MAT READ XY
Zwischen DIM- und MAT READ-Anweisung fehlt DATA-Anweisung.

2.6 RESTORE-Anweisung

Durch die READ-Anweisung wird jeder Variablen ein Wert aus der DATA-An-
weisung zugeordnet. Ein Datenhinweiszeiger wird von einem Element zum
anderen gesetzt. Die RESTORE-Anweisung bewirkt, daf} der Datenhinweis-
zeiger auf das erste Element der DATA-Anweisung zuriickversetzt wird. Wit
haben somit die Moglichkeit, im gleichen Programmdurchlauf mehrmals die
Werte aus der DATA-Anweisung zu verwenden.

Schreibweise:
RESTORE [Kommentar]

Beispiel:
100 DATA 70,80,90,100
110 READ RS,T,U

2.7 GET-Anweisung 25

Stellung des Datenhinweiszeiger nach erstmaligem Lesen:

70 | 80 | 90 | 100 |

(Datenhinweiszeiger)

Durch die RESTORE-Anweisung setzt sich der Datenhinweiszeiger wieder auf
das erste Element.

70 80 90 100

(Datenhinweiszeiger)
Die zweite READ-Anweisung liest uns die gleichen Daten.
Zusammenhingendes Beispiel:

100 DATA 100,200,300
110 READ XY ,Z

120 A=X/Y+Z

130 RESTORE

140 READ U,V W

150 B=U+V+W

160 PRINT A,B

170 END

System:
300.5 600

Die erste READ-Anweisung im obigen Beispiel liest die Daten 100,200,300 und
fiigt sie der entsprechenden Variablen X,Y und Z zu. Es wird ein Wert A berech-
net. Die RESTORE-Anweisung setzt den Datenhinweiszeiger wieder auf das
erste Element. Die zweite READ-Anweisung liest die Werte der DATA-Anwei-
sung von neuem und setzt sie den Variablen U,V und W gleich. Der jetzt errech-
nete Wert B sowie die berechnete Variable A werden schlufendlich gedruckt.

2.7 GET-Anweisung

Die GET-Anweisung wird benutzt, um Daten aus einer vorher definierten Datei
einzulesen. Die Datei wird mit einem ALLOCATE-Systembefehl bestimmt.

Schreibweise:
arith. Var. arith. Var.
y . , arith. Ber. Var. arith. Ber. Var.
GET "Dateiname’, Zeich. Var. >} Zeich. Var.

Zeich. Ber. Var. Zeich. Ber. Var.

26 2. Eingabe-Anweisungen

Der Dateiname kann auch durch eine Zeichenvariable ersetzt werden (ohne
Apostroph). Dieser Zeichenvariablen muf dann vor der GET-Ausfithrung eine
Konstante zugewiesen werden.

Der Dateiname ist normalerweise eine beliebige Zeichenkonstante.

Beispiel:
100 GET "DIFF’, Z3,C,F$,G1
oder
100 GET Y$,A,B,C
wobei gilt
90 Y$="SUM’
man kénnte auch schreiben:
100 GET ’SUM’, A,B,C

Sind mehr Variablen in der GET-Anweisung als Datenelemente in der Datei, so
wird eine Fehlermeldung geschrieben. Die Variablen miissen auch hier vom
gleichen Typ sein wie die Werte in der Datei. Ist dies nicht der Fall, so wird
das System eine Fehlermeldung geben. Die Zuordnung der Daten aus der
Datei erfolgt in gleicher Sequenz wie die Variablen der GET-Anweisung. Er-
scheint eine Variable als Index in einer nachfolgenden Bereichsvariablen,

wird dieser neue Wert verwendet.

Beispiel:
100 GET "SALDO’, L,F(L+4)
110 L=L+4
120 Z=F(L)*#3
130 PRINT F(L),Z

Auch hier wird der Datenhinweiszeiger auf jedes zu lesende Element gesetzt. Die
Daten aus definierter Datei kénnen auch von anderen Programmen verwendet
werden. Die gespeicherten Daten konnen von einfacher oder doppelter Genauig-
keit sein. Allein das verwendete Programm bestimmt, in welcher Genauigkeit

die Daten benutzt werden. Sind die Daten in doppelter Genauigkeit gespeichert,
aber im Programm wird nur einfache Genauigkeit verlangt, so werden die Werte
fiir das laufende Programm verindert. Wichtig ist aber, daf} die Daten in der
Datei ihre Genauigkeit beibehalten.

Wenn die Daten der Datei doppelte Genauigkeit besitzen, so verwendet ein in
einfacher Genauigkeit definiertes Programm nur die ersten sieben Stellen. In
diesem Fall werden alle iiberzihligen Stellen ignoriert.

2.8 MAT GET-Anweisung 27
2.8 MAT GET-Anweisung

Diese Anweisung hat die gleiche Wirkung wie die GET-Anweisung. Es kdnnen
nur arithmetische Daten eingelesen werden. Damit kann eine Matrix gefiillt wer-
den,

Schreibweise:

’Dateiname’ . . .
MAT GET {Zeich_ ame } Matrix Name [(arith. Ausdr. [, arith. Ausdr.])]

[Matrix Name [(arith. Ausdr. [, arith. Ausdr.])]]. . .

Der Dateiname wird wiederum durch einen Betriebssystembefehl definiert. Die
Regeln der Matrixvariablen gelten auch hier.

Beispiel:
Definierung der Plattendatei
ALLOCATE DATEI (DIFF)

Programm
100 DIM U(5,5),V(10,10)
110 MAT GET 'DIFF’, U(2,2),V(2,3)
120 MAT PRINT UV
130 END

Das System druckt die Werte entsprechend der redefinierten Matrix.

17 256
319 570
9 68 97

28 712 324

Auch in der MAT GET-Anweisung ist eine Redefinition moglich. Die Dimen-
sion der Matrix kann eine Konstante oder eine Variable sein.

Beispiel:
100 MAT GET ’KOSTEN’, U(F L)
200 MAT GET *SALDO’, X(3,4),Y(K,N+3)
300 MAT GET ’SUM’, P.QR

Der Datenhinweiszeiger hat auch hier seine Giiltigkeit. Die Genaunigkeit der Da-
ten in der Datei hat keinen EinfluB auf das verwendete Programm, denn allein
das Programm befiehlt die Genauigkeit. Entsprechen sich Genauigkeit von
Daten und Programm nicht, so werden die Daten fiir einen Programmdurchlauf
gedndert.

28 2. Eingabe-Anweisungen

2.9 RESET-Anweisung

Diese Anweisung setzt den Datenhinweiszeiger wieder auf das erste Element
bei einer mit GET gelesenen Datei.

Schreibweise:
RESET ’Dateiname °[, Dateiname’] . . .

Dadurch kénnen wir also auch wieder in einen einzigen Programmdurchlauf
mehrmals auf die gleichen Daten zugreifen.

Beispiel:

Definierung der Plattendatei
ALLOCATE DATEI (DIFF)

Programm

100 GET "DIFF’, A,B,C$
110 RESET 'DIFF’
120 GET 'DIFF’, U,V,W$
130 PRINT A,B,C$,U,V.W$
140 END

System

160 70 DIFFERENZ 160 70 DIFFERENZ

2.10 CLOSE-Anweisung

Jede Datei, die mit GET, MAT GET, PUT oder MAT PUT in Bezug genommen
wird, gilt als er6ffnete Datendatei. Alle Dateien miissen noch vor Programmende

geschlossen werden. Dies wird mit der CLOSE-Anweisung ausgefiihrt.
Schreibweise:
CLOSE ’Dateiname’ [, "Dateiname’] . . .

Durch die CLOSE-Anweisung wird automatisch der Datenhinweiszeiger wieder

auf das erste Element gesetzt.

Beispiel:

Definierung der Plattendatei
ALLOCATE DATEI (VOLT)

Programm

100 GET *VOLT’, R,I
110 PRINT R’,T",U’
120 U=R«1

2.10 CLOSE-Anweisung 29

130PRINT R,LLU
140 CLOSE "VOLT’
150 END

Die GET-Anweisung er6ffnet die Plattendatei. Die Daten werden den entsprechen-
den Variablen zugeordnet. Zu vier Recheninstruktionen werden Berechnungen aus-
gefiihrt. Nachdem die Resultate gedruckt sind, folgt die CLOSE-Anweisung, die
den Datenhinweiszeiger wieder auf das erste Element setzt und schluflendlich die
Datei abschlieit. Die Erklirung der PRINT-Anweisung folgt in einem spiteren Ka-
pitel.

3. Ausgabe-Anweisungen

Die Ausgabe-Anweisungen werden verwendet zum

* Drucken der Ergebnisse
* Einsetzen der Programmergebnisse in Datendateien

3.1 PRINT-Anweisung

Die PRINT-Anweisung wird zum Drucken der Ergebnisse verwendet.

Schreibweise:

vt (%] [0 Easad] - (0]

An Stelle des Kommas bzw. Semikolons darf auch eine Zeichenkonstante als
Trennung verwendet werden. Fiir die arithmetische Variable ist auch eine
arithmetische Formel gestattet.

100 PRINT Ax%3

Kommata, Semikolon oder Zeichenkonstanten verweisen auf Trennungen und
werden zur Aufteilung der Druckzeile in Printzonen verwendet. Das alleinige
Schliisselwort PRINT bewirkt, daf die Seite um eine Zeile vorgeschoben wird.
Die PRINT-Anweisungen bewirken im folgenden Programm: Drucken des
Wertes X, Vorschub um eine Zeile und Drucken des Wertes Y.
Programmbeispiel:

100 INPUT X,Y

110 PRINT "X="X

120 PRINT

130 PRINT 'Y="Y

140 STOP
150 END

System:
?
170, 38
X= 170
Y= 38
Die Genauigkeit der Daten wird in der Form ausgedruckt wie sie im Programm
verlangt werden.

* Bei einfacher Genauigkeit werden sechs Dezimalziffern und ev.
Vorzeichen gedruckt.

3.1 PRINT-Anweisung 31

Beispiele:
6730
-760123
158.45
7.35872

Die Systemkonstanten in erweiterter Genauigkeit.

&PI = 3.14159265358979
&E =2.71828182845905
&SQR2 =1.41421346237310

Bei der erweiterten Genauigkeit werden elf Dezimalziffern und ev. Vorzeichen
gedruckt.
Beispiele:

187530

-25612343052

6.37219

4786.17153

-7886.2791823

* Ist die arithmetische Konstante in einer der vorangegangenen Formen zu
gro3, wird sie in Exponentialform geschrieben. Minuszeichen und Dezimal-
punkt entsprechen den fritheren Ausfilhrungen. Zusitzlich kommen nun
eine Kennzeichnung E und der mit Vorzeichen versehene Exponent hinzu.
Werden Resultate in Exponentialform gedruckt, findet vorher eine Run-
dung statt.

Beispiel:
einfache Genauigkeit erweiterte
(6 Ziffern) (11 Ziffern)
3.45E-9 1.37815774235E+28
-4.19876E2 2.78495336875E-3
7.43E-21 9.62648462615E7
2.537E-04

Die PRINT-Anweisung kann auch zum Drucken von Uberschriften verwendet
werden.

Beispiel:
100 PRINT 'KOSTENRECHNUNG’
200 PRINT "SALDO BETRAEGT:’
300PRINT'RECHNUNG’

400 PRINT "'TOTAL DER X’ X
500 PRINT 'DIFFERENZ VOM 12.3.72”°

32 3. Ausgabe-Anweisungen

Die Hochkommata in der PRINT-Anweisung werden nicht gedruckt, da sie nur
die Zeichenkonstante darstellen, Mufl mehr als eine Variable oder Konstante bzw.,
beides gedruckt werden, so ist die Druckseite in Druckzonen eingeteilt. Sie sind
der Tabulatoreneinrichtung bei der Schreibmaschine dhnlich, Die Seite kann in
lange oder kurze Druckzonen aufgeteilt sein. Durch die Kommata in der PRINT-
Anweisung wird der Schreibkopf auf die nichste lange Druckzone gesetzt. Ist

die Anzahl der zu druckenden Elemente grofier als die verfiigbaren Druckzonen,
so wird in der nichsten Zeile fortgesetzt.

Beispiel:
100 DATA 6380,7,40,80.34,124.9,7863.17,280
110 READ A,B,C,.D.EF,G
120 PRINT A,B,C.D.EF,G
130 END

System:

6380 7 40
80.34 1249 7863.17
280

Bemerkung: Um das Beispiel deutlich zu zeigen, wird die Zeilenbreite 60 Zeichen
definiert. Normalerweise betrigt diese 132 Zeichen.

Tabelle der Papieraufteilung:

Charakteristika der Druck-Zone

Grofie Anzahl der Zeichen pro Druck- Maximale Anzahl der Druckzonen pro
der kurzen Zone zone (Einschlielich Vor- Zeile mit Zeile mit
zeichen, Wert, Dezimalpunkt 132 Zeichen 220 Zeichen
und Exponent)
6 Leerstellen 2, 3 oder 4 Zeichen 22 36
9 Leerstellen 5, 6 oder 7 Zeichen 14 24
12 Leerstelien 8, 9 oder 10 Zeichen 11 20
15 Leerstellen 11, 12 oder 13 Zeichen 8 14
18 Leerstellen 14, 15, 16 oder 17 Zeichen 7 12

Kurze Druckzonen fiir Zeichendaten sind genauso lang wie die Anzahl der Zeichen in einem
Posten von Zeichendaten.

Ist das Trennungszeichen zwischen den Variablen bzw. Konstanten in der PRINT-
Anweisung ein Komma, wird der Druckkopf auf die nichste lange Druckzone
gesetzt, Zwei oder mehr Kommata hintereinander, z. B.

100 PRINT "X="X,,’Y=")Y
110 PRINT ,,’RECHNUNG’

veranlassen ein Ubergehen der langen Druckzonen, die der Anzahl Kommata
entsprechen.

3.1 PRINT-Anweisung 33

Wird als Trennungszeichen zwischen den Variablen ein Semikolon beniitzt, ver-
schiebt sich der Druckkopf immer auf die nichste kurze Druckzone. Ist die An-
zahl der Druckzonen kleiner als die zu druckenden Variablen, wird in der nich-
sten Zeile fortgesetzt. Kurze und lange Druckzonen konnen in einer PRINT-An-
weisung kombiniert werden.
Beispiel:

100 INPUT X,Y,Z

110 A=X*Y=*Z

120 B=X+Y+Z

130 C=X/Y+Z

140 D=(X+Y)*Z

150 E=X(Y+Z)

160 PRINT A;B,C;D,E,’RESULTATE’

170 END

Wird am Ende einer PRINT-Anweisung ein Komma oder Semikolon gesetzt,
erreicht man ein Vorschieben auf den Anfangspunkt einer neuen Druckzone,
also keinen Vorschub auf eine neue Zeile.

Beispiel:

300 PRINT ,’A="A;
400 PRINT ;’B="B,

Programmbeispiel:
490 INPUT AB,C Druckbild:
500 PRINT 1. Zeile: leer
S10PRINT 2. Zeile: leer

*520 PRINT A, 3. Zeile: Wert A

530 PRINT 4. Zeile: leer
540 PRINT B,C 5. Zeile: Wert B+C
550 END

* Printkopf verschiebt sich nicht auf eine neue Zeile, sondern bleibt auf der
gedruckten Zeile stehen.

Im folgenden Programm wird der berechnete Wert und ein dazugehdrender
Kommentar gedruckt.

0100 DIM Y(99)

0110 INFUT ArByX1rX2

0120 F1 =ABS(X1)

0130 F2 =ABS(X2)

0140 F=F1+F2

0150 H=F/98

0160 N=1

0170 Y(N)=(1/(AXSOR(2#&FT) I IREXF ((X1-F)$2/(~2%A12))
0180 N=N+1

0190 X1=X1+H

3 Migerle, Programmieren in BASIC

34 3. Ausgabe-Anweisungen

Q200 IF X1<(X2 THEN 0170
0210 N=1

0220 G=6+Y(N)

0230 N=N+1

(G240 G=G+4xY(N)

0245 IF N>=98 THEN 0280
0250 N=N+1

0260 G=G+2%Y(N)

0270 GO TD 0230

0280 N=N+1

0290 G=G+Y(N)

0300 FRINT * DIE INTEGRATION ERGIEET =?
0310 PRINT ¢9’G =',0

0320 8STOF

0330 ENI!

Ist in einer zu druckenden Zeichenkonstante schon ein Hochkomma vorhanden,
muf} dieses in der PRINT-Anweisung verdoppelt werden. Die Leerzeichenkon-
stante ” wird in der PRINT-Anweisung als 18 Leerzeichen interpretiert.

100 INPUT U VW XY ,Z
110 A=U+V+W+X+Y+Z

120 B=(U+V)#+WH(X+Y)*+Z
130 C=U/V*W+X /Y *Z

140 PRINT A,”,B,’C

150 END

3.2 PRINT USING-Anweisung

Diese Anweisung wird im Zusammenhang mit einer FORMAT-Anweisung ver-
wendet. Die Druckzeilen kénnen damit formal beschrieben werden. Diese
FORMAT-Anweisung wird durch einen Doppelpunkt gekennzeichnet, der
nach der Anweisungszeilennummer kommt. Schreibweise der PRINT USING-
FORMAT-Anweisung:

PRINT USING Zeilenr. [{af“h- Ausdr. }] L

Zeich. Ausdr.
[{Zeichenkette}
Druckformat

Jede Ziffer der auszudruckenden Variable muf ein sogenanntes Ersatzzeichen
verwenden: # Nummernzeichen

100: A=—##### SUMME

Dieses Ersatzzeichen wird immer als Komponente des zu ersetzenden Zeichens
interpretiert. Zusitzlich konnen die Formate noch Vorzeichen und Dezimal-
punkt enthalten. Die Zeilennummer, die dem Schliisselwort PRINT USING
folgt, ist dieselbe wie bei der FORMAT-Anweisung.

3.2 PRINTUSING-Anweisung 35

Beispiel:
100 INPUT A,B.C
110 X=A+B+C
120 Y=(A+B)*C
130 PRINT USING 140,X,Y
140: X=-#### Y=-####
150 END

Enthilt die FORMAT-Anweisung keine Elemente, wird nur um eine Leerzeile
vorgeschoben.

Beispiel:
200 PRINT USING 210
210:
220 PRINT USING 230
230:

Vorschub um zwei Leerzeilen

Jede Variable in der PRINT USING-Anweisung muf} ein entsprechendes Format-
element vorweisen. Wenn die Anzahl Konstanten, Variablen oder Formeln der
PRINT USING-Anweisung die Anzahl der Druckformate der FORMAT-Anwei-
sung iibersteigt, so wird die letztere wiederholend benutzt und auf der folgenden
Zeile fortgesetzt. Sobald das letzte Formatelement steht, setzt sich der Drucker
auf den Anfang der nichsten Zeile.

Programmbeispiel:

100 DATA 17,23,14.0,26.0,58,73,4.73,1.3
110 READ A,B,C.D.EF,GH

120 PRINT USING 130,A,B,C,D,EF,GH
130:## ##4 HHHH#

140 END

System:
17 23
14 26
58 73
473 1.3

Eventuell ausgedrucktes negatives Vorzeichen muf} als Ersatzzeichen beriick-
sichtigt werden. Sind nicht geniigend Ersatzzeichen vorgesehen worden, um
den Wert einer Zahl zu drucken, findet ein Uberlauf statt. An Stelle der Zahl
werden Sterne zur Kennzeichnung gedruckt. Ist die Anzahl Ersatzzeichen
grofer als die Zahl der Ziffern, wird der Wert rechtsbiindig ausgeschrieben.
Nicht benétigte Ersatzzeichen werden durch Leerzeichen ersetzt.

3*

36 3. Ausgabe-Anweisungen

Beispiel:
100 DATA -18,130,5
110READ AB,C
120 PRINT USING 130,A,B,C

130: ######
140 END

System:

*k k%5
A+B sind zu klein definiert (bei A Vorzeichen beriicksichtigen).

Da fiir die Variable A nur zwei Ersatzzeichen definiert worden sind, aber die
Zahl aus drei Zeichen besteht, findet hier ein Uberlauf statt. Hier werden
also die Sterne gedruckt. Man beachte auch, daf} fiir die Variable B im
Druckbild der FORMAT-Anweisung zwei Ersatzzeichen definiert worden
sind. Das negative Vorzeichen sollte aber auch beriicksichtigt werden. Wir
miissen folgende Gegebenheiten beachten:

Plus-Vorzeichen im Druckformat ergibt beim Drucken:

* Wert positiv +
* Wert negativ -

Minus-Vorzeichen im Druckformat ergibt beim Drucken:

* Wert positiv Leerzeichen
* Wert negativ -

Der zu druckende Dezimalpunkt erscheint immer dort, wo er im Druckfeld
spezifiziert worden ist.

37

3.2 PRINT USING-Anweisung

64

<3994

IN3

ovvy0o 01 09
T LX3N
ININA
7 ¥0d
61 41
N dI
T+N = N

T+671 = 67

TOAD4D4G46Nsd 10050 ONISM LININA
C(I%M) /7 N*UxEHIHNDE = 10

02 0L 1
0v50 01 09 Ov
0690 01 09 05

i~ i

001/3 = 3

T°0 = M

05 = ¥

£/v%5 = N

JiDGASUHISN sd ¢ LUNANT 4 13D

INIMA

FETFTTERNR FEEERRIRETIRTRIRISRRIEE FETERTEERR!
11A 83VYS NOILAINIS3] ON LINaOMA:
0150 ONISN LININ4

INTMA

LNIMd

hm—— ——— ———-—gded LNINA

«459 (SATLITINYND MITMO JIWONOII MAN«4Sd INIMA

0690
0890
0490
0990
0590
ov90
0£90)
0290
0190
0090
0650
0860
0450
0950
0550
ovs0
0£50-
0C80
0180
0050
06%0
08v0
oLvO
(3449

38 3. Ausgabe-Anweisungen

Sind in einer zu druckenden Zahl nicht alle Dezimalstellen beriicksichtigt wor-
den, wird auf die letzte Stelle gerundet. Die PRINT USING-Anweisung kann
auch die Exponentialform als Druckbild verwenden. Jede Zahl in Expontial-
darstellung, z. B.

14371 - 1072

et —~—

Faktor Basis Exponent

kann auch in BASIC geschrieben werden. Die Basis 10 mufl durch den Buchsta-

ben E ersetzt sein, gefolgt vom Exponenten mit seinem Vorzeichen. Obige Zaht
wiirde auf der Ausgabeliste so aussehen:

14.371E-02

Damit diese Darstellung erreicht wird, muf in der PRINT USING-Anweisung
das E, Vorzeichen vom Exponent und Exponent selbst durch einen /

(= Schrigstrich) gekennzeichnet werden. Fiir den Faktor vor dem E bleiben
die bisherigen Regeln erhalten.

Beispiel:
100 DATA 156137
110 READ A
120 PRINT USING 130,A

130: A=-###.###///]
140 END

System:
A=156.137E03

Ubersteigt der Exponent 99, wird das ganze Druckbild der Variablen durch
Sterne gekennzeichnet; der Wert hat also einen Uberlauf.

Beispiel:
100 X=157E98
110 PRINT USING 120.X

120: X=##.#////
130 END

System:
sk ok ok o ok ok skeok
Bemerkung: Exponent grofier als 99.

Mit der PRINT-Anweisung kénnen auch Zeichenvariablen gedruckt werden. Sind
hier weniger Ersatzzeichen definiert als es die Variable verlangt, werden rechts-
biindig die iiberzihligen Zeilen nicht gedruckt. :

3.3 MAT PRINT-Anweisung 39

Beispiel:
100 DATA 200, DIFFERENZ’,300
110 READ A,B$,C
120 PRINT USING 130,A,B$,C
130: A=#####HH#HHH#RC=HH##
140 END

System:
A=200,DIFFEREN,C=300

Man beachte, daf fiir Zeichenkonstante 'DIFFERENZ’ nicht geniigend Ersatz-
zeichen vorgesehen wurde.

3.3 MAT PRINT-Anweisung

Mit dieser Anweisung konnen ganze arithmetische Bereiche (Matrizen) ausge-
druckt werden. Es geniigt also eine Anweisung, damit Zeile um Zeile einer de-
finierten Matrix gedruckt wird. Dazwischen liegt immer eine Leerzeile. Der Beginn
einer neuen Matrix wird mit zwei Leerzeilen gekennzeichnet.

Schreibweise:
MAT PRINT [{} Matrixname[. . [{}]

Komma oder Semikolon geben auch in der MAT PRINT-Anweisung an, wo die
einzelnen Elemente der Matrix gedruckt werden sollen. Ein dem Matrixnamen
folgendes Komma setzt den Druckkopf auf die nidchste verfiigbare lange Druck-
zone. Folgt hingegen dem Namen ein Semikolon, wird der Druckkopf auf die
nichste kurze Druckzone gesetzt, nachdem jedes Element der Matrix gedruckt
worden ist. Die Linge der kurzen Zone wird durch die Grofe der Konstante
bestimmt. Ist am Ende einer MAT PRINT-Anweisung kein Komma oder Semi-
kolon vorhanden, wird die zuletzt aufgefiihrte Matrix in der Langzonenauftei-
lung gedruckt. Geniigt die Zonenbreite fiir eine Matrix nicht, wird auf der
folgenden Zeile fortgefahren.

Beispiel:
100 DIM S(10,10),N(5.6)
110 DATA 17,23,58,97,11,63,82,41
120 MAT READ §(2,2),N(2,2)
130 MAT PRINT S;N,
140 END

40 3. Ausgabe-Anweisungen

System:
17 23
58 97
11 63
82 41

Das Semikolon in der obigen MAT PRINT-Anweisung verursacht das Drucken
der Elemente der Matrix S unter Benutzung der kurzen Druckzonenaufteilung.
Das Komma veranla8t das Drucken der Elemente der Matrix N in der Langzone.
Um die Matrixelemente in einfacher bzw. doppelter Genauigkeit verwenden

zu konnen, ist nur der schon mehrmals erwihnte Betriebssystembefehl verant-
wortlich.

3.4 MAT PRINT USING-Anweisung

Mit der FORMAT-Anweisung werden ganze Matrizen ausgedruckt. Es gelten
die Regeln der PRINT USING-Anweisung. Jede gedruckte Zeile ist von der
nichsten durch eine Leerzeile getrennt. Bei mehreren Matrizen trennen zwei
Leerzeilen die eine von der andern.

Schreibweise:

MAT PRINT USING Zeilenr., Matrixname (, Matrixname] . . .
[(Brmemienat] - Bt [(Bt]
Beispiel:

100 MAT PRINT USING 110,F
110: RESULTAT ####

Ubersteigt die Anzahl Matrixelemente eine Reihe in der FORMAT-Anweisung,
wird auf der folgenden Zeile die restliche Matrix gedruckt. Ist die Anzahl Ele-
mente der Matrixreihe kleiner als die in der FORMAT-Anweisung, wird das
Drucken beim ersten nichtverwendeten Element beendet.
Beispiel:

100 DIM A(3,2)

110 DATA 70,110,40,10,30,80

120 MAT READ A

130 PRINT USING 140

140: KOL.1 KOL.2

150 MAT PRINT USING 160,A

160: ### ###
170 END

3.6 MAT PUT-Anweisung 41

System:
KOL.1 KOL.2
70 110
40 10
30 80

3.5 PUT-Anweisung

Die PUT-Anweisung setzt die Ergebnisse eines Programmes in eine Datendatei.
Auch diese Datei muf} durch einen Betriebssystembefehl definiert sein.

Schreibweise:

’Dateiname’ arith. Ausdr. arith. Ausdr.
PUT (e Var] » {Geieh e | Feich. Ausdr -

Wenn die Anzahl der spezifizierten Ausdriicke in der PUT-Anweisung die Grofie
der Datei iibersteigt, resultiert daraus ein Ausfiihrungsfehler. Nachdem der Wert
einer Variable in die Datei gesetzt worden ist, gleitet der Datenhinweiszeiger
auf den nichsten verfiigbaren Platz weiter. Durch *Dateiname’ kann das System
die Beziehung zwischen Programm und Datei herstellen.

Beispiel:
ALLOCATE DATEI (DIFF)
100 INPUT Y6,R,W$
110 PRINT Y6,R,W$
120 PUT 'DIFF’ Y6, R, W$
130 END

In diesem Beispiel setzt die PUT-Anweisung die Werte von Y6, R und W auf die
Plattendatei.

Das Programm nimmt mit dem Dateiname 'DIFF’ Bezug auf die Plattendatei.
Stellt das System eine giiltige Datendatei fest, z. B. in der PUT-Anweisung, so
wird diese Datei erdffnet. Die RESET-Anweisung kann im Zusammenhang mit
der PUT-Anweisung verwendet werden, Nachdem alle Daten auf der Plattendatei
sind, setzt eine RESET-Anweisung auf das erste Element. Diese vorhin erstellte
Datei kann also wieder zur Dateneingabe benutzt werden. Ist eine Datei erstellt,
muf} vor Programmabschluf} die Datei mit einer CLOSE-Anweisung abgeschlos-
sen werden.

3.6 MAT PUT-Anweisung

Die MAT PUT-Anweisung hat wie die vorangegangene PUT-Anweisung die
gleiche Wirkung. Errechnete Werte eines Programmes werden in eine Daten-

42 3. Ausgabe-Anweisungen

datei gesetzt, die in diesem Fall eine Matrix darstellt. Es werden nicht die
Werte einzelner Variablen abgespeichert, sondern die ganze Matrix.

Schreibweise:

’Dateiname’ . .
MAT PUT { Zeich. Var.} , Matrixname [, Matrixname] . . .

Diese Daten der Matrix werden reihenweise in die Datenmatrix gesetzt. Werden
mehr Datenelemente in eine Matrix gebracht als definiert worden sind, tritt ein
Ausfiihrungsfehler auf.

Beispiel:
ALLOCATE DATEI (DIFF)

100 DIM K(10,10),L(5,5)

110 MAT INPUT K(3,2),L(4,4)
120 MAT PUT °DIFF’K,L

130 END

System:

Die MAT PUT-Anweisung speichert die zwei Matrizen K und L als Datei
auf die Platte.

Die RESET- und die CLOSE-Anweisung bewirken hier dasselbe wie in der PUT-
Anweisung. Die erstellte Matrix kann wieder als Eingabe dienen. Jedesmal bevor
die Datei verwendet wird, findet eine Giiltigkeitspriifung statt.

4. ERGIBT-Anweisungen

Es gibt drei Méglichkeiten, um Variablen, Bereichen und Matrizen Werte zuzuord-
nen. Diese Anweisungen lauten:

* LET-Anweisung
* DEF-Anweisung
* MAT-Zuordnungsanweisung

4.1 LET-Anweisung

Diese Anweisung wird verwendet, um arithmetischen oder Zeichenvariablen
einen Wert zuzuweisen. Auch die Vercodung von mathematischen Formeln
kann das Schiiisselwort LET gebrauchen.

Schreibweise:
arith. Var. arith. Var. = oy
[LET) {arith. Ber. Var.} [’ {arith. Ber. Var. }] -+ = arith. Ausdr.
Zeich. Var.) Zeich. Var. -
{Zeich. Ber. Var.} [, {Zeich. Ber. Var.}] - - = arith. Ausdr.

Die Variable links vom Gleichheitszeichen kann entweder arithmetisch oder
alphanumerisch sein. Der Ausdruck rechts vom Gleichheitszeichen mufl vom
gleichen Typ sein wie links vom Gleichheitszeichen. Das Schliisselwort LET ist
wahlfrei. Wir kénnen somit alle ERGIBT-Anweisungen auch ohne das Schiiissel-
wort vercoden.

Beispiel:
100 LET F=G+H
200 A=Bx*%3

300 LET X=3
400 Y=17

Wird in der Programmausfiihrung einer Formel ein Wert berechnet, wird er der
Variablen links vom Gleichheitszeichen zugeordnet.

Beispiel:
100 LET F=D#**2+&PI/4
200 V=R **2+&PI+H
300 X1=(-B-SQR(B#*#2-4xAxC))/(2+A)
400 LET P=R#I%x2

Man beachte, da links vom Gleichheitszeichen mehrere Variablen vom gleichen
Typ stehen konnen. Diese Variablen miissen durch Komma getrennt sein. Simt-

44 4. ERGIBT-Anweisungen

liche Variablen erhalten dann den Wert rechts des Kommas zugewiesen. Man be-
denke auch, dafl immer zuerst der Wert, z. B. aus einer mathematischen Gleichung,
der rechts vom Gleichheitszeichen steht, berechnet wird. Nachher wird der Wert
der Variablen links vom Gleichheitszeichen zugewiesen. Das hat im folgenden
Beispiel eine wichtige Konsequenz.

100 LET A,B,C=X+Y
200 U,V=Xx**5

300 LET G H,I=4
400 R,S,T=18

4.2 Auflésung arithmetischer Formeln

Simtliche Berechnungen werden in Dezimalarithmetik durchgefiihrt. Die Resul-
tate werden bei einfacher Genauigkeit auf 7, bei doppelter auf 15 giiltige Ziffern
gerundet. Die Genauigkeit wird durch einen Betriebssystembefehl definiert. Die
Ausfiihrung von arithmetischen Operationen unterzieht sich einer Rangstufung.

Operationssymbol Operation

1 oder = Potenzierung
* Multiplikation
/ Division

+ Addition

- Subtraktion

Drei wichtige Regeln gelten:

1. Rechenoperationen innerhalb von Klammern werden zuerst ausgefiihrt, dann
folgen diejenigen auflerhalb der Klammern. Das innerste Klammerpaar hat
Prioritit.

2. Operationen hoherer Rangordnung werden vor den niederen ausgefiihrt. Die
Reihenfolge ist demnach folgende:

a) 1 oder **

b) Plus- oder Minuszeichen vor der 1. Variable oder Konstante
¢) *oder /

d) + oder -

3. Operationen gleicher Rangordnung werden von links nach rechts innerhalb
des Erscheinens ausgefiihrt.

4.3 DEF-Anweisung 45

Beispiel fiir die Losung einer quadratischen Gleichung:

100 INPUT A,B,C

110 X1=(-B+SQR(B12-4*A*C))/(2*A)
120 X2=(-B-SQR(B12-4%A*C))/(2*A)
130 PRINT X1,,X2

140 END

Die Maschine macht fiir die Variable X folgende Reihenfolge:

System: ?
Benutzer: 1,2,1
System: -1

X1=(-B+SQR(B12-4+A*C))/(2*A)
X1=(-B+SQR(4-4xAxC))/(2*A)
X1=(-B+SQR(4-4%C))/(2*A)

X 1=(-B+SQR(4-4))/(2%A)

X 1=(-B+SQR(0))/(2*A)
X1=(-B+0))/(2*A)

X1=(-2)/(2*A)

X1=-2/2

X1=-1

Das gleiche Verfahren gilt fiir X2.

Unterstrichene Operationen zeigen die Reihenfolge. Man merke sich, dafl

immer entsprechend der Genauigkeit die Resultate gerundet werden. Eine
Operation durch Null zu dividieren, verursacht einen Fehler, der zum Ab-
bruch der Programmausfithrung fiihrt.

4.3 DEF-Anweisung

Die DEF-Anweisung ist kein ausfithrbarer Befehl. Sie wird zum Definieren
hiufig benutzter mathematischer Formeln verwendet. Sie kann iiberall inner-
halb eines Programmes erscheinen. Das Ergebnis einer DEF-Anweisung wird
einer besonderen Variablen zugewiesen.

Schreibweise:
DEF Funktionsname (arith. Var.) = arith. Ausdr.

Der Funktionsname einer DEF-Anweisung ist immer FN, dem ein alphabetisches
Zeichen folgen mufl. Dieser Name zeigt eine bestimmte Benutzerfunktion.

Wird innerhalb eines Programmes auf diese Funktion Bezug genommen,

springt das Programm automatisch auf diese Funktion und berechnet mit den
aktuellen Werten den Funktionswert aus. Am Ende dieses Vorganges springt das
Programm automatisch in die Programmzeile zuriick, von wo es gekommen ist,

46 4. ERGIBT-Anweisungen

und rechnet dort mit dem in der DEF-Anweisung berechneten Wert weiter.
Diese arithmetische Variable kann nur in der DEF-Anweisung verwendet werden
und steht in keiner Beziehung zu einem Variablennamen aufierthalb der DEF-
Anweisung. Dort wo arithmetische Variablen sind, kann auch eine DEF-Anwei-
sung stehen,

Beispiel:
100 INPUT A,B,C
110 DEF FNQ(X)=SQR((A+B)#*X)
120 Z=FNQ(C)/4
130 PRINT A,B,C.Z
140 END

Bei Anweisung 120 springt das Programm auf Anweisung 110, setzt an Stelle
von X die Variable C ein. Sobald der Wert berechnet ist, fahrt das Programm
in Anweisung 120 weiter und fithrt die dortige Berechnung aus.

X Scheinvariable
C Aktualvariable

Eine DEF-Anweisung kann nicht auf sich selbst beziehen. Dieses wiirde einen
Ausfithrungsfehler bewirken.

Beispiel:
100 DEF FNY(V)=V/4+FNY(W)

Eine Funktion kann sich nicht auf eine andere Funktion beziehen, die die zu
definierende Funktion aufruft.

100 DEF FNC(W)=W+X/FND(Z)

400 DEF FND(W)=W+XxFNC(Y)

Maximal konnen 10 verschachtelte Benutzerfunktionen definiert werden. Das
folgende Beispiel zeigt verschachtelte Benutzerfunktionen:

100 DEF FNX(A)=A*x4
110 DEF FNY(B)=A-FNX(B)

190 LET U=AxB
200 Z=FNY(U)

4.4 Die Benutzung von Systemfunktionen 47
4.4 Die Benutzung von Systemfunktionen

Es gibt viele mathematische Funktionen (z. B. trigonometrische), die immer
nur in mathematischen Problemen gebraucht werden. Diese Funktionen stellt
das Betriebssystem zur Verfiigung. Sie konnen immer aufgerufen werden, sobald
sie eine mathematische Formel verlangt. Die Uberlegungen sind dhnlich wie in
der DEF-Anweisung, nur miissen sie hier keine zusitzlichen Definitionen anfi-
gen. Die Genauigkeit der Funktionen wird der verlangten Programmgenauigkeit
entsprechen. Die folgende Tabelle zeigt die Systemfunktionen. Die Variable X
kann eine arithmetische Konstante, Variable, Bereichsvariable oder Ausdruck
sein.

SIN(X) Berechnet den Sinus von X Grad Bogenmaf.

COS (X) Berechnet den Cosinus von X Grad BogenmaR.

TAN (X) Berechnet den Tangens von X Grad BogenmaR.

COT (X) Berechnet den Cotangens von X Grad BogenmaR.

SEC(X) Berechnet den Sekant von X Grad Bogenmaf3.

CSC (X) Berechnet den Cosekant von X Grad Bogenmaf.

ASN (X) Berechnet den Arcussinus (in Grad Bogenmaf) der realen Zahl.
Wobei (-m/2)<ASN(X)<(n/2).

ACS (X) Berechnet den Arcuscosinus (in Grad Bogenmaf}) der realen Zahl X.
Wobei 0<| ACS(X) | <1.

ATN (X) Berechnet den Arcustangens (in Grad Bogenmafl) der realen Zahl X.
Wobei -(7/2) <ATN(X)<(w/2).

HSN (X) Berechnet den Sinus hyperbolicus der realen Zah] X.

HCS (X) Berechnet den Cosinus hyperbolicus der realen Zahl X.

HTN (X) Berechnet den Tangens hyperbolicus der realen Zahl X.

DEG (X) Berechnet die Anzahl der Grade (Winkelmaf) aus (X) Grad Bogenmaf3.

RAD (X) Berechnet die Anzahl der Grad Bogenmaf aus X Grad (Winkelmag).

EXP(X) Berechnet den Wert von e,

ABS (X) Berechnet den absoluten Betrag der realen Zahl X.

LOG (X) Berechnet den natiirlichen Logarithmus (zur Basis e) der positiven
Zah] X grofler als Null.

LTW (X) Berechnet den Logarithmus zur Basis 2 der positiven Zahl X groier
als Null.

SQR (X) Berechnet die Quadratwurzel der positiven Zahl X,

INT (X) Ubergibt den ganzzahligen Teil der reellen Zahl X. Wenn X<0, dann
wird der zuriickgegebene Wert der kleinste ganzzahlige Wert sein.
INT(-3.14) ist gleich -3. Wenn X=>0, dann ist der zuriickgegebene
Wert der grofite ganzzahlige Wert <X. INT (3.14)=3.

48 4. ERGIBT-Anweisungen

SGN (X) Stellt das Vorzeichen der reellen Zahl X zur Verfiigung. Wenn
X<0, so ist SGN (X) = -1; wenn X=0, so ist SGN (X) = 0; wenn
X>0, so ist SGN (X) = +1.

RND [(X)] Stellt eine Zufallszahl in dem Intervall zwischen 0 und 1 entspre-
chend einer Gleichverteilung in diesem Intervall zur Verfiigung.
Jede Zufallszahl wird aus der vorher gehenden errechnet ent-
sprechend des festen Algorithmuses.

Der Zufallszahlengenerator kann durch Spezifizierung eines Argu-
mentes initialisiert werden; das Argument kann eine beliebige Zahl
sein. Nachfolgende Bezugnahmen zu RND ohne die Benutzung
eines Argumentes bewirken, da} die neue Zahl! aus der vorherge-
henden generiert wird.

Jedesmal wenn RND mit einem Argument aufgerufen wird, wird
der Generator mit dem absoluten Wert des Arguments initialisiert.
Wenn RND ohne ein Argument aufgerufen wird, und es wurde
keine vorhergehende Initialisierung durchgefiihrt, wird der Gene-
rator sich selbst initialisieren unter Benutzung eines durch die
Implementierung definierten Wertes.

DET (X) Stellt den Wert der Determinanten der quadratischen arithme-
tischen Matrix X zur Verfiigung. Die Matrix muf} entweder im-
plizit definiert worden sein oder explizit in einer DIM-Anweisung,
che sie als Argument in einer DET-Funktion benutzt werden kann.

Die folgenden Programmierbeispiele zeigen die Verwendung der definierten
Funktionen.

0100 INFUT AsB1sX1,X2rX3F1
0110 PRINT USING 0120

0120 7 ~mm— o i
0130 B=4PI/El

0140 F=1

0150 G=0

0160 G=G+((CDS (F*B)*SIN(F*X1))/F)

0170 F=F+2

0180 IF F > F1 THEN 0200

0190 GO TO 0140

0200 G1=G*4xA/&F1 + 32.5

0210 G2=INT(G1)

0220 B3=G2

0230 S=0

0240 IF 63 = 32 GO TO 0520

0250 IF G3 ¢ 32 GD TD 0280

0260 PRINT
0270 G3=63-33

0280 IF G3 ¢ 14 GO TO 0310
0290 FRINT * s
0300 G3=63-16

0310 IF G3 < 8 GO TD 0340
0320 FRINT 7 ’3

0330 63=63-8

-
-
.

4.5 MAT ERGIBT-Anweisungen 49

0340 IF G3 (4 GO TO 0370
0350 FRINT ? 'y

03460 63 =G3-4

0370 IF G3 < 2 GO TD 0400
0380 FRINT * *5

0390 63=G3-2

0400 IF G3 ¢ 1 GO TO 0420
0410 FRINT * "3

0420 IF G2 >= 32 GO TO 0500
0430 IF S = 1 GO TD 0480
0440 PRINT .75

0450 S5=1

04460 G63=31-G2

0470 GO TO 0280

0480 FRINT 71°

04%0 GO TO 0530

0500 PRINT 7.7

0510 GO TOD 0530

0520 PRINT ? T
0530 X1=X1+X3

0540 IF X1 > X2 THEN 0540
0550 GO TO 0140

0560 STOF

0570 END

READY
RUN

4.5 MAT ERGIBT-Anweisungen

Diese Anweisung untersucht den Matrixausdruck rechts des Gleichheitszeichens
und weist das Ergebnis der Matrix links des Gleichheitszeichens zu.

Schreibweise:

. = [Matrixname
MAT Matrixname {Matrixausdrlwk}

Der Matrixname ist immer ein alphabetisches Zeichen. Dieser Name muf in einer
Dimensionsanweisung definjert sein.

Beispiel:
100 DIM R(10,10),5(10,10)
110 MAT INPUT R
120 MAT S=R
130 MAT PRINT S,R
140 END

Mit Matrizen konnen auch Rechenoperationen ausgefithrt werden. Dieses ver-
einfacht die Programmierung sehr wesentlich.

Die DIM-Anweisung muf immer verwendet werden, wenn mit Matrizen gerech-
net wird (siehe Kapitel 7). Gerade in der Matrizenrechnung gilt BASIC als sehr
vereinfacht.

4 Maigerle, Programmieren in BASIC

50 4. ERGIBT-Anweisungen

4.5.1 Matrix-Addition

Zwei Matrizen konnen addiert werden in Form eines einzigen Befehls.

Beispiel:
i Y y/

2 7 1 4 3 11

S 3 8 6 13 9

Schreibweise:
MAT Z=X+Y
Dieser Befehl bewirkt die Addition von zwei Matrizen.
Zusammenhingendes Beispiel:
100 DIM X(3,4),Y(3,4),Z(3,4)
110MAT INPUT XY, Z
120 MAT Z=X+Y
130 MAT PRINT X)Y,Z

140 STOP
1S5S0 END

4.5.2 Einsermatrix

Eine ganze Matrix kann durch einen Befehl auf 1 gesetzt werden,

Beispiel: A
4 3 1 1 1
5 1 9 1 1 1
Schreibweise:
MAT A=CON
Es ist auch méglich, nur einen bestimmten Teil der Matrix auf 1 zu setzen.
Beispiel: A A
8 I 9 2 1 1 1
3 5 4 7 1 1 1

MAT A=CON(2,3)

4.5 MAT ERGIBT-Anweisungen 51

45.3 Identititsmatrix

Mit einem einzigen Befehl wird die Diagonale einer Matrix auf 1 gesetzt. Beginn
bei Element (1,1), endet bei Element (N,M).

Beispiel:

21) 14 1 0 0

9 2 23 — | 0 1 0

3 8 19 0 0 i

Schreibweise:
MAT A=IDN

Bedingung ist, daf} die Matrix quadratisch ist. Sonst muf} die Matrix redefiniert
werden.

Beispiel:
A
17 5 18
1 0
9 12 7 -
0 1 0
2 8 11
0 0 1
3 14 1
Schreibweise:

MAT A=IDN(3,3)

4.5.4 Matrix-Inversion

Die Matrix muff zweidimensional und quadratisch sein.

Beispiel:
P B

4#

52

Schreibweise:
MAT A=INV(B)

Programmierbeispiel:

100 DIM A(2,2),B(2,2)

110 MAT INPUT A,B
120 MAT A=INV(B)
130 MAT PRINT AB
140 STOP

150 END

45.5 Matrix-Multiplikation

Multiplikation zweier Matrizen

4. ERGIBT-Anweisungen

Beispiel:
P X z
2 1 3 5 7 100
4 9 11 13 15 260
*
6 17 19 21 23 420
8 25 27 25 31 580
Schreibweise:
MAT Z=Xx*Y
Programmierbeispiel:
100 DIM X(4.1),Y(4,4),Z(4,1)
110 MAT INPUT XY
120 MAT Z=X*Y
130 MAT PRINT X,Y,.Z
140 STOP

150 END

4.5 MAT ERGIBT-Anweisungen

4.5.6 Skalare Matrix-Multiplikation

Jedes Matrixelement wird mit einer Konstanten multipliziert.

Beispiel: A
3 4 9 12
7 9 * 3 = 21 27
1 8 3 24

Schreibweise:

MAT A=(3)*A

4.5.7 Matrix-Subtraktion

Subtraktion zweier Matrizen mit einem Befehl.

Beispiel:

21 24 17 9 11 15

9 3 12 - 7 1 3 =

18 11 15 16 2 8

Schreibweise:
MAT Z=X-Y

Programmierbeispiel:

100 DIM X(3,3),Y(3,3),Z(3,3)
110 MAT INPUT X,Y

120 MAT Z=X-Y

130 MAT PRINT X,Y,Z

140 STOP

150 END

54

45.8 Transponieren einer Matrix

Die gegebene Matrix muf zweidimensional sein.

Beispiel:

Schreibweise:
MAT A=TRN(B)

Programmierbeispiel:
100 DIM A(3,2),B(2,3)
110 MAT INPUT A
120 MAT A=TRN(B)
130 MAT PRINT B
140 STOP
150 END

4.5.9 Nulimatrix

Mit diesem Befehl wird eine Matrix auf Null gesetzt.

4. ERGIBT-Anweisungen

Beispiel:
P X X
15 18 0 0
9 3 0 0
Schreibweise:
MAT X=ZER

Mochte man nur einen Teil der Matrix auf Null setzen, so kann diese redefiniert

werden.

4.5 MAT ERGIBT-Anweisungen

Beispiel:
P X
15 6 18
9 1 3
Schreibweise:

MAT X=ZER(2,3)

S5

5. Schleifen-Steuerung-Anweisung

Um bestimmte Instruktionen dauernd zu wiederholen, benutzt man die Schiei-
fenoperation. Die Programmierung von Schleifen wird in der Mathematik viel
verwendet (Iteration). Diese Wiederholung von Operationen wird Schleife ge-
nannt, die durch zwei BASIC-Anweisungen gekennzeichnet ist. Die Befehle
heiflen FOR und NEXT.

5.1 FOR- und NEXT-Anweisung

Diese Anweisungen werden immer verwendet, um eine Reihe von Operationen
mehrfach durchfithren zu konnen. Die FOR-Anweisung zeigt den Beginn und
die NEXT-Anweisung das Ende der Schleife.

Schreibwéise:

FOR Steuervar. = arith. Ausdr. TO arith. Ausdr.
[STEP arith. Ausdr.]

NEXT Steuervar.

Programmierbeispiel:
100 INPUT A,B,C
110 FORN=ATO B
120 X=Ax*B
130 Y=A+B
140 FOR K=1 TO A+B
150 Z=(X+Y)*+K
160 PRINT Z
170 NEXT K
180 NEXT N
190 END

Der Parameter STEP zeigt das Inkrement (Erth6hung des Wertes der Schleifen-
variable). Beim Weglassen ist die Erth6hung immer eins. Man beachte, daf sich
die Variablen in der FOR-wie in der NEXT-Anweisung entsprechen miissen. Die
Verwendung einer negativen Schrittweite ist auch erlaubt.

Beispiel:
200 FOR A=50TO 1 STEP -1

300 NEXT A

5.2 Schachtelung von FOR-Schleifen 57

Wird die Schleife zum ersten Mal durchgefiihrt, erhilt die Variable den Anfangs-
wert im FOR-Befehl. Fiir jedes weitere Mal erh6ht sich die Variable um die
Schrittweite. Bei negativer Schrittweite wird der Wert der Variablen um den
Betrag verringert. Dies wird so lange fortgesetzt, bis der minimale Wert der
Variablen erreicht ist. Zu diesem Zeitpunkt wird das Betriebssystem die weitere
Programmausfiihrung der dem NEXT-Befehl folgenden Anweisung iibergeben.
Nach Beendigung der Schleife bleibt der Betrag der Schleifenvariablen erhalten.
In BASIC hat man die Méglichkeit, eine Schleife zu verlassen.
Programmierbeispiel:

100 INPUT X,Y,Z

110FOR A=XTOY

120 Z=X**Y

130 IF Z>1ES50 THEN 150

140 NEXT A

150 END

5.2 Schachtelung von FOR-Schleifen

Schleifen kénnen in Reihe, verschachtelt oder einzeln geschrieben werden. Man
nennt eine Schleife verschachtelt, wenn sie total in einer andern enthalten ist.
Maximal neun Schileifen kdnnen verschachtelt werden. Bildliche Darstellung
der drei Schleifenarten:

Reihe verschachtelt einzel

58 5. Schleifen-Steuerung-Anweisung

Es ist unmdéglich, da Beginn und Ende einer Schieife in zwei verschiedenen
Schleifen sind. Dies wiirde zu einer Fehlermeldung fiihren. Die folgende Darstel-
lung zeigt, was erlaubt bzw. unerlaubt ist.

erlaubt unerlaubt

6. Verzweigungs-Anweisungen

Zum Verzweigen in einem Programm stehen zwei Anweisungen zur Verfiigung.
Diese zwei Instruktionen erlauben, je nach den Gegebenheiten des Programms
zu anderen Instruktionen zu verzweigen. Diese Anweisungen heiflen GO TO
und IF.

6.1 GO TO-Anweisung

Dieser Befehl wird als unbedingte Verzweigung bezeichnet.
Schreibweise:
GO TO Zeilennummer

Die Ausfilhrung wird der Instruktion iibertragen, die die GO TO-Anweisung als
Zeilennummer enthilt.

Beispiel:

0100 REM WIDERSTANDSCHALTUNG

0110 INFUT UrR1+R2syR3IsR4

OL20 FRINT TLITy 70177 I279°UL? s UR" U3 'F’
0130 IF U=999 THEN 0250

0140 LET I=U/(R1%#R2/(R1+R2)+R3+R4)
0150 LET UR=IxR3

0160 LET U3=IxR4

(170 LET Ul=U-U2--U3

0180 LET I1=Ul/R1

0190 LET 12=ULl/R2

Q200 LET P=Ux*I

Q210 PRINY IrIleI2:UlrU2eU3rF
0220 LET U=U+0.5

0230 IF U>200 THEN 0110

0240 60O TO 0140

0250 STOF

0240 END

6.2 Computed GO TO-Anweisung

Die GO TO-Anweisung kann von noch einer Bedingung abhingig gemacht wer-
den. Es konnen mehrere Zeilennummern angefiihrt werden. Den verschiedenen
Zeilennummern miissen ein ON und eine Variable folgen. Je nach dem Inhalt
der Variable springt das Programm nach einer der Zeilennummern. Es wird nur
der ganzzahlige Wert der Variable untersucht (Integer). Enthilt also die Va-
riable X den Wert 6.873, dann wird X die Zahl 6 enthalten. Ist der Inhalt der
Variable kleiner 1 oder grofer als die Anzahl der angefiihrten Zeilennummern

60 6. Verzweigungs-Anweisungen

in der GO TO-Anweisung, wird die Verzweigung ignoriert, und die Programm-
ausfiihrung wird bei der dem GO TO Befehl folgenden Instruktionen fortgesetzt.

Schreibweise:
GO TO Zeilenr. [[, Zeilenr.] . . . ON arith. Ausdr]
Bei der Programmausfijhrung kann ein Fehler auftreten:

* angesprochene Zeilennummer ist im Programm nicht vorhanden,

* Zeilennummer bezieht sich auf sich selbst
Programmierbeispiel:

100 INPUT A

110 GO TO 120,140,160,180 ON A

120 X=Ax%3

130 GO TO 200

140 X=Ax**4

150 GO TO 200

160 X=Ax**5

170 GO TO 200

180 X=Ax*x6

190 GO TO 200

200 PRINT A, X

210 IF A=99 THEN 230

220 GO TO 100

230 STOP

240 END

Erklirungen zum obigen Beispiel:

Enthilt A den Wert 2, so springt das Programm auf Anweisung 140. Enthilt
A eine 1, so wird der Befehl mit Zeilennummer 120 ausgefiihrt.

6.3 IF-Anweisung

Diesen Befehl nennt man bedingt. Wenn die Bedingung erfiillt ist, wird die Pro-
grammausfithrung der in diesem Befehl angegebenen Zeilennummer iibertragen.
Trifft dies nicht zu, so wird die Programmausfiilhrung mit dem der IF-Anweisung
folgenden Befehl fortgesetzt. Es sind zwei Schreibarten giiltig:

arith. Ausdr. arith. Ausdr. {THEN } Zeilent
arith. Ber. Var. arith. Ber. Var. :
IF Zeich. Var. vergl. Op Zeich. Var. GOTO

Zeich. Ber. Var. Zeich. Ber. Var.

6.3 IF-Anweisung 61

In der IF-Anweisung werden spezifizierte Bedingungen abgefragt. Die giiltigen
Operationen sind:

Vergleichs-Operatoren

Zeichen auf dem Zeichen auf Funktion

Drucker und der Kartenlocher/

Bildschirm-Einheit Priifer

<= <= Kleiner oder gleich
>= >= Grofler oder gleich
oder <> ” oder <> ungleich

< < Kleiner als

> > Grofer als

= = Gleich

Die vergleichenden Elemente miissen vom gleichen Typ sein (numerisch oder
alphanumerisch). Eine weitere Anwendung ist das Priifen und Sortieren von
Daten in einer bestimmten Reihenfolge. Der Vergleich von zwei Datenelementen
volizieht sich von links nach rechts.

Beispiel:

0100 REM NAEHERUNGVERFAHREN ZUR WURZELEBERECHNUNG
0110 REM BERECHNUNG ALLER FOSITIVEN ZAHLEN
0120 REM FROGRAMM ENDET MIT 111 EINTIFFEN
0130 INFUT A

0140 IF A=111 GO 7O 0240

0150 X=A

0160 F=X

0170 X=0.5%(X+a/X)

0180 IF F-X <0.0001 GO TO 0210

0190 FRINT X

0200 6O TO 0140

0210 FRINT X»sA

0220 FRINT

0230 GO TO 0130

0240 STOF

0250 END

Es treten Ausfiihrungsfehler auf:

* angegebene Zeilennummer ist im Programm nicht vorhanden
* Zeilennummer in der IF Anweisung bezieht sich auf sich selbst.

7. Das Definieren von Bereichen

Wir haben zwei Mdglichkeiten in BASIC, einen Bereich zu definieren:

* DIMENSIONS-Anweisung beniitzen
* Dem System die Definition selbst iiberlassen (siche arithmetische
bzw. Zeichenbereichsvariablen).

7.1 DIM-Anweisung

Die DIM-Anweisung gestattet es, Bereiche (Tabellen) ein- oder zweidimensional
in beliebiger Grofle zu definieren,

Schreibweise:

DIM {Matrixname (Index) } {Matrixname (Index) }
Zeichenbereich (Index)/ |’ |Zeichenbereich (Index)f{" * -

Die Bereiche konnen arithmetisch oder alphanumerisch sein. Eine Matrix kann

nur einmal definiert werden und dies mit einer DIM-Anweisung. Wir miissen aber

von der Moéglichkeit einer Redefinition Gebrauch machen.

Beispiel:
100 DIM A(100),B(10,7)

200 DIM C$(7),D(2,3)
300 DIM E(30,30)

Der Index einer Matrix in der DIM-Anweisung mufl immer ein ganzzahliger
Wert sein. Die in der Matrix eingesetzten Werte miissen vom gleichen Typ sein,
wie die Matrix definiert worden ist.

Beispiel:
100 DIM A(30,30),B(30,30),C(30,30)
110 MAT INPUT A(5,5),B(5,5)
120 MAT C=A=*B

130 MAT PRINT AB,C
140 END

Man merke sich: Wird ein 100 Element-Bereich benotigt (er ist jedoch nicht
mit diesem Wert definiert), findet das Programm ein abnormales Ende.

8. Kommentierung eines Programmes

Ein Programm kann mit Hilfe eines Kommentars niher erliutert werden. Bemer-
kungen konnen nur zwischen den Anweisungen vorhanden sein.

8.1 REM-Anweisung

Die REM-Anweisung ist ein nichtausfiihrbarer Befehl. Er wird nur zur Erkldrung
von Programmteilen verwendet. Bemerkungen sind nur im Quellenprogramm
vorhanden. Bei der Ausgabe von Daten sind diese Kommentare nicht mehr zu
finden.
Schreibweise:
REM [Kommentar]
Beispiele:

100 REM

200 REM PROGRAMMENDE
300 REM A=D*#*2x&P1/4

Beispiel:

0100 REM
OL 10 REMIN NN I 533K I I3 33366 36363636 266 36 9636 36 9636 36 36 36 3636 36 9.6 36 36 36 36 36 36 36 3696 36
0120 REM*%x MATHEMATISCHE OFTIMIERUNG SIMFLEX-ALGORITHMUS x*xx

0130 REM*%% E. MAEGERLE §/3 CENTER ZUERICH %%
OLA0 RE MR 553K 9 15636563696 6 36 36 36 36 .36 336 3636 36 96 336 36 96 3636 36 96 3696 36 36 26 96 36 30 36 9636 36 96 36 36 36 % %
0150 REM

0160 FPRINT

0170 FRINT »’INFUT ZEILE I1 SFALTE Jt ?
0180 FRINT

0190 INFUT IlsJl

0200 I=I1

0210 J=J1

0220 DIM A(309,30)R(30),C(30,30)
0230 PRINT

0240 PRINT »?INFUT MATRIX A '
0250 FPRINT

0260 MAT INFUT A(I»J)

0270 Ii=1

0280 Ii=2

0290 FRINT

0300 IF A(I1rJ1) < O THEN 0340
0310 Il=I1i+]1

0320 IF I1 > I THEN 1070

0330 GO TO 0300

0340 I3=I1

0350 PRINT »vDIE FIVOTZEILE BETRAEGT : 7
0340 FRINT

0370 REM

64

0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
03500
0310
0520
0530
0540
0550
0560
0570
0380

8. Kommentierung eines Programmes

REM CHARARTERISTISCHE QUOTIENTEN
REM

Ji=1

PRINT »A(IL1sJ1)

Ji=J1+1

IF J1 > J THEN 04350

GO TO 0410

Ji=1

FRINT

FRINT »'DIE CHARAKTERISTISCHEN QUOTIENTEN BETRAGEN:?
FRINT

2=1

BCIL)=ACI2»J1)/AC11,J1)

FRINT »ROJD)

Ji=J1+1

IF Ji (= J-1 THEN 03500

REM

REM RKLEINSTER CHARAKTERISTISCHER QUOTIENT
REM

Ji=1 ’

G=B(J1)

9. Hinzufugen von Programmsegmenten

Es gibt Programmteile, die immer wieder benutzt werden miissen. Damit diese
nicht dauernd geschrieben werden miissen, verzweigt man jedesmal in diese
Programmteile. Diese Teilabschnitte werden Routinen genannt.

9.1 GOSUB- und RETURN-Anweisung

Die GOSUB-Anweisung iibertrigt die Programmausfiihrung einer spezifizierten
Routine. Es wird dabei die gegebene Zeilennummer angesprungen. Ist diese
Zeilennummer nicht vorhanden, dann wird die Programmausfithrung beendet.
Sollte die angesprungene Anweisung nicht ausfiihrbar sein (z. B. Bemerkung), so
wird der néchste durchfithrbare Befehl gesucht. Am Schiufs einer Routine mufl
eine RETURN-Anweisung stehen. Diese iibergibt die Programmausfiihrung dem
Befehl nach der GOSUB-Anweisung.

Schreibweise:
GOSUB Zeilennummer
RETURN [Kommentar]

Routinen kénnen andere Routinen aufrufen. Man sollte aber darauf verzichten,
da die Programmiibersicht verloren geht. Richtiger ist, von der Routine wieder
ins Hauptprogramm zuriickzuspringen, bevor eine weitere Routine aufgerufen
wird.

Programmbeispiel:
100 INPUT A,B,C

—— 160 GOSUB 300
170 -—

—— 210 GOSUB 300
220

“— 300 REM ROUTINE

~360 RETURN ROUTINE END ———mm—
370 END

§ Migerle, Programmieren in BASIC

10. Stoppen der Programmausfiihrung

Es bestehen verschiedene Moglichkeiten, um ein Programm zu stoppen:

* Eine der Anweisungen STOP, END oder PAUSE
* Benutzung von INQUIRY REQUEST (Unterbrechung des Programms
an der Konsole eingeleitet)

10.1 END-Anweisung

Die END-Anweisung muf die letzte Zeile eines Programms sein. Diese Instruk-
tion zeigt das Ende des Quellenprogrammes an. Die Programmumwandlung
wird dadurch beendet.

Schreibweise:
END {Kommentar]

Ist keine END-Anweisung vorhanden, wird die Instruktion mit der héchsten
Zeilennummer als letzte Anweisung betrachtet. Das BASIC-Betriebssystem
setzt hier selbstindig eine END-Anweisung.

10.2 STOP-Anweisung

Die Programmausfiihrung mufl immer mit einer STOP-Anweisung enden. Diese
Instruktion kann iiberall im Programm stehen,

Schreibweise:
STOP [Kommentar]

Die STOP-Anweisung hat keinen Einfluf} auf die Programmumwandlung. Es sind
mehrere STOP-Anweisungen in einem Programm moglich, im Gegensatz zur
END-Anweisung. Durch die Logik eines Programms kénnen wir mit Hilfe von

GO TO oder IF nach einer STOP-Anweisung springen.
Beispiel:

0100 REM NAEHERUNGVERFAHREN ZUR WURZELBERECHNUNG

0110 REM BERECHNUNG ALLER POSITIVEN ZAHLEN

0120 REM PROGRAMM ENDET MIT 111 EINTIFPEN

0130 INPUT A

0140 IF A=111 GO TO 0240

0150 X=A

0160 F=X

0170 X=0.5%(X+A/X)

0180 IF F-X (0.0001 GO TO 0210

0190 FRINT X

0200 GO TO 0140

0210 PRINT XrA

0220 PRINT

0230 GO TO 0130

0240 STOF

0250 END

10.3 PAUSE-Anweisung 67

Es ist auch moglich, eine Programmausfithrung mit einem Sprung auf die END-
Anweisung zu beendigen. Von der Programmlogik aus gesehen ist dies eine sehr
eher ungiinstige Methode.

200 IF X>10 THEN 300

300 PRINT "X>10°
310 STOP
320END

In diesem Beispiel wird nicht direkt auf die STOP-Instruktion gesprungen. Der
Grund dafiir ist: Bevor der STOP angesprungen wird, soll mit dem PRINT-Befehl
eine Meldung gedruckt werden.

10.3 PAUSE-Anweisung

Diese Anweisung fithrt zum zeitweisen Stoppen des Programms, das sich in der
Durchfithrung befindet. Diese Unterbrechung kann zum Uberpriifen von Zwi-
schenergebnissen benutzt werden.

Schreibweise:
PAUSE [Kommentar]

Wenn in der Programmausfithrung eine Pause stattfindet, wird ein zugehériger
Kommentar geschrieben (Das Betriebssystem erledigt dieses).

Beispiel:

150 X=Axx4
160 IF X>B GO TO 250

250 PAUSE

System: PAUSE STATEMENT AT 0250

Im PAUSE-Status diirfen gewisse Betriebssystembefehle verwendet werden.
Driicken der Programmstart-Taste bewirkt die Fortsetzung des Programms.

s

11. Verbindung von Hauptprogrammen

Mit dem folgenden Befehl lassen sich Programmaufrufbefehle in ein Quellenpro-
gramm einbauen. Das hat eine dhnliche Wirkung wie bei Subroutinen.

11.1 COM-Anweisung

Der Programmaufruf kann sowohl als Konstante als auch Variable gestaltet sein.
Allgemeine Schreibweise:
170 COM 1, {WITH 1,]
Beispiel:
300 COM 'RUN PGMPB’ Bewirkt die Ausfiihrung von Programm B

Konstante
oder

300 C$="RUN PGMPB’
310COMCS

Variable

Die COM-Anweisung ist immer in starkem Zusammenhangmit der PICK-Anwei-
sung, die im Kapitel 11.2 behandelt wird.

Zusammenhingendes Beispiel:
Programm A

100 A$="RUN PGMB’

110 PRINT "AUSFUEHRUNG PROGRAMM A’
120 COM AS

130 END

Programm B

100 PRINT "AUSFUEHRUNG PROGRAMM B’
110 COM 'RUN PGMC’ WITH 'PARAMETER’
120 END

Programm C

100 PRINT "AUSFUEHRUNG PROGRAMM C’
110 PICK AS

120 PRINT "AUSFUEHRUNG PICK’, A$

130 END

11.1 COM-Anweisung 69
Die Durchfithrung dieser Programme bewirkt:

AUSFUEHRUNG PROGRAMM A

AUSFUEHRUNG PROGRAMM B

AUSFUEHRUNG PROGRAMM C
AUSFUEHRUNG PICK PARAMETER

Logischer Ablauf:

START
PGMA
COM A$
PGMB
l COM 'RUN PGMC’
WITH 'PARAMETER’
PGMC
I PRINT 'AUSFUEHRUNG
PICK’ ,A$
PGMB

ENDE

70 11. Verbindung von Hauptprogrammen

PGMA bewirkt Aufruf von PGMB und dieses ruft PGMC auf. Die Zeile
PRINT 'AUSFUEHRUNG PICK’, A$

bewirkt ein nochmaliges Laden von PGMB, weil AS="RUN PGMB"’.

Die Zuordnung

PICK A% in PGMC

besagt, daf nur die Konstante nach dem Schliisselwort WITH in PGMB verwendet
werden darf.

11.2 PICK-Anweisung

Dieser Befehl erlaubt jederzeit, auf die Konstanten nach dem Schliisselwort
WITH zuzugreifen.

Allgemeine Schreibweise:
130PICK 1 -

Fiir r ist nur eine alphanumerische Variable gestattet, die maximal 18 Stellen
lang sein darf.

Zusammenhingendes Beispiel:
PROGRAMM A

100 X$="RUN PGMB’

110 Y$="AUSFUEHRUNG PICK PARAM’
120 COM X$ WITH Y$

130 END

PROGRAMM B

100 PICK Y$

110 PRINT Y$

120 END
Gedruckte Liste:

AUSFUEHRUNG PICK PARAM

sunurerdold
sop Suniynysny pun
Sunjpuesmwin stp 1ddois

usuoIsuUsWI(
syorazag aIp 1atzIjizadg

uonyuny
-Iazinuag duTo MU

pUIs uasa] Nz uadunslomuy

-avay LV 19po -avad
yoInp a1p ‘usre(MU

TUoJed-41LVIOOTTV woauld
Ut 1AMUIJIP ‘1e1epudte(

9)au30a8 dula 1GAIYOS

SUNSI2MUY 43P UOLIYUN]

12. Anhang

.. ﬁ AA (Iqez ozues) ‘10g .ﬁ_oNZ A

[Bunyrowag] ANA

(TyeZ ozued) 10g .%_ﬁ Na

[yez ozued‘] [yez ozues) swreN-xurew/ 11([[yez ozues] [yez szued) sweN-X1ep

IpSNY iz = (‘TeA "UIE) sureusuonyun, JAd

.. .[{uoY 'YorZ), 7 uoN YoRZ
[{ It

‘uoy 'wue/ |1 uoy .&EY&E

“TBA "YIIOZ

| swmmona i) N ousunnar 310,/ 3500

uabunsiamuy-5ISyg Jop Bunssejuawwesnz L°gL

"UQPIaM J9pUIMIaA oFe[IoASIWIUIRISOI] S[B USUUQY pun 19183198

-sne purs sfardsteqiopureifolg a1 “dAuandwo) wslepusmiaa yoeu of yors
uzoput pun S13upyqeIIAISAS JIB)S PUIS oIS "a[ysjoquIalsAsqatneg pun JuneradQ
my yoryoesidney 1118 sasal(*9-£/WioISAS-WI Sep Jne yois 3Zims Sueyuy 15

Anhang

uadula YoInp ‘uIo1z
-1j1Zads ‘191e(J-UalR(q-0qES
-u1g 1op sne udle(q 15T

*13a1110A Sun3urpag
a)1a1ZIj1Zzads oIp UuIM
‘ooz uslialzIjizads 1oute
Sunuynysnewurerdoid 19p
8unuana§ a1p 13e13109q()

a[tez uapiarzIyizads 19uTd
Sunaynysneurures8o1g 19p
Sunuonay§ a1p 1881119q()

wure§ordiojun) woure
Suniynysneurureiord 1op
3urnuonag a1p 188131199

381 1101Z11Zds [yajoq
“HLVOOTIV would
aIp ‘Tele(q-uste(]-oqedury
Ia2Ul3 STR USR] AP ISar]

[Ios uapiam
Hynyagdsne aJ1a[yog 3rp 1J0
a1M ‘UaIULap pun aJIA[YdS
-LXAN/J04 sute yuuideq

“TeA Yo7

om0, biao LW

w [ipsny “wire] psny ‘qise)] swreN-xane A

OL 09 [Ipsny "Yo1eZ 19dQ [B19A "IPSTY "YoIoZ
nwéncﬁomoNA Zm:.m,HL A ‘IpSUY “ypue uumo ‘1819 “Ipsny .Qﬁumw.n:

“IpSny ‘yie NO © - [1ownwnuusyez’] 1suwrwnuuspez 0L 09

ISUNUNUUSZ 4NS0D

‘T ‘10g "YOIOZ "IBA "I9 "YO19Z
‘Tep Yoz | | TBAYOWZ | TRA YOZ

“TeA “1ag "yjIe “IBA “log "y A.oEmSSaa ‘J9,
“TeA qIe IEA ‘TLIE.

Tmo

‘uoplom 1reedsd Sunstomuy-LXAN Iould N gnw SunsIomuy osal(-Sunyouuy

[1psny e gAIS] “Ipsny "WpLe O IpSny ‘YIIe = ‘TeA ‘e YOI

73

12.1 Zusammenfassung der BASIC-Anweisungen

TUeJRd-dLVIOOTIV
usulo YOINP 11A1ZIJIZads
‘roj(q-uUdle(J-2qESSnY auld
UL UAZI) B[N USIDIZIJIZods
13p 21EYU] 31p 33ulig

Sunuynysnewnrerdold 19p
PUSIUEA QIS 1JONIp pun jne
uazZIe N uapIaIZIjizods

13p ajreyu] alp joyaleg

Sunuynysne

-wurei3o1d 19p pusIyem
USZIIIR[N U9IIZIJIZods
Tap 1eyu] usp yonu(

‘paim 11ynje8sne 3uns
-ToMUY 9Ip UUIM ‘UIpIom
u2qa8a8uro uaje(alp Iy
‘uezInEN Ip MarzijIzeds

USZIIIBN U)IIZIIZads alp
ur ‘[yeyed-4LVIOTIV

-+ [ouren-xmep 7] oureN-xmEN' A

PP praponuq {

a8[ojusyorez

“TeA "YOIZ

ourmoneQ .E.W 10d IVIX

pPRQYOUIQ Z .
ofjoyuaydrezf] -

© 0 [oureN-XIIE '] oureN-xie ‘rowrunuuapez ONISN LNT¥d LY

" LN XBIUAS-SSunsiomuy I1a3un ayais UsUozoNnI(J 9ZINY 1aqn UaUOIBWIOu]
a10)lom M1 "UB SUOZITU(] 9ZINY SUIS My WINBIUGYISIMZ UP 1819Z UOJONIWSS Iy -Sunyiouuy

]+ [

3

J
1

z sureN xuie INTdd LVIA

*UQUIOYDSIa 9[197Z-9qeduly Jaute Jne SIpup)S[loA gnur SunSIomuy asat(J -Junyouwuy

- [[(Capsay e *] “3psny “yaue)] sureN-xne|

([1psny ‘yue ‘] “1psny yue)] sweN-xIe ININI LVIN

‘UQUTOYDSID J[197Z-0qeSuly Iauta jne SIpuelsfioa gnu Sunslomuy 383l -Sunysuuy

ce ? [ipsny ‘pure 9 1psny .5:& oaaz.ibmzm_

Anhang

uoneydnnW-XINBN USYOSIIBUISYIBUL JOp PUSY0aIdsIus ‘UZIIJE N I010MZ 1NPOI

USZIIJRJN I9IomMZ ZUSIAJI(
UAZIINB 1SIOMZ QUILING

N*IW
N-H
N+

uonersd(Yorupsny-Xiuepw

"USUUQY USPIIM JZINUSG URSUNSIoMUY-LVIN UT J1p ‘aonuipsny-Xiiepy oSnms puis ayonipsny uspuasgo] a1

‘Nz XUJB Us}

-1o1zZ1yizads Iauta stuqadiy
SEp J9UPIO PUN YOMUIPSNY
-XIIJRIN USUIS Joutoalag

NZ Udqeriep
usyIaZIizads 1auto
uadunsQ-[ouLIo 13po
9)IaA\ SYOBJUTS 12UPIQ

181 11ynjad

-Sne JunSIomuy aIp Uusm
‘usqaduto usje(oIS SIp Iy
‘us[qeLIe A S1p HtzZIIzadg

“UIZHIBIN

UdHAIZIIZads aIp Ul ‘opinm
1193515 unslomuy-v1LVQ
9UId YaINp I ‘19rR(-uUdleq
Iauld sne ude(J aIp 1891

74

‘Ipsny “reyo = :

apsny e = | {

“IpSNY-XIIB
A QUEN-XIIIE

IR "Iog .%_QNV . g A.s> 19g "YoIZ

"TeA Y0197 “TeA Y197

e :”m.uumz‘« ‘pue’] cipsny .ﬁ_BM_ onaz-x_buzm_
[(Cxpsny “wire ‘] “spsny wire)] sureN-XInEW QVAN LVI

T SUEN-XINEW LV

}

— .sm.e_J. A TeA “Tog "II® (137
TeA UHE "TeA .:EL
IRA "Iag ‘Yoz ‘IBA “Iag ‘Yo7z
"TRA YOWZ | "TEA TYOIOZ
‘IBA Tog pue ‘IeA “Iag "yjire LNdNI
"TeA “ye TR yHTE

75

12.1 Zusammenfassung der BASIC-Anweisungen

‘Burnuynysne
-wwreIgold 10p puaIyEM

PRQ¥OMUIAY T .
omﬁo.*cozo_oww ’

318 J{ONIP PUN JNE USIEQ . ﬁ A.ﬁé) g IewruIuUeNIaZ ONISN INT¥d

ualratzijizads 21p 1031819g “IpSnY YR

uopIom 13[0J93 USIUEISUOY-USYOIZ 1UTd UOA JUOTU UUEY SJUBISUON-ULYIIRZ Suly :Sunyiouuy

usje(q uspaIZIjizads . . . vor
a1p SunuynysnewuresSoid *com.ao_oNv .| ripsny .so_oNv uox .,,NN* ﬁ A.Gﬁi .:UEN: N4
Iop pUaIyBM 1OTI(] . A ‘IpSny “jire : “IpSny "Yie
Sunnynysnewrureifor g
a1p 1g10dwis) 1ddoig [Bunspowegd] gsSnvd

3JIOTYIS-LX AN/ 404
aulo mJ JunstoMuy 912391

‘N XU1ey apratuodsuer]

("0€ ‘€ puIeyRUUE ST | XHIBN-JBIPEN]) I9p Usuolsuawi(] Jop il sed) W XUIe 1op Suniyoxun
‘(uspIom 1Z)NUAq XIIBW-JRIPENY) SUTd Ynuwi ST) XINBN-SIBIUAP] Ca-s1q- 1o auld y[a1s1g

xujewsjoyulyg Co- siq- e 1apo Yo auro 3jjeisig

XUJRW-[IMN %o s1q o 19po 19 aure 3jjoisig

. W XUeW

19D pun (U[ULIOJ IOUSSSO[YOsoSULe UIOWWIR]Y UT I9PO J[QRIIBA ‘9}Ue)SUOY SYISIAWIYILIE) 3 UOA IYNPOI]

‘uapIom 11eedad SUNSIOMUY-Y Q] 1OUIS JW gnuwl Junstamuy ssol(] -Sunyouuy

TEA JneT IXHAN

(WNJL
(WANI

[(%s “To)] NaI
[([%°1'9)]I NOD
[([%e119)] waz

W(3)

‘opInM 1[[21515 Junsiom
-Uy-V1v({ 3utad yoinp 31p
‘1e1e(J-U9le(] Iouls SuejuY
Uap UB UajB(J I9p UISSAIPE

-Slamuly oIp 1881119q()

Anhang

‘Tyojed

-4LVOOTTV uaute ydnp
yarzipizads ‘raje-uaeq
u2)2ujjoIa 19Ul Suejuy
Uap ue uaje(J I1op UsssaIpe
-STamury a1p 18e119q()

ute uaunstomuewiure13o1gd
uop nz usduruaingjry 1804

opInm 3]]93IS1a
Sunsromuy-yLv(dulo
yoInp aIp ‘1a1e-udleq
Iauro Sne uale(J I1Sar'T

LCIER

-4LVOOTTV uaula yoinp
1zZIyIzads ‘191eg-usleq
-aqedsny aule Ul usle(q
usyIaIZIJiZads o1p 13ullg

76

o T IpSUY ‘yiue

[Bunyjrowag] FYOLSHA

... .Hm> .H—QMON a .HN> .SO_QN
T,oEmESmQ .%Pv g A,eEmEBNQ .to.v Hmmmm _

[Sun>rowreg] WY

‘IEA “1og YO19Z “IRA "1og YOIRZ
TBA TYOWZ (. "TBA YOI9Z
IR\ ‘Iog ‘YIlIe ‘IeA “log "Yie avad
“IBA IR ‘TeA YR

apsuy yowzy | ISRV YOeZ) [IBA TYONZ
: A.ﬁi .S:L A.zﬁﬁsﬂ .tyf:m

71

12.2 Ubersicht der Systemfunktionen

Z/4 uoA sayoey

-[81A SopeIdgun uld Yoru X pun
(1e¥8imeusn ayjaddop) 401> | X |
4po

(yexBineuay ayoryute) .01 >|X |
(noxBineuan syjeddop) 401 >|X |
d2po

(arex8meuad ayoeyuio) 01> (X |
(yeyBimeuan a3jeddop) 401 > | X |
d2po

(woxdineusn syorjuts) .01 >|X|

YI1242Q4312WUDIDF

swwrerdord
sap Suniynysny arp 1ddmg

18103 Sunstomuy-gNSOD
uaIynyassne 1z39[nz 19p
3Ip ‘10119M Sunsiomuy aIp
ue SunronassSuraynysny
arp 1q18 ‘swurerdoidiauf)
souro Sunsiomuy 91739

gewiuafog X uoA susdue]

greuruagoq X UOA SNUISOD)

geuruafoqd X UOA snUIS

uoyun, alaynfossny

ueL

(X)S0d

(XNIS

auvu
-suonyunyg

uaUONINUNJWAISAS Jap Jyasieqn Z'ZL

[Bunyrourag] JOLS

[Sunyroweag] NUNLAA

Anhang

78

STT>1X]
STT> X

6601 1X|

[>1X]|

1>1X|

1 UOA SOUIBJAIA UId YOI ¥ pun
(nexBineusn a31eddop) 401> |X|
Lpo

(ex8meuan ayoeyula) .01 > (X |

7/ uoA $ayoey

-[alA sepeladun UL JYOTU ¥ pun
(nexBineusn ayjeddop) 401 >1X |
dapo

(aexBimeuan syoeyute) ,01 > |X|
L UOA SaYIBJ[SIA UId 1YdIU X pun
(wexBineusn ay1eddop) 401 >|X |
43P0

(31ox8ineuan ayoruId) 01 >|X|

X uoA snuiso)) 1ayostjoqiad A4

X UOA snul§ 1aydsijoqrad A

22> (XINLV > ¢/u- sne
1q1819 Yo1s ¥ suofur], usssop

‘(gewuadog wn) PYUIM

25 (X)SOV>0 :ste
1q1819 YOIS X SNUISO)) USSP
‘(grwusfoq um) oYUM

Z/es(XINSVYST/u-
sne 3qi819 YoIS) SNUIS uassap

‘(gewruaSogq um) [oxuImM

geuruafod Y UOA SUBYISO)

geuruagoq ¥ UOA SUBYIS

srewrus3od X uoA Susduelo)

(X)SOH
(X)NSH

GONLV

X)sov

(XINSV

(X)0s0

(xX)oas

()1L00

79

12.2 Ubersicht der Systemfunktionen

6601 >1X1 X uoA 19, Jo8iyezzIen

(Srpuamiou 1ydIu 1310UrRIR]) I1>49>0
yarziyizads uuam (01 > (X | 118 1oqom Y Tyezs[reynZ
0<X X Sne [azinmieipend)

I=X uuam ‘0 pm (X)LIT
0< X 0l siseg Inz ¥ uoA snuniredo]

T =X uuam ‘0 prm (XIMLT
0<X ¢ siseqg Inz X UoA SnuypIeso

[=X uuam ‘0 paim (X)901
0<X 9 siseq Inz X uoA snujuego

6601 > 1X1 X UOA 119/ 19IN[0SqY
§ISTT->X

uuom ‘0 pIm (X)X

X UoA

96'LZT>X 9gQideniusuodxy aydimieN
gewusgog ur pein)

6601 > 1X1 UOA X UOA UdUYoaIu)
pe1n) ur geurusdoq

6601 >1X| UOA ¥ UOA UUTOaIUIN)
001->X

uuam ‘1- nz pus (XINLH

001>X

uuam ‘1+ 0z piim (X)NLH

6601 >1X| X uoasuague] Joyostjograd A

GOLNI

[0l anyd
()40s

COLo1
OMILT

(0901
x)sav

)dxa
xavda

xX)oaa

OONIH

Anhang

80

‘3zuaifaq Q€‘Q€ pulsyeUUR
yoInp puis uauolsuawig-x 9

(a1usure(g
“XUIEW 1) (0T > X |

6601 > X1

1St 19e[n3urs

nzayeu I1apo 1ee[n3uis

X XUy uuam ‘0=(X)1ad
(utes sureN

-XUIJB 19}I9TUTJOP UTS Nl X)
X Xl Iap sjueutuiialaqg

I+=(X)NDS'0< X st
0=(X)NOS‘0=X !
I-=(X)NDS'0>X 8
119107 am

JI91UIJAP X UOA USUOIOZIOA

(x)13a

(XNOS

12.4 System-Konstanten 81

12.3 Obersicht der BASIC-Ausdriicke

arith. Kon.
arith. Var.

arith. Ber. Var.

arith. Ausdr.

Zeich. Kon.

Zeich. Var,

Zeich. Ber. Var.

Zeich. Ausdr.

Matrix-Name

Eine arithmetische Konstante ist ein numerischer Wert.

Eine arithmetische Variable ist ein alphabetisches Zeichen von
A bis Z, @, # oder $ oder ein alphabetisches Zeichen direkt
durch ein numerisches Zeichen O bis 9 gefolgt.

Eine arithmetische Variable stelle einen numerischen Wert dar.

Eine arithmetische Bereichsvariable ist ein alphabetisches
Zeichen, direkt gefolgt durch einen Index in Rundklammern
eingeschlossen, Eine arithmetische Bereichsvariable stellt
einen numerischen Wert dar, der an der Stelle des Bereichs
enthalten ist, die durch den Index angezeigt wird.

Ein arithmetischer Ausdruck kann eine arithmetische Kon-
stante, Variable, Bereichsvariable oder eine Formel sein.

Eine Zeichen-Konstante ist eine Folge von Zeichen, die in
Hochkommatas gesetzt ist.

Eine Zeichen-Variable ist ein alphabetisches Zeichen -A bis Z,
@, # oder $ — direkt von einem Dollarzeichen gefolgt. Eine
Zeichen-Variable stellt eine Folge von Zeichen dar.

Eine Zeichen-Bereichsvariable ist ein alphabetisches Zeichen
und ein Dollarzeichen, direkt gefolgt von einem in Klammern
eingeschlossenen Index. Eine Zeichen-Bereichsvariable stellt
eine Zeichenfolge dar, die an der Stelle des Bereiches enthalten
ist, die durch den Index angezeigt wird.

Ein Zeichen-Ausdruck kann eine Zeichenfolge, Variable oder
Bereichsvariable sein.

Ein alphabetisches Zeichen, A bis Z, @, ## oder $, gefolgt
oder nicht gefolgt durch in Klammern eingeschlossene
Matrix-Dimensionen.

12.4 System-Konstanten

Name der Konstanten Wert-einfache Wert-doppelte
{kann bezeichnet werden) Genauigkeit Genauigkeit

&PI (m) = 3.141593 3.14159265358979
&E (e) = 2.718282 2.71828182845905
&SQR2 (\2) = 1414214 1.41421356237310

6 Maigerle, Programmieren in BASIC

82 Anhang

12.5 Arithmetische Operatoren

Zeichen auf dem Drucker Zeichen auf dem Funktion

und der Bildschirm-Einheit Kartenlocher/Priifer

1 oder #=* ! oder #x Potenzieren

* * Multiplikation
/ / Division

+ + Addition

- - Subtraktion

12.6 Syntax-Symbole

BASIC-Anweisungen und Befehle (System- und Dienstprogramme) haben fol-
gende Symbole gemeinsam:

[] Eckige Klammern: Diese zeigen an, ob die eingeschlossene Angabe,
Angaben oder Gruppe von Angaben je nach Belieben benutzt werden
kann oder nicht.

{ } Geschwungene Klammern: Diese Klammern enthalten zwei oder
mehrere Angaben, unter denen eine Auswahl getroffen werden mufi.

—— Unterstreichungsstrich: Dieses Symbol zeigt den gewihlten Ausdruck
an durch Unterlassung, wenn kein wahlweiser Parameter angegeben
wurde.

Fortsetzungspunkte: Dieses Symbol zeigt an, dal die vorhergegangene
Angabe mehr als einmal in einer Folge wiederholt werden kann.

Die folgenden Symbole miissen immer so benutzt werden, wie sie in einer An-
weisung oder Befehls-Syntax gezeigt werden:

() Runde Klammern
/ Schrégstrich

© Hochkommas (Einzelne Anfilhrungsstriche)

Ausdriicke, die Grobuchstaben enthalten, miissen stets so benutzt werden, wie
sie in Anweisung und Befehls-Syntax gezeigt werden.

Ausdriicke, die Kleinbuchstaben enthalten, stellen Informationen dar, die vom
Benutzer gewihlt werden miissen.

, Kommata: Der Gebrauch von Kommata in der Syntax wird unter
»BASIC-Anweisungen* und Befehle erklirt.

12.7 Ausgetestete Programmierbeispiele

12.7 Ausgetestete Programmierbeispiele

Lésung von linearen Gleichungssystemen

6.

READY

LIST
0100
110
€120
0130
0145
0150
C160
0170
3180
0150
0206
c210
0220
0220
0240
0250
0260
0270
0275
€280
G256
0300
6310
0320
0330
0340
0350
G360
0365
0370
G380
0390
0460
0410
04720
0430
0440
0450
G460
0470
0480
0450
0500
0510
05z
0530
0540
0550.
0560
0576
V580
055¢
0600
0619
0620
0430

DIX A(30,30)

INFUT EsNL

FPRINT 9y "FRCCGRAMM 7
N2=N1+1

REM MATRIA EINLESER

REM

REH

MAT IHFUT ACHL¢NZ)

REH

REM

REM FIVOTELEMENT SUCHEN

FOR I=1 TO N1
AL=ABS(ACTIY I

L=1

Wi=I+l

FOR K=K1 TO Wi

IF X1-ABSCAIR IS 2= O THEN 0280
X1=ABSC(ACKy I}

L=K

NEXT K

REM FIVCTELEMERT KONTROLLIEREN
IF Xi-E > O THEN 0340

FPRINT ¢ *PIVOTELEHENT = *yKL1s” KEINE LOESUNG?
STOF

REM ZEILENAUSTAUSCH

FOR J=1 TO W2

B=A(I, D

ATy Dyl 02

A{Ly J)=H

NEXT J

REM FIVOTZEILE/FIVOTELEMENT
H=Ni+1

AT MI=BCIyHI/A(T»I)

IF M-1 (= 0 THEN 04%0

M=tf~1

GD TO 0400

REM SPALTENELEWMENTE = O (SUBTRARTIONS
IF I-1 «= 0 THEN €48C

=1

GO TO 0520

N=T1

NeN+1

IF N-1I = O THEN 0490

IF N-N1 > O THEN €570
H=NL+l

ARy M) =A(Ny MY ~AMNYy) XA(T M)
IF M~I (= 0 THEN 04%0

M=M-1

GO TO 053¢

NEXT I

REH AUSGATLE

FCR I=1 TO N1

FRINT *X7sI1sACIyND)

NEXT I

STOF

END

83

84 Anhang

READY
RUN
":)
LE~12+3
FROGRAMM 7
2
Lelvded
a0
Ly~1lyly2
.
Iyly 140
X 1 1
X 2 o
X 3 3
READY
Losungssystem der mathematischen Optimierung
Beispiel:
Ein Landwirt will 100 ha. Land bepflanzen
Eingesetztes Kapital: 1100,—
Verfiigbare Arbeitstage: 160 Tage
Kartoffeln Getreide zur Verfligung
Kosten pro ha 10 20 1100
Tage pro ha 1 4 160
Gewinn in DM 40 120

Wie muf er den Anbau organisieren, um einen maximalen Reingewinn zu er-
zielen?

Schon dieses Beispiel wird zeigen, wie aufwendig der ganze Rechenprozef aus-
fallen kann,

Ungleichungen:
10X, + 20X, <1100
X, +4X, <160
X; +X, <100

X, >0
X, >0

Maximaler Reingewinn: 40X, + 120X, = Max.

12.7 Ausgetestete Programmierbeispiele 85

Die Ungleichungen miissen in einheitlicher Form geschrieben werden:
Y, =-10X, -20X, + 1100
Y, =-X; -4X, + 160
Y;=-X; -X, +100

Objektfunktion Z = 40X, + 120X,

Matrix
Y, Y, Y; A
-X, 10 1 1 - 40
-X, 20 4 1 - 120
1 1100 160 100 0
Y, Y, Y; Z
-X, 10 1 1 - 40
-X, 20 1 - 120—Pivotzeile
1 1100 160 100 0—»letzte Zeile
55 40 100—charakteristische Quotienten
leinster charakteristischer Quotient
Pivotelement Pivotkolonne

Matrix nach 1. Austauschschritt

Y, -X, Y, Z
-X, 5 0.25 0.75 -10
-Y, -5 0.25 -0.25 30
1 300 40 60 4800
Y, -X, Y; z
-X 0.25 0.75 - 10— Pivotzeile
-Y, Z5 0.25 -0.25 30
1 300 40 60 4800
60 160 80 —» charakteristische Quotienten
Pivot- \kleinster charakteristischer Quotient

element Pivotkolonne

86 Anhang

Matrix nach 2. Austauschschritt

-X, -X, Y, Z

-Y, 0.2 0.05 0.15 2

-Y, -1 5.25 0.5 20
60 25 15 5400

Die Objektfunktion wird somit:
Z=-2Y, -20Y, + 5400
X, =60
X,=25
DaY,;>0,Y, >0 verlangt wird, ist der Reingewinn
Z =5400
und wird mit
X; = 60 (Kartoffeln)
X, =25 (Getreide)

erreicht.

Regeln fiir Pivot

— Wahl der Pivotzeile: Thr Element in der letzten Kolonne (Z) muff < 0 sein.
Sind mehrere Elemente < 0, so kann irgendeine Zeile, die das negative
Element enthilt, ausgewihlt werden. Der gesamte Algorithmus wird
abgebrochen, sobald alle Elemente der letzten Kolonne (Z) > 0 sind.

— Wahl des Pivots in der Pivotzeile: Man suche die Elemente der Pivotzeile
heraus, die > 0 sind und bilde die zugehérigen charakteristischen Quo-
tienten. Der kleinste unter ihnen gibt die Stelle des Pivots an.

Regeln fiir Austauschschritt
— Das Pivotelement geht in seinen reziproken Wert iiber.

— Die iibrigen Elemente der Pivotkolonne sind durch das Pivotelement zu divi-
dieren.

— Die iibrigen Elemente der Pivotzeile sind durch das Pivotelement zu divi-
dieren und mit dem entgegengesetzten Vorzeichen zu versehen.

— Ein Element im Rest der Matrix wird transformiert, indem man aus
4 Elementen das Rechteck bildet, das in der gegeniiberliegenden Ecke den
Pivot enthilt; dann ist die Rechteckregel anzuwenden.

12.7 Ausgetestete Programmierbeispiele 87

Regeln fiir charakteristische Quotienten

Jeden Quotienten erhilt man, indem jedes Element der letzten Zeile durch das
dariiberstehende Element der Pivotzeile dividiert wird.

Der gezeigte Losungsweg fiir die mathematische Optimierung steht als BASIC-
Programm zur Verfiigung.

Losung:

0100
0110
0120
0130
0140
0150
0160
0170
0180
019¢
0200
0210
0220
0230
0240
0250
0260
0265
0270
0280
0290
0300
0310
0320
0330
0340
0344
0345
0346
0350
0360
0370
0380
0390
0400
0402
0405
0406
0410
0420
0425
0430
0440
0490
0500
0510
0520
0330
0540
0545
0550
0560

REM

FOE M 36 96 96 363636 36 36 36 36 3636 36 96 36 36 96 36 36 36 36 36 36 36 36 36 3636 3636 363636 36 36 36 36 36 36 36 36 36 36 36 3 36 36 36 36 36 3 34 36 ¢
REM*%x MATHEMATISCHE OFTIMIERUNG SIMFLEX-ALGORITHMUS #**%
REM*%% E. MAEGERLE S/3 CENTER ZUERICH #*%x
TR M 3696 36 36 36 36 36 6 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 236 36 36 96 36 36 26 36 26 36 26 36 26 36 36 3 36 36 36 3 % 3
REM

FRINT

FRINT »7INFUT ZEILE It SPALTE J1 7
FRINT

INFUT I1sJ1

I=11

J=J1

DIM A(30,30)sB(30)yC(30,30)

FRINT

FRINT »7INFUT MATRIX A 7

PRINT

MAT INFUT ACLsJd)

I1=1

FRINT

IF A(Ilyd1) < O THEN 0320

I1=I1+1

IF I1 > I THEN 0950

G0 TO 0280

13=1I1

FRINT »?DIE PIVOTZEILE BETRAEGT =

FRINT

REM

REM CHARAKTERISTISCHE QUOTIENTEN

REM

Ji=1

PRINT »ACILlsJ1)

Ji=J1+1

IF J1 > J THEN 0400

GO TO 0360

Ji=1

FRINT

FRINT »?DIE CHARAKTERISTISCHEN QUOTIENTEN BETRAGEN:’
FRINT

I2=1

B(J1)=A(I2,J1)/ACI1yJ1)

FRINT sB(J1)

Ji=J1+41

IF Ji1 {= J-1 THEN 0420

REM

REM KLEINSTER CHARARTERISTISCHER QUOTIENT
REM

Ji=1

G=B(J1)

IF G < B(J1) THEN 0360

J4=J1

G=R(J1)

Ji=Jd1+1

88

Anhang

0570 IF J1 ¢ J THEN 0540
0580 PRINT »’KLEINSTER CHARAKTERISTISCHER QUOTIENT BETRAEGT:':0
0590 PRINT

0600 FRINT »?PIVOTELEMENT BETRAEGT: 7,A(I1,J4)
0610 FRINT

0620 REM

0630 REM AUSTAUSCHSCHRITT

0640 REM

0650 J2=0

0655 F=A(I1rJ4)

0660 J2=J2+1

0670 IF J2 (> J4 THEN 0700

0680 C(I1rJ2)=1/F

0690 GO TO 0660

0700 IF J2 <= J THEN 0720

0710 GO TO 0740

0720 C(I1rJ2)=ACI1,d2)/(-F)

0730 GO TO 0660

0740 I2=1

0750 IF I2 () I1 THEN 0770

0760 GO TO 0780

0770 C(I2yJ4)=ACI2,J4)/F

0780 I2=I2+1

0790 IF I2 <= I THEN 0750

0800 I2,J2=1

0810 IF J2=J4 THEN 0840

0820 IF I2=I1 THEN 0840

0830 C(I2,J2)=ACI2,J2)-A(I2,J4)*ACI1,02)/F
0840 J2=J2+1

0850 IF J2 <= J THEN 0810

0870 I2=12+1

0875 J2=1

0880 IF I2 (= I THEN 0810

0920 I3=I3+1

0925 I1=13

0930 Ji=J

0932 FOR 17=1 T0 I

0933 FOR J7=1 T0 J

0934 A(I7,J7)=C(I7,J7)

0935 PRINT sA(I7¢J7)

0936 NEXT J7

0937 NEXT 17

0940 GO TO 0280

0950 PRINT »57#x%*xx% DER ALGORITHMUS IST BEENDET wxxxxsx’
0960 PRINT

0970 FRINT

1010 PRINT

1020 PRINT »'DIE ELEMENTE DER ZIELFUNKTION ’
1030 PRINT

1040 I1=1

1050 J1=J

1060 FRINT »7-Y7yI157=7,C(I1rJ1)

1070 11=I1+1

1080 IF I1 ¢ I THEN 1060

1100 FRINT

1110 PRINT »'KONSTANTE DER ZIELFUNKTION = ?»C(I1rJ1)
1120 FRINT

1130 FRINT »’FAKTOREN DER OFTIMIERUNG :
1140 PRINT

1150 I1=I

12.7 Ausgetestete Programmierbeispicle

1160 Ji=1

L1170 PRINT »?X"ydisr?="yC(I1,d1)

1180 Ji=Ji1+1

1190 IF J1 < J-1 THEN 1170

1200 PRINT

1210 PRINT »’ENDE DER ARBETIT?
1220 STOF

1230 END

Ausgabeliste:

READY
RUN

INPUT ZEILE I1 SPALTE J1

3;4
INPUT MATRIX A

?
20v4,15-120

??
10r1s1,-40

2
1100,140¢,100,0

DIE PIVOTZEILE BETRAEGT =

20

4

1
-120

DIE CHARAKTERISTISCHEN GUOTIENTEN BETRAGEN:

55
40

100
KLEINSTER CHARAKTERISTISCHER QUOTIENT BETRAEGT:
PIVOTELEMENT BETRAEGT: 4

-5
.25
-.25
30
5
«25
75
-10
300
40
&0
4800
DIE PIVOTZEILE BETRAEGT ¢

s

.25

«75
-10
DIE CHARAKTERISTISCHEN QUOTIENTEN BETRAGEN:

&0
160

80
KLEINSTER CHARAKTERISTISCHER QUOTIENT BETRAEGT:

89

40

40

90

PIVOTELEMENT BETRAEGT:

]
wnsuune DER ALGORITHMUS IST BEENDET

DIE ELEMENTE DER ZIELFUNKTION

~Y
=Y

1
2

KONSTANTE DER ZIELFUNKTION :
FAKTOREN DER OPTIMIERUNG =

X

1
X 2

ENDE DER ARBEIT

Simulation eines Rechteckgenerators

E 12

=>
5

Anhang

3433 3

400

40
25

Ein Rechteckgenerator besteht aus zwei Oszillatoren, die riickgekoppelt sind.
Man nennt dies auch einen Multivibrator. Anstatt nun diese komplizierte Mef3-
schaltung aufzubauen, konnen wir die gegebene Funktion f(X) in BASIC pro-
grammieren. Der beiliegende OQutput zeigt, daf wir sehr genaue Resultate er-

haiten.
Loésung:

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330

INFUT A»BLrX1¢X2yX3rF1
FRINT USING 0120

B=4&FI/E1l

F=1

G=0

G=G+((COS(FxR)*SIN(F*X1))/F)
F=F+2

IF F > F1 THEN 0200

GO TO 0160

Gl=Gx4axA/&FI + 32.5
G2=INT(G1)

63=62
§=0
IF G3
IF G3 <
FRINT 7
63=63-33
IF G3 ¢ 16
FRINT 7
6G3=63-16
IF G3 ¢ 8 60 TO 0340
FPRINT * ’
63=63-8

GO YO 0520

32
32 GO TO 0280

60 TO 0310

W R PR

12.7 Ausgetestete Programmierbeispiele

0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
03500
0310
0520
0530
0540
0330
0560
0370

IF G3 < 4 GO TO 0370

PRINT * T

63 =6G3-4

IF 63 ¢ 2 GO TO 0400
FRINT * 73

G3=63-2

IF 63 ¢ 1 GO TO 0420
FRINT * *§

IF 62 >= 32 GO TD 0500
IF § = 1 GO TO 0480
FRINT 37}

§=1

63=31-6G2

GO TO 0280

PRINT 7(?

GO TO 0530

FRINT 737

GO TO 0330

FRINT *

X1=X1+X3

IF X1 > X2 THEN 05460
GO TO 0140

STOF

END

Rechteckimpuls 1. Art

91

<
-
-

y
A
q--——
L L d o
-7 b x .
a ———————————
£(X) =‘L"@[c—(18b -sinx + c___0s33b -sin 3x + °——°§55b -sin 5x + c_os77b. sin7x +...]

b=

a
b

Zl=a

Parameter

Ausgabeliste:

RUN

]

0.514r~356.390.1915

G1

3.97752E-3
3.92154E-3
-1.00884E-2
~2.12654E~3
2.06408E-2
1.74363E-2
-.133879
-.380702
-.541385
-.532674
~.4706481
-.480723
—~.525348
-.514165
—.475192
~.488434
—.527003
=-.509959
- 4646519
-.491%09
-.952703
—-. 495325
~.277433
~5.18272E-2
3.4310E-2
?.61901E-3
~1.413746E~2
-3.50787E-3
5.46722E-3
1.85921E-3
0
~1.85%921E-3
-5.6722E-3
3.50787E-3
1.41376E-2
~9.61901E-3
~3.4315E-2
5.18272E-2
« 277433
495325
552705
«49190%9
446519
509959
«527003

X1

-3

~2.9
-2.8
=2.7
~2.6
-2.5
~2.4
-2.3
-2.2
-2.1
-2

-1.9
~1.8
-1.7
~1.6
-1.5
~1.4
=-1.3
-1.2
-1.1

-.9
~.8
~-.7
~-.6
~<5
~.4
~.3

488434
«475192
-514145
925348
- 480723
470681
532674
«541385
380702
-133879
~1.76363E-2
-2.56408E-2
?.12654E-3
1.00884E~2
~3.92154E-3
=3.97752E-3
~1.66502E-4
4.388B4E-4
4.77183E-3
2.30836E-3
-1.22204E-2
~4,92936E-3
3.07148E-2
3.45266E-3
-.172976
-.418379
-.550658
-.521171
-.466182
-.488881
~.528455
-.506951
-.472725
~<495704
-.52915
-.501661
=.464454
-.503358
~.555155
~.467642
-.234471
-2.602E-2
3.47958E~-2
3.19118E-3
-1.4073SE-2
~9.1148E-4
5.55879E~3
1.16093E-3
~1.16629E-5

READY

Anhang

R
NN G

N NS -

GO P NRP RN N = e

R 5 ¢ ¢ 2 2 v o8 8 &
NV ONO-WU D) NVONOUD G-

COOCOUUUOURUUUUNUDDIDDIIDIDIEDLD D GGG G0 WL
NI
VOO I

. e
[RN R

12.7 Ausgetestete Programmierbeispiele 93

05-
04+
034

T

Ko
N
1
4—

Anhang

94

Graphische Darstellung mit dem vorliegenden BASIC-Programm

?

10+209-3+46:0.1,13

...

READY

OFF

12.8 Aufgaben zum Selbstlosen 95
12.8 Aufgaben zum Selbstiosen

1. Aufgabe

Fiir die Berechnung der Quadratwurzel kann ein Naherungsverfahren verwendet
werden.

Die verwendete Gleichung heifit:
F=05(X+A/X)

Wobei X laufender Niherungswert
A zu berechnende Quadratwurzel

Logik:

A
X=05 (X*’—‘)

F - X <0.0001

96

Anhang

Die Niherung gilt als geniigend erreicht, sobald die Differenz von neuem und al-
tem berechnetem Wert kleiner als 0.0001 betriigt. Weiter soll jede Niherung,
wenn die gewiinschte Genauigkeit noch nicht erreicht wurde, gedruckt werden.

Loésung:

G130
0110
G120
0130
0140
2150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260

REM NAEHERUNGSVERFAHREN ZUR WURZELBERECHNUNG
REM BERECHNUNG ALLER POSITIVEN ZAHILEN
REM FROGRAMM ENDET MIT 111 EINTIFFEN
INPUT A

IF A=111 GO TOD 0240

LET X=A

LET F=X

LET X=0.5%(X+A/X)

IF F=X<0.0001 GO TO 0210

FRINT X

G0 TO 0160

FRINT X+A

FRINT

GO TO 0130

5T0F

END

REM FROGRAMMENDE

Ausgabeliste:

Ab
231

.5
116.748
60.3525
34.0038
23.7952
21.6054
4945

21.4942 19.0786 3h4
21.4742 462 13486

o
2OG
100.5 1688.37

H1.2

1A% £48.18

27.5

6743.5
3372.75

739 432,04

17.4136 231.4627
14.44%94 144,925
14.1454 118.9%
14.1431 116,164
14.1421 200 116,129

144

116.129 13486

72.5
37.2431
20.5%5548
132.7802
12.115
12.0605

12
12

144

12.8 Aufgaben zum Selbstlésen 97

2. Aufgabe
Es besteht folgende Widerstandsschaltung aus der Elektronik:

R, R,
> 7" _1—=90
oy 72y
U, B U, < U, 5

U

Das Verhalten der Schaltung bei steigender Spannung U soll untersucht werden.,
Dabei findet das Ohm’sche Gesetz:

U=R-1

Verwendung.

Die total verbrauchte Leistung des ganzen Systems soll auch berechnet werden.
P=U.I

Losung:

G100 REM WIDERSTANDSCHALTURG

0110 INFUT UsRLYR2,R3I-R4A

0120 PRINT "I7s"T17,71277U1%»%U2%,7U37,°F?
0130 TF U=999 THEN 0250

0140 LET I=U/(R1%R2/(R1+R2)+R3+R4)
0150 LET UR=I=R3

0160 LET U3=IxR4

0170 LET Ui=U-U2-U3

0180 LET I1=U1/R1

0120 LET I2=UL/R2

0200 LET F=Uxl

0210 PRINT Jo01»T25ULUR2yU3,8
0220 LET U=U+0.5

0230 IF U200 THEN 0110

0240 GO TO 0140

0250 STOP

0260 END

REALY
RUN

7 Migerle, Programmieren in BASIC

98 Anhang

Ausgabeliste:

100y 1052030 40

1 11 12
1.3043%5 LB69568 .A434784
1.31087 .87391 . 4346955
1.31739 LB7B266 CABYLEY
1.32391 982618 .441309
1.33044) 44348
1.334694 .891302 «445651
1.34348 LBIH65S ~A47829
1.35 .9 A5
1.35652 L904352 -4A52176
1.36304 .708694 .454347
1.36957 L5130% LAGEEET
1.37409 .717392 .A58696
1.38241 LO21744 CAL0872
1.38913 .926086 -463043
139565 .930442 SA65221
1.40217 .934784 .467392
1.4087 L939138 WICLTY:
1.41522 .943478 .471739
1.42174 .547834 WATBGLT
1.42824 .952176 . 476088
1.43470 LOGEHRE LA78264
1.4413 .960874 ©.4B0437
1.44783 SPESETG 482613
1.45435 .969548 .484784
1.46087 L97391 LABSYES
1.46739 .978266 .489133
. 47351 L982618 LAT1309
1.48044 .98696 .49348
148696 LH91302 LA95651
1.49348 .995658 .497829
1.5 1]
1.50652 1.00435 .502176
1.51304 1.0086Y L504347
1.51957 1.0130% -506525
1.952609 1.01739 508696
1.53261 1.02174 .510872
1.53913 1.0260% .513043
1.54565 1.03044 .515221
1.55217 107476 L517352
1.5587 1.03914 .519568
1.5652% 1.04348 521739
1.57174 1.04783 .523917
1.57826 1.05218 L526089
1.58478 1.05653 LS28264

12.8 Aufgaben zum Selbstlosen

7%

Ui
B.469568
8.7391
8.782466
8.82618
8.8694
8.91302
B.906%58
9
9.04352
7.08694
7.130%
?.17392
Pu2L744
7.26086
?.30442
?.34784
P.39136
9.43478
T A7GBE4

] (&
?.460874
G.b
2.69568
?.73%91
?.78266
7.82618
?.86%4
$.91302
?.9546598
10
10.0435
10.0869
10.1305
10.173%
10.2174
10.260%
10.3044
10.3478
10.3914
10.4348

uz2

39,1304

39.9131
40.1087
40.3043
40.5
40,6957
40.8%13
41.087
41.2826
41.4783
41.6739
41.86%6
A2.0652
42,2609
42.45465
A2, 6522
42.8478
43,0435
43.2391
43.4348
43.46304
43,8861
44,0217
44,2174
44,4131
44,6087
44.8043
4%
45,1957
A%LI913
45.587
A45.7826
45.9783
46,1732
46.3696
4465652
46.7609
AbPEHD
47.1522
47.3478
A7 ..543%

u3
52,1739
52.4348
52.46956
52.9965
53.2174
53.4783
53.7391

55.0435
5%5.3044
55.5652
55.8261
56.087
56.3478
56.6087
56.8696
57.1304
57.3913
57.6522
57.913
59.1739
58.4348
58.6956
58.9565
59.2174
59.4783
59.7391
60
60.2609
60.5218
60.7826
61.0435
61.3044
61.5652
61.8261
62.087
62.3478
62.6087
62.8696
63.1304
63.3913

P

99

130.43%
131.742
133.057
134.377
135.704
137.038
138.378

139.725

141.078
142.438
143.804
145,177
146.557
147.943
149,335
150.734
152.13%
153.561
154,97
156.39%
157.8264
159.264
160.709
162.16
163.617
165.082
166.552
168.029
169.513
171.003
172.5
174.003
175.513
177.029
178.552
180.082
181.4618
183.16
184.70%
186.264
187.826
189,395
1920.97

192,551

100 Anhang

3. Aufgabe

Fiir die Losung von Differentialgleichungen kennen wir das Niherungsverfahren
von Runge—Kutta. Damit soll die gewohnliche Differentialgleichung:

y' =x-y?
gelost werden,
Die Berechnung soll mit verschiedenen Schrittweiten durchgefiihrt werden.
Das Niherungsverfahren verwendet folgende Gleichungen:

A=h.-f(x,y)

B=h-fix+2,y+a
C=h-f(x+—}21,y+%)
D=h-f(x+h,y+C)

K=1/6(A+2-B+2.C+D)

Der Wert K stellt die Zunahme zum vorangegangenen Betrag der Funktion von
y dar.

Die Anfangswerte der obigen Differentialgleichung betrigt:
y(0)=-0.5
Losung:

0100 REM RUNGE - KUTTA - VERFAHREN
0110 DATA 0,-0.5,0.025,4
0120 READ XrYrHsM

0130 FRINT *X?,7Y?

0140 FRINT

0150 FRINT X»Y

0160 LET A=H*(X-Y12)
0170 LET X=X+H/2

0180 LET Z1=Y

0190 LET Y=Y+a/2

0200 LET B=H*(X-Yt2)
0210 LET Y=21

0220 REM

0230 LET Y=Y+B/2

0240 LET Cx=H*(X-Yt2)
0250 LET X=X+H/2

0260 LET Y=Z1

0270 LET Y=Y+C/2

0280 LET D=H*(X-Yt2)
0290 LET E=(A+2%B+2%C+1) /4
0300 LET Y=Z1

0310 LET Y=Y+E

0320 FRINT X»Y

0330 IF X=M THEN 0350
0340 GO TO 0160

0350 STOP

0360 END

12.8 Aufgaben zum Selbstlésen 101

Ausgabeliste:

REAIY 1.15 ~6 511 44F -2

FUN 1.2 ~6.4538BE~3

X Y 1.2% 5.4772E-2

1.3 .118187
1.35 183376
¢ -5 1.4 .249893
S5.0E -2 ~ w5015 1.4% 3172735
.1 ~.521046 1.5 «385052
1% ~. 328543 1.5% . A527358
.2 ~.53389 1.6 519946
25 2536971 1.6% 5862
.3 ~.537664 1.7 65114
.35 . 535839 1.75 7214432
.4 - 531357 1.8 775795
.45 - .524076 1.8%5 835
4] ~.513849 1.9 .891874
en ~ 50053 1.9% 946297
.6 ~.483976 2 998195
65 . A64053 2.0%5 1.047%4
4 ~.440635 2.1 1.09434
.75 - A13616 2.1% 1.13868
.8 ~.382911 2.2 1.18059
.85 - . 348465 2.25 1.22019
.9 ~«310256 2.3 1.25758
) "L 268303 2.35 1.29289
1 - 22267 2.4 1.32625
1.0% - w173473 2.4% 1.3578
1.1 ~.12088 2.5 1.38767
4. Aufgabe

Je nach Code (1, 2, 3 oder 4) soll mit den Variablen A, B und C eine Gleichung
berechnet werden.

Code Gleichung
1 x=A-B-C
x=A-Z2+B-Z+C
firZ=4
3 x=AB.C

4 x=(A+B)-C

102 Anhang

X=A-22+B-Z+C |[->

X=C(A+B)

A,B,C X

12.8 Aufgaben zum Selbstlsen

Losung:

100 INPUT A,B,C

110 INPUT C1

120 IF C1=1 THEN 180
130 IF C1=2 THEN 200
140 IF C1=3 THEN 230
150 IF Cl=4 THEN 250

160 PRINT "CODEFEHLER”

170GO TO 110

180 X=A*B*C

190 GO TO 260
200 INPUT Z

210 X=A»Z*+2+B*Z+C
220 GO TO 260
230 X=A**B+C

240 GO TO 260
250 X=C#(A+B)
260 PRINT A,B.C X
270 STOP

280 END

S. Aufgabe

103

Cl=1 THEN 180

Die Binomialverteilung spielt beim Ziehen mit Zuriicklegen eines Gegenstandes
aus einer Vielzahl von Gegenstinden eine bedeutende Rolle.

Die Wahrscheinlichkeit, beim zufilligen Herausgreifen von z. B. Schrauben

eine unbrauchbare zu erhalten, ist dann gleich

M

N

Die Wahrscheinlichkeit, bei M Zugriffen (mit Zuriicklegen) genau X unbrauch-

bare Schrauben zu erhalten, ist:
M n-x

0=y * (-3

104

Logik:

Anhang

START

Xg, N, M

Nein

1

N, =N; +N(N-1)

Ja

Nein

12.8 Aufgaben zum Selbstlosen 105

X2=1

>
>

X=X +X2X3 +1)

X=X +1
Ja
Nein
N,
Z,=—==
1 xl

E
-z, .ag-M
F=2,6) a N

106

100 INPUT X N M

110N3=N

120 IF N=9999 THEN

130 N2=N2+N=#(N-1)

140 N=N-1

150 IF N>X THEN 130

160 X2=1

170 X1=X1+X2#(X2+1)

180 X2=X2+1

190 IF X2<=X THEN 170

200 Z1=N2/X1

210 F=Z1%(M/N)**X#(1-M/N)#*#(N3-X)
220 PRINT "DIE VARIANZ BETRAEGT: *;F
230GO TO 100

240 STOP

250 END

6. Aufgabe
Ablenkung eines Elektrons im elektrischen Feld.

o

a=yoty,

Anhang

12.8 Aufgaben zum Selbstlésen 107

Bei gegebener Minimal- (U,) und Maximalspannung (Ug) soll die Spannung
gesucht werden, damit die vorgesehene Strecke A gefunden wird. Der Ladungs-
triger soll ein Elektron sein. Die Genauigkeit wird mit der Variablen E einge-

geben.

START

L,D,S
Ua, Ug, Ay
QME

©

108 Anhang

A1=Y0+Y1

Zl=A—A1

Z2=1Zy
Ja
\Z< E
Nein
L,D,S,
Ua, A

12.8 Aufgaben zum Selbstlosen 109

Upa=Up +1
Nein
Ua < Ug
Dimensierung
falsch Ja

Ja oder
nein

Neuer
Durchlauf

110 Anhang

Losung:

LIS H

00100 PRINT 'LAENGE L';

00110 INPUT L

00120 PRINT 'DURCHMESSER D';
00130 INPUT D

00140 PRINT 'ABSTAND S';

00150 INPUT S

00160 PRINT 'ANFANGSSPANNUNG UA';
00170 INPUT U1l

00180 PRINT 'ENDSPANNUNG UE';
00190 INPUT U2

00200 PRINT 'ZIELPUNKTABSTAND A';
00210 INPUT A

00220 PRINT 'LADUNGSTRAEGERMASSE M';
00230 INPUT M

00240 PRINT 'ELEKTRISCHE LADUNG';
00250 INPUT Q

00260 PTINT 'GENAUIGKEIT E*';
00270 INPUT E

00280 v=2#Q/M*yl

00290 YO=Q*ULXL¥*%2/(2%¥MXD*V)
00300 Y1=Q#¥U1XL%S/(2%¥M*DRV)

00310 Al=Y0+Y1l

00320 zZl=A-Al

00330 z=ABS(Z1)

00340 IF Z<E THEN Ulo0

00350 Ul=Ul+l

00360 IF uUl<u2 THEN 280

00370 .PRINT 'DIMENSIONIERUNG FALSCH, SPANNUNGSMAXIMUM ERREICHT®
00380 PRINT

00390 PRINT

00400 PRINT 'NEUER DURCHLAUF JA ODER NEIN';
00410 INPUT AS

00420 IF AS='JUA' THEN 100

00430 GO TO 470

00440 PRINT 'L','D','Ul?,*'S','A"
00450 PRINT L,D,Ul,S,A

00460 GO TO 400

00470 sTOP

00480 END

Stichwortverzeichnis

Aktualvariable 46
Allocate 25
Analyse 9

Bereichsvariable 15, 43
— arithmetische 15, 62
— zeichen 15, 62
Blockdiagramm 9

Call/360 7
Close 28, 41
Com 68
Compiler 9

Data 21, 24

Datei 25, 27, 28, 29, 41, 42
Datenhinweiszeiger 21, 24, 25, 26, 28
Def 45

Dialogsprache 7, 8,

Dim 27, 62

Dimension 62

Druckzone 32

Ersatzzeichen 34
End 66
Exponentiaiform 38

For '56‘
Format 34, 35

Genauigkeit 31
— einfache 31
— doppelte 31
Get 25

Gomb 65

Go to 59

— computed 59

Hauptprogramm 68
Hexadezimal 7

If 59, 60

Index 15,17,26
Inkrement 56
Input 59
Integer 59
Iteration 56

Kommentar 63
Konstanten 13

— arithmetische 13
— system 14

— zeichen 14

Let 43

Maschinenprogramm 9
Mathematische Symbole 11
Mat

— ergibt 49

—get 27

~ input 19

— print 39

— print using 40

- put 41

—read 23

Matrix 20, 23, 39, 42, 49
— addition 50

— einser 50

- identitit 51

~— multiplikation 52

— skalare multiplikation §3
— subtraktion $§3

— transponieren 54

—null 54

Next 56

Objectprogramm 9
On 59

Operation 44

— symbol 44

Pause 67

Pick 70

Print 30

Print using 34

Problemorientierte Programmiersprache 8
Put 41

Quellenprogramm 9

Rangstufung 44
Read 21

Rem 63

Reset 28
Restore 24
Return 65
Routine 65

Stichwortverzeichnis

Schachtelung 57
Scheinvariable 46
Schleife 56

— erlaubt 58

— unerlaubt 58
Sourceprogramm 9
Step 56

Stop 66
Symbole 10
Syntax 9, 82
S/3-6 7

112

Terminal 8
Time Sharing 8

Variablen 14
— arithmetische 14
— zeichen 15, 43

With 68, 70

	Inhaltsverzeichnis
	0. Einleitung
	1. BASIC-Ausdrücke
	2. Eingabe-Anweisungen
	3. Ausgabe-Anweisungen
	4. ERGIBT-Anweisungen
	5. Schleifen-Steuerung-Anweisung
	6. Verzweigungs-Anweisungen
	7. Das Definieren von Bereichen
	8. Kommentierung eines Programmes
	9. Hinzufügen von Programmsegmenten
	10. Stoppen der Programmausführung
	11. Verbindung von Hauptprogrammen
	12. Anhang
	Stichwortverzeichnis

