
de Gruyter Lehrbuch
Mägerle · Programmieren in BASIC

Einführung in das

Programmieren in BASIC

von

Erich W. Mägerle

w
DE

G

Walter de Gruyter • Berlin · New York 1974

©
Copyright 1974 by Walter de Gruyter & Co., vormals G. J. Göschen'sche Verlagshandlung,
J. Guttentag, Verlagsbuchhandlung Georg Reimer, Kail J. Trübner, Veit & Comp., Berlin 30.
Alle Rechte, insbesondere das Recht der Vervielfältigung und Verbreitung sowie der Über-
setzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (durch Photokopie,
Mikrofilm oder ein anderes Verfahren) ohne schriftliche Genehmigung des Verlages repro-
duziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder ver-
breitet werden. Printed in Germany.
Satz: Composer Walter de Gruyter & Co., Berlin. - Druck: Mercedes-Druck, Berlin
Bindearbeiten: Wiibben & Co., Berlin
Library of congress catalog card number 74-76079.

ISBN 3 11 004801 9

Inhaltsverzeichnis

0. Einleitung 7
1. BASIC-Ausdräcke 13

1.1 Konstanten 13
1.1.1 Arithmetische Konstanten 13
1.1.2 Zeichenkonstanten 14
1.1.3 Systemkonstanten 14

1.2 Variablen 14
1.2.1 Arithmetische Variable 14
1.2.2 Zeichenvariable 15
1.2.3 Arithmetische Bereichsvariablen 15
1.2.4 Zeichenbereichsvariablen 15

1.3 Arithmetische Formeln 16

2. Eingabe-Anweisungen 18
2.1 INPUT-Anweisung 18
2.2 MAT INPUT-Anweisung 19
2.3 DATA-Anweisung 21
2.4 READ-Anweisung 21
2.5 MAT READ-Anweisung 23
2.6 RESTORE-Anweisung 24
2.7 GET-Anweisung 25
2.8 MAT GET-Anweisung 27
2.9 RESET-Anweisung 28
2.10 CLOSE-Anweisung 28

3. Ausgabe-Anweisungen 30
3.1 PRINT-Anweisung 30
3.2 PRINT USING-Anweisung 34
3.3 MAT PRINT-Anweisung 39
3.4 MAT PRINT USING-Anweisung 40
3.5 PUT-Anweisung 41
3.6 MAT PUT-Anweisung 41

4. ERGIBT-Anweisungen 43
4.1 LET-Anweisung 43
4.2 Auflösung arithmetischer Formeln 44
4.3 DEF-Anweisung 45
4.4 Die Benutzung von Systemfunktionen 47
4.5 MAT ERGIBT-Anweisung 49

4.5.1 Matrix-Addition 50
4.5.2 Einsermatrix 50
4.5.3 Identitätsmatrix 51
4.5.4 Matrix-Inversion 51
4.5.5 Matrix-Multiplikation 52
4.5.6 Skalare Matrix-Multiplikation 53
4.5.7 Matrix-Subtraktion 53
4.5.8 Transponieren einer Matrix 54
4.5.9 Nullmatrix 54

5. Schleifen-Steuerung-Anweisung
5.1 FOR-und NEXT-Anweisung 56
5.2 Schachtelung von FOR-Schleifen 57

6 Inhaltsverzeichnis

6. Verzweigungs-Anweisungen 59
6.1 GO TO-Anweisung 59
6.2 Computed GO TO-Anweisung 59
6.3 IF-Anweisung 60

7. Das Definieren von Bereichen 62
7.1 DIM-Anweisung 62

8. Kommentierung eines Programmes 63
8.1 REM-Anweisung 63

9. Hinzufügen von Programmsegmenten 65
9.1 GOSUB-und RETURN-Anweisung 65

10. Stoppen der Programmausführung 66
10.1 END-Anweisung 66
10.2 STOP-Anweisung 66
10.3 PAUSE-Anweisung 67

11. Verbindung von Hauptprogrammen 68
11.1 COM-Anweisung 68
11.2 PICK-Anweisung 70

12. Anhang 71
12.1 Zusammenfassung der Β ASIC-Anweisungen 71
12.2 Übersicht der Systemfunktionen 77
12.3 Übersicht der BASIC-Ausdrücke 81
12.4 System-Konstanten 81
12.5 Arithmetische Operatoren 82
12.6 Syntax-Symbole 82
12.7 Ausgetestete Programmierbeispiele 83
12.8 Aufgaben zum Selbstlösen 95

Stichwortverzeichnis I l l

Einleitung

BASIC entstand Anfang der siebziger Jahre und zählt zu den jüngsten problem-
orientierten Programmiersprache. Sie ist in eine Reihe etwa mit PL/1 und
FORTRAN einzustufen, läßt sich jedoch bedeutend einfacher erlernen und ist
außerdem wegen des geringeren Programmieraufwandes wirtschaftlicher als
andere Programmiersprachen.

BASIC eignet sich besonders fur die Lösung technisch-wissenschaftlicher Pro-
bleme und wird deshalb vornehmlich von Ingenieuren, Konstrukteuren, Physi-
kern, Chemikern, Mathematikern und von Statistikern und Planern angewandt.
Jedoch lassen sich auch Finanz-, Planungs- und Budgetprobleme mit dieser
Sprache formulieren. Nicht zuletzt ist sie nutzbar für vielfältigste Routine-Be-
rechnungen, die häufig einen großen Zeitaufwand erfordern.

BASIC ist eine Dialogsprache. Spezielle Befehle ermöglichen Dateneingabe über
Datenstationen während der Programmdurchfiihrung. In der Matrizenrechnung
ist BASIC besonders gut ausgebaut. Mit einem einzigen Befehl können folgende
Matrix-Operationen ausgeführt werden:

— Addition
— Subtraktion
— Multiplikation
— Skalare Multiplikation
— Transponieren
— Inversion

Identitätsmatrix
Einsermatrix
Matrixeingabe über Datenstation
oder als Datei

Matrixausgabe drucken
oder abspeichern

BASIC kann auf verschiedenen Betriebssystemen verwendet werden. Erwähnt
seien hier CALL/360 und S/3—6 IBM. In diesem Buch wird jedoch kein bestim-
mtes Betriebssystem behandelt, da dieses vom jeweils verwendeten Computer
abhängt.

Program m iersprachen

Grundsätzlich werden zwei Gruppen von Programmiersprachen unterschieden:

a) Maschinenorientierte Programmiersprachen

Hier sind die Instruktionen in Ablehnung an die technische Struktur der Maschine
aufgebaut. Sie bestehen aus hexadezimalen Codes, die folgende Aussagen liefern
müssen:

W A S W I E V I E L W O H I N W O H E R

W A S ist zu tun (auszuführende Operation)

W I E V I E L Bytes sind zu verarbeiten (Feldlänge)

W O H I N kommen die Daten (Adresse von Feld 1)

W O H E R kommen die Daten (Adresse von Feld 2)

ω ©
<D
Θ

8 Einleitung

Allerdings sind solche Programme, bei denen die Rechenoperationen maschinen-
intern geschrieben werden, sehr aufwendig und setzen detaillierte Kenntnisse
des technischen Aufbaus der Maschine voraus. Man hat deshalb Sprachen ent-
wickelt, die sich weniger an der Maschine als vielmehr am zu lösenden Problem
orientieren:

b) Problemorientierte Programmiersprachen

Zu diesen Sprachen gehört auch BASIC. Sie haben den großen Vorteil, daß
symbolische Formulierungen verwendet werden können, die der üblichen Sprach-
regelung ähnlich sind. Eine Multiplikation z.B. hat die gleiche Form wie in der Mathe-
matik, etwa: X = A * F, usw.

Dialog mit dem Computer

BASIC ermöglicht weiterhin als sog. Dialogsprache ein Frag-Antwort-Verfahren
mit dem Computer. Voraussetzung dafür ist die Verwendung von Betriebssyste-
men, die nach dem Time Sharing-Prinzip gestaltet sind. Es sind dies Teilnehmer-
systeme, in denen der Computer gleichzeitig für mehrere Benutzer arbeitet. Mög-
lich wird das durch räumliche Aufteilung der Arbeitsspeicher und Zerlegung
jeder Arbeit in kleinste Abschnitte. So können die verschiedenen Arbeiten in
kurzen Zeiträumen abwechselnd abgewickelt werden. Durch die hohe Arbeits-
geschwindigkeit und die langsame Datenübertragung der Telefonleitung entsteht
der Eindruck der Gleichzeitigkeit, die eine gleichzeitige Benutzung des Computers
über verschiedene Datenstationen (Terminal) gestattet:

Terminal 1 Terminal 2 Terminal 3

Time Sharing
System

Platte

Magnetband

Kartenstanzer

Einleitung 9

Problemstellung und Lösung

Nachstehend wird gezeigt, wie man ζ. B. ein mathematisches Problem anpacken
muß, damit ein BASIC-Programm aufgebaut werden kann (kein allgemeingül-
tiges „Rezept"):
1. Problem definieren = Analyse

Festlegen der bekannten und unbekannten Größen. Randbedingungen formu-
lieren.

2. Mathematische Formulierung
Zusammenstellen der Berechnungsformeln. Dazu gehört auch die Formulie-
rung von Algorithmen bzw. die entsprechenden Iterationen.
(Beispiel: Mit Rechenanlagen läßt sich eine Integration nicht durchführen.
Es muß daher ein Näherungsverfahren gesucht werden z.B. Trapezregel.)

3. Blockdiagramm erstellen
Rechenanlagen können jeden logischen Schritt ausführen. Diese Logik muß
in einem Blockdiagramm dargestellt werden. Gerade ein diesem Schritt lohnt
es sich, sehr genau zu arbeiten.

4. Programm codieren
Mit Hilfe des erstellten Blockdiagramms wird das Programm erstellt (vercoden).
Dieses BASIC-Programm nennt man Quellen- oder Sourceprogramm.

5. Eingabe an der Datenstation
Das codierte BASIC-Programm kann direkt an der Datenstation eingetippt
werden. Dies ist ein weiterer Vorteil von BASIC und dem Time Sharing-Ver-
fahren.

6. Maschinenprogramm erstellen
Das erstellte Programm ist jetzt in einer persönlichen Bibliothek im Rechen-
zentrum abgespeichert und zu jedem Zeitpunkt sofort aufrufbar. Dieses Quellen-
programm muß in eine fur die Rechenanlage gerechte Form umgewandelt
werden mit Hilfe des Compilers. Es entsteht damit das Maschinenprogramm,
auch Objectprogramm genannt. Sind im BASIC-Programm formale Fehler
(Syntax) vorhanden, so werden diese auf der Datenstation gedruckt. Die Er-
klärung dazu ermöglicht die Korrektur der Fehler. Dieser Schritt muß wieder-
holt werden, bis keine Fehlermeldungen mehr entstehen.

7. Testen auf logische Fehler
Ein formal fehlerfreies Programm gibt uns noch keine Gewißheit, daß e auch
in der Logik „stubenrein" ist. Man gibt dem Programm nun Eingabedaten,
damit eine Berechnung durchgeführt werden kann. Das gleiche Beispiel muß
auch „von Hand" berechnet werden. Stimmen die Resultate überein, so sind
keine logischen Fehler vorhanden.

8. Durchlauf aktueller Berechnungen = Produktion
In diesem Schritt hilft die Rechenanlage immer wiederkehrende Arbeiten
sicher und genau durchzuführen. Der Zeitgewinn hier kann die vorangegange-
nen Arbeiten kompensieren, da ein Programm immer wieder verwendbar ist.

10

Verwendete Symbole

Symbole für die Darstellung von Programmablaufplänen

Einleitung

Verarbeitung

Verzweigen,
Entscheid

Verwendung von
Subroutinen

Ζ

O

Abgleichen
mehrerer Daten
zu einem einzigen
Teil (Collate)

Datenfernverar-
beitung

Anschluß-S teile,
Verbindungspunkt

Eingabe/Ausgabe Anfang, Ende, Stop

Manuelle Eingabe
im Zeitpunkt der
Verarbeitung

Lochkarte

Eingreifen von Hand Lochstreifen

Mischen Liste

Extrahieren,
Selektieren

Magnetband

Einleitung 11

O

Magne ttrommet (^ { ¡ ¡ ¡ j * ^

Magnetplatte Flußlinie

Mathematischen Symbole

I
t oder **

Σ

Addition, positives Vorzeichen

Subraktion, negatives Vor-
zeichen

Multiplikation

Division

Potenzieren

Summe

< kleiner

< kleiner oder gleich

= gleich

> größer oder gleich

> größer

Φ ungleich

verschieben nach

1. BASIC-Ausdrücke

1.1 Konstanten

Die Konstante ist ein Ausdruck, der sich während der Ausführung eines Program-
mes nicht verändert. Wir unterscheiden drei Arten von Konstanten:

* arithmetische Konstanten
* Zeichenkonstanten
* Systemkonstanten

1.1.1 Arithmetische Konstanten

Eine arithmetische Konstante ist eine Folge von Ziffern, die mit einem Vorzeichen
versehen werden kann. Sie hat entweder einfache oder doppelte Genauigkeit. Die
einfache Genauigkeit besteht aus 1 - 7 Dezimalziffern, die doppelte Genauigkeit
aus 1 - 1 5 Dezimalziffern. Führende Nullen werden immer ignoriert. Man kann
eine beliebige Anzahl von Ziffern angeben. Es werden jedoch nur die entspre-
chend genauen Ziffern verwendet. Alle übrigen Ziffern gehen verloren. Das Glei-
che gilt für die doppelte Genauigkeit. Arithmetische Konstanten können folgende
Formate aufweisen:

* Integer-Zahlen (enthält keinen Dezimalpunkt)
* Festkomma-Zahlen (enthält einen Dezimalpunkt)
* Gleitkomma-Zahlen (Exponentform)

Weiterhin gilt aber, daß die Konstanten entsprechend ihrer Genauigkeit gedruckt
werden. Die Genauigkeit wird durch einen Betriebssystembefehl angegeben. Da-
mit ein Exponent definiert werden kann, muß der Konstante ein E folgen. Der
Wert des Exponenten darf 99 nicht übersteigen.

Beispiele von arithmetischen Konstanten:

580
- 79
1732.51
- 8.47

2.5E49
- 6.26E-12

Arithmetische Konstanten müssen sich innerhalb der Grenzen

10~" < X < 1 0 "

bewegen. Es darf nur mit arithmetischen Konstanten gerechnet werden.

14 1. BASIC-Ausdriicke

1.1.2 Zeichenkonstanten

Die Zeichenkonstante ist eine Folge von beliebigen Zeichen (einschließlich Leer-
zeichen). Apostrophs in Zeichenkonstanten müssen immer doppelt aufgeführt
werden.

Beispiele von Zeichenkonstanten:

'DAS ERGEBNIS BETRAEGT'
'JOHN BROWN"S'

Zeichenkonstanten können beliebig lang sein. Das System verwendet immer nur
die ersten 18 Stellen. Alle Zeichen, die diese Zahl übersteigen, werden ignoriert.

1.1.3 Systemkonstanten

Vielverwendete Konstanten sind im System abgespeichert. Es handelt sich um
folgende Konstanten:

e π \ f l

Man hat dafür Spezialnamen festgelegt:

&PI = 3.141593
&E = 2.718282
&SQR2= 1.414214

Systemkonstanten können überall anstatt arithmetischer Konstanten verwendet
werden.

1.2 Variablen

Eine Variable wird entsprechend ihrer Art auf Null oder Blank gesetzt. Der Wert
einer Variable kann während der Programmausführung verändert werden. Wir
unterscheiden vier Variablenarten in BASIC:

* arithmetische Variable
* arithmetische Bereichsvariable
* Zeichenvariable
* Zeichenbereichsvariable

1.2.1 Arithmetische Variable

Der arithmetische Variablenname besteht aus einem alphabetischen Zeichen.

A-Z, @, #, $

Diesem Namen kann noch eine Zahl folgen, die zwischen 0 und 9 liegen darf.

1.2 Variablen 15

Beispiele fur arithmetische Variablennamen:

F XI $7 YO Z3

1.2.2 Zeichenvariablen

Die Zeichenvariable besteht aus einem alphabetischen Zeichen, das von einem
$-Zeichen gefolgt sein muß.
Beispiele von Zeichenvariablen:

A$ #$ @$ H$

Es können nur Zeichendaten dargestellt werden. Wir dürfen also mit Zeichen-
variablen nicht rechnen.

1.2.3 Arithmetische Bereichsvariablen

Arithmetische Bereiche können zweidimensional dargestellt werden. Die arithme-
tischen Bereichsnamen bestehen aus einem einzigen Zeichen:

A-Z, <§, #, $

Der Bereich kann nur arithmetische Daten enthalten. Auf das entsprechende
Element des Bereichs bezieht man sich durch ein oder zwei Indizes, die in
Klammern stehen müssen.

Beispiele von arithmetischen Bereichsvariablen:

K(16)
0(7 ,3)

Die Indizes dürfen ganze Zahlen, arithmetische Variablen oder Formeln sein.
Beispiel für den Zugriff auf eine zweidimensionale Tabelle:

X(8,4)
8. Zeile, 4. Spalte von Bereich X
Y(K, F+l) Κ = 3

F = 7
3. Zeile, 8. Spalte von Bereich Y
Z(H) H = 5
5. Element von Bereich Ζ

1.2.4 Zeichenbereichsvariablen

Der Zeichenbereich kann nur eindimensional dargestellt werden. Der Name
einer Zeichenbereichsvariablen besteht immer aus einem alphabetischen
Zeichen:

A-Z, #, $

16 1. BASIC-Ausdrücke

Diesem Buchstaben muß ein $-Zeichen folgen. Mit der Zeichenbereichsva-
riablen darf nie gerechnet werden. Der Zeichenbereich kann nur Zeichen
enthalten. Der Bereich kann maximal 100 Elemente enthalten. Es gelten
sonst die gleichen Regeln wie bei den arithmetischen Bereichsvariablen.

Beispiele, wie man sich auf Zeichenbereiche bezieht:

K$(6)
A$(H)
I$(B+7)
#$(80)
@$(A+B)

1.3 Arithmetische Formeln

Eine arithmetische Formel ist eine Reihe arithmetischer Operationen, die in
einer Druckzeile enthalten sein müssen. Das Ergebnis arithmetischer Opera-
tionen wird entsprechend der Genauigkeit gerundet. Die Genauigkeit wird
durch einen Betriebssystembefehl erreicht.

Beispiele arithmetischer Formeln:

Dt2*&PI/4

K*(SIN(B)-COS(F)) K(SIN(B)-COS(F))

X+Z*(G+H)+K/3 X+Z(G+H)+!

1.3 Arithmetische Fonnein 17

Ζ
Η
¡J
Ξ Ν

2 Mägerle, Programmieren in BASIC

2. Eingabe-Anweisungen

Eingabe-Anweisungen sind Befehle, die zum Definieren und Lesen von Daten
während der Ausführung eines Programmes gebraucht werden. Es stehen 10 Ein-
gabe-Anweisungen zur Verfügung:

MAT INPUT
INPUT
DATA
READ
MAT READ
RESTORE
GET
MAT GET
RESET
CLOSE

2.1. INPUT-Anweisung

Die INPUT-Anweisung erlaubt uns, während der Programmausführung Daten
einzulesen.

Schreibweise:

w - - «• arith. Var. ·»-
arith. Ber. Var.
Zeich. Var.

. . Zeich. Ber. Var. .

Beispiele:

100 INPUT A,B,C
200 INPUT X,L$(8),K
300 INPUT Z,Y,M(2,5)
400 INPUT N,T(N)

Die INPUT-Anweisung bewirkt folgendes:

1. System druckt ein Fragezeichen
2. Systempause, damit Daten eingegeben werden können.

100 INPUT A,B,C bewirkt
System: ?
Benutzer: 7,12,23

Die Werte werden durch Kommata getrennt

INPUT

oiiui. ναι.
arith. Ber. Var.
Zeich. Var.
Zeich. Ber. Var.

2.2 MAT INPUT-Anweisung 19

Die eingegebenen Konstanten müssen vom gleichen Typ sein. Die Anzahl dieser
Konstanten muß gleich der Zahl der Variablen in der INPUT-Anweisung sein.

Zusammenhängendes Beispiel:

0100 INPUT A
0110 X=X+1
0120 PRINT A
0130 PUT 'LIN'ι A
0140 IF X=4 THEN 0150
0150 GO TO 0100
0160 CLOSE 'LIN'
0170 STOP
0180 END

READY
ALLOCATE EINGABE<LIN>»NEU

READY
R'JN

4
4

7
7

l
1

·:>
8
8

Die Variablen in der INPUT-Anweisung können auch indexiert erscheinen.

Beispiel:

100 INPUT Z,X(Z+4)

System: ?"
Benutzer: 6 ,38.76

Dem 10. Element der Tabelle X wird 38.76 zugeordnet.

2.2 MAT INPUT-Anweisung

Die MAT INPUT-Anweisung bewirkt dasselbe wie die INPUT-Anweisung. Hier
wird eine Matrix mit Daten gefüllt.

Allgemeine Schreibweise:

MAT INPUT Matrix-Name [(arith. Ausdr. [, arith. Ausdr.])
[, Matrix-Name [(arith. Ausdr. [, arith. Ausdr.])]] . . .

2 *

20 2. Eingabe-Anweisungen

Eine Matrix muß am Programmanfang stets definiert sein. In der MAT INPUT-
Anweisung kann die Matrix redefiniert werden. Die neue Matrixdimension ist
dann verbindlich.

Beispiel:

100 DIM F(4,6),G(3,7)
200 MAT INPUT F(2,6),G(J,K)

Erkennt das System während der Programmausführung eine MAT INPUT-An-
weisung, druckt es ein Fragezeichen und stoppt, damit die Matrix mit Daten
gefüllt werden kann. Die Werte müssen durch ein Komma getrennt sein. Durch
Drücken der RETURN-Taste wird das Ende einer Zeile gekennzeichnet. Werden
noch weitere Daten benötigt, zeigt das System dieses durch ein gedrucktes Fra-
gezeichen.

Beispiel:

080 INPUT I,J
100 DIM A(3,3),B(3),C(3,3)
120 PRINT, 'INPUT MATRIX A'
140 MAT INPUT A(I,J)

Ablauf im System
?

2,2 Redefinition des Matrixindex
??
780,1493 Matrix A (2,2) füllen 1. ZeÜe
11
1234,52 2. Zeile

Ist das Ende einer Druckzeile erreicht, bevor alle Daten eingegeben sind, muß
am Zeilenende ein Komma stehen. Nach dem Bedienen der RETURN-Taste kann
in der folgenden Zeile fortgefahren werden. Fehlerhafte, zuwenig oder zuviel
eingegebene Daten zeigt das System durch eme Fehlermeldung an.

Vollständiges Beispiel:

100 DIM F(2,2),G(10,5)
110 MAT INPUT F,G(2,3)
120 MAT PRINT F,G
130 END
RUN
1
136,17
11
24,98
11

2.4 READ-Anweisung 21

2360,7965,15 ??

43,8570,113

Die Matrix G wurde ursprünglich mit der Dimension 10,5 definiert. In der MAT
INPUT-Anweisung wird G immer redimensioniert. Die neue Dimension der
Matrix G lautet jetzt 2,3. Der Austausch der Daten zwischen Benutzer und
System wird so lange fortgesetzt, bis sämtliche Matrizen gefüllt sind. Ist das
letzte Element der Matrix gefüllt, setzt das System die Programmausführung
fort.

2.3 DATA-Anweisung

Mit dieser Anweisung bekommen die Variablen einen bestimmten Wert. Da diese
Daten direkt im Programm enthalten sind, werden die Werte direkt den Variablen
zugeordnet. Dabei kommt das System auf keinen Stop.

Diese Anweisung kann überall in einem Programm stehen.

Schreibweise:

rarith. Konst. 1 f farith. Konst. VΊ
t Zeich. Konst./ [' IZeich. Konst. / J ' ' '

Die Zeichenkonstante muß in Apostroph eingeschlossen sein.
Beispiele von DATA-Anweisungen:

10 DATA 40,75,3,7,1783
20 DATA 'JAN','FEB','MAERZ','APRIL'
30 DATA 30,'KOSTEN',2380,'SALDO'
40 DATA 'DIFF','SUM',5739,3450
50 DATA 'I960','JAHR','23.9',29

Die Werte einer DATA-Anweisung können mit READ oder MAT READ gelesen
werden. Zu Beginn der Programmausführung wird ein Datenhinweiszeiger auf
das erste Datenelement gesetzt.

30 KOSTEN 2380 SALDO

(Datenhinweiszeiger)

2.4 READ-Anweisung

Die READ-Anweisung wird verwendet, um die Daten aus der DATA-Anweisung
zu lesen.

22 2. Eingabe-Anweisungen

Schreibweise:

arith. Var. -
arith. Ber. Var.
Zeich. Var.
Zeich. Ber. Var. _

Die READ-Anweisung kann mehrere Variablen enthalten.

Beispiele:
100 READ A,B,C,D
200 READ A9,F$,H
300 READ X
400 READ Z$,K,L,M8,N2
500 READ Q $,#$,<§

Der ersten Variablen wird das erste Datenelement zugeordnet. Das wird in der
gleichen Sequenz fortgeführt, d. h. die zweite Variable erhält das zweite Daten-
element usw. Variable und Datenelement müssen vom gleichen Typ sein. Genau
formuliert heißt das: Einer arithmetischen Variablen kann nur eine arithmetische
Konstante zugeordnet sein und nicht etwa eine Zeichenkonstante, denn diese
gehört nur zu einer Zeichenvariablen. Sind mehr Variablen vorhanden als Kon-
stanten, wird eine Fehlermeldung gedruckt. Die Programmausführung wird da-
durch gestoppt.

Beispiel:
READY
LIST
0100 REM RUNGE - KUTTA - VERFAHREN
0110 DATA 0»-0.5»0.05»4
0120 READ X»Y,H»M
0130 PRINT 'Χ','Υ'
0140 PRINT
0150 PRINT Χ* Y
OlóO LET A=H*(X-Yt2)
0170 LET X=X+H/2
0180 LET Z1=Y
0190 LET Y-Y+A/2
0200 LET B=H*<X-YT2)
0210 LET Y = Z1
0220 REM
0230 LET Y-Y+B/2
0240 LET C=H*(X-Yt2>
0250 LET X=X+H/2
0260 LET Y=Z1
0270 LET Y-Y+C/2
0280 LET D=H*(X-Yt2)
0290 LET E=(A+2*B+2*C+Q>/6
0300 LET v=Zl
0310 LET Y-Y+E
0320 PRINT X,Y
0330 IF X=M THEN 0350
0340 GO TO 0160
0350 STOP
0360 END

READ arith. Ber. Var.
Zeich. Var.
. Rpr Var .

2.5 MAT READ-Anweisung 23

Selbstverständlich ist es gestattet, eine vorher mit READ eingelesene Konstante
nachher in einer Bereichsvariablen als Index zu verwenden.
Beispiel:

100 DATA 10,3450
110 READ K,S(K,K+3)
120 PRINT K,S(K,K+3)
130 STOP
140 END

System druckt:

10 3450
Die READ-Anweisung ist ungültig, wenn keine DATA-Anweisung vorhanden ist.

2.5 MAT READ-Anweisung

Die Anweisung ist ähnlich der READ-Anweisung im vergangenen Abschnitt.
Auch hier werden die Daten in einer DATA-Anweisung definiert. Die MAT
READ-Anweisung setzt die Daten in eine vorher dimensionierte Matrix (da-
durch ist Kernspeicherplatz reserviert).
Schreibweise:

MAT READ Matrix Name [(arith. Ausdr. [, arith. Ausdr.])]
[, Matrix Name [(arith. Ausdr. [, arith. Ausdr.])]]...

Hier müssen arithmetische Konstanten bzw. Variablen verwendet werden. Die
Matrixnamen müssen aus einem einzelnen alphabetischen Zeichen bestehen,

A-Z, #, $, @
dem ein Index folgen kann.
Beispiel:

100 MAT READ F
200 MAT READ L(3,4),K
300 MAT READ Χ,Υ,Ζ

Wie die Beispiele zeigen, ist auch mit der MAT READ-Anweisung eine Redefini-
tion möglich. Die Daten werden reihenweise eingelesen. Auch die Reihenfolge
der Matrizen wird eingehalten.
Beispiel:

100 DIM X(2,2),N(10,10)
110 DATA 8,17,25,33,41,49,78,69,14,18,35,57,60,63

24 2. Eingabe-Anweisungen

8 17 25 33 41 49 78 69 14 18 35 57 60 63

120 MAT READ X,N(2,5)

100 DIM X(2,2),N(10,10)
110 DATA 8,17,25,33,41,49,78,69,14,18,35,57,60,63
120 MAT READ X,N(2,5)
130 MAT PRINT S,Ν
140 END
System:

8 17
25 33
41 49 78 69 14
18 35 57 60 63

Die Matrix N, die in der DIMENSION-Anweisung auf 10,10 definiert wird, ist
in der MAT RE AD-Anweisung auf 2,5 redefiniert.

Ist die Anzahl der Konstanten in der DATA-Anweisung kleiner als die zulässige
Größe der Matrix, so wird eine Fehlermeldung geschrieben. Die MAT READ-An-
weisung ist ungültig, wenn keine DATA-Anweisung vorhanden ist.

Beispiel:
100 DIM X(3,7),Y(4,5)
110 MAT READ X,Y

Zwischen DIM- und MAT READ-Anweisung fehlt DATA-Anweisung.

2.6 RESTORE-Anweisung

Durch die READ-Anweisung wird jeder Variablen ein Wert aus der DATA-An-
weisung zugeordnet. Ein Datenhinweiszeiger wird von einem Element zum
anderen gesetzt. Die RESTORE-Anweisung bewirkt, daß der Datenhinweis-
zeiger auf das erste Element der DATA-Anweisung zurückversetzt wird. Wir
haben somit die Möglichkeit, im gleichen Programmdurchlauf mehrmals die
Werte aus der DATA-Anweisung zu verwenden.

Schreibweise:
RESTORE [Kommentar]

Beispiel:

100 DATA 70,80,90,100
110 READ R,S,T,U

2.7 GET-Anweisung

Stellung des Datenhinweiszeiger nach erstmaligem Lesen:

25

70 80 90 100

(Datenhinweiszeiger)

Durch die RESTORE-Anweisung setzt sich der Datenhinweiszeiger wieder auf
das erste Element.

70 80 90 100

(Datenhinweiszeiger)

Die zweite READ-Anweisung liest uns die gleichen Daten.

Zusammenhängendes Beispiel:

100 DATA 100,200,300
110 READ Χ,Υ,Ζ
120 A=X/Y+Z
130 RESTORE
140 READ U,V,W
150 B=U+V+W
160 PRINT Α,Β
170 END

System:

300.5 600

Die erste READ-Anweisung im obigen Beispiel liest die Daten 100,200,300 und
fugt sie der entsprechenden Variablen X,Y und Ζ zu. Es wird ein Wert A berech-
net. Die RESTORE-Anweisung setzt den Datenhinweiszeiger wieder auf das
erste Element. Die zweite READ-Anweisung liest die Werte der DATA-Anwei-
sung von neuem und setzt sie den Variablen U,V und W gleich. Der jetzt errech-
nete Wert Β sowie die berechnete Variable A werden schlußendlich gedruckt.

2.7 GET-Anweisung

Die GET-Anweisung wird benutzt, um Daten aus einer vorher definierten Datei
einzulesen. Die Datei wird mit einem ALLOCATE-Systembefehl bestimmt.

Schreibweise:

GET 'Dateiname',

arith. Var.
arith. Ber. Var.
Zeich. Var.
Zeich. Ber. Var.

arith. Var.
arith. Ber. Var.
Zeich. Var.
Zeich. Ber. Var.

26 2. Eingabe-Anweisungen

Der Dateiname kann auch durch eine Zeichenvariable ersetzt werden (ohne
Apostroph). Dieser Zeichenvariablen muß dann vor der GET-Ausfiihrung eine
Konstante zugewiesen werden.

Der Dateiname ist normalerweise eine beliebige Zeichenkonstante.

Beispiel:
100 GET 'DIFF', Z3,C,F$,G1

oder
100 GET Y$,A,B,C

wobei gilt
90 Y$='SUM'

man könnte auch schreiben:
100 GET 'SUM', A,B,C

Sind mehr Variablen in der GET-Anweisung als Datenelemente in der Datei, so
wird eine Fehlermeldung geschrieben. Die Variablen müssen auch hier vom
gleichen Typ sein wie die Werte in der Datei. Ist dies nicht der Fall, so wird
das System eine Fehlermeldung geben. Die Zuordnung der Daten aus der
Datei erfolgt in gleicher Sequenz wie die Variablen der GET-Anweisung. Er-
scheint eine Variable als Index in einer nachfolgenden Bereichsvariablen,
wird dieser neue Wert verwendet.

Beispiel:

100 GET 'SALDO', L,F(L+4)
110 L=L+4
120 Z=F(L)»k3
130 PRINT F(L),Ζ

Auch hier wird der Datenhinweiszeiger auf jedes zu lesende Element gesetzt. Die
Daten aus definierter Datei können auch von anderen Programmen verwendet
werden. Die gespeicherten Daten können von einfacher oder doppelter Genauig-
keit sein. Allein das verwendete Programm bestimmt, in welcher Genauigkeit
die Daten benutzt werden. Sind die Daten in doppelter Genauigkeit gespeichert,
aber im Programm wird nur einfache Genauigkeit verlangt, so werden die Werte
für das laufende Programm verändert. Wichtig ist aber, daß die Daten in der
Datei ihre Genauigkeit beibehalten.

Wenn die Daten der Datei doppelte Genauigkeit besitzen, so verwendet ein in
einfacher Genauigkeit definiertes Programm nur die ersten sieben Stellen. In
diesem Fall werden alle überzähligen Stellen ignoriert.

2.8 MAT GET-Anweisung 27

2.8 MAT GET-Anweisung

Diese Anweisung hat die gleiche Wirkung wie die GET-Anweisung. Es können
nur arithmetische Daten eingelesen werden. Damit kann eine Matrix gefüllt wer-
den.

Schreibweise:

MAT GET ('Dateiname' l M a t r i x N a m e [(arith. Ausdr. [, arith. Ausdr.])]
L Zeich. Var.)

[Matrix Name [(arith. Ausdr. [, arith. Ausdr.])]].

Der Dateiname wird wiederum durch einen Betriebssystembefehl definiert. Die
Regeln der Matrixvariablen gelten auch hier.

Beispiel:

Definierung der Plattendatei

ALLOCATE DATEI (DIFF)

Programm

100 DIM U(5,5),V(10,10)
110 MAT GET 'DIFF', U(2,2),V(2,3)
120 MAT PRINT U,V
130 END

Das System druckt die Werte entsprechend der redefinierten Matrix.

17 256
319 570

9 68 97
28 712 324

Auch in der MAT GET-Anweisung ist eine Redefinition möglich. Die Dimen-
sion der Matrix kann eine Konstante oder eine Variable sein.

Beispiel:

100 MAT GET 'KOSTEN', U(F,L)
200 MAT GET 'SALDO', X(3,4),Y(K,N+3)
300 MAT GET 'SUM', P,Q,R

Der Datenhinweiszeiger hat auch hier seine Gültigkeit. Die Genauigkeit der Da-
ten in der Datei hat keinen Einfluß auf das verwendete Programm, denn allein
das Programm befiehlt die Genauigkeit. Entsprechen sich Genauigkeit von
Daten und Programm nicht, so werden die Daten für einen Programmdurchlauf
geändert.

28 2. Eingabe-Anweisungen

2.9 RESET-Anweisung

Diese Anweisung setzt den Datenhinweiszeiger wieder auf das erste Element
bei einer mit GET gelesenen Datei.

Schreibweise:

RESET 'Dateiname '[, 'Dateiname']. . .

Dadurch können wir also auch wieder in einen einzigen Programmdurchlauf
mehrmals auf die gleichen Daten zugreifen.

Beispiel:

Definierung der Plattendatei

ALLOCATE DATEI (DIFF)

Programm

100 GET 'DIFF', A,B,C$
110 RESET 'DIFF'
120 GET'DIFF', U,V,W$
130 PRINT A,B,C$,U,V,W$
140 END

System

160 70 DIFFERENZ 160 70 DIFFERENZ

2.10 CLOSE-Anweisung

Jede Datei, die mit GET, MAT GET, PUT oder MAT PUT in Bezug genommen
wird, gilt als eröffnete Datendatei. Alle Dateien müssen noch vor Programmende
geschlossen werden. Dies wird mit der CLOSE-Anweisung ausgeführt.

Schreibweise:
CLOSE 'Dateiname' [, 'Dateiname']. . .

Durch die CLOSE-Anweisung wird automatisch der Datenhinweiszeiger wieder
auf das erste Element gesetzt.

Beispiel:

Definierung der Plattendatei

ALLOCATE DATEI (VOLT)

Programm

100 GET 'VOLT', R,I
110 PRINT'R',T, 'U'
120 U=R*I

2.10 CLOSE-Anweisung 29

130 PRINT R,I,U
140 CLOSE 'VOLT'
150 END

Die GET-Anweisung eröffnet die Plattendatei. Die Daten werden den entsprechen-
den Variablen zugeordnet. Zu vier Recheninstruktionen werden Berechnungen aus-
geführt. Nachdem die Resultate gedruckt sind, folgt die CLOSE-Anweisung, die
den Datenhinweiszeiger wieder auf das erste Element setzt und schlußendlich die
Datei abschließt. Die Erklärung der PRINT-Anweisung folgt in einem späteren Ka-
pitel.

3. Ausgabe-Anweisungen

Die Ausgabe-Anweisungen werden verwendet zum

* Drucken der Ergebnisse

* Einsetzen der Programmergebnisse in Datendateien

3.1 PRINT-Anweisung

Die PRINT-Anweisung wird zum Drucken der Ergebnisse verwendet.

Schreibweise:
PRINT

An Stelle des Kommas bzw. Semikolons darf auch eine Zeichenkonstante als
Trennung verwendet werden. Für die arithmetische Variable ist auch eine
arithmetische Pormel gestattet.

100 PRINT A**3

Kommata, Semikolon oder Zeichenkonstanten verweisen auf Trennungen und
werden zur Aufteilung der Druckzeile in Printzonen verwendet. Das alleinige
Schlüsselwort PRINT bewirkt, daß die Seite um eine Zeile vorgeschoben wird.
Die PRINT-Anweisungen bewirken im folgenden Programm: Drucken des
Wertes X, Vorschub um eine Zeile und Drucken des Wertes Y.

Programmbeispiel:

100 INPUT Χ,Y
110 PRINT 'X=',X
120 PRINT
130 PRINT Ύ=',Υ
140 STOP
150 END

System:
1

170, 38
X= 170
Y= 38

Die Genauigkeit der Daten wird in der Form ausgedruckt wie sie im Programm
verlangt werden.

* Bei einfacher Genauigkeit werden sechs Dezimalziffern und ev.
Vorzeichen gedruckt.

iarith.Var. Ii Γ Π íarith. Var. i l Γί,!"
\Zeichen Var./J [\;J \Zeichen Var.J J " ' ' LU.

3.1 PRINT-Anweisung 31

Beispiele:
6730
-760123
158.45
7.35872

Die Systemkonstanten in erweiterter Genauigkeit.

&PI = 3.14159265358979
&E = 2.71828182845905

&SQR2 = 1.41421346237310
Bei der erweiterten Genauigkeit werden elf Dezimalziffern und ev. Vorzeichen
gedruckt.

Beispiele:
187530
-25612343052
6.37219
4786.17153

-7886.2791823

* Ist die arithmetische Konstante in einer der vorangegangenen Formen zu
groß, wird sie in Exponentialform geschrieben. Minuszeichen und Dezimal-
punkt entsprechen den früheren Ausführungen. Zusätzlich kommen nun
eine Kennzeichnung E und der mit Vorzeichen versehene Exponent hinzu.
Werden Resultate in Exponentialform gedruckt, findet vorher eine Run-
dung statt.

Beispiel:
einfache Genauigkeit erweiterte
(6 Ziffern) (11 Ziffern)

3.45E-9 1.37815774235E+28
-4.19876E2 2.78495336875E-3

7.43E-21 9.62648462615E7
2.537E-04

Die PRINT-Anweisung kann auch zum Drucken von Überschriften verwendet
werden.
Beispiel:

100 PRINT 'KOSTENRECHNUNG'
200 PRINT 'SALDO BETRAEGT:'
300 PRINT ' R E C H N U N G '
400 PRINT 'TOTAL DER X\X
500 PRINT 'DIFFERENZ VOM "12.3.72" '

32 3. Ausgabe-Anweisungen

Die Hochkommata in der PRINT-Anweisung werden nicht gedruckt, da sie nur
die Zeichenkonstante darstellen. Muß mehr als eine Variable oder Konstante bzw.
beides gedruckt werden, so ist die Druckseite in Druckzonen eingeteilt. Sie sind
der Tabulatoreneinrichtung bei der Schreibmaschine ähnlich. Die Seite kann in
lange oder kurze Druckzonen aufgeteilt sein. Durch die Kommata in der PRINT-
Anweisung wird der Schreibkopf auf die nächste lange Druckzone gesetzt. Ist
die Anzahl der zu druckenden Elemente größer als die verfügbaren Druckzonen,
so wird in der nächsten Zeile fortgesetzt.

Beispiel:

100 DATA 6380,7,40,80.34,124.9,7863.17,280
110 READ A,B,C,D,E,F,G
120 PRINT A,B,C,D,E,F,G
130 END

System:

6380 7 40
80.34 124.9 7863.17
280

Bemerkung: Um das Beispiel deutlich zu zeigen, wird die Zeilenbreite 60 Zeichen
definiert. Normalerweise beträgt diese 132 Zeichen.

Tabelle der Papieraufteilung:

Charakteristika der Druck-Zone

Größe Anzahl der Zeichen pro Druck- Maximale Anzahl der Druckzonen pro
der kurzen Zone zone (Einschließlich Vor- Zeile mit Zeile mit

zeichen, Wert, Dezimalpunkt 132 Zeichen 220 Zeichen
und Exponent)

6 Leerstellen 2 , 3 oder 4 Zeichen 22 36
9 Leerstellen 5 , 6 oder 7 Zeichen 14 24

12 Leerstellen 8 , 9 oder 10 Zeichen 11 20
15 Leerstellen 11, 12 oder 13 Zeichen 8 14
18 Leerstellen 14, 15, 16 oder 17 Zeichen 7 12

Kurze Druckzonen für Zeichendaten sind genauso lang wie die Anzahl der Zeichen in einem
Posten von Zeichendaten.

Ist das Trennungszeichen zwischen den Variablen bzw. Konstanten in der PRINT-
Anweisung ein Komma, wird der Druckkopf auf die nächste lange Druckzone
gesetzt. Zwei oder mehr Kommata hintereinander, ζ. B.

100 PRINT 'X=',X„'Y=',Y
110 PRINT ,„'RECHNUNG'

veranlassen ein Übergehen der langen Druckzonen, die der Anzahl Kommata
entsprechen.

3.1 PRINT-Anweisung 33

Wird als Trennungszeichen zwischen den Variablen ein Semikolon benützt, ver-
schiebt sich der Druckkopf immer auf die nächste kurze Druckzone. Ist die An-
zahl der Druckzonen kleiner als die zu druckenden Variablen, wird in der näch-
sten Zeile fortgesetzt. Kurze und lange Druckzonen können in einer PRINT-An-
weisung kombiniert werden.

Beispiel:

100 INPUT Χ,Υ,Ζ
110 A=X*Y*Z
120 B=X+Y+Z
130 C=X/Y+Z
140 D=(X+Y)*Z
150 E=X*(Y+Z)
160 PRINT A;B,C ί>,E„'RESULTATE'
170 END

Wird am Ende einer PRINT-Anweisung ein Komma oder Semikolon gesetzt,
erreicht man ein Vorschieben auf den Anfangspunkt einer neuen Druckzone,
also keinen Vorschub auf eine neue Zeile.

Beispiel:

300 PRINT , ,Ά='Λ;
400 PRINT ;'B='B,

Programmbeispiel.
490 INPUT A,B,C
500 PRINT
510 PRINT

*520 PRINT A,
530 PRINT
540 PRINT Β,C
550 END

* Printkopf verschiebt sich nicht auf eine neue Zeile, sondern bleibt auf der
gedruckten Zeile stehen.

Im folgenden Programm wird der berechnete Wert und ein dazugehörender
Kommentar gedruckt.

0100 DIM Y (.99)
0110 INF'UT Α » Β ι XIr X2
0120 F l =ABS< XI>
0130 F2 =ABS<X2>
0140 F=F1+F2
0150 H=F/?8
0160 N=1
0170 Y<N) = (l / (A*SQR < 2»&F'I >)) *EXP < (Xl-B) t 2 / (- 2 * A 12))
0180 N=N+1
0190 X1=X1+H

Druckbild:
1. Zeile: leer
2. Zeile: leer
3. Zeile: Wert A
4. Zeile: leer
5. Zeile: Wert B+C

3 Mägerle, Programmieren in BASIC

34 3. Ausgabe-Anweisungen

0200 IF Χ Κ Χ Ξ THEN 0170
0210 N=1
0220 G=G+Y(Ν)
0230 N=N+1
0240 G=G+4*Y(N>
0245 IF Ν>=98 THEN 0280
0250 N=N+1
0260 G=G+2*Y(N>
0270 GO TO 0230
0280 N=N+1
0290 G=G+Y(Ν)
0300 PRINT ' DIE INTEGRATION ERGIEßT
0310 PRINT » y 'G = ' »G
0320 STOP
0330 END

Ist in einer zu druckenden Zeichenkonstante schon ein Hochkomma vorhanden,
muß dieses in der PRINT-Anweisung verdoppelt werden. Die Leerzeichenkon-
stante " wird in der PRINT-Anweisung als 18 Leerzeichen interpretiert.

100 INPUT υ,ν,νν,χ,γ,ζ
110 A=U+V+W+X+Y+Z
120 B=(U+V) * *W+(X+Y) * *Z
130 C=U/V*W+X/Y*Z
140 PRINT A,",B,"C
150 END

3.2 PRINT USING-Anweisung

Diese Anweisung wird im Zusammenhang mit einer FORMAT-Anweisung ver-
wendet. Die Druckzeilen können damit formal beschrieben werden. Diese
FORMAT-Anweisung wird durch einen Doppelpunkt gekennzeichnet, der
nach der Anweisungszeilennummer kommt. Schreibweise der PRINT USING-
FORMAT-Anweisung:

PRINT USING Zeilen, [, { ^ h . Ausd ,}] " " "

Γ fZeichenketteVl
L iDruckformat/J

Jede Ziffer der auszudruckenden Variable muß ein sogenanntes Ersatzzeichen
verwenden: # Nummernzeichen

100: A = - # # . # # # SUMME

Dieses Ersatzzeichen wird immer als Komponente des zu ersetzenden Zeichens
interpretiert. Zusätzlich können die Formate noch Vorzeichen und Dezimal-
punkt enthalten. Die Zeilennummer, die dem Schlüsselwort PRINT USING
folgt, ist dieselbe wie bei der FORMAT-Anweisung.

3.2 PRINTUSING-Anweisung 35

Beispiel:

100 INPUT A,B,C
110 X=A+B+C
120 Y=(A+B)*C
130 PRINT USING 140,Χ,Y
140: X = - # . # # # Y = - # # # . #
150 END

Enthält die FORMAT-Anweisung keine Elemente, wird nur um eine Leerzeile
vorgeschoben.

Jede Variable in der PRINT USING-Anweisung muß ein entsprechendes Format-
element vorweisen. Wenn die Anzahl Konstanten, Variablen oder Formeln der
PRINT USING-Anweisung die Anzahl der Druckformate der FORMAT-Anwei-
sung übersteigt, so wird die letztere wiederholend benutzt und auf der folgenden
Zeile fortgesetzt. Sobald das letzte Formatelement steht, setzt sich der Drucker
auf den Anfang der nächsten Zeile.

Programmbeispiel :

100 DATA 17,23,14.0,26.0,58,73,4.73,1.3
110 READ A,B,C,D,E,F,G,H
120 PRINT USING 130,A,B,C,D,E,F,G,H
130 :## .### # # . # # #
140 END

System:

17 23
14 26
58 73
4.73 1.3

Eventuell ausgedrucktes negatives Vorzeichen muß als Ersatzzeichen berück-
sichtigt werden. Sind nicht genügend Ersatzzeichen vorgesehen worden, um
den Wert einer Zahl zu drucken, findet ein Überlauf statt. An Stelle der Zahl
werden Sterne zur Kennzeichnung gedruckt. Ist die Anzahl Ersatzzeichen
größer als die Zahl der Ziffern, wird der Wert rechtsbündig ausgeschrieben.
Nicht benötigte Ersatzzeichen werden durch Leerzeichen ersetzt.

Beispiel:

200 PRINT USING 210
210:
220 PRINT USING 230
230:

Vorschub um zwei Leerzeilen

3 *

36 3. Ausgabe-Anweisungen

Beispiel:

100 DATA-18,130,5
110 READ A,B,C
120 PRINT USING 130,A,Β,C
130: # # , # # , # #
140 END

System:

A+B sind zu klein definiert (bei A Vorzeichen berücksichtigen).

Da für die Variable A nur zwei Ersatzzeichen definiert worden sind, aber die
Zahl aus drei Zeichen besteht, findet hier ein Überlauf statt. Hier werden
also die Sterne gedruckt. Mari beachte auch, daß für die Variable Β im
Druckbild der FORMAT-Anweisung zwei Ersatzzeichen definiert worden
sind. Das negative Vorzeichen sollte aber auch berücksichtigt werden. Wir
müssen folgende Gegebenheiten beachten:

Plus-Vorzeichen im Druckformat ergibt beim Drucken:

* Wert positiv +
* Wert negativ -

Minus-Vorzeichen im Druckformat ergibt beim Drucken:

* Wert positiv Leerzeichen
* Wert negativ -

Der zu druckende Dezimalpunkt erscheint immer dort, wo er im Druckfeld
spezifiziert worden ist.

3.2 PRINT USING-Anweisung 37

CS o Ul 4»
3 4* Ul 4> ζ

4V
C5 o 4* ul 4*
α 4>
_¡ # o 4*

0- 1-ü_ co 4» o 4h
». u •
Ul 4t CD 1- 4N <t l-l 4*
LL· ζ 4* 3 4 li 4» 4> 4h

α Η-4*
». ν 4* i» 4> m co 4* Ul 4h

». ». 4> CO ι <r 4h tu ι co 4» Μ ι 4» 1— I 1-1 1 4h 1— 1 ζ I 41· <L 1 41· 3 1 4* 13 1 41- C3 1 4h ».
<£. 1 4> d UI 1 41· O α ι 4» u ijí 1 41· CS κ
O 1 ζ 41· co 1 o 4H CO ». CJ 1 (-1 4t M 1 π- 4* <Λ ~ ζ 31 1 α. 4». H CJ -C 1 n 4t· ». * vt ζ 1 LÉ 4H <l> CCù. ο I CJ 4)· ζ υ I CO 4* a. ».
ÜJ I O Ul 4h •s O 1 T-f a 4* a. C-J 3 1 in 3 IH UI 1 o ». * O ζ 1 <r
». CD O 41- ». » a
». ». Ζ ζ 4» ι— C-i ζ f-H 4* 3 η o ~ M

o o 0- «J-
•o in o o
o o 1- Ι-

Ο o o r j
a cd

Η Η Η Η
LÉ LÉ li LÉ LL Ü. 0. Δ.

CO H 3 CJ 3 ι- α ζ o w et í : a.

4»
o. \ ζ » i-l * O ι \ » h > c n i n o u 4* Ζ « H K II II II li * ÜC ÜJ " O. CO 3 <L ££ U

Ü: en
a 3 CO

tH ¡E
C3 lì.

o o ID Τ :
τ*

_J +
II

II 0--1

II

o
•ί-ο

^ o- _i ι- o
-J Z h l · ÍCHX Q U. U. O Ct ill o ζ H H l t i Z O l l l

o
^-<9··«·^·ιτ)ΐηΐΓ)!ιΤΐΓ)ΐι·)ΐηι/)ΐηΐ0^·0~0Ό<ι-0>0-0ΌΌ o o o c o o c o c o o o c o c o o o o o o o o o

38 3. Ausgabe-Anweisungen

Sind in einer zu druckenden Zahl nicht alle Dezimalstellen berücksichtigt wor-
den, wird auf die letzte Stelle gerundet. Die PRINT USING-Anweisung kann
auch die Exponentialform als Druckbild verwenden. Jede Zahl in Expontial-
darstellung, ζ. B.

ΙΑ ΊΗΛ in-2

Faktor Basis Exponent

kann auch in BASIC geschrieben werden. Die Basis 10 muß durch den Buchsta-
ben E ersetzt sein, gefolgt vom Exponenten mit seinem Vorzeichen. Obige Zahl
würde auf der Ausgabeliste so aussehen:

14.371E-02

Damit diese Darstellung erreicht wird, muß in der PRINT USING-Anweisung
das E, Vorzeichen vom Exponent und Exponent selbst durch einen /
(= Schrägstrich) gekennzeichnet werden. Für den Faktor vor dem E bleiben
die bisherigen Regeln erhalten.

Beispiel:

100 DATA 156137
110 READ A
120 PRINT USING 130Λ
130: A=-###.###/ / / /
140 END

System:

A=156.137E03

Übersteigt der Exponent 99, wird das ganze Druckbild der Variablen durch
Sterne gekennzeichnet; der Wert hat also einen Überlauf.

Beispiel:

100 X=157E98
110 PRINT USING 120,Χ
120: X=##.#////
130 END

Bemerkung: Exponent größer als 99.

Mit der PRINT-Anweisung können auch Zeichenvariablen gedruckt werden. Sind
hier weniger Ersatzzeichen definiert als es die Variable verlangt, werden rechts-
bündig die überzähligen Zeilen nicht gedruckt.

System:

3.3 MAT PRINT-Anweisung 39

Beispiel:

100 DATA 200,'DIFFERENZ',300
110 READ A,B$,C
120 PRINT USING 130,A,B$,C
130: A = # # # , # # # # # # # # , C = # # #
140 END

System:

A=200,DIFFEREN,C=300

Man beachte, daß für Zeichenkonstante 'DIFFERENZ' nicht genügend Ersatz-
zeichen vorgesehen wurde.

3.3 MAT PRINT-Anweisung

Mit dieser Anweisung können ganze arithmetische Bereiche (Matrizen) ausge-
druckt werden. Es genügt also eine Anweisung, damit Zeile um Zeile einer de-
finierten Matrix gedruckt wird. Dazwischen liegt immer eine Leerzeile. Der Beginn
einer neuen Matrix wird mit zwei Leerzeilen gekennzeichnet.

Schreibweise:

MAT PRINT
i)

Matrixname
[• ' ' [0

Komma oder Semikolon geben auch in der MAT PRINT-Anweisung an, wo die
einzelnen Elemente der Matrix gedruckt werden sollen. Ein dem Matrixnamen
folgendes Komma setzt den Druckkopf auf die nächste verfügbare lange Druck-
zone. Folgt hingegen dem Namen ein Semikolon, wird der Druckkopf auf die
nächste kurze Druckzone gesetzt, nachdem jedes Element der Matrix gedruckt
worden ist. Die Länge der kurzen Zone wird durch die Größe der Konstante
bestimmt. Ist am Ende einer MAT PRINT-Anweisung kein Komma oder Semi-
kolon vorhanden, wird die zuletzt aufgeführte Matrix in der Langzonenauftei-
lung gedruckt. Genügt die Zonenbreite für eine Matrix nicht, wird auf der
folgenden Zeile fortgefahren.

Beispiel:

100 DIM S(10,10),N(5,6)
110 DATA 17,23,58,97,11,63,82,41
120 MAT READ S(2,2),N(2,2)
130 MAT PRINT S;N,
140 END

40 3. Ausgabe-Anweisungen

System:

17 23
58 97

11 63
82 41

Das Semikolon in der obigen MAT PRINT-Anweisung verursacht das Drucken
der Elemente der Matrix S unter Benutzung der kurzen Druckzonenaufteilung.
Das Komma veranlaßt das Drucken der Elemente der Matrix Ν in der Langzone
Um die Matrixelemente in einfacher bzw. doppelter Genauigkeit verwenden
zu können, ist nur der schon mehrmals erwähnte Betriebssystembefehl verant-
wortlich.

3.4 MAT PRINT USING-Anweisung

Mit der FORMAT-Anweisung werden ganze Matrizen ausgedruckt. Es gelten
die Regeln der PRINT USING-Anweisung. Jede gedruckte Zeile ist von der
nächsten durch eine Leerzeile getrennt. Bei mehreren Matrizen trennen zwei
Leerzeilen die eine von der andern.

Schreibweise:

MAT PRINT USING Zeilenr., Matrixname [, Matrixname]. . .

Í Zeichenkette V
l Druckformat/

Druck-
format

Í Zeichenkette Ì
\ Druckformat J

Beispiel:

100 MAT PRINT USING 110,F
110: RESULTAT # # # #

Ubersteigt die Anzahl Matrixelemente eine Reihe in der FORMAT-Anweisung,
wird auf der folgenden Zeile die restliche Matrix gedruckt. Ist die Anzahl Ele-
mente der Matrixreihe kleiner als die in der FORMAT-Anweisung, wird das
Drucken beim ersten nichtverwendeten Element beendet.

Beispiel:

100 DIM A(3,2)
110 DATA 70,110,40,10,30,80
120 MAT READ A
130 PRINT USING 140
140: KOL.l KOL.2
150 MAT PRINT USING 160Λ
160: # # # # # #
170 END

3.6 MAT PUT-Anweisung 41

System:

KOL.l KOL. 2

70 110
40 10
30 80

3.5 PUT-Anweisung

Die PUT-Anweisung setzt die Ergebnisse eines Programmes in eine Datendatei.
Auch diese Datei muß durch einen Betriebssystembefehl definiert sein.

Schreibweise:

PUT ('Dateiname'! Í arith. Ausdr. 1 farith. Ausdr. Ì
\ Zeich. Var.J ' \Zeich. Ausdr.J ['Zeich. Ausdr. j

Wenn die Anzahl der spezifizierten Ausdrücke in der PUT-Anweisung die Größe
der Datei übersteigt, resultiert daraus ein Ausführungsfehler. Nachdem der Wert
einer Variable in die Datei gesetzt worden ist, gleitet der Datenhinweiszeiger
auf den nächsten verfügbaren Platz weiter. Durch 'Dateiname' kann das System
die Beziehung zwischen Programm und Datei herstellen.

Beispiel:
ALLOCATE DATEI (DIFF)
100 INPUT Y6,R,W$
110 PRINT Y6,R,W$
120 PUT 'DIFF',Y6,R,W$
130 END

In diesem Beispiel setzt die PUT-Anweisung die Werte von Y6, R und W auf die
Plattendatei.

Das Programm nimmt mit dem Dateiname 'DIFF' Bezug auf die Plattendatei.
Stellt das System eine gültige Datendatei fest, ζ. B. in der PUT-Anweisung, so
wird diese Datei eröffnet. Die RESET-Anweisung kann im Zusammenhang mit
der PUT-Anweisung verwendet werden. Nachdem alle Daten auf der Plattendatei
sind, setzt eine RESET-Anweisung auf das erste Element. Diese vorhin erstellte
Datei kann also wieder zur Dateneingabe benutzt werden. Ist eine Datei erstellt,
muß vor Programmabschluß die Datei mit einer CLOSE-Anweisung abgeschlos-
sen werden.

3.6 MAT PUT-Anweisung

Die MAT PUT-Anweisung hat wie die vorangegangene PUT-Anweisung die
gleiche Wirkung. Errechnete Werte eines Programmes werden in eine Daten-

42 3. Ausgabe-Anweisungen

datei gesetzt, die in diesem Fall eine Matrix darstellt. Es werden nicht die
Werte einzelner Variablen abgespeichert, sondern die ganze Matrix.

Schreibweise:

MAT PUT {'zeich"V^'} - Matrixname [, Matrixname]. . .

Diese Daten der Matrix werden reihenweise in die Datenmatrix gesetzt. Werden
mehr Datenelemente in eine Matrix gebracht als definiert worden sind, tritt ein
Ausführungsfehler auf.

Beispiel:

ALLOCATE DATEI (DIFF)

100 DIM K(10,10),L(5,5)
110 MAT INPUT K(3,2),L(4,4)
120 MAT PUT 'DIFF',Κ,L
130 END

System:

Die MAT PUT-Anweisung speichert die zwei Matrizen Κ und L als Datei
auf die Platte.

Die RESET- und die CLOSE-Anweisung bewirken hier dasselbe wie in der PUT-
Anweisung. Die erstellte Matrix kann wieder als Eingabe dienen. Jedesmal bevor
die Datei verwendet wird, findet eine Gültigkeitsprüfung statt.

4. ERGIBT-Anweisungen

Es gibt drei Möglichkeiten, um Variablen, Bereichen und Matrizen Werte zuzuord-
nen. Diese Anweisungen lauten:

* LET-Anweisung
* DEF-Anweisung
* MAT-Zuordnungsanweisung

4.1 LET-Anweisung

Diese Anweisung wird verwendet, um arithmetischen oder Zeichenvariablen
einen Wert zuzuweisen. Auch die Vercodung von mathematischen Formeln
kann das Schlüsselwort LET gebrauchen.

Schreibweise:

[LET]

í arith. Var.
larith. Ber. Var.
Í Zeich. Var. I

Q Zeich. Ber. Var.J

(arith. Var. V
larith. Ber. Var. J
i Zeich. Var.
IZeich. Ber. Var

. . . = arith. Ausdr.

. . = arith. Ausdr.

Die Variable links vom Gleichheitszeichen kann entweder arithmetisch oder
alphanumerisch sein. Der Ausdruck rechts vom Gleichheitszeichen muß vom
gleichen Typ sein wie links vom Gleichheitszeichen. Das Schlüsselwort LET ist
wahlfrei. Wir können somit alle ERGIBT-Anweisungen auch ohne das Schlüssel-
wort vercoden.

Beispiel:
100 LET F=G+H
200 A = B * * 3
300 LET X=3
4 0 0 Y = 1 7

Wird in der Programmausführung einer Formel ein Wert berechnet, wird er der
Variablen links vom Gleichheitszeichen zugeordnet.

Beispiel:

100 LET F = D * * 2 * & P I / 4
200 V = R * * 2 * & P I * H
300 X 1 = (- B - S Q R (B * * 2 - 4 * A * C)) / (2 * A)
400 LET P = R * I * * 2

Man beachte, daß links vom Gleichheitszeichen mehrere Variablen vom gleichen
Typ stehen können. Diese Variablen müssen durch Komma getrennt sein. Sämt-

44 4. ERGIBT-Anweisungen

liehe Variablen erhalten dann den Wert rechts des Kommas zugewiesen. Man be-
denke auch, daß immer zuerst der Wert, ζ. B. aus einer mathematischen Gleichung,
der rechts vom Gleichheitszeichen steht, berechnet wird. Nachher wird der Wert
der Variablen links vom Gleichheitszeichen zugewiesen. Das hat im folgenden
Beispiel eine wichtige Konsequenz.

100 LET A,B,C=X+Y
200 U,V=X**5
300 LET G,H, 1=4
400 R,S,T=18

4.2 Auflösung arithmetischer Formeln

Sämtliche Berechnungen werden in Dezimalarithmetik durchgeführt. Die Resul-
tate werden bei einfacher Genauigkeit auf 7, bei doppelter auf 15 gültige Ziffern
gerundet. Die Genauigkeit wird durch einen Betriebssystembefehl definiert. Die
Ausführung von arithmetischen Operationen unterzieht sich einer Rangstufung.

Operationssymbol Operation

t oder ** Potenzierung
* Multiplikation
/ Division
+ Addition

Subtraktion

Drei wichtige Regeln gelten:

1. Rechenoperationen innerhalb von Klammern werden zuerst ausgeführt, dann
folgen diejenigen außerhalb der Klammern. Das innerste Klammerpaar hat
Priorität.

2. Operationen höherer Rangordnung werden vor den niederen ausgeführt. Die
Reihenfolge ist demnach folgende:
a) t oder #*
b) Plus- oder Minuszeichen vor der 1. Variable oder Konstante
c) * oder /
d) + oder -

3. Operationen gleicher Rangordnung werden von links nach rechts innerhalb
des Erscheinens ausgeführt.

4.3 DEF-Anweisung 45

Beispiel fìir die Lösung einer quadratischen Gleichung:

100 INPUT A,B,C
110 X 1=(-B+SQR(B t 2 - 4 * A*C))/(2* A)
120 X2=(-B-SQR(Bt2-4*A*C))/(2*A)
130 PRINT XI „X2
140 END

Die Maschine macht für die Variable X folgende Reihenfolge:

System: ?
Benutzer: 1,2,1
System: - 1

Xl=(-B+SQR(Bt2-4*A*C))/(2*A)
X 1=(-B+SQR(4-4*A*C))/(2#A)
X1=(-B+SQR(4-4*C))/(2*A)
XI =(-B+SQR(4-4))/(2 * A)
X1=(-B+SQR(0))/(2*A)
Xl=(-B+0))/(2*A)
Xl=(-2)/(2*A)
Xl=-2 /2
XI—1

Das gleiche Verfahren gilt für X2.

Unterstrichene Operationen zeigen die Reihenfolge. Man merke sich, daß
immer entsprechend der Genauigkeit die Resultate gerundet werden. Eine
Operation durch Null zu dividieren, verursacht einen Fehler, der zum Ab-
bruch der Programmausfuhrung fuhrt.

4.3 DEF-Anweisung

Die DEF-Anweisung ist kein ausführbarer Befehl. Sie wird zum Definieren
häufig benutzter mathematischer Formeln verwendet. Sie kann überall inner-
halb eines Programmes erscheinen. Das Ergebnis einer DEF-Anweisung wird
einer besonderen Variablen zugewiesen.

Schreibweise:

DEF Funktionsname (arith. Var.) = arith. Ausdr.

Der Funktionsname einer DEF-Anweisung ist immer FN, dem ein alphabetisches
Zeichen folgen muß. Dieser Name zeigt eine bestimmte Benutzerfunktion.
Wird innerhalb eines Programmes auf diese Funktion Bezug genommen,
springt das Programm automatisch auf diese Funktion und berechnet mit den
aktuellen Werten den Funktionswert aus. Am Ende dieses Vorganges springt das
Programm automatisch in die Programmzeile zurück, von wo es gekommen ist,

46 4. ERGIBT-Anweisungen

und rechnet dort mit dem in der DEF-Anweisung berechneten Wert weiter.
Diese arithmetische Variable kann nur in der DEF-Anweisung verwendet werden
und steht in keiner Beziehung zu einem Variablennamen außerhalb der DEF-
Anweisung. Dort wo arithmetische Variablen sind, kann auch eine DEF-Anwei-
sung stehen.

Beispiel:

100 INPUT A,B,C
110 DEF FNQ(X)=SQR((A+B)**X)
120 Z=FNQ(C)/4
130 PRINT A,B,C,Z
140 END

Bei Anweisung 120 springt das Programm auf Anweisung 110, setzt an Stelle
von X die Variable C ein. Sobald der Wert berechnet ist, fährt das Programm
in Anweisung 120 weiter und fuhrt die dortige Berechnung aus.

X Scheinvariable
C Aktualvariable

Eine DEF-Anweisung kann nicht auf sich selbst beziehen. Dieses würde einen
Ausführungsfehler bewirken.

Beispiel:

100 DEF FNY(V)=V/4+FNY(W)

Eine Funktion kann sich nicht auf eine andere Funktion beziehen, die die zu
definierende Funktion aufruft.

100 DEF FNC(W)=W+X/FND(Z)

400 DEF FND(W)=W+X*FNC(Y)

Maximal können 10 verschachtelte Benutzerfunktionen definiert werden. Das
folgende Beispiel zeigt verschachtelte Benutzerfunktionen:

100 DEF FNX(A)=A**4
110 DEF FNY(B)=A-FNX(B)

190 LET U=A*B
200 Z=FNY(U)

4.4 Die Benutzung von Systemfunktionen 47

4.4 Die Benutzung von Systemfunktionen

Es gibt viele mathematische Funktionen (ζ. B. trigonometrische), die immer
nur in mathematischen Problemen gebraucht werden. Diese Funktionen stellt
das Betriebssystem zur Verfügung. Sie können immer aufgerufen werden, sobald
sie eine mathematische Formel verlangt. Die Überlegungen sind ähnlich wie in
der DEF-Anweisung, nur müssen sie hier keine zusätzlichen Definitionen anfü-
gen. Die Genauigkeit der Funktionen wird der verlangten Programmgenauigkeit
entsprechen. Die folgende Tabelle zeigt die Systemfunktionen. Die Variable X
kann eine arithmetische Konstante, Variable, Bereichsvariable oder Ausdruck
sein.

SIN (X) Berechnet den Sinus von X Grad Bogenmaß.

COS (X) Berechnet den Cosinus von X Grad Bogenmaß.
TAN (X) Berechnet den Tangens von X Grad Bogenmaß.

COT (X) Berechnet den Cotangens von X Grad Bogenmaß.
SEC (X) Berechnet den Sekant von X Grad Bogenmaß.
CSC (X) Berechnet den Cosekant von X Grad Bogenmaß.
ASN (X) Berechnet den Arcussinus (in Grad Bogenmaß) der realen Zahl.

Wobei (-π/ 2)<ASN(X)<(t t /2) .
ACS (X) Berechnet den Arcuscosinus (in Grad Bogenmaß) der realen Zahl X.

Wobei (X I A C S (X) K l .
ATN (X) Berechnet den Arcustangens (in Grad Bogenmaß) der realen Zahl X.

Wobei - (π/2)<ΑΤΝ(Χ)<(π/2) .
HSN (X) Berechnet den Sinus hyperbolicus der realen Zahl X.
HCS (X) Berechnet den Cosinus hyperbolicus der realen Zahl X.
HTN (X) Berechnet den Tangens hyperbolicus der realen Zahl X.
DEG (X) Berechnet die Anzahl der Grade (Winkelmaß) aus (X) Grad Bogenmaß.
RAD (X) Berechnet die Anzahl der Grad Bogenmaß aus X Grad (Winkelmaß).
EXP (X) Berechnet den Wert von e x .
ABS (X) Berechnet den absoluten Betrag der realen Zahl X.
LOG (X) Berechnet den natürlichen Logarithmus (zur Basis e) der positiven

Zahl X größer als Null.
LTW (X) Berechnet den Logarithmus zur Basis 2 der positiven Zahl X größer

als Null.
SQR (X) Berechnet die Quadratwurzel der positiven Zahl X.
INT (X) Übergibt den ganzzahligen Teil der reellen Zahl X. Wenn X < 0 , dann

wird der zurückgegebene Wert der kleinste ganzzählige Wert sein.
INT(-3.14) ist gleich -3. Wenn X > 0 , dann ist der zurückgegebene
Wert der größte ganzzahlige Wert < X . INT (3.14)=3.

48 4. ERGIBT-Anweisungen

SGN (X) Stellt das Vorzeichen der reellen Zahl X zur Verfugung. Wenn
X<0, so ist SGN (X) = -1 ; wenn X=0, so ist SGN (X) = 0; wenn
X>0, so ist SGN (X) = +1.

RND [(X)] Stellt eine Zufallszahl in dem Intervall zwischen 0 und 1 entspre-
chend einer Gleichverteilung in diesem Intervall zur Verfügung.
Jede Zufallszahl wird aus der vorher gehenden errechnet ent-
sprechend des festen Algorithmuses.
Der Zufallszahlengenerator kann durch Spezifizierung eines Argu-
mentes initialisiert werden; das Argument kann eine beliebige Zahl
sein. Nachfolgende Bezugnahmen zu RND ohne die Benutzung
eines Argumentes bewirken, daß die neue Zahl aus der vorherge-
henden generiert wird.
Jedesmal wenn RND mit einem Argument aufgerufen wird, wird
der Generator mit dem absoluten Wert des Arguments initialisiert.
Wenn RND ohne ein Argument aufgerufen wird, und es wurde
keine vorhergehende Initialisierung durchgeführt, wird der Gene-
rator sich selbst initialisieren unter Benutzung eines durch die
Implementierung definierten Wertes.

DET (X) Stellt den Wert der Determinanten der quadratischen arithme-
tischen Matrix X zur Verfügung. Die Matrix muß entweder im-
plizit definiert worden sein oder explizit in einer DIM-Anweisung,
ehe sie als Argument in einer DET-Funktion benutzt werden kann.

Die folgenden Programmierbeispiele zeigen die Verwendung der definierten
Funktionen.

0100 INPUT A>BlrXl»X2»X3»Fl
0110 PRINT USING 0120
0120 : - I + I
0130 B=êiPI/Bl
0140 F=1
0150 G=0
0160 G=G+((COS(F*B)*SIN(F*X1))/F)
0170 F=F+2
0180 IF F > Fl THEN 0200
0190 GO TO 0160
0200 G1=G*4*A/Í.FI + 32.5
0210 G2=INT(G1)
0220 G3=G2
0230 S=0
0240 IF G3 = 32 GO TO 0520
0250 IF G3 < 32 GO TO 0280
0260 PRINT ' I';
0270 G3=G3-33
0280 IF G3 < 16 GO TO 0310
02V0 PRINT '
0300 G3=G3-16
0310 IF G3 < 8 GO TO 0340
0320 PRINT ' 'i
0330 G3=G3-8

4.5 MAT ERGIBT-Anweisungen 49

0340 IF G3 < 4 GO TO 0370
0350 PRINT ' '5
0360 63 =G3-4
0370 IF G3 < 2 GO TO 0400
0380 PRINT ' 'Í
0390 G3=G3-2
0400 IF G3 < 1 GO TO 0420
0410 PRINT ' 'ï
0420 IF G2 >= 32 GO TO 0500
0430 IF S = 1 GO TO 0480
0440 PRINT '.'!
0450 S=1
0460 G3=31-G2
0470 GO TO 0280
0480 PRINT '1'
0490 GO TO 0530
0500 PRINT ».'
0510 GO TO 0530
0520 PRINT ' .* 5
0530 X1=X1+X3
0540 IF XI > X2 THEN 0560
0550 GO TO 0140
0560 STOP
0570 END

READY
RUN

4.5 MAT ERGIBT-Anweisungen

Diese Anweisung untersucht den Matrixausdruck rechts des Gleichheitszeichens
und weist das Ergebnis der Matrix links des Gleichheitszeichens zu.

Schreibweise:

MAT Matrixname = (Matrbaiame j
l Matrixausdruck)

Der Matrixname ist immer ein alphabetisches Zeichen. Dieser Name muß in einer
Dimensionsanweisung definiert sein.

Beispiel:

100 DIM R(10,10),S(10,10)
110 MAT INPUT R
120 MAT S=R
130 MAT PRINT S,R
140 END

Mit Matrizen können auch Rechenoperationen ausgeführt werden. Dieses ver-
einfacht die Programmierung sehr wesentlich.

Die DIM-Anweisung muß immer verwendet werden, wenn mit Matrizen gerech-
net wird (siehe Kapitel 7). Gerade in der Matrizenrechnung gilt BASIC als sehr
vereinfacht.

4 Mägerle, Programmieren in BASIC

50 4 . ERGIBT-Anweisui igen

4.5.1 Matrix-Addition

Zwei Matrizen können addiert werden in Form eines einzigen Befehls.

Beispiel:
Κ Υ Ζ

1 4

8 6

3 11

13 9

Schreibweise:
MAT Z=X+Y

Dieser Befehl bewirkt die Addition von zwei Matrizen.

Zusammenhängendes Beispiel:
100 DIM X(3,4),Y(3,4),Z(3,4)
110 MAT INPUT Χ,Υ,Ζ
120 MAT Z=X+Y
130 MAT PRINT Χ,Υ,Ζ
140 STOP
150 END

4.5.2 Einsermatrix

Eine ganze Matrix kann durch einen Befehl auf 1 gesetzt werden.

Beispiel:

4 7 3

5 1 9

1 1 1

1 1 1

Schreibweise:

MAT A=CON

Es ist auch möglich, nur einen bestimmten Teil der Matrix auf 1 zu setzen.

Beispiel:
A A

1 1 1

1 1 1

MAT A=CON(2,3)

4.5 MAT ERGIBT-Anweisungen 51

4.5.3 Identitätsmatrix

Mit einem einzigen Befehl wird die Diagonale einer Matrix auf 1 gesetzt. Beginn
bei Element (1,1), endet bei Element (Ν,Μ).

Beispiel:
A A

21 5 14

9 2 23

3 8 19

1 0 0

0 1 0

0 0 1

Schreibweise:

MAT A=IDN

Bedingung ist, daß die Matrix quadratisch ist. Sonst muß die Matrix redefiniert
werden.

Beispiel:

17 5 18

9 12 7

2 S 11

3 14 1

1 0 0

0 1 0

0 0 1

Schreibweise:

MAT A=IDN(3,3)

4.5.4 Matrix-Inversion

Die Matrix muß zweidimensional und quadratisch sein.

Beispiel: Α Β

1 2

3 4

4 *

52 4. ERGIBT-Anweisungen

Schreibweise:

MAT A=INV(B)

Programmierbeispiel:

100 DIM A(2,2),B(2,2)
110 MAT INPUT Α,Β
120 MAT A=INV(B)
130 MAT PRINT Α,Β
140 STOP
150 END

4.5.5 Matrix-Multiplikation

Multiplikation zweier Matrizen

Beispiel:

1 3 5 7

9 11 13 15

17 19 21 23

25 27 25 31

100

260

420

580

Schreibweise:

MAT Z=X*Y

Programmierbeispiel :

100 DIM X(4,1),Y(4,4),Z(4,1)
110 MAT INPUT Χ,Y
120 MAT Z=X*Y
130 MAT PRINT Χ,Υ,Ζ
140 STOP
150 END

4.5 MAT ERGIBT-Anweisungen 53

4.5.6 Skalare Matrix-Multiplikation

Jedes Matrixelement wird mit einer Konstanten multipliziert.

Beispiel: A A
3 4

7 9

1 8

* 3 =

9 12

21 27

3 24

Schreibweise:

MAT A=(3)*A

4.5.7 Matrix-Subtraktion

Subtraktion zweier Matrizen mit einem Befehl.

Beispiel:
Χ Υ Ζ

21 24 17

9 3 12

18 11 15

9 11 15

7 1 3

16 2 8

12 13 2

2 to

9

2 9 7

Schreibweise:

MAT Z=X-Y

Programmierbeispiel:

100 DIM X(3,3),Y(3,3),Z(3,3)
110 MAT INPUT Χ,Y
120 MAT Z=X-Y
130 MAT PRINT Χ,Υ,Ζ
140 STOP
150 END

54 4. ERGIBT-Anweisungen

4.5.8 Transponieren einer Matrix

Die gegebene Matrix muß zweidimensional sein.

Beispiel: ^

Β

1 2 3

4 5 6

Schreibweise:

MAT A=TRN(B)

Programmierbeispiel:

100 DIM A(3,2),B(2,3)
110 MAT INPUT A
120 MAT A=TRN(B)
130 MAT PRINT Β
140 STOP
150 END

4.5.9 Nullmatrix

Mit diesem Befehl wird eine Matrix auf Null gesetzt.

Beispiel:

15 6 2 18

9 1 7 3

0 0 0 0

0 0 0 0

Schreibweise:

MAT X=ZER

Möchte man nur einen Teil der Matrix auf Null setzen, so kann diese redefiniert
werden.

4.5 MAT ERGIBT-Anweisungen

Beispiel:
Χ

15 6 2 18

9 1 7 3

Schreibweise:

MAT X=ZER(2,3)

5. Schleifen-Steuerung-Anweisung

Um bestimmte Instruktionen dauernd zu wiederholen, benutzt man die Schlei-
fenoperation. Die Programmierung von Schleifen wird in der Mathematik viel
verwendet (Iteration). Diese Wiederholung von Operationen wird Schleife ge-
nannt, die durch zwei BASIC-Anweisungen gekennzeichnet ist. Die Befehle
heißen FOR und NEXT.

5.1 FOR- und NEXT-Anweisung

Diese Anweisungen werden immer verwendet, um eine Reihe von Operationen
mehrfach durchführen zu können. Die FOR-Anweisung zeigt den Beginn und
die NEXT-Anweisung das Ende der Schleife.

Schreibwéise:

FOR Steuervar. = arith. Ausdr. TO arith. Ausdr.
[STEP arith. Ausdr.]

NEXT Steuervar.
Programmierbeispiel:

100 INPUT A,B,C
110 FOR N=A TO Β
120 X=A*B
130 Y=A+B
140 FOR K=1 TO A+B
150 Z=(X+Y)*#K
160 PRINT Ζ
170 NEXT Κ
180 NEXT Ν
190 END

Der Parameter STEP zeigt das Inkrement (Erhöhung des Wertes der Schleifen-
variable). Beim Weglassen ist die Erhöhung immer eins. Man beachte, daß sich
die Variablen in der FOR-wie in der NEXT-Anweisung entsprechen müssen. Die
Verwendung einer negativen Schrittweite ist auch erlaubt.

Beispiel:

200 FOR A=50 TO 1 STEP -1

300 NEXT A

5.2 Schachtelung von FOR-Schleifen 57

Wird die Schleife zum ersten Mal durchgeführt, erhält die Variable den Anfangs-
wert im FOR-Befehl. Für jedes weitere Mal erhöht sich die Variable um die
Schrittweite. Bei negativer Schrittweite wird der Wert der Variablen um den
Betrag verringert. Dies wird so lange fortgesetzt, bis der minimale Wert der
Variablen erreicht ist. Zu diesem Zeitpunkt wird das Betriebssystem die weitere
Programmausführung der dem NEXT-Befehl folgenden Anweisung übergeben.
Nach Beendigung der Schleife bleibt der Betrag der Schleifenvariablen erhalten.
In BASIC hat man die Möglichkeit, eine Schleife zu verlassen.

Programmierbeispiel:

100 INPUT Χ,Υ,Ζ
110 FOR A=X TO Y
120 Z=X**Y
130 IF Z>1E50 THEN 150
140 NEXT A
150 END

5.2 Schachtelung von FOR-Schleifen

Schleifen können in Reihe, verschachtelt oder einzeln geschrieben werden. Man
nennt eine Schleife verschachtelt, wenn sie total in einer andern enthalten ist.
Maximal neun Schleifen können verschachtelt werden. Bildliche Darstellung
der drei Schleifenarten:

Reihe verschachtelt einzel

58 5. Schleifen-Steuerung-Anweisung

Es ist unmöglich, daß Beginn und Ende einer Schleife in zwei verschiedenen
Schleifen sind. Dies würde zu einer Fehlermeldung fuhren. Die folgende Darstel-
lung zeigt, was erlaubt bzw. unerlaubt ist.
erlaubt unerlaubt

6. Verzweigungs-Anweisungen

Zum Verzweigen in einem Programm stehen zwei Anweisungen zur Verfügung.
Diese zwei Instruktionen erlauben, je nach den Gegebenheiten des Programms
zu anderen Instruktionen zu verzweigen. Diese Anweisungen heißen GO TO
und IF.

6.1 GO TO-Anweisung

Dieser Befehl wird als unbedingte Verzweigung bezeichnet.

Schreibweise:

GO TO Zeilennummer
Die Ausführung wird der Instruktion übertragen, die die GO TO-Anweisung als
Zeilennummer enthält.

Beispiel:

0100 REM WIDERSTANDSCHALTUNG
0110 INPUT U r RIr R2 » R3 f R4
0120 PRINT Ί ' »'11'» Ί2'»'Ul'»'U2'»'U3'»'Ρ'
0130 IF U=?99 THEN 0250
0140 LET I~-U/ (R1*R2/ (R1+R2) +R3+R4)
0150 LET U2=I*R3
0160 LET U3=I#R4
0170 LET U1=U-U2--U3
0180 LET I1=U1/R1
0190 LET I2=U1/R2
0200 LET P=U*I
0210 PRINT Irli»I2rUlrU2rU3rP
0220 LET U=U+0.5
0230 IF U>200 THEN 0110
0240 GO TO 0140
0250 STOP
0260 END

6.2 Computed GO TO-Anweisung

Die GO TO-Anweisung kann von noch einer Bedingung abhängig gemacht wer-
den. Es können mehrere Zeilennummern angeführt werden. Den verschiedenen
Zeüennummern müssen ein ON und eine Variable folgen. Je nach dem Inhalt
der Variable springt das Programm nach einer der Zeilennummern. Es wird nur
der ganzzahlige Wert der Variable untersucht (Integer). Enthält also die Va-
riable X den Wert 6.873, dann wird X die Zahl 6 enthalten. Ist der Inhalt der
Variable kleiner 1 oder größer als die Anzahl der angeführten Zeilennummern

60 6. Verzweigungs-Anweisungen

in der GO TO-Anweisung, wird die Verzweigung ignoriert, und die Programm-
ausführung wird bei der dem GO TO Befehl folgenden Instruktionen fortgesetzt.

Schreibweise:

GO TO Zeilenr. [[, Zei lenr .] . . . ON arith. Ausdr]

Bei der Programmausführung kann ein Fehler auftreten:

* angesprochene Zeilennummer ist im Programm nicht vorhanden,

* Zeilennummer bezieht sich auf sich selbst

Programmierbeispiel:

100 INPUT A
110 GO TO 120,140,160,180 ON A
120 X=A**3
130 GO TO 200
140 X=A**4
150 GO TO 200
160 X=A**5
170 GO TO 200
180 X=A**6
190 GO TO 200
200 PRINT A„X
210 IF A=99 THEN 230
220 GO TO 100
230 STOP
240 END

Erklärungen zum obigen Beispiel:

Enthält A den Wert 2, so springt das Programm auf Anweisung 140. Enthält
A eine 1, so wird der Befehl mit Zeilennummer 120 ausgeführt.

6.3 IF-Anweisung

Diesen Befehl nennt man bedingt. Wenn die Bedingung erfüllt ist, wird die Pro-
grammausführung der in diesem Befehl angegebenen Zeilennummer übertragen.
Trifft dies nicht zu, so wird die Programmausführung mit dem der IF-Anweisung
folgenden Befehl fortgesetzt. Es sind zwei Schreibarten gültig:

IF

arith. Ausdr.
arith. Ber. Var.
Zeich. Var.
Zeich. Ber. Var.

>vergi. Op

arith. Ausdr.
arith. Ber. Var.
Zeich. Var.
Zeich. Ber. Var.

{THEN 12ei] e n r

GO TOj

6.3 IF-Anweisung 61

In der IF-Anweisung werden spezifizierte Bedingungen abgefragt. Die gültigen
Operationen sind:

Vergleichsoperatoren

Zeichen auf dem
Drucker und der
Bildschirm-Einheit

< =
> =
¥=odei <> <
>

Zeichen auf
Kartenlocher/
Prüfer
< =

> =
" oder < >
<
>

Funktion

Kleiner oder gleich
Größer oder gleich
ungleich
Kleiner als
Größer als
Gleich

Die vergleichenden Elemente müssen vom gleichen Typ sein (numerisch oder
alphanumerisch). Eine weitere Anwendung ist das Prüfen und Sortieren von
Daten in einer bestimmten Reihenfolge. Der Vergleich von zwei Datenelementen
vollzieht sich von links nach rechts.

Beispiel:

0100 REM NAEHERUNGVERFAHREN ZUR UURZELBERECHNUNG
0110 REM BERECHNUNG ALLER POSITIVEN ZAHLEN
0120 REM PROGRAMM ENDET MIT 111 EINTIPPEN
0130 INPUT A
0140 IF A=111 GO TO 0240
0150 X=A
0160 F=X
0170 X=0.5*(X+A/X)
0180 IF F-X <0.0001 GO TO 0210
0190 PRINT X
0200 GO TO 0160
0210 PRINT X fA
0220 PRINT
0230 GO TO 0130
0240 STOP
0250 END

Es treten Ausführungsfehler auf:

* angegebene Zeilennummer ist im Programm nicht vorhanden
* Zeilennummer in der IF Anweisung bezieht sich auf sich selbst.

7. Das Definieren von Bereichen

Wir haben zwei Möglichkeiten in BASIC, einen Bereich zu definieren:

* DIMENSIONS-Anweisung benützen
* Dem System die Definition selbst überlassen (siehe arithmetische

bzw. Zeichenbereichsvariablen).

7.1 DIM-Anweisung

Die DIM-Anweisung gestattet es, Bereiche (Tabellen) ein- oder zweidimensional
in beliebiger Größe zu definieren.

Schreibweise:

D I M(Matrixname (Index) \
IZeichenbereich (Indi

ÍMatrixname (Index) V
'IZeichenbereich (Index)J ι (Index)J

Die Bereiche können arithmetisch oder alphanumerisch sein. Eine Matrix kann
nur einmal definiert werden und dies mit einer DIM-Anweisung. Wir müssen aber
von der Möglichkeit einer Redefinition Gebrauch machen.

Beispiel:

100 DIM A(100),B(10,7)
200 DIM C$(7),D(2,3)
300 DIM E(30,30)

Der Index einer Matrix in der DIM-Anweisung muß immer ein ganzzahliger
Wert sein. Die in der Matrix eingesetzten Werte müssen vom gleichen Typ sein,
wie die Matrix definiert worden ist.

Beispiel:

100 DIM A(30,30),B(30,30),C(30,30)
110 MAT INPUT A(5,5),B(5,5)
120 MAT C=A*B
130 MAT PRINT A,B,C
140 END

Man merke sich: Wird ein 100 Element-Bereich benötigt (er ist jedoch nicht
mit diesem Wert definiert), findet das Programm ein abnormales Ende.

8. Kommentierung eines Programmes

Ein Programm kann mit Hilfe eines Kommentars näher erläutert werden. Bemer-
kungen können nur zwischen den Anweisungen vorhanden sein.

8.1 REM-Anweisung

Die REM-Anweisung ist ein nichtausführbarer Befehl. Er wird nur zur Erklärung
von Programmteilen verwendet. Bemerkungen sind nur im Quellenprogramm
vorhanden. Bei der Ausgabe von Daten sind diese Kommentare nicht mehr zu
finden.

Schreibweise:

REM [Kommentar]

Beispiele:
100 REM
200 REM PROGRAMMENDE
300 REM A=D**2#&PI/4

Beispiel:

0100 REM
0110 REM**
0120 REM*** MATHEMATISCHE OPTIMIERUNG SIMPLEX-ALGORITHMUS ***
0130 REM**» E. MAEGERLE S/3 CENTER ZUERICH ***
0140 REM**************«««**********»·****«*****************»**
0150 REM
0160 PRINT
0170 PRINT r'INPUT ZEILE II SPALTE J1 '
0180 PRINT
0190 INPUT IlfJl
0200 1=11
0210 J=J1
0220 DIM A(30r30)fB<30>FC(30F30>
0230 PRINT
0240 PRINT ,'INPUT MATRIX A '
0250 PRINT
0260 MAT INPUT A(IfJ)
0270 11=1
0280 11=2
0290 PRINT
0300 IF AUlrJl) < 0 THEN 0340
0310 11=11+1
0320 IF II > I THEN 1070
0330 GO TO 0300
0340 13=11
0350 PRINT r'DIE PIVOTZEILE BETRAEGT : '
0360 PRINT
0370 REM

8. Kommentierung eines Programmes

0380 REM CHARAKTERISTISCHE QUOTIENTEN
0390 REM
0400 Jl=l
0410 PRINT »A(IlfJl)
0420 J1=J1+1
0430 IF J1 > J THEN 0450
0440 60 TO 0410
0450 Jl=l
0460 PRINT
0470 PRINT ι'DIE CHARAKTERISTISCHEN QUOTIENTEN BETRAGEN:'
0480 PRINT
0490 12=1
0500 B(Jl)=--A(I2fJl)/A(IlfJl)
0510 PRINT fB(Jl)
0520 J1=J1+1
0530 IF J1 <= J-l THEN 0500
0540 REM
0550 REM KLEINSTER CHARAKTERISTISCHER QUOTIENT
0560 REM
0570 Jl=l
0580 G=B(J1)

9. Hinzufügen von Programmsegmenten

Es gibt Programm teile, die immer wieder benutzt werden müssen. Damit diese
nicht dauernd geschrieben werden müssen, verzweigt man jedesmal in diese
Programmteile. Diese Teilabschnitte werden Routinen genannt.

9.1 GOSUB- und RETURN-Anweisung

Die GOSUB-Anweisung überträgt die Programmausführung einer spezifizierten
Routine. Es wird dabei die gegebene Zeilennummer angesprungen. Ist diese
Zeilennummer nicht vorhanden, dann wird die Programmausführung beendet.
Sollte die angesprungene Anweisung nicht ausführbar sein (ζ. B. Bemerkung), so
wird der nächste durchführbare Befehl gesucht. Am Schluß einer Routine muß
eine RETURN-Anweisung stehen. Diese übergibt die Programmausführung dem
Befehl nach der GOSUB-Anweisung.
Schreibweise:

GOSUB Zeilennummer

RETURN [Kommentar]
Routinen können andere Routinen aufrufen. Man sollte aber darauf verzichten,
da die Programmübersicht verloren geht. Richtiger ist, von der Routine wieder
ins Hauptprogramm zurückzuspringen, bevor eine weitere Routine aufgerufen
wird.

Programmbeispiel:

100 INPUT A,B,C

160 GOSUB 300
170

210 GOSUB 300
220

300 REM ROUTINE

- 360 RETURN ROUTINE END
370 END

S Mägerle, Programmieren in BASIC

10. Stoppen der Programmausführung

Es bestehen verschiedene Möglichkeiten, um ein Programm zu stoppen:
* Eine der Anweisungen STOP, END oder PAUSE
* Benutzung von INQUIRY REQUEST (Unterbrechung des Programms

an der Konsole eingeleitet)

10.1 END-Anweisung

Die END-Anweisung muß die letzte Zeile eines Programms sein. Diese Instruk-
tion zeigt das Ende des Quellenprogrammes an. Die Programmumwandlung
wird dadurch beendet.

Schreibweise:

END [Kommentar]

Ist keine END-Anweisung vorhanden, wird die Instruktion mit der höchsten
Zeilennummer als letzte Anweisung betrachtet. Das BASIC-Betriebssystem
setzt hier selbständig eine END-Anweisung.

10.2 STOP-Anweisung

Die Programmausführung muß immer mit einer STOP-Anweisung enden. Diese
Instruktion kann überall im Programm stehen.

Schreibweise:

STOP [Kommentar]
Die STOP-Anweisung hat keinen Einfluß auf die Programmumwandlung. Es sind
mehrere STOP-Anweisungen in einem Programm möglich, im Gegensatz zur
END-Anweisung. Durch die Logik eines Programms können wir mit Hilfe von
GO TO oder IF nach einer STOP-Anweisung springen.

Beispiel:
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250

REM NAEHERUNGVERFÄHREN ZUR WURZELBERECHNUNG
REM BERECHNUNG ALLER POSITIVEN ZAHLEN
REM PROGRAMM ENDET MIT 111 EINTIPPEN
INPUT A
IF A=111 GO TO 0240
X=A
F=X
X=0•5» < X+A/X)
IF F-X <0.0001 GO TO 0210
PRINT X

0160
Xf A

GO TO
PRINT
PRINT
GO TO
STOP
END

0130

10.3 PAUSE-Anweisung 67

Es ist auch möglich, eine Programmausfiihrung mit einem Sprung auf die END-
Anweisung zu beendigen. Von der Programmlogik aus gesehen ist dies eine sehr
eher ungünstige Methode.

200 IF X>10 THEN 300

300 PRINT 'X>10 '
310 STOP
320 END

In diesem Beispiel wird nicht direkt auf die STOP-Instruktion gesprungen. Der
Grund dafür ist: Bevor der STOP angesprungen wird, soll mit dem PRINT-Befehl
eine Meldung gedruckt werden.

10.3 PAUSE-Anweisung

Diese Anweisung führt zum zeitweisen Stoppen des Programms, das sich in der
Durchführung befindet. Diese Unterbrechung kann zum Überprüfen von Zwi-
schenergebnissen benutzt werden.

Schreibweise:

PAUSE [Kommentar]

Wenn in der Programmausführung eine Pause stattfindet, wird ein zugehöriger
Kommentar geschrieben (Das Betriebssystem erledigt dieses).

Beispiel:

150 X=A**4

160 IF X > B GO TO 250

250 PAUSE

System: PAUSE STATEMENT AT 0250

Im PAUSE-Status dürfen gewisse Betriebssystembefehle verwendet werden.
Drücken der Programmstart-Taste bewirkt die Fortsetzung des Programms.

5 *

11. Verbindung von Hauptprogrammen

Mit dem folgenden Befehl lassen sich Programmaufrufbefehle in ein Quellenpro-
gramm einbauen. Das hat eine ähnliche Wirkung wie bei Subroutinen.

11.1 COM-An Weisung

Der Programmaufruf kann sowohl als Konstante als auch Variable gestaltet sein.

Allgemeine Schreibweise:

170 COM ^ [WITH r 2]

Beispiel:

300 COM 'RUN PGMB' Bewirkt die Ausführung von Programm Β
' ν '

Konstante

oder

300 C$='RUN PGMB'
310 COM C$,

Variable

Die COM-Anweisung ist immer in starkem Zusammenhang mi t der PICK-Anwei-
sung, die im Kapitel 11.2 behandelt wird.

Zusammenhängendes Beispiel:

Programm A

100 A$='RUN PGMB'
110 PRINT 'AUSFUEHRUNG PROGRAMM A'
120 COMA$
130 END

Programm Β

100 PRINT 'AUSFUEHRUNG PROGRAMM B'
110 COM 'RUN PGMC' WITH 'PARAMETER'
120 END

Programm C

100 PRINT 'AUSFUEHRUNG PROGRAMM C'
110 PICK AS
120 PRINT 'AUSFUEHRUNG PICK', A$
130 END

11.1 COM-Anweisung

Die Durchführung dieser Programme bewirkt:

AUSFUEHRUNG PROGRAMM A
AUSFUEHRUNG PROGRAMM Β
AUSFUEHRUNG PROGRAMM C
AUSFUEHRUNG PICK PARAMETER

Logischer Ablauf:

^ START

COM A$

COM 'RUN PGMC'
WITH 'PARAMETER'

PRINT 'AUSFUEHRUNG
PICK' ,A$

^ ENDE

PGMA

70 11. Verbindung von Hauptprogrammen

PGMA bewirkt Aufruf von PGMB und dieses ruft PGMC auf. Die Zeile
PRINT 'AUSFUEHRUNG PICK', A$

bewirkt ein nochmaliges Laden von PGMB, weil A$='RUN PGMB'.

Die Zuordnung
PICK A$ in PGMC
besagt, daß nur die Konstante nach dem Schlüsselwort WITH in PGMB verwendet
werden darf.

11.2 PI CK-Anweisung

Dieser Befehl erlaubt jederzeit, auf die Konstanten nach dem Schlüsselwort
WITH zuzugreifen.

Allgemeine Schreibweise:

130 PICK r

Für r ist nur eine alphanumerische Variable gestattet, die maximal 18 Stellen
lang sein darf.

Zusammenhängendes Beispiel:

PROGRAMM A

100 X$='RUN PGMB'
110 Y$='AUSFUEHRUNG PICK PARAM'
120 COM X$ WITH Y$
130 END

PROGRAMM Β

100 PICK Y$
110 PRINT Y$
120 END

Gedruckte Liste:

AUSFUEHRUNG PICK PARAM

12. A n h a n g
if .δ δ * κ

I ε
•a
κ
£

2
α> s υ £ i4-1
:0 Ο . .
00 <L> <D "β tí

co
8 ή
S 5

-ι
«a ct>
ν tí ~ <U
3Ά co Q

-I <
6 o C

•s »-I
3 Ό J>

ce Q

ê υ
O

Ό c

s Ν C α> oo C
3

υ a 3 C <u «
α> .S α>
" s υ O
1 1 Q> 5 Q «S

CA .tí .y s 1-4 O (M
S tí ω t-t tí e> O la 'ca tí » 'Ñ a>
co Q

β ì c <
ó (Λ <
m k O •σ

« Ä

.2 ω

3 C
6
'S II
s >

« 1>

j- ω ' .2 'S S oo

e β E E
3 Ν
Ol

S c o ν·»
•a 3 te. te. »
Q

tS

S*
3 •S υ ε <o «
Q §

72 Anhang

• ω
S *
e e A <u

Ρ ® t i ·α
O TS

• S §

o 3
C ÍB •S Jä OD 3 «> o 05 00

e.á «3 α> οο
Crt

S

4>
2 c3 O oo »
.a S •O T3
« S O £

0J c
°5
tfl
S
C υ
CS
Q

4>
Ή
• •-Η τ> —̂<
ce
Q
ά <υ
cd
Ο
ώ
•8
C1

Β

Ν <υ Cu

•S <3

c
ω M CU •β
Vi
S
α o -t-t Λ
Q

CO υ
3

&
c υ C
'S
•S m 3 T3

-S S
00 Ν

a υ Ό M υ
£

•s S,
1 S < g1

s
On

a>
I

ω <

" w
Ό Ζ
S3 ·-.

•g·«

O H

•a
3 <

S »

I

3
p-l
ai
O

cä 3 ε
a*
i s
ü a <

§?
I

ε s

s >

ë
'S

s >
t-4 «
03
θ
'S

s >
¡3 CS (D > «

J3 xi
33 S s s Ν Ν

cd >
u* cd >

s >

υ CQ ce
> β
•S é a a
'C h Λ Λ ce 3 Ν Ν

•S
υ
cd Q

«Β

S >

•S

" h "
ω
α

3

ζ
ο

ε ε
3

υ Ν

β> ε ε
3 C e υ β υ Ν

Ο
Η
Ο
Ο

3
c
•6 S ·-S o

ν-. <U Q,

•¿Ή»

•5 .a

3
J3 y
ω Ν

3 <

3 <

Ζ
i Im
cd
S

.S
α>
cd Q

t i υ

S >

<υ Ν
H
W
Ü
H

12.1 Zusammenfassung der BASIC-Anweisungen 73

e υ
s -S •»•H
_r Λ ? s
ci α <u S
« e
ω sí
S I CJ Ν

Ow O Οι ι—I Β* »-J .a
<1 -ö

e β S d> ax¡ ι- β> i : οο
« Κ,
Sao a ω ω
Ή α ^ υ Τ* -*-» tu cd
S ° Ss .2 "S3 -3 β> ζ. α Ä οο <3

%
3 "β .ta
.a ? Ό +•»

« i > 0) > 00 «s Μ
c s o w
Ή s> κ g » 3

υ C §
i e

1 1
α> a
^ s

•o

s s
1 5

.a <a M 3 -*-> cd

'ω Ν
£ a 09 m

•α 2 « οο 12 o C li 3 Cu l-l 3 α> S ·β

α IM O
•s -s

•S td •a s
•i c « qj

•«-»

Ά S

Mia
•g S « &

υ
w e
9 ë .
g s s
Έ Λ 5 " β> 9 S β s Ό ώ
•s t ™
3 S U
« Ν ι—)
c S I-J
"S κ* <!

<o
£

tu

3 <

£

3 <

'S

ζ
i

I H

cd

e υ
<D
-s

ω ^
υ Ν
Xi cd 00 C
ω l-i υ
•S
tu
13
op
•σ
e
:c9
co ra o >
efl 3
ε
00 α

I %
< .a

Ä á

ë1
3

ε s

3 <

•s
3
C

Om
Ζ HM
H
C
s

"S
3 <

3
C

ζ
.a

.s υ
•S

T3 <u Ν «!> XI cd

w

.S a> («ι

00
'S
c :cd

O >
cfl 3 6 00 c
3 δ
£ c <
» <D

1

ζ
.a M -W ce
s

cd
S
H
Ζ
S eu
H <
S

4> r · C H
S Ζ •8 g
2 *
Q S
« f-
S >« 3 (/)
M "

S1
. . D 4) cä
£ 0>
_H C
1 ^ 2 <υ
S c V M Λ 3
υ <υ •S XI
£ -a Ν "
c S

Ό O
S J2 s « Ν S
c Q 0

1 I ε 4> ti CO ω
.8 £ ω c
hà c
κ .2 3 -3 •ν Λ
fe E
δ J
κ «a

^ S

i

«

Ζ
.à I»
CO
S

7 4 A n h a n g

υ

• S
4>
CO

3

c
υ

1 3

O

a
- α

GO

υ

h J

υ

• S
<u

- s
1-1
3

Ό

S

β>

Q

c
υ

cd

Q

c
υ

t :
o>

00 N
β υ
3 Λ (Λ en

' S O

·

< ® . a
h " 2 a
< 3 9
a l s

Ό
Ό

CA

3

• S ¿

3 <

Ή
cd

3

3

5 1

I I

. a s
H Cd

S .
cd

S ι

3
M

Oí

H

Ή

a
a>

X>
<u
0 0

. s
υ

> C

2 "
" 3 J J ~ Q

ν a

Ν < »
C O

' Ñ ' S (V>

H i
C O «

S
ff

• i
o

' -*—*
o

« t s

s
> 00

5 3 5 > . .
• h > -h l t o fl)

3 . a
' S O U
S Ν Ν

• S

cd
>

£
' S

cd
>

M
υ

O Q

' S

cd
>

ω
OQ

Λ J 3
S S
o ' S

Ν Ν

o C
- w a>

S ff ^

^ I s

s s «
• S J . a

a - v . a
« «

t u g

ω b

. S Ό t u : s

o ' S - s
O O <o i >

3
_ Ν

S c
S , »
ε τ x i
^ . s
ν c

3 <
£
' S

s >
a >

3 <

cd

' S

cd
>

J 3 S
> m

J 3 x i
o o

ä s 2 S

S S Ä $

H

S

I cd

. a Ό

S3 ¿

υ
C

Ό
Ι - ι
O

T3
C
3

M
o

2

a l

cd

S
c
υ

. S
t u

υ
C

CQ

g
Ν
t u
ft

. S 3

S - s

S ' S

fli ^ 0 0 tí
i - t 5?

ω s

3

<d

S

I I
t u

I
l>4

- M
ce

s

H <
s

c
α

¡ O
M
e

0
»

g
α>

X>
C
υ

ff
1 s
I <

H

C

s

. s

J 3
o

= 5
• o

co
3 <

cd

S

• α

. S
GO

0

1

• a
3

α
o

S

c
t u .a
t-H ·+-»
ce

s
»H
tD

' S
£
Ν

α
O

• π
0

cd

d i

T S .
+•»

3

. a
M «

5

c

1

cd

ε
υ

6
c d

ε
t-4
t u

Ό
Ό

C

o

2

8 « -*-»

c
o

C
o e

• S S
•fc¡ - g

5 ed

î S

. a s a
£ ' g
Ν S

S 2

H a 2

O £

T 3
α
t u
0 0

- s s
T 3

c o
3 <¡

. a
u*

4- *
CO

S

ζ
5 ?

s s

12.1 Zusammen fassung de r B A S I C - A n w e i s u n g e n 75

• ö
e
3

O
Uh

υ
C

X ¡
o CO
υ
οο
C

' S

ε

«
c

<υ
Τ3
Ο

Χ>
.2
ce >

C

¡2
α>

•S

ε
Λ

C
Ο

Ζ s

. a

• s ~ Ο Λ
«ss s

s *
•—ν
<υ

ο
er,

ο "
CI
Ό e
υ

? £
S §

* . a

Β ¿

g . a

•S 5

•a s

cd
s

m

. a t-.
Λ

S

.a t-t -M CQ

' δ
•g

3

•a
al

« O

^ «

I s S 2
<§ s
3 ω

3
Ζ
« '

<ο . 2
S ·*?

ΐΛ

w

Ά
J-H
cd

s

c
υ

Ό

υ CL>
I— U4 ν CD υ CA

Ό
O

•O
O •9

,Μ
<u Ο

α> n> ο
.S C . 3
ω δ α>

-4-» -»-J

υ α>
C/3 co co

ώ ώ ώ

/-"Ν
Γ—1

Q

ί *
. a

* s

a * . a
δ ?

s:
o

4> ^ λΤ*
^ Ü w g S

(Κ 2 Ζ > ^
ω o g ζ o í
ν υ Η s η

ω

ο
C
S

<υ
5Í
C
< !
<L>

Ü
ω
ζ
¡2 "
ο
t i ,

Λ
>

3
π>

>-4
Η
Χ
ω
Ζ

c
υ

τ 3 »H
υ

Ζ

S
te
α .
ω
00
00
α 3

I <
Pi
Ο
b
1-.
α>
C

cS
3
ε
00
c
§

δ
£
c

C

bo
ff
S

£ s

00
c
3

¿t

CQ

IX)
en
D <
eu

c
<o

• o

M

oo
O

S .a co

• S *

i ä
Ν · 3
<D ~
ft"d OH

s · -
. 2 3 « ί ob
•α ' s 7 3 c
•M 3 · β 3
ω Λ C S
Ή C <u - S
•g s j a g

cd :c3 ΐ
09 Q £ a

2 3 <<

•a
S3 Ν

α>
ε
ε
3
C
Ö
<o
ω

Ν

O
Ζ
C/3

Η
Ζ
ΗΗ
0Ä
Cl,

,Ο Ό
C ο

S S

^ S 4) Ih Ν Q

7 6 A n h a n g

e .
S ®
Π λ
rtj Λ

- S 00
Ν ™

S 5
Ν <
ω α,

ci ίΛ
ο ®

^ . s

s g
s
c 5

aa Ω

.•a

M
H <

Ν 1 fll I—I
û J

^

' S c
<5 υ
« C

Ω ' S
c CJ JS

3
•Ö

00
c
3

3
c
<u
ce

Q

•S «3
J Q

S
α

< - ë

< 3

Q S

S δ . 3 M
<u υ

C
<υ

• o

U - OL,

.23 £
ο π » α
S S

® A

Ό <U
^ Χ)
00 α

t i
δ <υ

a - i

e
ο O

ω
Η <

<u

¿ 3 <4-1
•Ο

¿ i
ν *
' Ñ
<U

υ
Ο
J

Ι-ι
ω
1-4

Q . - J Ι-ι
ω
1-4

(Λ
C

υ
C S

•M
c

S

2Ρ

cd C S

2Ρ
Ω δ

S έ χ Oí +-» <3 Μ
e rt 3 < Ω •Ο

c
<υ

S
£ c

. S ü
Sed Q

. 2
• o «
« t a
o o α
4= 8
O o

S - 3

(D C
« - í ®
9 < - S
¿ H u

<2 <
Â O
Q o>
>-< c o · »
α «
ν Jä

o
00 M

3
£

Ή>

υ

s »
3

C ω

A " β

S 3 <<
s s

cd Ν

Λ Ό
1 s <<

' C ω
c3 Ν

. S M
<o es
3 >

t í «
Ν

s
O H

π)
>

co
>

CO
>

é
' 5

ni
>

x i
u

<u «

•rj u ο
« N N

c3
> β

A
> .

c3
(U ^

RI
>

υ
CQ

- C - C o O -»-> . S
' Π Έ ω «>
λ a Ν Ν

Ω <

00
α
3

Μ

<ο
QQ

00
c
3

ν
CQ

ω
04
Ο
Η
00
ω
o¿

12.2 Übersicht der S y s t e m f u n k t i o n e n 7 7

^ §
·»-> ÖO
•2 c
oo 3

' «Γ S
Ë <u

I <

a
0)

o
^ C

- o
·"> t í
*> S

Ü * * ir*

£ op
00 C

Œ> es -»-» wa
C 3 => <

S -
¡S o
« 3

p » a
w S 4)

00

00
c

M 00
ï O

•ο τ ι Ü

ω
Ό
00
C
3
l-t

i co
3

< „

* i
••-> S
e - s Οι 00
o o -»-» Im

w α ,

•s: ,CJ

Ρ ω
<5

ε
s

«5

+-» i-» •t-»

•a,

' S

S
• a

' 3 c

δ
$

3 cd

s «
& $

§ 2 3
cu

Ü

o
O

3
υ

O O
t i
u

o
α> <L> υ

sí

o Ί-» υ
X ! o 4> o o Q>

e β .
o

< s
3

P*
Oh
O

£
c

' 3 •o '5> T3 W ' S
r í « <N « (Ν
O o O o o

V V ». y ν

χ · § χ
— ο —

<υ ·

t í
cd CA
C «>
lu Ό

O s
S S)
•S c D —t
a . 3

a . e
- S «

*© o
2 C

X · § X
- ο -

Χ I
— o

V X «

* Ί J 3 <4-1

£
3

•a υ
ε
υ

PQ

Ο

fe

φ e
ο

ε
e

à

JE
υ
2

2
O

ο ι
evi

s
•S •κ*
•J*
κ

«ζ

λ.

«S.

6?
3

Κ •a
A i
Κ £

S
ε
e
υ
oo
O

03
Χ
c
o >
ta
3

. s
GO

X
Ζ l-H
CO

«
oo
O «

X
c
o >
VI
3
C

' S
o

o

Χ
w
o
o

«
00
o

03
X
e
g

Χ

7 8 A n h a n g

ν

Ä
3
S
υ

O

<4-4
3 «

S *
α
o • ä

• 3 > · »
S
ö
υ

Ü
υ

«O

<u

• ä

ω >

Ο . C

•s 5
2 Ì

S
C
υ

Ο
<υ

Χ !
υ

.5
4>

Ο '

• a s

e
υ

Ο
υ

• ö
03
<υ

S»
3

<Ν

υ
Ο .
Oh e

VO " g g

2 i §

ν , ν χ ν t ν χ

χ - 8
— ο

χ Ή
— 3

Χ

<υ

— 3 «

ω
$

Ρ
C3
Ö
υ

Ο
υ

•S
,<ο

" δ *

Ι g
« s
c - S

ο . a

o ¡ >

α . e

2 c

ν . ν χ

χ Ί
— o

ζ : Ό z z i
Χ

Ον

Ο

y/
1-Η

Μ/

χ Χ

m
<N
t s

V

X

i o
<N
(N

V

X

3
ε
c
ω
0 0
O «

X
α
o >

o
u

ε e
CD
0 0
O «

e
o >

α> co
o

υ

Χ
G
0 >
Vi

1
c o
h*

%
o

• e
υ
α . >>

Κ

e
ο >
eΛ
3
β

Ο
υ
I—ι
ι υ

J 3
CJ
ce

" ο
VH
<υ
Ο ,

£

Χ
Η
Ο
ο

Χ
«

VX

Κ
ν—'
υ
S/3
υ

ζ
0 0 <

Χ

ί / ί
υ
C

χ

ί ζ ;
Η
<

ε ε
ο ο υ
Κ 5 5

12.2 Übersicht der Systemfunktionen 79

Ov o> O
V
X

OD
§

H bri O Λ 8
O

3 Ν
•o Vh

' O O <u -Η
δ Η V/
Κ 33 Χ

e
G <u £

3 Ν
Ό WH
'Β

\ Χ
? V/
sc χ

ο
ν
χ

e ο

ο> ON Ο 1-Η
V
χ

χ •ο <β
§ Ο > .S c zi
S 1 •s I 2 a Eoo _ o 3 09

C o
χ «a
s 6
o C > ο Γ- 00
s 5 C CO
-s .S
2 T3
ε s Ρ o

VO
O) r-(N (Ν
V
Χ

<u ca
:0 t-i 00
C <υ α o
S1
ω α> Λ υ

e e υ »
o"

3 Χ
M C
Ζ g

χ <γ
& ν
W X

o
V
X

c o >
υ £ m 4> •*-» 3
Xi <

O
Λ
Χ

ce II
Ï *
S g
X |

s ?
i l
S X S X M t-t W A [Τ Λ fe 00 X 00 ψ-O O OH J J J J

ο ο Ο
Λ Λ Λ
Χ Χ

ο
Χ

<Ν »-H οι (ή t—ι '55 Λ ca WH
II
Χ

(β «
IH

II
Χ 3 c 3 c Χ Ν c Ν c Χ Χ

c
υ * Χ

c
υ Ì (Λ

3 ο ο" ο ^ ο" 'S Β <Λ 3 •Ο t-l
'5

VI 3 •Ο 1-1
£

'S Β

00 Γΐ o O _) -J

ΐ * 00 .a « £ «
Ν £

<D Ι-

<0 O > e ON Vi % s Ξ ω
V

"S
S

o*
ON O I
V

% s
o S
c¿

-H
s v
3 pí a
<3 ν § Ν O O

X
G O >
a υ Η Wh <υ •SP

Χ
Ζ Η Κ

R
s ω Q

Χ
Q Χ

S ω

R Χ
μ Gf
0Q Ο C J

χ

Ö

χ &
ο J

& Β
& δ

Χ

80 A n h a n g

V

Χ

.a t-l
Λ

S

o*
Ov
O
1 - 1 c
V g

- s Ι-ι
3

" β Ñ
•O c
C ω • S Ι-Ι
»i ÖD

S Λ
S ° 0 r<->

S o

1 Ό

à §
Χ · £
ω C
S £

Si
' Ξ

υ
Τ »

C

g

II
o
II

S x s

e
υ

J 3

O w „
w « w

· § S) o o " o
' S o V il Λ
g t Χ Χ X O ρ « j ν

> £ .ss .<a . a

. a

X 5

. a s

Ζ ζ ζ
O o O
t o -

CO

s
»-)
υ

•o

j>
c

C
<υ

- β

. S
CD

« β

ε
υ

Q

Χ
χ

' C

SN
<υ

g - s

S S £ δ
. Ό **

-<=> o .ss

M ι-ι u.

Χ « Λ

^ 5o So
ω c c
Q "a

12.4 System-Konstanten

12.3 Obersicht der BASIC-Ausdrücke

81

arith. Kon. Eine arithmetische Konstante ist ein numerischer Wert.

arith. Var. Eine arithmetische Variable ist ein alphabetisches Zeichen von
A bis Z, @, # oder $ oder ein alphabetisches Zeichen direkt
durch ein numerisches Zeichen 0 bis 9 gefolgt.
Eine arithmetische Variable stelle einen numerischen Wert dar.

arith. Ber. Var. Eine arithmetische Bereichsvariable ist ein alphabetisches
Zeichen, direkt gefolgt durch einen Index in Rundklammern
eingeschlossen. Eine arithmetische Bereichsvariable stellt
einen numerischen Wert dar, der an der Stelle des Bereichs
enthalten ist, die durch den Index angezeigt wird.

arith. Ausdr. Ein arithmetischer Ausdruck kann eine arithmetische Kon-
stante, Variable, Bereichsvariable oder eine Formel sein.

Zeich. Kon. Eine Zeichen-Konstante ist eine Folge von Zeichen, die in
Hochkommatas gesetzt ist.

Zeich. Var. Eine Zeichen-Variable ist ein alphabetisches Zeichen -A bis Z,
oder $ — direkt von einem Dollarzeichen gefolgt. Eine

Zeichen-Variable stellt eine Folge von Zeichen dar.

Zeich. Ber. Var. Eine Zeichen-Bereichsvariable ist ein alphabetisches Zeichen
und ein Dollarzeichen, direkt gefolgt von einem in Klammern
eingeschlossenen Index. Eine Zeichen-Bereichsvariable stellt
eine Zeichenfolge dar, die an der Stelle des Bereiches enthalten
ist, die durch den Index angezeigt wird.

Zeich. Ausdr. Ein Zeichen-Ausdruck kann eine Zeichenfolge, Variable oder
Bereichsvariable sein.

Matrix-Name Ein alphabetisches Zeichen, A bis Z, # # oder $, gefolgt
oder nicht gefolgt durch in Klammern eingeschlossene
Matrix-Dimensionen.

12.4 System-Konstanten

Name der Konstanten
(kann bezeichnet werden)

&PI (π)
&E (e)
&SQR2(V2) =

Wert-einfache
Genauigkeit
3.141593
2.718282
1.414214

Wert-doppelte
Genauigkeit
3.14159265358979
2.71828182845905
1.41421356237310

6 Mägerle, Programmieren in BASIC

82 Anhang

12.5 Arithmetische Operatoren

Zeichen auf dem Drucker
und der Bildschirm-Einheit
t oder #* *

Zeichen auf dem
Kartenlocher/Prüfer
! oder •*

Funktion

Potenzieren
Multiplikation
Division
Addition
Subtraktion

*

/ /
+ +

12.6 Syntax-Symbole

BASIC-Anweisungen und Befehle (System- und Dienstprogramme) haben fol-
gende Symbole gemeinsam:

[] Eckige Klammern: Diese zeigen an, ob die eingeschlossene Angabe,
Angaben oder Gruppe von Angaben je nach Belieben benutzt werden
kann oder nicht.

Geschwungene Klammern: Diese Klammern enthalten zwei oder
mehrere Angaben, unter denen eine Auswahl getroffen werden muß.

Unterstreichungsstrich: Dieses Symbol zeigt den gewählten Ausdruck
an durch Unterlassung, wenn kein wahlweiser Parameter angegeben
wurde.

Fortsetzungspunkte: Dieses Symbol zeigt an, daß die vorhergegangene
Angabe mehr als einmal in einer Folge wiederholt werden kann.

Die folgenden Symbole müssen immer so benutzt werden, wie sie in einer An-
weisung oder Befehls-Syntax gezeigt werden:

() Runde Klammern
/ Schrägstrich
' ' Hochkommas (Einzelne Anfuhrungsstriche)

Ausdrücke, die Großbuchstaben enthalten, müssen stets so benutzt werden, wie
sie in Anweisung und Befehls-Syntax gezeigt werden.
Ausdrücke, die Kleinbuchstaben enthalten, stellen Informationen dar, die vom
Benutzer gewählt werden müssen.

Kommata: Der Gebrauch von Kommata in der Syntax wird unter
„BASIC-Anweisungen" und Befehle erklärt.

12.7 Ausgetestete Programmierbeispiele 83

12.7 Ausgetestete Programmierbeispiele

Lösung von linearen Gleichungssystemen

READY
LIST
0100 DIU ή(30»30)
C110 INPUT E»NI
C120 PRINT ».'PROGRAMM 7 '
0130 N2--NH 1
0140 REM MATRIX EINLESEN
0150 REM
C1Ó0 REH
0170 MAT INPUT A(N1»N2)
0180 REM
0190 REM
0200 REM F'lVGTELEMENT SUCHEN
C210 FOR 1=1 TO N1
0220 X1=ABS<A<I»I))
0230 L - I
0240 K i = I H
0250 FOR K=K1 TO N1
0260 IF X1-AES(A(K»D) >= 0 THEN 0280
0270 X1=AES(A<K»D)
0275 L Κ
0280 NEXT Κ
0290 REM PIVOTELEMENT KONTROLLIEREN
0300 IF XI-E > 0 THEN 0340
0310 PRINT »'PIVOTELEMENT » ' » X I » ' KEINE LCESUNG'
0320 STOP
0330 REM ZEILENAUSTAUSCH
0340 FOR J=1 TO N2
0350 B=A(I»J)
C360 A (I » J) =-A (L :< J)
0365 A(L Ϊ J)=B
0370 NEXT J
0380 REM PI»OTZEILE/PIVOTELEMENT
0390 M=N1+1
0400 Α(Ι .Μ)=Α(Ι»Μ)/Α(Ι»Ι)
0410 IF M--I <= 0 THEN 0450
0420 M=M-1
0430 GO TO 0400
0440 REM SPALTENELEMENTE = 0 (SUBTRAKTION)
0450 IF 1 - 1 *<-- 0 THEN 0430
0460 N=1
0470 GO TO 0520
0480 N=I
0490 N"N+1
0500 IF N-I = 0 THEN 0490
0510 IF N-Nl > 0 THEN 0570
0520 M=N1+1
0530 A < Ν » M) == A (Ν » M) - A (Ν » I) * A (I » M)
0540 IF M I {= 0 THEN 0490
0550. M=M 1
0560 GO TO 0530
0570 NEXT I
0580 REM AUSGABE
0590 FOR 1=1 TO N1
0600 PRINT »X' , I»A(I»N2)
0610 NEXT I
0620 STOP
0630 END

6

84 Anhang

READY
RUN

ÌE-12»3

1 » 1 » 1 » ó

1»-1,1,2

1 > 1 » 1,0
X
X
X

READY

Lösungssystem der mathematischen Optimierung

Beispiel:

Ein Landwirt will 100 ha. Land bepflanzen
Eingesetztes Kapital: 1100,-
Verfügbare Arbeitstage: 160 Tage

Kartoffeln Getreide zur Verfügung

Kosten pro ha 10 20 1100
Tage pro ha 1 4 160

Gewinn in DM 40 120

Wie muß er den Anbau organisieren, um einen maximalen Reingewinn zu er-
zielen?

Schon dieses Beispiel wird zeigen, wie aufwendig der ganze Rechenprozeß aus-
fallen kann.

Ungleichungen:

lOXj + 20X2 < 1100

Xl + 4X2 < 160

Xj + X2 < 100

X! >0
X2>0

Maximaler Reingewinn: 40X¡ + 120X2 =Max.

PROGRAMM 7

1 1
? 1

12.7 Ausgetestete Programmierbeispiele 85

Die Ungleichungen müssen in einheitlicher Form geschrieben werden:

Y t = - 10X! - 2 0 X 2 + 1100

Y2 =-X1 _ 4 X 2 + 160

Y 3 =-X1 - X 2 + 100

Objektfunktion Ζ = 4 0 X j + 120X2

Matrix

- X | 10 1 1 - 40

- x 2 20 4 1 - 120

1 1100 160 100 0

Y l Y 2 Y 3 Ζ

- X l 10 1 1 - 40

- x 2 20 1 - 120—»-Pivotzeile

1 1 1 0 0 / - " ^ 160 100 0—»-letzte Zeile

40 100—«• charakteristische Quotienten

Pivotelement Pivotkolonne

Matrix nach 1. Austauschschritt

- Χ ι

- Y 2

ι

Y i
5

- 5

300

- X 2

0.25

0.25

40

Y 3

0.75

- 0 . 2 5

60

Ζ

- 10

30

4800

- X a

0.25

0.25

40

160

Y 3

0.75

- 0 . 2 5

60
80 — »

Ζ

- 10—»-Pivotzeile

30

4800

charakteristische Quotienten

Pivot-
element

kleinster charakteristischer Quotient
Pivotkolonne

86 Anhang

Matrix nach 2. Austauschschritt

- X , - X 2 Y3 Ζ

- Y l 0.2 0.05 0.15 2

- Y 2 - 1 5.25 0.5 20

60 25 15 5400

Die Objektfunktion wird somit:

Ζ = - 2Y¡ - 20Y2 + 5400

Xj =60

X2 = 25

Da Yi > 0, Y2 0 verlangt wird, ist der Reingewinn

Ζ = 5400

und wird mit

X1 = 60 (Kartoffeln)

X2 = 25 (Getreide)

erreicht.

Regeln für Pivot
— Wahl der Pivotzeile: Ihr Element in der letzten Kolonne (Z) muß < 0 sein.

Sind mehrere Elemente < 0, so kann irgendeine Zeile, die das negative
Element enthält, ausgewählt werden. Der gesamte Algorithmus wird
abgebrochen, sobald alle Elemente der letzten Kolonne (Z) > 0 sind.

— Wahl des Pivots in der Pivotzeile: Man suche die Elemente der Pivotzeile
heraus, die > 0 sind und bilde die zugehörigen charakteristischen Quo-
tienten. Der kleinste unter ihnen gibt die Stelle des Pivots an.

Regeln für Austauschschritt

— Das Pivotelement geht in seinen reziproken Wert über.

— Die übrigen Elemente der Pivotkolonne sind durch das Pivotelement zu divi-
dieren.

— Die übrigen Elemente der Pivotzeile sind durch das Pivotelement zu divi-
dieren und mit dem entgegengesetzten Vorzeichen zu versehen.

— Ein Element im Rest der Matrix wird transformiert, indem man aus
4 Elementen das Rechteck bildet, das in der gegenüberliegenden Ecke den
Pivot enthält; dann ist die Rechteckregel anzuwenden.

12.7 Ausgetestete Programmierbeispiele 87

Regeln für charakteristische Quotienten

Jeden Quotienten erhält man, indem jedes Element der letzten Zeile durch das
darüberstehende Element der Pivotzeile dividiert wird.

Der gezeigte Lösungsweg fur die mathematische Optimierung steht als BASIC-
Programm zur Verfügung.

Lösung:

OlOO REM
O H O REM**
0120 REM*** MATHEMATISCHE OPTIMIERUNG SIMPLEX-ALGORITHMUS ***
0130 REM*** E. MAEGERLE S/3 CENTER ZUERICH ***
0140 REM**
0150 REM
0160 PRINT
0170 Ï'RINT ,'INPUT ZEILE II SPALTE J1 '
0180 PRINT
0190 INPUT IlfJl
0200 1=11
0210 J=J1
0220 DIM A<30»30)jB(30)»C(30f30>
0230 PRINT
0240 PRINT r'INPUT MATRIX A '
0250 PRINT
0260 MAT INPUT A<I,J)
0265 11=1
0270 PRINT
0280 IF A(IlrJl) < 0 THEN 0320
0290 11=11+1
0300 IF II > I THEN 0950
0310 GO TO 0280
0320 13=11
0330 PRINT r'DIE PIVOTZEILE BETRAEGT : '
0340 PRINT
0344 REM
0345 REM CHARAKTERISTISCHE QUOTIENTEN
0346 REM
0350 Jl=l
0360 PRINT fA(IljJl)
0370 J1=J1+1
0380 IF J1 > J THEN 0400
0390 GO TO 0360
0400 Jl=l
0402 PRINT
0405 PRINT t 'DIE CHARAKTERISTISCHEN QUOTIENTEN BETRAGEN:'
0406 PRINT
0410 12=1
0420 B(Jl)=A(I2fJl>/A(Il»Jl)
0425 PRINT FB<J1>
0430 J1=J1+1
0440 IF J1 <= J-l THEN 0420
0490 REM
0500 REM KLEINSTER CHARAKTERISTISCHER QUOTIENT
0510 REM
0520 Jl=l
0530 G=B(J1)
0540 IF G < B(J1> THEN 0560
0545 J4=J1
0550 G=B(J1)
0560 J1=J1+1

Anhang

0570
0580
0590
0600
0610
0620
0630
0640
0650
0655
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0870
0875
0880
0920
0925
0930

0932
0933
0934
0935
0936
0937

< J THEN 0540
F'KLEINSTER CHARAKTERISTISCHER QUOTIENT BETRAEGT:

'fA<IlFJ4)

IF J1
PRINT
PRINT
PRINT F'PIVOTELEMENT BETRAEGT
PRINT
REM
REM AUSTAUSCHSCHRITT
REM
J2=0
F=A<I1fJ4)
J2-J2+1
IF J2 < > J4 THEN 0700
C <11F J2) = 1/F
GO TO 0660
IF J2 <= J THEN 0720
GO TO 0740
C(I1FJ2)=A(I1FJ2)/(-F)
GO TO 0660
1 2 = 1
IF 12 <> II THEN 0770
GO TO 0780
C(I2fJ4)=A(I2FJ4)/F
1 2 = 1 2 + 1
IF 12 <= I THEN 0750
12 F J2=l
IF J2=J4 THEN 0840

IF 12=11 THEN 0840
C(I2FJ2)=A(I2FJ2>-A(I2FJ4)»A(I1FJ2)/F
J2=J2+1
IF J2 <= J THEN 0810
1 2 = 1 2 + 1
J2=l
IF 12 <=
13=13+1
11 = 13
J1=J
FOR 17=1

I THEN 0810

TO I
FOR J7=l TO J
A(I7FJ7>=C<I7FJ7>
PRINT FACI7FJ7)
NEXT J7
NEXT 17

0940 GO TO 0280
0950 PRINT F'»*»**** DER ALGORITHMUS IST BEENDET *******'
0960 PRINT
0970 PRINT
1010 PRINT
1020 PRINT F'DIE ELEMENTE DER ZIELFUNKTION '
1030 PRINT
1040 11=1
1050 J1=J
1060 "PRINT f'-Y'FI1F' = 'FC(I1FJ1)
1070 11=11+1
1080 IF II < I THEN 1060
1100 PRINT
1110 PRINT F'KONSTANTE DER ZIELFUNKTION : 'FC(IIFJI)
1120 PRINT
1130 PRINT F'FAKTOREN DER OPTIMIERUNG : '
1140 PRINT
1150 11=1

12.7 Ausgetestete Programmierbeispiele

1160 Jl = l
1170 PRINT , 'X' II

->

1180 J1=J1+1
1190 IF J1 < J-•1 THEN
1200 PRINT
1210 PRINT r Έ Ν D E
1220 STOP
1230 END

» C (I 1 t J l >

1170

D E R A R B E I T '

Ausgabeliste:

READ?
RUN

INPUT ZEILE II SPALTE J1

INPUT MATRIX A

20.4»1f-120

10.1.

??
iioo.

DIE PIVOTZEILE BETRAEGT :

20
4
1

-120

DIE CHARAKTERISTISCHEN QUOTIENTEN BETRAGEN:

55
40
100

KLEINSTER CHARAKTERISTISCHER QUOTIENT BETRAEGT

PIVOTELEMENT BETRAEGT: 4

-5
.25

-.25
30
5
.25
.75

- 1 0
300
40
40
4800

DIE PIVOTZEILE BETRAEGT :

S
.25
.75

-10
DIE CHARAKTERISTISCHEN QUOTIENTEN BETRAGEN:

¿0
160
SO

KLEINSTER CHARAKTERISTISCHER QUOTIENT BETRAEGT

90 Anhang

PIVOTELEMENT BETRAEGT:

-1
.5
.5
20
.2

-5.0E-2
-.15

2
¿0
25
15
5400

··»·*«· DER ALGORITHMUS IST BEENDET

DIE ELEMENTE DER ZIELFUNKTION
=> = > 20

2
KONSTANTE DER ZIELFUNKTION :

FAKTOREN DER OPTIMIERUNG :
40
25

E N D E D E R A R B E I T

Simulation eines Rechteckgenerators

Ein Rechteckgenerator besteht aus zwei Oszillatoren, die rückgekoppelt sind.
Man nennt dies auch einen Multivibrator. Anstatt nun diese komplizierte Meß-
schaltung aufzubauen, können wir die gegebene Funktion f(X) in BASIC pro-
grammieren. Der beiliegende Output zeigt, daß wir sehr genaue Resultate er-
halten.

Lösung:

0100 INPUT A»BlfXlfX2»X3rFl
0110 PRINT USING 0120
0120 : -I + I-
0130 B=Í,PI/B1
0140 F=1
0150 G=0
0160 G=G+<(C0S(F*B>*SIN(F*X1))/F)
0170 F=F+2
0180 IF F > Fl THEN 0200
0190 GO TO 0160
0200 Gl=G*4*A/4tPI + 32.5
0210 G2=INT(Gl)
0220 G3=G2
0230 S=0
0240 IF G3 = 32 GO TO 0520
0250 IF G3 < 32 GO TO 0280
0260 PRINT ' I'»
0270 G3=G3-33
0280 IF G3 < 16 GO TO 0310
0290 PRINT ' 'i
0300 G3=G3-16
0310 IF G3 < 8 GO TO 0340
0320 PRINT ' 'i
0330 G3=G3-8

12.7 Ausgetestete Programmierbeispiele 91

0340 IF G3 < 4 GO TO 0370
0350 PRINT ' 'i
0360 63 =G3-4
0370 IF G3 < 2 GO TO 0400
0380 PRINT ' '}
0390 G3=G3-2
0400 IF G3 < 1 GO TO 0420
0410 PRINT ' 't
0420 IF G2 >= 32 GO TO 0500
0430 IF S = 1 GO TO 0480
0440 PRINT 'i'r
0450 S=1
0460 G3=31-G2
0470 GO TO 0280
0480 PRINT 'I'
0490 GO TO 0530
0500 PRINT 'i'
0510 GO TO 0530
0520 PRINT ' i'S
0530 X1=X1+X3
0540 IF XI > X2 THEN 0560
0550 GO TO 0140
0560 STOP
0570 END

Rechteckimpuls 1. Art

y

α -

b
χ

Λ 2α

α - -

f (Χ) = ^ [' 4 a [ç o s b . s i n x + ç o s 3 b
7Γ 1 3

• sin 3 χ + • sin 5 χ + . sin 7 χ + . . .]

, Parameter

92

Ausgabeliste:

Anhang

RUN

0.5»4»--3»6.3»0.1»15
Gl XI

3.97752E-3 -3
3.92154E-3 -2.9

-1.00884E-2 -2.8
—9.12654E-3 -2.7
2.56408E-2 -2.6
1.76363E-2 -2.5

-.133879 -2 .4
-.380702 -2.3
-.541385 -2.2
-.532674 -2.1
-.470681 -2
-.480723 -1.9
-.525348 -1.8
-.514165 -1.7
-.475192 -1.6
-.488434 -1.5
-.527003 -1 .4
-.509959 -1.3
-.466519 -1.2
-.491909 -1.1
-.552705 -1
-.495325 -.9
-.277433 -.8
-5.18272E-2 -.7
3.4315E-2 -.6
9.61901E-3 -.5

-1.41376E-2 - .4
-3.50787E-3 -.3
5.6722E-3 -.2
1.85921E-3 -.1
0 0

-1.85921E-3 .1
-5.6722E-3 .2
3.50787E-3 .3
1.41376E-2 .4

-9.61901E-3 .5
-3.4315E-2 .6
5.18272E-2 .7
.277433 .8
.495325 .9
.552705 1
.491909 1.1
.466519 1.2
.509959 1.3
.527003 1 .4

.488434 1.5

.475192 1.6

.514165 1.7

.525348 1.8

.480723 I.?

.470681 2

.532674 2.1

.541385 2.2

.380702 2.3

.133879 2.4
-1.76363E-2 2.5
-2.56408E-2 2.6
9.12654E-3 2.7
1.00884E-2 2.8

-3.92154E-3 2.9
-3.97752E-3 3
-1.66502E-4 3.1
4.38886E-4 3.2
4.77183E-3 3.3
2.30836E-3 3.4

-1.22204E-2 3.5
-4.92936E-3 3.6
3.07148E-2 3.7
3.45266E-3 3.8

-.172976 3.9
-.418579 4
-.550658 4.1
-.521171 4.2
-.466182 4.3
-.488881 4.4
-.528455 4.5
-.506951 4.6
-.472725 4.7
-.495704 4.8
-.52915 4.9
-.501661 5
-.464454 5.1
-.503358 5.2
-.555155 5.3
-.467642 5.4
-.234471 5.5
-2.602E-2 5.6
3.47958E-2 5.7
3.19118E-3 5.8

-1.40735E-2 5.9
-9.1148E-4 6
5.55879E-3 6.1
1.16093E-3 6.2

-1.16629E-5 6.3

READY

12.7 Ausgetestete Programmierbeispiele 93

94 Anhang

Graphische Darstellung mit dem vorliegenden BASIC-Programm

1 0 . 2 0 . - 3 . 6 . 0 , 1 . 1 3

READY
OFF

12.8 Aufgaben zum Selbstlösen 95

12.8 Aufgaben zum Selbstlösen

1. Aufgabe

Für die Berechnung der Quadratwurzel kann ein Näherungsverfahren verwendet
werden.

Die verwendete Gleichung heißt:

F = 0,5 (X + A/X)

Wobei X laufender Näherungswert
A zu berechnende Quadratwurzel

Logik:

96 Anhang

Die Näherung gilt als genügend erreicht, sobald die Differenz von neuem und al-
tem berechnetem Wert kleiner als 0.0001 beträgt. Weiter soll jede Näherung,
wenn die gewünschte Genauigkeit noch nicht erreicht wurde, gedruckt werden.

Lösung:

.01.00 REM NAEHERUNGSVERFÄHREN ZUR WURZELBERECHNUNG
0110 REM BERECHNUNG ALLER POSITIVEN ZAHLEN
0120 REM PROGRAMM ENDET MIT 111 EINTIPPEN
0130 INPUT A
01.40 IF A=lii GO TO 0240
0150 LET X=A
0160 LET F~X
0170 LET X=0.5*(X+A/X)
0180 IF F-X<0.0001 GO TO 0210
0190 PRINT X
0200 GO TO 0160
0210 PRINT X.A
0220 PRINT
0230 GO TO 0130
0240 STOP
0250 END
0260 REM PROGRAMMENDE

Ausgabeliste:

462
231.5
116.748
60.3525
34.0038
23.7952
21.6054

.4945

.4942

.4942
21 .
21.
21.

?
200
100.5
51.245
27.5739
17.4136
14.4494
14.1454
14.1421
14.1421

144
72.5
37.2431
20.5548
13.7802
12.115
12.0005
12
12

462

200

364
182.5
92.2473
48.0966
27.8323
20.4553
1.9.1251
19.0788
19.0788
13486
6743.5
3372.75
1688.37
848.18
432.04
231.627
144.925
118.99
116.164
116.129
116.129

364

13486

144

12.8 Aufgaben zum Selbstlösen

2. Aufgabe

Es besteht folgende Widerstandsschaltung aus der Elektronik:

97

O — >

Das Verhalten der Schaltung bei steigender Spannung U soll untersucht werden.
Dabei findet das Ohm'sche Gesetz:

U = R · I

Verwendung.

Die total verbrauchte Leistung des ganzen Systems soll auch berechnet werden.

P = U I

Lösung:

0100 REM UIDERSTANDSCHALTUNG
0110 INPUT U>Rl'»R2>R3i>R4
0120 PRINT *I»»'X1'.'I2'»'U1'»»U2»»,U3'»»P»
0130 IF U-V99 THEN 0250
0140 LET I=U/<R1*R2/(R1+R2)+R3+R4)
0150 LET U2~I#R3
0160 LET U3=I*R4
0170 LET U1 = U-U2--U3
OIBO LET I1=U1/R1
0.190 LET I201/R2
0200 LET F=U*I
0210 PRINT :i»Il»I2iUl»U2»U3rP
0220 LET U=U+0.5
0230 IF U>200 THEN 0110
0240 GO TO 0140
0250 STOP
0260 END

READY
RUN

7 Mägerle, Programmieren in BASIC

98

Ausgabeliste
100»10ν 2 0 » 3 0 » 4 0
I

1 . 3 0 4 3 5
1 . 3 1 0 8 7
1 . 3 1 7 3 9
1 . 3 2 3 9 1
1 . 3 3 0 4 4
1 . 3 3 6 9 6
1 . 3 4 3 4 8
1 . 3 5
1 . 3 5 6 5 2
1 . 3 6 3 0 4
1 . 3 6 9 5 7
1 . 3 7 6 0 9
1 . 3 8 2 6 1
1 . 3 8 9 1 3
1„39565
1 . 4 0 2 1 7
1 . 4 0 8 7
1 . 4 1 5 2 2
1 . 4 2 1 7 4
1 . 4 2 8 2 6
1 . 4 3 4 7 8
1 . 4 4 1 3
1 . 4 4 7 8 3
1 . 4 5 4 3 5
1 . 4 6 0 8 7
1 . 4 6 7 3 9
i . 4 7 3 9 1
1 . 4 8 0 4 4
1 . 4 8 6 9 6
1 . 4 9 3 4 8
1 . 5
1 . 5 0 6 5 2
1 . 2 1 3 0 4
1 . 5 1 9 5 7
1 . 5 2 6 0 9
1 . 5 3 2 6 1
1 . 5 3 9 1 3
1 . 5 4 5 6 5
1 . 5 5 2 1 7
1 . 5 5 8 7
1„56522
1 . 5 7 1 7 4
1 . 5 7 8 2 6
1 . 5 8 4 7 8

I I
. 8 6 9 5 6 8
. 8 7 3 9 1
. 8 7 8 2 6 6
. 8 8 2 6 1 8
. 88696
. 8 9 1 3 0 2
. 8 9 5 6 5 8
. 9
. 9 0 4 3 5 2
. 9 0 8 6 9 4
. 9 1 3 0 5
. 9 1 7 3 9 2
.921744
. 9 2 6 0 8 6
. 9 3 0 4 4 2
. 9 3 4 7 8 4
.939136
. 943478
.947834
. 9 5 2 1 7 6
.956528
.960874
. 965220
. 969568
„97391
. 9 7 8 2 6 6
. 9 8 2 6 1 8
. 9 8 6 9 6
„991302
. 995658
1
1 . 0 0 4 3 5
1 . 0 0 8 6 9
1 . 0 1 3 0 5
1„01739
1 . 0 2 1 7 4
1 . 0 2 6 0 9
1 . 0 3 0 4 4
1 . 0 3 4 7 8
1 . 0 3 9 1 4
1 . 0 4 3 4 3
1 . 0 4 7 8 3
1 . 0 5 2 1 8
1 . 0 5 6 5 3

Anhang

12
. 4 3 4 7 8 4
. 4 3 6 9 5 5
„439133
. 4 4 1 3 0 9
„44348
. 4 4 5 6 5 1
„447829
. 4 5
. 4 5 2 1 7 6
. 4 5 4 3 4 7
. 4 5 6 5 2 5
. 4 5 8 6 9 6
. 4 6 0 8 7 2
. 4 6 3 0 4 3
. 4 6 5 2 2 1
. 4 6 7 3 9 2
. 4 6 9 5 6 8
. 4 7 1 7 3 9
. 473917
. 4 7 6 0 8 8
. 4 7 8 2 6 4
. 4 8 0 4 3 7
„482613
. 4 8 4 7 8 4
. 4 8 6 9 5 5
. 4 8 9 1 3 3
. 4 9 1 3 0 9
. 4 9 3 4 8
. 4 9 5 6 5 1
. 4 9 7 8 2 9
. 5
. 5 0 2 1 7 6
. 504347
. 5 0 6 5 2 5
„508696
. 5 1 0 8 7 2
. 5 1 3 0 4 3
. 5 1 5 2 2 1
. 5 1 7 3 9 2
. 5 1 9 5 6 8
„521739
. 5 2 3 9 1 7
„526088
. 5 2 8 2 6 4

12.8 Aufgaben zum Selbstlösen 99

Ui
£¡.69068
8.7391
8.732AA
8 . 8 2 6 1 8
8.8696
8.91302
8.95658
9
9.04352
9.08694
9.1305
9.17392
9.21744
9.26086
9.30442
9.34784
9.39136
9.43478
9.47834
9.52176
9.56528
9.60874
9.65226
9.69568
9.7391
9.78266
9.8261B
9.8696
9.91302
9.95658
10
10.0435
10.0869
10.1305
10.1739
10.2174
10.2609
10.3044
10.3478
10.3914
10.4348
10.4783
10.5218
10.5653

U2
39.1304
39.3261
39.5217
39.7174
39.9131
40.1087
40„3043
40.5
40.6957
40.8913
41.087
41.2826
41.4783
41.6739
41.8696
42.0652
42..2609
42.4565
42.6522
42.8478
43.0435
43.2391
43.4348
43.6304
43.8261
44.0217
44.2174
44.4131
44.6087
44.8043
45
45.1957
45.3913
45.587
45.7826
45.9783
46.1739
46.3696
46.5652
46.7609
46.9565
47.1522
47.3478
47.5435

U3
52.1739
52.4348
52.6956
52.9565
53.2174
53.4783
53.7391
54
54.2609
54.5218
54.7826
55.0435
55.3044
55.5652
55.8261
56.087
56.3478
56.6087
56.8696
57.1304
57.3913
57.6522
57.913
58.1739
58.4348
58.6956
58.9565
59.2174
59.4783
59.7391
60
60.2609
60.5218
60.7826
61.0435
61.3044
61.5652
6 1 . 8 2 6 1
62.087
62.3478
62.6087
62.8696
63.1304
63.3913

130.435
131.742
133.057
134.377
135.704
137.038
138.378
139.725
141.078
142.438
143.Β04
145.177
146.557
147.943
149.335
150.734
152.139
153.551
154.97
156.395
157.826
159.264
160.709
162.16
163.617
165.082
166.552
168.029
169.513
171.003
1 7 2 . 5
174.003
175.513
177.029
178.552
180.082
181.618
183.16
184.709
186.264
187.826
189.395
190.97
192.551

7 ·

100 Anhang

3. Aufgabe
Für die Lösung von Differentialgleichungen kennen wir das Näherungsverfahren
von Runge-Kutta. Damit soll die gewöhnliche Differentialgleichung:

gelöst werden.

Die Berechnung soll mit verschiedenen Schrittweiten durchgeführt werden.

Das Näherungsverfahren verwendet folgende Gleichungen:

A = h · f(x, y)

C = h - f (x + f e y + |)

D = h · f(x + h, y + C)

Κ = 1/6 (A + 2 · Β + 2 · C + D)
Der Wert Κ stellt die Zunahme zum vorangegangenen Betrag der Funktion von
y dar.
Die Anfangswerte der obigen Differentialgleichung beträgt:

y(0) = - 0.5
Lösung:

0100 REM RUNGE - KUTTA - VERFAHREN
0110 DATA 0r-0.5r0-025r4
0120 READ X f Y F H F M
0130 PRINT 'X'F'Y'
0140 PRINT
0150 PRINT XFY
0160 LET A=H*(X-Yt2)
0170 LET X=X+H/2
0180 LET Z1=Y
0190 LET Y-Y+A/2
0200 LET B=H*(X-Yt2)
0210 LET Y=Z1
0220 REM
0230 LET Y=Y+B/2
0240 LET C=H*(X-Yt2)
0250 LET X=X+H/2
0260 LET Y=Z1
0270 LET Y=Y+C/2
0280 LET D=H*<X-Yt2>
0290 LET E=<A+2*B+2»C+D>/6
0300 LET Y=Z1
0310 LET Y=Y+E
0320 PRINT XFY
0330 IF X=M THEN 0350
0340 GO TO 0160
0350 STOP
0360 END

12.8 Aufgaben zum Selbstlösen 101

Ausgabeliste:

READY
RUN
X

„oi; - 2
.1

.3

.35

.4

.45

.5

.55

.6

.65

.7

.75

.8

.85

.9

.95
1
1.05
1 . 1

,.5α.15
.521046
.528543
.53389
.536971
.537664
.535839
.531357
.524076
.513849
.50053
.483976
.464053
.440635
.413616
.382911
.348465
.310256
.26830 5
.22267
.173473
.1208B

3
35
4
45
5
55
6

1,
1,
1,
1,
1,
1,
1.
1.
1.
1,
1.65
1.7
1.75
1 . 8
1.85
1.9
1.95
2
2.05
2 . 1
2.15

2.3
2.35
2.4
2.45
2.5

• 6.511441- -2
•6.4538BE-3
5.4772E-2
.118187
183376

.249893

.317275

.385052

.452758

.519946

.5862

.65114

.714432

.775795

.835

.891874

.946297

.998195
1.04754
1.09436
1.13868
1.18059
1.22019
1.25758
1.29289
1.32625
1.3578
1.38767

4. Aufgabe

Je nach Code (1, 2, 3 oder 4) soll mit den Variablen Α, Β und C eine Gleichung
berechnet werden.

Code Gleichung

1 χ = Α · Β · C
2 x = Α Ζ2 + B Z + C

für Ζ = 4
3 x = A b · C
4 χ = (Α + B) · C

102 Anhang

12.8 Aufgaben zum Selbstlösen 103

Lösung:

100 INPUT A,B,C
110 INPUT Cl
120 IF C 1=1 THEN 180 Cl=l THEN 180
130 IF Cl=2 THEN 200
140 IF Cl=3 THEN 230
150 IF Cl=4 THEN 250
160 PRINT "CODEFEHLER"
170 GO TO 110
180 X=A*B*C
190 GO TO 260
200 INPUT Ζ
210X=A*Z**2+B*Z+C
220 GO TO 260
230 X=A**B*C
240 GO TO 260
250 X=C*(A+B)
260 PRINT A,B,C,X
270 STOP
280 END

5. Aufgabe

Die Binomialverteilung spielt beim Ziehen mit Zurücklegen eines Gegenstandes
aus einer Vielzahl von Gegenständen eine bedeutende Rolle.
Die Wahrscheinlichkeit, beim zufälligen Herausgreifen von ζ. B. Schrauben
eine unbrauchbare zu erhalten, ist dann gleich

ρ _ M
Ν

Die Wahrscheinlichkeit, bei M Zugriffen (mit Zurücklegen) genau X unbrauch-
bare Schrauben zu erhalten, ist:

f (x) = (X) x o ~ y - x

Anhang

12.8 Aufgaben zum Selbstlösen 105

M X E M N 3 - X E

f = Z,(??) · α - £) Ν Ν

106 Anhang

100 INPUT Χ,Ν,Μ
110Ν3 = Ν
120 IF Ν=9999 THEN
130 Ν2=Ν2+Ν*(Ν-1)
140 Ν=Ν-1
150 IF Ν>Χ THEN 130
160 Χ2=1
170 Χ1=Χ1+Χ2*(Χ2+1)
180Χ2=Χ2+1
190 IF Χ2<=Χ THEN 170
200 Ζ1=Ν2/Χ1
210 F=Z 1 *(Μ/Ν)* *Χ*(I -Μ/Ν)**(Ν3-Χ)
220 PRINT 'DIE VARIANZ BETRAEGT: ';F
230 GO TO 100
240 STOP
250 END

6. Aufgabe

Ablenkung eines Elektrons im elektrischen Feld.

O

< >
>

e

υ

α

ν = v 6 T T 7 ü
m

1 0 : 2 · m · d · ν

γ - q u i s
1 2 · m · d · v:

= q · U · l2

,2
> a = y 0 + y j

,2

12.8 Aufgaben zum Selbstlösen 107

Bei gegebener Minimal- (UA) und Maximalspannung (UE) soll die Spannung
gesucht werden, damit die vorgesehene Strecke A gefunden wird. Der Ladungs-
träger soll ein Elektron sein. Die Genauigkeit wird mit der Variablen E einge-
geben.

108 Anhang

12.8 Aufgaben zum Selbstlösen 109

110 Anhang

Lösung:

LIS H
00100 PRINT 'LAENGE L';
00110 INPUT L
00120 PRINT 'DURCHMESSER D';
00130 INPUT D
00140 PRINT 'ABSTAND S';
00150 INPUT S
00160 PRINT 'ANFANGSSPANNUNG UÀ';
00170 INPUT U1
00180 PRINT 'ENDSPANNUNG UE';
00190 INPUT U2
00200 PRINT 'ΖIELPUNKTABSTAND A*;
00210 INPUT A
00220 PRINT 'LADUNGSTRAEGERMASSE M';
00230 INPUT M
00240 PRINT 'ELEKTRISCHE LADUNG1;
00250 INPUT Q
00260 PTINT 'GENAUIGKEIT E';
00270 INPUT E
00280 V=2*Q/I-1«U1
00290 Y0=Qs!U1!!Ls!î!2/(2"MkDs!V)
00300 Yl=Q!!UlîsL!!S/(2î!Mî!D!îV)
00310 A1=Y0+Y1
00320 Z1=A-A1
00330 Z=ABSCZ1)
00340 IF Z<E THEN 440
00350 U1=U1+1
00360 IF U K U 2 THEN 280
OO37O.PRINT 'DIMENS ION IERUNG FALSCH, SPANNUNGSMAXIMUM ERREICHT'
ΟΟ38Ο PRINT
00390 PRINT
OOtOO PRINT 'NEUER DURCHLAUF JA ODER NEIN';
00410 INPUT Α$
00420 IF Α$='JA' THEN 100
OOI3O GO TO I7O
00440 PRINT 'L', Ό » , 'Ul', 'S', Ά '
00Ί50 PRINT ί,ο,υι,ε,Α
00460 GO TO 400
00470 STOP
00480 END

Stichwortverzeichnis

Aktualvariable 46
Allocate 25
Analyse 9

Bereichsvariable 15,43
- arithmetische 15, 62
- zeichen 15, 62
Blockdiagramm 9

Call/360 7
Close 28,41
Com 68
Compiler 9

Data 21, 24
Datei 25,27,28,29,41,42
Datenhinweiszeiger 21, 24, 25, 26, 28
Def 45
Dialogsprache 7, 8,
Dim 27,62
Dimension 62
Druckzone 32

Ersatzzeichen 34
End 66

Exponentialform 38

For 56 Format 34, 35

Genauigkeit 31
- einfache 31
- doppelte 31
Get 25
Gomb 65
Goto 59
- computed 59

Hauptprogramm 68
Hexadezimal 7

If 59, 60
Index 15, 17, 26
Inkrement 56
Input 59
Integer 59
Iteration 56

Kommentar 63
Konstanten 13
- arithmetische 13
- system 14
- zeichen 14

Let 43

Maschinenprogramm 9
Mathematische Symbole 11
Mat
-ergibt 49
- g e t 27
- input 19
- print 39
- print using 40
- p u t 41
- read 23
Matrix 20,23,39,42,49
- addition 50
- einser 50
- identität 51
- multiplikation 52
- skalare multiplikation 53
- Subtraktion 53
- transponieren 54
- null 54

Next 56

Objectprogramm 9
On 59
Operation 44
- symbol 44

Pause 67
Pick 70
Print 30
Print using 34
Problemorientierte Programmiersprache 8
Put 41

Quellenprogramm 9

Rangstufung 44
Read 21
Rem 63
Reset 28
Restore 24
Return 65
Routine 65

Stichwortverzeichnis

Schachtehing 57
Scheinvariable 46
Schleife 56
- erlaubt 58
- unerlaubt 58
Sourceprogramm 9
Step 56
Stop 66
Symbole 10
Syntax 9, 82
S /3 -6 7

Terminal 8
Time Sharing 8

Variablen 14
- arithmetische 14
- zeichen 15, 43

With 68 ,70

	Inhaltsverzeichnis
	0. Einleitung
	1. BASIC-Ausdrücke
	2. Eingabe-Anweisungen
	3. Ausgabe-Anweisungen
	4. ERGIBT-Anweisungen
	5. Schleifen-Steuerung-Anweisung
	6. Verzweigungs-Anweisungen
	7. Das Definieren von Bereichen
	8. Kommentierung eines Programmes
	9. Hinzufügen von Programmsegmenten
	10. Stoppen der Programmausführung
	11. Verbindung von Hauptprogrammen
	12. Anhang
	Stichwortverzeichnis

