Contents

Abstract — V			
Preface — VII			
1	1 Pre-introduction —— 1		
	1.1	Abstract	<u>1</u>
	1.2	Some co	mments from positive reviews from Academia Letters — 1
	1.3	Introduc	tion — 1
	1.4	Operato	rs — 2
	1.5	New log	ic — 2
	1.6	Stateme	nt —— 5
	1.7	Inclusion	n and being a part – new mereology —— 6
	1.8	Simple ii	mplication —— 7
	1.9	Other ex	camples of implications —— 10
	1.10		ed material implication —— 11
	1.11	Age-old	mathematicians dream —— 12
2	Introd	luction —	— 13
_	2.1		ferences between new logic and classical logic —— 13
		2.1.1	Introduction — 13
		2.1.2	Theory as a set of statements versus theory as a set of
			sentences —— 13
		2.1.3	A statement (a piece of information) versus a sentence (a
			symbol of a piece of information) —— 13
		2.1.4	New implication —— 15
		2.1.5	Reduction to absurdity (lat. reductio ad absurdum) —— 16
		2.1.6	Speaker and context versus model —— 17
		2.1.7	Definitions-based definition of new logic —— 18
	2.2	What an	nong other things you will find here —— 18
		2.2.1	Introduction —— 18
		2.2.2	It is quite easy —— 18
		2.2.3	Being a part and implication —— 24
		2.2.4	Simple implication —— 26
		2.2.5	Material implication derived from new implication —— 28
		2.2.6	Undecidable statements —— 28
	2.3		out speaker and context versus model —— 28
	2.4	Symbols	
		2.4.1	Operators —— 29
		2.4.2	Nothing, things, sets and conjunctions —— 30
	2.5	Default (quantifiers —— 31

5

3 Two important terms — 32

4 Priorities of operators — 33

Defin	ition —	– 34
5.1	Introd	uction —— 34
	5.1.1	Standalone symbols —— 34
	5.1.2	A thing and nothing, a being and a nobeing —— 35
	5.1.3	Totality, equality, sameness and equality of identities —— 37
	5.1.4	Reality, possible and impossible things —— 40
	5.1.5	The attempt and the result of a definition —— 42
	5.1.6	Presence and existence —— 45
5.2	Definit	ion of a set —— 46
5.3	Conjur	nction and being a part —— 47
5.4	Definit	ions-based and almost noncircular definition of logic, set theor
	and th	eory of things – for advanced readers —— 52
5.5	Extens	ional definition —— 60
5.6	Other	operations on things —— 60
5.7	New lo	gic as a lattice and partial order by implication – for advanced
	reader	s — 64
5.8	Ordere	ed pair —— 67
5.9	Function	on definition —— 68
5.10	Logica	l values —— 69
5.11	Basics	of new logic —— 72
5.12	Theory	and a contradiction —— 73
5.13		bility —— 76
5.14	Provab	ility —— 79
5.15	Logica	l paradox, contrary and contradictory statements —— 82
5.16	Liar pa	radox —— 85
5.17	Verifie	d and not verified rules —— 86
5.18	Senter	ice, statement, logical value —— 87
5.19	The de	finition of a statement —— 90
5.20	Tautol	ogies —— 92
5.21	Truth a	and untruth —— 95
5.22	Relatio	n between mind and logic —— 104
5.23	Meanii	ngful and nonmeaningful sentences, decidable and undecidable
	statem	ents —— 105
5.24	Proof,	that zero-valued and double-valued statements are not the
	solutio	n to the problem —— 110
5.25	Proof,	that those are not incorrect sentences —— 111
5.26	Consis	tency of totality and reality —— 112
5 27	Counte	erfactual noncontradiction —— 112

5.28	Solving	the system of statements about the unpredictable future —— 11	
5.29	About Liar paradox —— 115		
5.30	Unknown logical value —— 116		
5.31	Realizat	ion and materialization – an evidence, that a statement is true	
	and the	definition of truth —— 116	
5.32	Realizat	ion – examples —— 121	
5.33	More al	oout logical values —— 122	
5.34	Logical	functions —— 124	
5.35	Implica	tion operator —— 125	
5.36	Intuitio	nistic logic unnecessary and wrong —— 132	
5.37			
5.38	Context	ual implication – facilitators for a reasoning in proofs —— 137	
	5.38.1	Derivation of "material implication" from implication —— 137	
	5.38.2	More about statements —— 142	
	5.38.3	Contextual implication as a tautology and implication as a	
		quantifier —— 145	
	5.38.4	Contextual implication as a tautology – continuation —— 148	
	5.38.5	Why "material implication" is not self-sufficient	
		implication —— 148	
	5.38.6	Factual and nonfactual conditionals —— 149	
	5.38.7	The final solution to all "problems with implication" —— 152	
	5.38.8	Operator "so" —— 153	
	5.38.9	Operator "If then else" —— 154	
	5.38.10	Two-way factual conditional —— 155	
5.39	Equality	operator —— 155	
5.40	Possibil	ity of implication operator —— 156	
5.41	The list	of verified tautologies for possibility of implication —— 157	
5.42	Possibil	ity of implication – examples —— 158	
5.43	When y	ou can use contextual implication instead of implication —— 159	
5.44	Possibility of equality operator – equality of logical values —— 161		
5.45	Deterministic and nondeterministic implication operator —— 162		
5.46	Determ	inistic and nondeterministic conditioning operator —— 164	
5.47	Causati	on operators —— 164	
5.48	Feedback operator —— 167		
5.49	Operato	or "though" —— 167	
5.50	Operato	or "but" —— 167	
5.51	The neg	ation of a set —— 169	
5.52	Elemen	tary operations and operators —— 169	
5.53	The empty set and the set of everything —— 169		
5.54		oout things and nothing —— 170	
5.55		lities —— 176	
5.56	Lists an	d tuples —— 176	

	5.57	Cartesian product and exponentiation —— 179			
	5.58	Definitions —— 180			
	5.59	Recurrent set definition —— 181			
	5.60	Set specification —— 182			
	5.61	Completeness of truth – logical causality —— 183			
	5.62	Definitions instead of standalone axioms —— 185			
	5.63	Definitions based systems —— 185			
	5.64	The set of all concrete sets —— 186			
	5.65	Quantifiers —— 188			
6	Inference rules —— 193				
	6.1	The difference between deterministic and nondeterministic			
		implication —— 193			
	6.2	Elementary notions —— 195			
	6.3	Basic properties of inclusion of things —— 201			
		6.3.1 Rules — 201			
		6.3.2 No exceptions —— 203			
	6.4	Minimal step of a simple implication —— 206			
	6.5	Simple implication —— 209			
	6.6	A simple declarence —— 211			
	6.7	Turning a plural form into its singular form —— 213			
	6.8	Turning a simple declarence into all its forms —— 214			
	6.9	Inferring an implication from the expression of simple implications —— 217			
	6.10	Additional useful rules for composition and decomposition of			
		implication —— 217			
	6.11	An implication as a simple declarence —— 220			
	6.12	Some simple implications —— 222			
	6.13	Additional deduction rules —— 223			
7	Provi	ng and disproving statements —— 224			
	7.1	All kinds of logical proofs —— 224			
	7.2	Example of a direct proof explained in details —— 231			
	7.3	Example of an indirect proof – proof by a contradiction – explained in details —— 232			
	7.4	Example of proof by induction explained in details —— 234			
8	Subje	ective and objective logic —— 236			
9	Defin	ition – more advanced part —— 242			
	9.1	Conjunction and being a part – introduction —— 242			
	9.2	Conjunction as the fundament of logic and set theory —— 246 9.2.1 Introduction —— 246			

		9.2.2	Every thing as the conjunction of all its parts —— 247
		9.2.3	Elementary operations on things —— 248
		9.2.4	Negation and complement —— 249
		9.2.5	Subtraction of statements —— 253
		9.2.6	Logic for a plain things —— 254
		9.2.7	Derivation of the main assumption of new logic —— 254
		9.2.8	Other laws of things —— 256
		9.2.9	Some operations on abstract things —— 261
		9.2.10	Statements —— 262
		9.2.11	Conjunctions and disjunctions of inclusions —— 265
		9.2.12	Additional rules —— 268
	9.3	The list	of the rules of inclusion and inference —— 271
10	Theor	y of thin	gs – operations on things —— 275
	10.1	Introdu	ction —— 275
	10.2	Physical	and nonphysical things —— 279
	10.3	Past, pro	esent, future and potential things —— 280
	10.4	Attribut	es of things —— 281
	10.5	Equality	, sameness and equality of identities —— 281
	10.6	Represe	ntatives that are past, future or potential —— 282
	10.7	Singular	and plural forms —— 283
	10.8	Relation	s "is" and "are" —— 288
	10.9	Represe	ntation of a class —— 288
	10.10	Not stric	ct classes and representations —— 291
	10.11		on of a class —— 291
	10.12	Relation	s — 293
		10.12.1	Definition of "Some/Any" and "The" relations —— 293
		10.12.2	Examples of normalized relations of this type —— 299
		10.12.3	More complex examples of normalized relations of this
			type —— 301
		10.12.4	More complex examples of normalization of relations of this
			type —— 302
		10.12.5	Quantifier "Some"/"Any" and conversion of every other
			quantifier to it —— 304
	10.13	_	n of a thing —— 306
	10.14		and classifications —— 312
	10.15		ng of a set —— 313
	10.16		g, the kind of which has given representation —— 314
	10.17		oout abstract and concrete things —— 315
	10.18		vity of relation "isp/arep" – rules of deduction —— 316
	10.19	Relation	"is/are" in any tense —— 319

11	New logic – extension —— 321			
	11.1 Introduction —— 321			
	11.2	1.2 Negation of disjunctions and conjunctions —— 321		
	11.3 Something is so as — 322			
	11.4	11.4 Something instead of something —— 324		
	11.5	Relation "can" —— 326		
	11.6	.6 Which/that —— 326		
		11.6.1 Any —— 326		
		11.6.2 Some —— 327		
	11.7	To do something to achieve something —— 327		
	11.8	The more something the more something —— 327		
12 Probabilistic logic —— 328				
	12.1	Probability for elementary logic operators —— 328		
	12.2	Probability of equality of logical values and possibility of		
		implication —— 333		
	12.3	Statistical independence of two declarences implicates statistical		
		dependence of their both ways possibilities of implication and vice		
		versa —— 334		
	12.4	Universe — 336		
	12.5 Realization of relation in given universe —— 339			
	12.6 Quantifier "the" and the set of all examples supporting given relation —— 342			
	12.7	2.7 Implication in given universe implicates the same implication		
		in its sub-universe —— 344		
	12.8	.8 Implication in given universe expressed as inclusion of sets of all examples supporting given relations —— 345		
	12.9			
	12.10 Possible extensions of logical values to real values — 347			
	12.10 Probability in time — 349			
	12.12	The probability that an entity is equal to given entity —— 352		
	12.13	Probability formulas for larger sets of declarences —— 353		
13	All ma	athematics derived from logic —— 354		
14	Depth	and richness of logic —— 355		
15	Proble	ems and paradoxes solved —— 356		
	15.1	Introduction (read it first) —— 356		
	15.2	Liar paradox disproven (US) —— 356		
	15.3	Card paradox disproven (US) —— 358		
	15.4	No-no paradox disproven —— 359		

15.5	Grelling-Nelson paradox disproven (US) —— 359
15.6	Russell's paradox disproven without axioms (NST+US) —— 360
15.7	Burali-Forti paradox disproven —— 362
15.8	Curry's paradox disproven (US) —— 362
15.9	Curry's paradox in set theory disproven (NST+US) —— 363
15.10	Cantor's paradox disproven —— 363
15.11	Hilbert's second problem —— 364
15.12	Gödel's incompleteness theorems disproven (US) —— 365
15.13	Tarski's undefinability theorem disproven (US) —— 368
15.14	Response to the proof of undecidability of halting problem —— 370
15.15	Response to the proof of Kolmogorov complexity uncomputability —— 371
15.16	Berry's paradox solved —— 372
15.17	Richard paradox solved —— 373
15.18	Hilbert-Bernays paradox solved —— 374
15.19	Boy or Girl paradox —— 375
15.20	Knower paradox disproven —— 377
15.21	Fitch's paradox of knowability disproven —— 378
15.22	Bhartrhari's paradox solved —— 378
15.23	Quine's paradox disproven (US) —— 379
15.24	Pinocchio paradox disproven (US) —— 380
15.25	Yablo's paradox disproven (US) —— 381
15.26	Crocodile dilemma paradox disproven (US) —— 381
15.27	Paradox of the Court disproven (US) —— 382
15.28	Unexpected hanging paradox disproven —— 383
15.29	"Zero measure" and "one measure" probabilities and Borel-
	Kolmogorov paradox very simply disproven (TM) —— 384
15.30	Bertrand paradox solved —— 388
15.31	Any other paradox disproven or solved —— 390
15.32	Categorical imperative and "Golden Rule" disproven —— 390
15.33	Norton's dome disproven —— 391
15.34	Ship of Theseus and sorites paradox solved (TT) —— 392
15.35	Counterexample to identity of indiscernibles disproven —— 393
15.36	Problem of universals and mathematical objects —— 393
15.37	Problem of individuation (TT) —— 394
15.38	Material implication problem solved (NL) —— 394
15.39	Counterfactuals problem disproven —— 394
15.40	Gettier problem disproven —— 395
15.41	Demarcation problem solved —— 397
15.42	Munchhausen trilemma (NL) —— 397
15.43	Problem of the criterion —— 397
15.44	Why there is something rather than nothing? (NL) —— 398
15.45	Stephen Hawking not right about 2-D creatures —— 398

Index —— 425

	15.46	The onto	ological argument of Anselm of Canterbury disproven —— 399
		15.46.1	Abstract —— 399
		15.46.2	The ontological argument of Anselm of Canterbury —— 399
		15.46.3	The proof —— 401
16	Bonus	s —— 403	
	16.1	True me	asure – Lebesgue measure fails —— 403
		16.1.1	Unambiguous measures and why Lebesgue measure fails —— 403
		16.1.2	Measure extended to countable sets – ambiguous
			measure —— 408
		16.1.3	Example of not an ordinary continuum set —— 408
		16.1.4	Nonuniform measures and probability —— 409
	16.2	Arithme	tic definition based on definitions —— 410
		16.2.1	The simplest definition of arithmetic —— 410
		16.2.2	Arithmetic defined different way —— 412
		16.2.3	Peano arithmetic too general —— 418
		16.2.4	Complex numbers wrongly defined —— 419
	16.3	Cartesia	n geometry definition based on definitions —— 421
	16.4	How log	ic can help physics. Einstein was most likely right about
		quantun	n physics —— 422
Ref	erence	s — 423	3