

Contents

Preface — V

Foreword — VII

About the book — XV

Chapter 1

Developing sustainable hospital healthcare services — 1

- 1.1 Introduction — 1
- 1.2 The operational aspects of the healthcare industry and its impact on the environment — 3
- 1.3 Developing sustainability of rural healthcare hospitals — 5
- 1.3.1 Approach for improving community healthcare — 6
- 1.4 The concept of hospital sustainability — 7
- 1.4.1 Healthcare and health system sustainability — 9
- 1.4.2 Hospital sustainability — 10
- 1.5 Sustainability in hospital healthcare facilities — 11
- 1.5.1 Evaluation method for sustainable healthcare facilities — 12
- 1.5.2 Methods for evaluating sustainability in the Flemish area — 13
- 1.6 Conclusion — 14
- References — 15

Chapter 2

Promoting the adoption of robots in healthcare for sustainability — 20

- 2.1 Introduction — 20
- 2.2 Robotics in the healthcare sector — 22
- 2.2.1 Robotics for enhancing health and quality of life — 24
- 2.2.2 Robotics application in the healthcare sector — 27
- 2.2.2.1 IoT for the health sector — 28
- 2.2.2.2 Tele-operated humanoid robots — 29
- 2.2.2.3 Robotic device for pain relief — 31
- 2.3 The role of robots in achieving the sustainable development goals (SDGs) — 31
- 2.4 Sustainable development using soft robotics — 33
- 2.5 Challenges in the implementation of robotics for healthcare sustainability — 34
- 2.5.1 Learning-based adaptability and change — 35
- 2.5.2 Socio-emotional intelligence — 36

2.5.3	Software architecture — 37
2.6	Conclusion — 37
	References — 39

Chapter 3

Design of healthcare sustainability: innovation and challenges — 47

3.1	Introduction — 48
3.2	Definition and characteristics of sustainability — 50
3.3	Healthcare sustainability: environmental, social, and economic — 52
3.4	Conceptual framework of healthcare sustainability — 55
3.4.1	Indicators of sustainability in the healthcare sector — 57
3.5	Sustainable healthcare design — 60
3.6	Factor affecting sustainability in healthcare — 63
3.6.1	Healthcare lean management — 63
3.6.2	Continuous development — 64
3.6.3	Patient satisfaction — 64
3.6.4	Employee satisfaction — 66
3.6.5	Corporate social responsibility (CSR) — 67
3.7	Innovation in healthcare sustainability as a long-term perspective — 68
3.8	Conclusion — 70
	References — 71

Chapter 4

Healthcare sustainability with artificial intelligence: innovations, benefits, and challenges — 80

4.1	Introduction — 81
4.2	Implementing AI in healthcare — 83
4.3	Enhanced AI implementation in success factor categories — 85
4.4	The ethical considerations of AI in the healthcare sector — 87
4.4.1	The ethical governance of artificial intelligence (AI) — 89
4.4.2	Ethical governance of artificial intelligence in healthcare — 92
4.5	Advantages of AI in the healthcare field — 94
4.5.1	Enhanced disease diagnosis and early prevention — 95
4.5.2	Data-driven decision-making and resource optimization — 95
4.5.3	Personalized healthcare and research advancements — 96
4.6	Sustainable development of AI in healthcare — 97
4.7	AI for ambitious climate-action goals (SDG 13) — 98
4.7.1	The possible function of AI in climate change mitigation — 99
4.7.2	AI for understanding climate change — 100
4.7.3	Use of AI to deal with climate change — 101
4.8	Conclusion — 102
	References — 103

Chapter 5**Additive manufacturing for advancing healthcare sustainability — 112**

5.1	Introduction — 112
5.2	Technologies for additive manufacturing — 114
5.2.1	Inkjet printing (IJP): — 116
5.2.2	Fused deposition modeling (FDM) — 117
5.2.3	Laminate object modeling/manufacturing (LOM) — 119
5.2.4	SLA method or stereolithography — 121
5.2.5	Selective laser sintering (SLS) — 122
5.2.6	Three-dimensional (3D) bioprinting — 124
5.3	Environmental sustainability in additive manufacturing — 125
5.4	Advances in additive manufacturing for reducing environmental deterioration — 127
5.4.1	Additive manufacturing to reduce resource needs — 129
5.4.2	Reducing waste by using additive manufacturing — 129
5.4.3	Additive manufacturing for supply chain cost reduction — 130
5.5	Advantages of additive manufacturing — 131
5.6	Current challenges and prospects in healthcare enabled by AM — 134
5.6.1	Tissue engineering and regenerative medicine — 134
5.6.2	Pharmaceuticals/drug delivery — 135
5.6.3	Synthetic organs — 136
5.7	Conclusion — 136
	References — 137

Chapter 6**Revolutionizing healthcare sustainability through mHealth applications — 146**

6.1	Introduction — 146
6.2	mHealth definition — 148
6.3	The significant role of mHealth in patient-centered care — 150
6.4	An integrated model for mHealth lifestyle management (MLM) — 152
6.5	Multidisciplinary assessment of mHealth sustainability — 153
6.5.1	Economics sustainability — 153
6.5.2	Environmental sustainability — 155
6.5.3	Social sustainability — 157
6.5.4	Behavior sustainability — 158
6.6	The global applications of mobile health (mHealth) — 160
6.6.1	Collecting information and monitoring disease — 161
6.6.2	Mobile telemedicine to facilitate treatment — 162
6.6.3	Pandemic monitoring with SMS-based mHealth — 163
6.7	Perspective on the sustainability of mHealth — 164

6.8	Challenges in the implementation of mobile health (mHealth) in developing countries — 166
6.9	Future directions — 168
6.10	Conclusion — 169
	References — 170

Chapter 7

Sustainable healthcare system using biomedical engineering — 177

7.1	Introduction — 177
7.2	Biomedical engineering — 180
7.3	Biomedical engineering for healthcare advancements — 182
7.3.1	Enhancing diversity and equity within the field of science, technology, and biomedical engineering — 186
7.3.2	Expanding research in underserved regions — 188
7.3.3	Consider various populations while designing research — 190
7.4	Research aspect in biomedical engineering for healthcare — 192
7.5	The application of biomedical engineering in the context of healthcare — 194
7.6	An outline of healthcare procedures for biomedical engineering education — 198
7.7	Conclusion — 200
	References — 201

Chapter 8

Developing sustainable healthcare in waste management: a comprehensive approach — 213

8.1	Introduction — 213
8.2	Healthcare waste — 215
8.2.1	Infectious waste — 216
8.2.2	Hazardous waste — 216
8.2.3	Nonhazardous waste — 216
8.3	Environmental impacts of hospital waste — 218
8.4	Composition of healthcare waste (HCW) — 219
8.5	Management of hospital waste — 221
8.6	Sustainable medical waste management — 223
8.7	Comprehensive strategies for healthcare waste disposal, treatment, and management — 225
8.8	Criteria for waste management — 228
8.9	Discussion — 228
8.10	Conclusion — 229
	References — 230

Chapter 9**Measurement of social sustainability in healthcare supply chain management — 236**

- 9.1 Introduction — **237**
- 9.2 Social sustainability development — **239**
- 9.3 Supply chain sustainability via social perspective — **240**
- 9.4 Social sustainability in the healthcare supply chain — **242**
- 9.5 Sustainability dimension and measurement — **245**
 - 9.5.1 Economic output — **247**
 - 9.5.1.1 Monetary performance — **248**
 - 9.5.1.2 Financial health — **249**
 - 9.5.1.3 Efficiency — **249**
 - 9.5.2 Social output — **250**
 - 9.5.2.1 Workplace — **251**
 - 9.5.2.2 Community — **252**
 - 9.5.3 Environmental output — **252**
 - 9.5.3.1 Sources — **253**
 - 9.5.3.2 Disposal — **254**
- 9.6 Challenges in social sustainability — **255**
- 9.7 Conclusion — **256**
- References — **258**

Chapter 10**Importance of telemedicine on healthcare sustainability during pandemics — 264**

- 10.1 Introduction — **265**
- 10.2 Telemedicine in healthcare — **267**
- 10.3 Telemedicine's potential and characteristics in a healthcare sustainability management system — **269**
- 10.4 The challenges associated with attaining sustainability — **272**
- 10.5 The use of telemedicine to reduce healthcare's carbon footprint — **274**
- 10.6 Challenges to telemedicine implementation in healthcare — **276**
- 10.7 Telemedicine in healthcare: an important application — **279**
- 10.8 Telemedicine's future in healthcare sustainability — **286**
- 10.9 Conclusion — **287**
- References — **288**

Index — 301

