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10 Industry examples where different AI

techniques are combined

In this chapter, we demonstrate how applications can combine different artificial intel-
ligence (AI) techniques from the previous chapters for more advanced applications and
how they can cooperate.

The first example shows how anAI based chatbot helpsKBCGroup, a Belgian bank-
insurance group, to automate 50% of the processing of the insurance claims using a
chatbot. The second example from themanufacturing industry uses a combination of
machine learning methods and symbolic AI techniques to offer a digital engineering
assistant that can automatically extract relevant information from engineering draw-
ings and assist the engineers with their choice.

10.1 An AI-enabled chatbot for the Casco1 insurance
industry, an example from KBC Group
Oussama Chelly, Michaël Mariën

Motor-vehicle insurance has been the largest nonlife insurance market over the past
decade. In Europe, it accounted for 36% of the global Property and Casualty (P&C) mar-
ket with the total motor premium income amounting to e149 bn in 2020.

With over three thousand insurers fiercely competing in the European market, im-
proving the insurance offering for the B2C segment became crucial for every insurer
to gain a competitive edge. Consequently, competition was no longer limited to offering
better price-to-risk ratios but extended from competition in pricing to competition in the
quality of services being offered to the end-customer. In this context, digitally enabled
vehicle insurance services have been gaining more prominence and were estimated
to cover as high as 12% of the vehicle insurance market in Europe as of 2020.

Statistics reflect a shift in consumer preferences from the traditional B2C trans-
actions usually carried out in person, over the phone, or by mail to a more digital com-
munication. The change prompted more competition in the race to the digital transfor-
mation of B2C insurance policies.

From the consumer point of view, the insurance claim process has been—and still
is—widely considered to be long and tedious. While the process length and complexity
may vary from country to country based on the local regulations, and from insurer to

1 Casco stands for CASualty and Collision (automobile insurance).
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insurer based on the service license agreements, the driver is rarely satisfied with the
quality of service. It should be highlighted that a driver involved in an accident is typ-
ically not in the best psychological condition to objectively evaluate the quality of the
insurance service. To add more context to the situation in which such claims typically
take place, one should rewind back to themoment when the vehicle is involved in a traf-
fic accident. From that moment, the driver is usually under a high amount of stress. Be-
sides any physical injury, post-traumatic effects, or legal consequences, the driver could
be faced with the financial implications of healthcare assistance, repairing his vehicle,
as well as being deprived of it for an unknown amount of time. That is without mention-
ing the impact of the accident on his personal and professional plans. Consequently, the
claim handling process becomes very sensitive.

In the traditional process displayed in Figure 10.1, the customer notifies the insur-
ance company about the accident by contacting an agent from the company over the
phone. In addition to the notification, the customer indirectly expresses his insecurity
by inquiring about his current insurance policy. The type of policy, the deductible, and
the financial limits are among the most frequently asked questions. Then the customer
registers the data about the accident. This data includes the circumstances leading to
the accident, information about any other vehicles or persons that were involved, and
damage to the parties involved. Once the data is registered, the customer waits while
the claim is being processed by the insurance. During this time, the agent has to manu-
ally log the data in the company’s systemand communicate the case to the claimhandler.
The latter checks for potential fraud, verifies the coverage and liability of the driver, and
determines the value of the damage, before issuing the payment to the customer. This
process lasts anywhere between a few days and a few weeks. Customer-obsessed insur-
ance companies typically perform this processwithin 2 to 3 days.While thiswaiting time
is reasonable and competitive, it leaves the customer in a situation of uncertainty, inse-
curity, and anxiety. Inmost cases if not all, he is only relievedwhen the claim is paid out.

Figure 10.1: The traditional process of claim handling in car insurance.
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From the insurers’ point of view, the claim processing is a time-consuming and
costly endeavor. Even in the most straightforward claim cases, the decision is manu-
ally made by a claim handler. Any partial automation of the process would significantly
enhance the claim handling capacity of the company, increase consistency of the claim
decisions, decrease the costs of handling, and reduce the processing time for both the
company, and more importantly, the customer.

Many insurers have invested significantly in the modernization of their services to
automate several parts of the process. KBC Group, an integrated bank-insurance group
from Belgium (see chapter 7), offers aAI-enabled service to its customers since Novem-
ber 2018.

In KBC’s service, the claim process has been drastically shortened in particular for
the straightforward cases (cf. Figure 10.2). When a vehicle has an accident, all the driver
needs to do is to connect to the insurance app on his phone to start the process. Ad-
ditional digital channels including the company’s website are also an option that the
customer can opt for. The process that follows can be divided into three phases: catego-
rizing the claim, assessing the damage, and making a decision.

Figure 10.2: The modern claim handling process for car insurance in the KBC Group application.

In the first phase, the customer interacts with a chatbot, which plays the role of
the company’s agent. The chatbot is implemented using Rasa, which is an open-source
framework for building intelligent chatbots. The chatbot can be decomposed into an
input module, which uses natural language understanding (NLU) algorithms to un-
derstand user inputs, and an output module, which performs natural language gen-
eration (NLG) to produce human-like text. The NLUmodule starts with vectorization to
convert the text into a vector, then a classification to associate the vectorwith an intent.
In parallel, each sentence is tokenized, then chunked, before named entity recognition
is performed and, therefore, entities are identified. With Intents and Entities identified
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from each step in the discussion, business logic is used to allow the chatbot to react to
every user input through the output module. This output module relies on a long-short-
termmemory (LSTM)network. As explained in Chapter 7, this type of recurrentneural
network (RNN) has the ability to maintain a neural representation of the dialog history.
Consequently, the context of each sentence in the dialog is inherently maintained.

Besides answering the user’s questions on the process and insurance policies, this
chatbot captures the story of the accident in text format. The text is then forwarded to
two natural language processing (NLP) classificationmodels in order to categorize the
accident in one of many categories such as “collision with an animal” or “collision with
a vehicle.” The first of the two models is a k-nearest neighbors (KNN)model, which is
a well-established classification technique, while the second is a more recent recurrent
neural network (RNN). The use of two models is motivated by the “four-eye principle”
as explained in Figure 10.3.

Figure 10.3: Handling the claim uses two models. A decision is only made when both models yield the
same category.

In order to use the k-NN model, the customer description of an accident is first trans-
formed into a binary vector indicating the presence of certain predefined key words.
Let’s assume that our keywords are the following: (car, deer, highway, wall). If the cus-
tomer says “I was driving on the highway when a deer crossed the road, and I could not
avoid it,” then the corresponding vector would be (0, 1, 1, 0). The resulting vector is then
compared to a set of known vectors extracted from a historical database. The distance
metric used to assess similarity is the cosine similarity. In other words, the similarity
between two vectors is measured by the cosine of the angle separating them. After com-
paring the vector to those in the historical database, the k most similar vectors are
extracted. The vector is labeled with most represented category in those k vectors.
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To use the RNN model, the phrase provided by the driver is first tokenized. After
this process, we obtain a sequence of numbers representing the position of eachword in
the tokens’ dictionary. The vector is then fed into a series of long short-term memory
(LSTM) networks, which can transform the representation of the vector based on the
words interdependencies. Therefore, the order of the words plays an important role in
the classification. Finally, a dense network is used to label the transformed vector and,
therefore, the original corresponding sentence.

Based on the test data, bothmodels agree on a category with a high confidence level
in 65.2% of the cases. On these cases, the accuracy of the classification is 99.4%. In
this scenario, the claim is labeled with the detected category and processed instantly.
In the other scenario where the models yield a low confidence score or disagree on the
category, the claim is then processed manually.

In the second phase of the claim, the customer submits photos of the accident. The
photos are processed using a convolutional neural network to identify the type and
extent of the damage. This data is then crossed with information on the car to assess the
cost of repairs.

In the third and final phase, the insurance app is able to retrieve the customer data
and instantly confirm if his insurance policy covers the claimed accident. The chatbot
also offers the customer the chance to ask his questions which are then categorized in
the same way using an LSTM model to reply with the appropriate answer.

The whole process takes less than a minute before the claim is categorized and re-
solved. This alleviates the uncertainty on the customer side. It is worthy to mention that
during the process the claim data is processed in the background to detect potential
fraud which was covered in Chapter 7.

In order to improve the quality of its models, KBC implemented a retraining loop
for the claims where the two models were uncertain or did not agree (Figure 10.4) . In
addition to those claims, 10% of all claims labeled by the two models are evaluated by

Figure 10.4: The retraining loop in the AI models used for claim categorization.
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Figure 10.5: The distribution of claims based on their complexity in the traditional and new claim handling
process at KBC Group.

human agents tomonitor the quality of the model. All manual labels are then fed back
into the training of the models to improve classification quality.

The outcomes of the new product are overwhelming for KBC. In fact, 50.4% of the
claims are currently fully automated (cf. Figure 10.5). Moreover, by replacing human
intervention with AI in the core process of claim handling, the organization has become
more cost-efficient and focused on complex claims.WithAI processing half of the claims,
the complex claim can get more time and attention, which results in better service qual-
ity for the insurance customers.

10.2 An automated engineering assistant that uses
a mix of learning and reasoning techniques in
manufacturing2

Hendrik Blockeel, Wannes Meert, Joost Vennekens

This example is taken from a collaboration betweenKULeuvenUniversity and amulti-
national company active in design andmanufacturing. The company produces parts for
all kinds of machines. Given a specification of the functionality of some required part,
this part needs to be designed andmanufactured. The goal of the projectwas to create an

2 Section 10.2 is based on two scientific papers: (1) Van Daele et al., 2021; (2) Aerts et al., 2022.
The research was supported by Flanders Innovation & Entrepreneurship (VLAIO O&O project ‘Digital
Engineer’), the FlemishGovernment (“OnderzoeksprogrammaArtificiële Intelligentie Vlaanderen”), and
the European Research Council (ERC) (Horizon 2020 research and innovation programme, grant agree-
ment No. 694980, SYNTH: Synthesising Inductive Data Models).
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automated engineering assistant using AI technology to help with this. The assistant
should allow design engineers to work more efficiently by better disclosing expertise
already available in the company. Below, we provide more context and give details on
the solution that was developed during the project.

10.2.1 The problem setting

The main type of document used by design engineers is the technical drawing. Such a
drawing typically consists of 2D and 3Dvisual descriptions ofmachines or parts, together
with annotations such as measurements, a bill of materials, etc. When designing a new
object, engineers produce such a technical drawing.

A customerwill typically contact the companywith a requirements specification for
the product they need. This includes its functionality, the conditions under which it will
operate (e. g., extreme temperatures), and so on.

Sometimes, a standard solution is already available for what the customer needs,
and the sales department can immediately handle the order. When that is not the case,
an engineer is facedwith the task ofdesigninganewproduct. Often, they can start from
a basic type of design that they know was already deployed and evaluated in the field
and adapt it to the needs of the customer; more rarely, they need to design something
from scratch.

Engineers obviously use their own expertise when designing a product, but they do
not have direct access to their (former) colleagues’ expertise. The company therefore
keeps a database in which earlier designs are stored, so that engineers can tap into it.
Being able to find relevant earlier designs that are close to what is needed in a new use
case can boost the engineers’ productivity. Moreover, such a database helps retain to
some extent the expertise of retired engineers.

At the start of this project, a large database with product designs was available.
This database is linked to databases on sales and after-sales that provide additional rel-
evant information (e. g., what kind of unexpected problems were frequently encoun-
tered with a given design). Partially because the database spans many years of exper-
tise, different companies, and multiple regions, it is very heterogenous: recent techni-
cal drawings are typically stored in a digital format, but older ones are simply scans of
drawings on paper. This database can be searched based on keywords. There is con-
siderable variance in what keywords are used to describe a design: terminology may
differ between different company locations and even among engineers at one location;
new types of materials become available over the years; insights on what are the most
relevant keywords evolve; typing mistakes, etc. Thus, there is heterogeneity not only
in the designs themselves but also in the metainformation about them. This makes it
hard to search the database effectively. Looking up information can take a substantial
amount of time and effort from the engineer: it may take many attempts before a suf-
ficiently good combination of keywords is found (one that yields a relatively small set
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of previous designs that are sufficiently relevant to be useful). Even then, there is no
guarantee of completeness: perhaps the best design to start from is not even in this set.

A better way of disclosing the database could significantly increase the efficiency
with which engineers can do their job. Hence, one goal of the project described here
was to build an AI-based system that helps the engineer to find relevant information
in this database.

By themselves, however, relevant past designs provide only a limited amount of in-
formation. For instance, the engineer has no way of knowing whether the past design
was actually successful. In addition, the solutions that used to be optimal, perhaps are
no longer optimal today (e.g„ because new, superiormaterials have been invented). Per-
haps most importantly, a design drawing tells the engineer which design choices were
made, but notwhy these choices were made.

The company therefore also had a second goal, which was to extract the knowl-
edge of key senior engineers and to explicitly store it in a formal knowledge base, such
that it will remain available for future generations of engineers. In addition, this knowl-
edge can then be used to provide flexible and explainable decision support to the
engineers.

10.2.2 How are those problems solved ? A mix of techniques from
Chapters 4, 5, and 7

The developed software uses multiple AI technologies to assist the design engineers: it
combines computer vision, inductive logic programming, pattern mining, knowl-
edge representation, logic reasoning, and constraint reasoning (Chapters 4, 5,
and 7).

10.2.2.1 Reading the drawings

Technical drawings consist of a 2D and 3D drawing (the “CAD” drawing) together with
annotations including measurements, a list of parts and/or materials, and so on. A lot
of relevant information is in the 2D drawing itself. A vision component was developed
that can analyze a drawing and extract relevant information from it. This vision compo-
nent reads the drawing as a bitmap image (so it works as well with scans of designs on
paper as with digital drawings). The image is first segmented using standard computer
visionmethods, and segments are then classified as “table,” “two-dimensional CAD,” or
“irrelevant.” This classification determines the next processing step: table segments are
handled differently from CAD segments, whereas irrelevant segments are ignored. The
segmentation and classification were found to be 100% accurate in the available data
(which is in linewith the fact that line drawings are generally not very hard to segment).
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10.2.2.2 Reading the tables

Data in tables are organized partly through annotation (e. g., column or row titles) and
partly through positioning (e. g., all cells below some column title belong to that column).
Different tables may have a different organization, however, and tables do not always
have a simple matrix form (m rows, n columns): cells may span multiple columns or
rows, a cell may contain a subtable, etc. The system therefore needs to learn how to
parse tables.

An inductive logic programming (ILP) approach was used for this. The ILP system
takes as input, descriptions of cells (cell text, cell location), relational information de-
rived from this (relative cell positions, neighboring cells, the order in which cells occur),
and labels of the cells. It produces as output “mini programs” that state how to derive
the label of a cell from the other information. An example of a rule that the system finds
is:

author(A):- cell_contains(B, “drawn”), above(B, A),

which states: when the cell above this one contains the text “drawn,” this cell contains
the name of the author. Figure 10.6 shows another example of a program and how it
interprets a table.

Figure 10.6: Example of a table and a mini-program defining the concepts “bill of materials” and “header.”
The highlighting shows what the program defines; it is not part of the original drawing. (Figure by Van
Daele et al., 2021.)

Rules similar to these were introduced for all labels. Some cells can be classified
quite well using such basic rules, others are harder to classify accurately. The overall
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quality was substantially improved by introducing a novel element into this ILP ap-
proach, called bootstrapping. The basic idea is to let classification rules for difficult la-
bels exploit the results of other classification rules for easier labels. A dependency graph
is constructed, where labels are ranked according to the accuracy with which they can
be predicted and the size of the program predicting it. After a first learning run, simple
ruleswith high accuracy are added to the backgroundknowledge that the ILP systemcan
exploit, then a second learning run is made that can exploit the additional knowledge
that has become available in this way. This process is repeated for each consecutive run.
One task that benefits from this procedure is to recognize the bill of materials, where
first the concept of a header is detected, after which recognizing rows of materials is
easy.

10.2.2.3 Reading the CAD drawings

To perform searches based on CAD drawings, a meaningful similarity measure for
such drawings needs to be available. Specifically, two drawings should be considered
maximally similar if they represent the same design (making abstraction of rotations,
translations, mirror symmetries, etc.) To learn a suitable similarity measure, self-
supervised learning is used: for each image, 10 more images are constructed with
irrelevant variations of the original (e. g., rotating the image); then a “siamese net-
work” is trained that for any pair of images should output whether they represent the
same design or not (using so-called contrastive learning , where pairs of images de-
rived from the same original are positive pairs, and random samples of image pairs are
negatives). The siamese network processes each image in a given pair using the same
network (a convolutional neural network with ResNet architecture), then combines
the outputs of these networks using a few fully connected layers. In this way, a neural
network is trained that can assess to what extent two drawings represent the same
design.

10.2.2.4 Identifying relevant designs

With the functionality described in previous sections, it becomes possible to define a
measure for the similarity between two designs. Each design is first represented using
two feature vectors:
– The first relates to the tables. As the description of the table resulting from 2.2 uses

a logical format, an ILP system called Warmr is used to find frequent patterns in
the logical description that are likely relevant for determining similarity. A feature
is introduced for each relevant pattern. These features form the “tabular” feature
vector. For tabular feature vectors, which have binary values, similarity is defined
as the proportion of features that have the same value.
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– The second feature vector, which relates to the CAD part, contains the nodes in the
penultimate layer of the siamese network that determines whether two drawings
represent the same design (these are obviously relevant for the similarity between
designs). For these CAD feature vectors, the cosine similarity measure is used.

The overall similarity between two designs is finally defined as the geometric mean of
both similarities.

10.2.2.5 The knowledge base

To complement the database of designs, a knowledge base was built that captures the
knowledge of key domain experts. To construct this knowledge base, several interac-
tiveworkshopswere held, inwhich experts fromdifferent sites worldwide participated,
guided by a knowledge engineer. The knowledge base is written in the FO(.) language,
which is a rich extension of classical first-order logic (Chapter 4).

During such workshops, it is important to represent the knowledge in a formal
language that not only the knowledge engineers but also the domain experts can un-
derstand. In this way, the domain experts can immediately check whether the knowl-
edge engineer has correctly understood what they are saying, which greatly reduced
the number of mistakes that end up in the knowledge base.

While the FO(.) language is powerful and easy to use for trained experts, it can be
challenging for people who first encounter it. The workshops therefore made use of the
decision model and notation (DMN) standard, and its extension cDMN. This offers an
intuitive table-based representation, which has been specifically developed to be usable
by domain experts. An example of a cDMN table is shown in Figure 10.7.

Figure 10.7: A cDMN table that defines which materials can be used for which components in which types
of design. For instance, in a closed design type, any material apart from M2 can be used to manufacture
the body of the component.

10.2.2.6 Interactive decision support

To build a usable decision support tool, it is key that the tool can adapt to the way
of working of the engineers, rather than forcing the engineers to adapt their way of
working to the tool. A decision support tool was therefore developed using KU Leuven’s
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Figure 10.8: The Interactive Consultant providing an explanation for why an open design must be used.
This is the case because the engineer has entered the requirements that the design should be able to
release back pressure and to cope with pressures up to 167. Other information that the system has already
derived is that material M5 cannot be used to manufacture the body of the component.

generic Interactive Consultant interface (idp-z3.be),which is poweredby the IDP-Z3 rea-
soning system for FO(.). Figure 10.8 shows a screenshot of this interface.

An important property of this system is that it adheres to the knowledge base
paradigm: the knowledge base itself is purely a declarative representation of knowl-
edge (i. e., by itself, it does not do anything), to which different logical inference algo-
rithms can then be applied to derive different kinds of conclusions from different input.
In this way, the system can give the engineer the freedom to work in whichever way
they choose. They can start from the requirements, they can start from a specific design,
they can start by choosingmaterials, etc. Whatever information the engineer chooses to
enter, the system will use the knowledge base to derive further conclusions from this.
In this way, the engineer and the AI system cooperate to gradually reduce the number
of options that remain, until finally a single, complete design remains. Because all the
information that the system provides is derived by means of logic reasoning from the
knowledge base that has been constructed and verified by the domain experts, informa-
tion coming from this system is at least as reliable as information that an expert would
provide themselves. Moreover, all the output is also explainable, in the sense that the
system can always point to a precise combination of choices made by the engineer and
parts of its knowledge base that suffice to reach this output.
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At any point during the design process, the engineer can use the same user inter-
face to inspect the database of previous designs. In this case, the current state of the
design process is used to return only designs that match this specific context. Moreover,
the properties of each design are shown using the same concepts that are used in the
configuration interface. This makes it easy for the engineer to spot the key differences
between different designs and to copy relevant parts over to their design.

10.2.3 How well does it work?

The time that engineers need to come up with a good design given specifications was
substantially reduced. The time spent searching the database to see what already exists,
what were the problems with some earlier designs, which designs were successful, and
which were not (and under what circumstances) is reduced significantly, by 15–30 min-
utes per use. This comes on top of the fact that engineers rarely spend more than an
hour on this search: if they cannot find anything fast enough, they start designing from
scratch, which may take dozens of hours. The AI provides much smarter access to the
database, and the interaction allows the engineer to quickly zoom in on the most rele-
vant cases. The integration into a configurator allows the engineer to quickly come up
with new variations that meet specific requirements.
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