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Preface

Mathematical optimization often focuses on accuracy, computational efficiency, and ro-
bustness whilemachine learning (ML) aims to achieve effective results on real data sets,
in particular concentrating on generalization, robustness, and resilience (to, e. g., pertur-
bations of the inputs). Up to now, both research areas have been only loosely intertwined
with optimization being a tool to execute a learning task from the ML perspective, and
ML being just yet another application from the optimization perspective. This is illus-
trated by the fact that certain variants of stochastic gradient descent (e. g., out-of-the-box
Adam) are still the method of choice in ML even though the application of this method
is not justified by theory for a large number of methods from ML. On the other hand,
mathematical optimization often studies approximation properties for machine learn-
ing tasks but so far has not developed optimization approaches that deliberately target
the needs of ML (e. g., generalization or sparsity). Hence, there is a lack of advanced op-
timization techniques that can handle machine learning problems with the required ef-
ficiency or learning-based improvements to optimization. Connectingmathematical op-
timization perspectives with machine learning approaches can lead to new approaches
and benefit existing ones. For instance, the problem of predicting cluster membership
in unsupervised learning may be greatly aided by an optimization perspective; after all,
as with many other data science approaches, the problem can be viewed as maximizing
a (complicated) function subject to some constraints. Complementarily, ML can be used
to tune optimization methods or develop surrogate models. It heavily influences down-
stream decision-making andmore general decision support systems inmany real-world
applications across industries.

In the summer of 2023, the Thematic Einstein Semester on the topic ofMathematical
Optimization for Machine Learning took place as part of the Excellence Cluster MATH+,
with the express aim of fostering the connection between the machine learning and
mathematical optimization communities and methodologies. In addition to a special
lecture series, a summer school, and seminars, there were three workshops and a con-
cluding conference that dealt with mathematical optimization and ML. The semester
covered a wide range of mathematical methods, starting with topics in continuous op-
timization and extending to practical machine learning applications. The organizers
invited around 200 scientists from around the world to talk about the topic. In addition
to the exchange of knowledge, the aim was to connect young researchers and students.

This proceedings volume contains selected contributions from the special semester’s
participants and shall provide insight into various aspects of the topic. The contributed
papers are grouped into three parts:

Machine Learning for Scientific and Engineering Applications
This part includes papers that apply machine learning to physics, control systems, and
mathematical modeling.

Open Access. © 2025 the author(s), published by Walter de Gruyter GmbH, Berlin/Boston. This work is
licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783111376776-201
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– A Framework to Solve Inverse Problems for Parametric PDEs using Adaptive Finite
Elements and Neural Networks.

– Generation of Value Function Data for Bilevel Optimal Control and Application to
Hybrid Electric Vehicle.

– Graph Neural Networks to Predict Strokes From Blood Flow Simulations.
– Capturing the Macroscopic Behavior of Molecular Dynamics with Membership

Functions.
– Adaptive Gradient Enhanced Gaussian Process Surrogates for Inverse Problems.

Optimization in Machine Learning and Control
This group focuses on optimization techniques in neural network training, control sys-
tems, and algorithmic advancements.
– Multifidelity Domain Decomposition-based Physics-informed Neural Networks and

Operators for Time-dependent Problems.
– Constrained Piecewise Linear Optimization by an Active Signature Method.
– Parallel Trust-Region Approaches in Neural Network Training.
– Trustworthy Optimization Learning: A Brief Overview.
– Compression-aware Training of Neural Networks using Frank–Wolfe.
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Alexandre Caboussat, Maude Girardin, and Marco Picasso
A framework to solve inverse problems for
parametric PDEs using adaptive finite
elements and neural networks

Abstract: Parameter identification is important in many engineering processes, and
benefits from quick evaluations with reduced models. We present here a framework
to solve inverse problems for parametric partial differential equations. The reduced
model is built on a neural network method for the numerical approximation of a given
parametric partial differential equation. Training data are generated thanks to adaptive
finite element simulations. A supervised feedforward neural network is then used for
the online approximation of the solution.

The inverse problem aims at identifying parameters using available measurement
data. The corresponding optimization problem is solvedwith a particle swarmoptimiza-
tionmethod. Numerical results are presented for the parameter identification of several
elliptic and hyperbolic model problems.

Keywords: Finite element method, parametric PDEs, neural networks, adaptive mesh
refinement, inverse problem, particle swarm optimization

MSC 2020: 65N15, 65N30, 65N50, 68T07, 65M32

1 Introduction
We consider parametric partial differential equations that are either stationary

ℱ(u(x; μ); μ) = 0 x ∈ Ω, μ ∈ 𝒫 , (1.1)

or evolutive

ℱ(u(x, t; μ); μ) = 0 x ∈ Ω, t ∈ [0, T], μ ∈ 𝒫 , (1.2)
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where Ω ⊆ ℝd (d ≥ 1) is the physical space, 𝒫 ⊂ ℝp is the parameter space (with p ≥ 1
possibly large), and ℱ is some differential operator. Given observed values of the solu-
tion ui at given (space or space-time) locations Yi, i = 1 . . . ,Nobs, the goal is to determine
the optimal parameter μ∗ ∈ 𝒫 that minimizes the objective function

F(μ) := 1
Nobs

Nobs

∑
i=1 󵄨󵄨󵄨󵄨u(Yi; μ) − ui󵄨󵄨󵄨󵄨α, (1.3)

where u(⋅; μ) is the solution of the parametric PDE for a given value of the parameter μ,
and where α > 0 is given (typically α = 1 or α = 2). We do not consider noise in the data
ui, and thus do not investigate potential smoothing terms. Any optimization method to
minimize F(μ) requires to compute (an approximation of) the solution u(⋅; μ) a large
number of times. Such evaluation should thus be fast, hence the advantage to build and
use a reduced model to approximate u. Depending on the type of PDE, several reduced-
order modeling approaches may be considered, such as, e. g., reduced basis [10], proper
orthogonal decomposition [24], polynomial chaos expansion [6], or neural networks [8,
11, 25].

Solving nonlinear optimization problems, including inverse problems, requires
dedicated computational optimizationmethods. Among them, we canmention Newton-
type approaches [7] or derivative-free approaches [1, 13, 18, 22]. We will in particular
focus here on particle swarm optimization (PSO) [12, 16, 20]. On the other hand, among
reduced-order models, we consider here data-driven feedforward neural networks
[4, 8], in order to build a neural network approximation u𝒩 of u that can be used for the
direct evaluations of the solution. Adaptive mesh refinement techniques are used for
the generation of training data [23], which allows to control the accuracy of the training
data uniformly in the parameter space [3]. The finite element simulations, as well as
the training of the neural network, are done during an offline phase, which can be time
consuming but is done once and for all. Once trained, the network can be efficiently
evaluated during the online phase to solve the parameter identification problem.

This work is organized as follows: the finite elements-neural networkmodel is sum-
marized in Section 2. Section 3 describes the solution method for the inverse problem,
including the optimization framework relying on a Newton or a PSO approach. Numeri-
cal experiments, including both elliptic and hyperbolic PDEs, are presented in Section 4.

2 An adaptive finite elements—neural networks
method for the direct problem

Let us recall briefly the numerical method presented in [2, 3] for the solution of the
direct problem (1.1). Similarly as in [4], we denote by ϒW ,L(σ; din, dout) the set of fully-
connected feedforward neural networks with input dimension din, output dimension
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dout, and L hidden layers, each constituted ofW neurons having σ as activation function.
We consider here a neural network 𝒩 ∈ ϒW ,L(σ; din, 1) to approximate the mapping
(Y ; μ) 󳨃→ u(Y ; μ), where din = p + d if Y denotes the spatial coordinates x ∈ Ω, and
din = p+d+1 if Y denotes the space-time coordinates (x, t) ∈ Ω×(0, T). Once its trainable
parameters θ have been fixed, the network gives an approximation u𝒩 (⋅; θ) : din → dout
of u. The training procedure is as follows:
1. Randomly select training parameters {μ̃j}

Ntrain
j=1 ⊆ 𝒫 , for Ntrain ∈ ℕ given.

2. For each μ̃j , set an appropriate discretization of Ω or Ω× [0, T], and compute a finite
element approximation uh(⋅; μ̃j) of u(⋅; μ̃j). In order to do so, use appropriate a pos-
teriori error analysis to estimate the local error and iteratively obtain the optimal
mesh that balances the error over all finite elements (and time steps). This ensures
that all the numerical solutions have an accuracy close to a preset tolerance uni-
formly in 𝒫 , but implies that the discretizations used to compute the finite element
solutions uh(⋅; μ̃j) are different for each μ̃j .

3. Set the architecture of the neural network, that is, the number of layers L, the num-
ber of nodes per layerW , and the activation function σ .

4. Choose the trainable parameters θ of𝒩 ∈ ϒW ,L(σ; din, 1) to minimize
Φ(θ) := ℒNtrain

(u𝒩 (⋅; θ); uh).

Here, the objective function Φ(θ) is an averaged sum over the training parameters
of ‖uh(⋅; μ̃j)−u𝒩 (⋅; μ̃j ; θ)‖L2(Ω) in the case of a stationary problem [3], and of ‖uh(⋅; μ̃j)−
u𝒩 (⋅; μ̃j ; θ)‖ℓ2((0,T);L2(Ω)) in the case of an evolutive problem [2].We let θ∗ be the set of
parameters obtained by some random gradient descent type algorithm and denote
u𝒩 (Y ; μ; θ

∗) simply by u𝒩 (Y ; μ) from now on. In practice, the Nadam optimizer [19]
has been used to find θ∗ for the numerical experiments presented in the sequel.

3 A framework for parameter identification

Once a network 𝒩 ∈ ϒW ,L(σ; din, 1) giving an approximation u𝒩 of u has been set up,
it can be used to solve inverse problems. Let us consider values ui that the function u
takes at given observation points Yi, i = 1, . . . ,Nobs. In Section 4, the points Yi are either
in a spatial domain (xi, yi) ∈ Ω, or in a space-time domain (xi, yi, ti) ∈ Ω × (0, T). We are
looking for the optimal parameter μ∗ ∈ 𝒫 that minimizes

F(μ) := 1
Nobs

Nobs

∑
i=1 󵄨󵄨󵄨󵄨u𝒩 (Yi; μ) − ui󵄨󵄨󵄨󵄨α, (1.4)

where α = 1 or α = 2. A minimizer of (1.4) can be searched using any optimization al-
gorithm. The derivatives 𝜕u𝒩𝜕μ (⋅; μ) can typically be computed using automatic differen-
tiation [5], which allows the use of gradient-type methods. Nevertheless, these methods
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usually require some a priori knowledge for the choice of the initial guess in order to
converge. Numerical experiments show that such initial guess may be difficult to find
uniformly in the parameter space. On the other hand, derivative-free approaches, such
as, e. g., the Particle SwarmOptimization (PSO) algorithm [12, 16, 20], allow for global op-
timization and more robustness. We start by presenting here both approaches, before
illustrating their behavior on several numerical experiments.

3.1 Particle-swarm optimization

Among derivative-free methods, particle-swarm optimization relies on iteratively up-
dating a group of several particles, which individually and collectively evolve to find
a global minimizer of a function. This approach has been proved to be very adapted
and robust for global optimization problems where the function is nonconvex and may
present several local minimizers. The underlying idea is to update the solution for each
particle at each iteration taking into consideration its current position but also the po-
sitions in the whole group.

We initialize Npart particles in ℝ
p, and make their position evolve in order to find a

minimizer of (1.4). At iteration K + 1, the position of the particle i is

μi(K + 1) = μi(K) + vi(K + 1) ∈ ℝ
p,

where the components of the velocity vi(K + 1) = (vij(K + 1))
p
j=1 are

vij(K + 1) = ω(K)vij(K) + c1(K)r1j(K)(νij(K) − μij(K)) + c2(K)r2j(K)(ν̂j(K) − μij(K)). (1.5)

In (1.5), rkj are random numbers with uniform distribution in (0, 1), νi(K) = (νij(K))
p
j=1

denotes the best position that the particle i has reached during the previous iterations,
and ν̂(K) = (ν̂j(K))

p
j=1 denotes the best position that has been among all particles. As sug-

gested in [14, 17], we use varying coefficients ω, c1, c2 given at iteration 0 ≤ K ≤ Kmax by

ci(K) = (ci,F − ci,I ) K
Kmax
+ ci,I , i = 1, 2,

ω(K) = (ωI − ωF − 0.2) exp{(1 +
7K
Kmax
)
−1
},

with c1,I = 2.5, c2,I = 0.5, ωI = 0.95, c1,F = 0.5, c2,F = 2.5, ωF = 0.4. In the sequel, unless
explicitly stated otherwise, we choose Kmax = 100, and then allow the algorithm to
perform another 200 iterations with constant values of c1, c2, and w. The optimization
algorithm stops if the maximum number of iterations (300) is reached or if F(ν̂) does
not decrease for 10 iterations in a row. The initial position of the particles is chosen uni-
formly at random in 𝒫 . During the optimization process, the particles are constrained
in a slightly extended compact set 𝒫̃ ⊋ 𝒫 (but not strictly in 𝒫), in order to be able
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to recover parameters that lie on the boundary of 𝒫 . The implementation of the PSO
algorithm has been made using PySwarms [15].

3.2 Gradient method

The alternative is to consider a gradient-based method in the parameter space. Given
an initial guess μ(0), we make the position of the particle evolve as

μ(K + 1) = μ(K) − η(K)∇μF(μ(K)),

where η(K) = η‖∇μF(μ(K))‖
−1. As for the PSO algorithm, we constrain the iterates μ(K)

to remain in 𝒫̃ . The implementation of the gradient algorithm relies on automatic dif-
ferentiation [5] and has been made using Tensorflow [21].

We choose as initial guess μ(0) = μ∗(1 + γn), where μ∗ is the exact solution, ni ∈
𝒰([−1, 1]), i = 1, . . . , p, and γ > 0 characterizes the size of the attraction basin of the
method. This corresponds to choosing the initial guess in the neighborhood of the ex-
act solution. If μb(i) denotes the best parameter that has been found during iterations
0, . . . , i, the algorithm is stopped if

F(μ(i)) > F(μb(i − 1)) or F(μ(i)) − F(μb(i − 1))
F(μb(i − 1))

< tol

for 20 iterations in a row.

4 Numerical experiments

4.1 A Poisson problem

The first model problem that we consider is a 2D parametric Poisson problem: find
u(⋅; μ) : Ω→ ℝ such that

{
−Δu(x; μ) = f (x; μ), x ∈ Ω, μ ∈ 𝒫 ,
u(x; μ) = g(x; μ), x ∈ 𝜕Ω, μ ∈ 𝒫 ,

(1.6)

with d = 2, Ω = [0, 10] × [0, 2], p = 4, 𝒫 = [1.5, 8.5] × [1, 10] × [100, 1000] × [0.3, 2]. Here,
f and g are such that the exact solution u of (1.6) is given by

u(x; μ) = μ3
πμ24

exp{−2μ−24 ((x1 − μ1)2 + μ2(x2 − 1)2)}.
In this case, μ3 controls the amplitude of the solution, μ4 the size of its support, μ1 its
position on the x1-axis, and μ2 its stretching along the latter. We consider the optimiza-
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tion problem (1.4), with α = 2. We assume that observed values ui are available at given
points Yi = (xi, yi), i = 1, . . . ,Nobs. In order to validate the algorithm, we start by setting
an optimal value μ∗ ∈ 𝒫 and ui = u(Yi, μ

∗), i = 1, . . . ,Nobs.
To ensure that the values ui are not all close to zero, the measure points are chosen

randomly with uniform distribution in the set 𝒮 := {(x, y) ∈ Ω : u(x, y; μ∗) > umin}. For
direct computations,we use a neural network𝒩 ∈ ϒ400,4(σ; 6, 1) constructed and trained
as described in Section 2. The training set is composed by data coming from 4000 finite
element simulations, and the training of the network takes around 2.5 hours in this case.
For more details on the building and training of the network, we refer to [3].

4.1.1 Results with the particle-swarm optimization method

Table 1.1 illustrates the mean value of the computed μ, as well as the standard deviation
over a sample of 10 realizations of the PSO algorithm. The measure points are chosen
randomly in 𝒮 at the beginning of each realization of the algorithm; they thus differ
from one realization to the other. The algorithm has always stopped before reaching the
maximum number of iterations.

Table 1.1: Results of the PSO algorithm, for Npart = 40, Nobs = 30, umin = 1, α = 2, and various values of μ∗.
μ∗ (exact) μ∗ (computed)(5.5, 5.5, 550, 1.15) (5.50, 5.50, 551, 1.15) ± (0.000356, 0.00799, 0.463, 0.000668)(8.5, 1, 1000, 0.3) (8.50, 0.935, 988.5, 0.293) ± (0.000371, 0.00638, 5.10, 0.000712)(1.5, 1, 100, 2) (1.50, 1.22, 102, 2.01) ± (0.0130, 0.107, 5.02, 0.0629)(5, 1, 1000, 2) (5.00, 1.01, 1001, 2.00) ± (0.00145, 0.00412, 1.81, 0.00209)(5, 10, 100, 0.3) (5.00, 10.2, 104, 0.306) ± (0.000679, 0.336, 2.86, 0.00336)(5, 10, 1000, 1) (5.00, 9.99, 1002, 1.00) ± (0.000657, 0.0199, 1.15, 0.000480)
Note that the parameter in the first line of Table 1.1 is at the center of 𝒫 . All the other
parameters lie on the boundary of𝒫 , and are thereforemore challenging to recover.We
notice that, even in these extreme cases, μ∗ is recovered with good accuracy and small
variability among calculations. Figure 1.1 shows the evolution of the cost functional (1.4)
during the iterations of the PSO algorithm, for 10 realizations of the algorithm and dif-
ferent μ∗. For each parameter, three distinct phases are observed during the PSO algo-
rithm: first, the particles explore the parameter space and the cost functional decreases
only slowly. Then particles all converge toward the (approximated) optimal parameter,
and the cost functional drops drastically, before finally oscillating around the optimal
parameter in a stationary manner. Note that for μ∗ = (8.5, 1, 1000, 0.3) the cost remains
relatively high (around 10). This is explained by the fact that this parameter corresponds
to the solution with the highest amplitude and the strongest gradients, being thus one
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of the most challenging to capture correctly with the neural network. For this model
problem, the PSO algorithm typically takes around 8[s] to converge. Note that no finite
element simulations are performed during the optimization algorithm.

Figure 1.1: Evolution of the cost functional during the PSO iterations, for different parameters μ∗ (Npart =
40, Nobs = 30, umin = 1).
4.1.2 Results with the gradient method

In order to compare the performance of the PSO and gradient descent algorithms, we
test the gradient approach using the same parameters μ∗ as in the previous section. The
mean and the standard deviation of the recovered parameters over 10 realizations of
the algorithm are reported in Table 1.2, for Nobs = 30, η = 10

−2, γ = 0.3, and tol = 5 ⋅ 10−3.
Note that the parameters are more accurately recovered with the PSO algorithm.

Table 1.2: Results of the gradient algorithm, for Nobs = 30, umin = 1, α = 2, γ = 0.3, and various values
of μ∗.
μ∗ (exact) μ∗ (computed)(5.5, 5.5, 550, 1.15) (5.51, 6.04, 584, 1.19) ± (0.0134, 0.668, 0.89.5, 0.0998)(8.5, 1, 1000, 0.3) (7.29, 0.887, 981, 0.355) ± (1.07, 0.177, 131, 0.0842)(1.5, 1, 100, 2) (1.50, 1.06, 93.5, 1.95) ± (0.0220, 0.220, 13.0, 0.110)(5, 1, 1000, 2) (5.00, 0.642, 849, 1.85) ± (0.0201, 0.267, 103, 0.0991)(5, 10, 100, 0.3) (5.16, 9.05, 105, 0.332) ± (0.821, 1.37, 12.2, 0.0647)(5, 10, 1000, 1) (5.00, 8.63, 971, 0.978) ± (0.0166, 0.879, 74.3, 0.0486)
Figures 1.2 and 1.3 show the evolution of the cost functional during the gradient iter-
ations. We observe that the gradient method is efficient in terms of convergence speed.
However, as illustrated in Figure 1.2, the method does not always converge toward the
global minimumwhen the initial guess is too far from the solution (γ = 0.3). Actually the
method requires an initial guess that is very close to the optimal solution for themethod
to converge and lacks robustness for particular values of the parameters μ∗. Figure 1.3
illustrates that effect for a given value of μ∗ and several values of γ.
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Figure 1.2: Evolution of the cost functional during the gradient iterations, for different parameters μ∗
(Nobs = 30, umin = 1, γ = 0.3).

Figure 1.3: Evolution of the cost functional during the gradient iterations, for different values of γ and
μ∗ = (8.5, 1, 1000, 0.3) (Nobs = 30, umin = 1). From left to right: γ = 0.2, 0.1, 0.05.
Therefore, for these robustness reasons, we favor the PSO approach in the next nu-
merical experiments. Note that a PSO method can be afforded as long as the evaluation
of F—and thus u𝒩—is not too costly. This is the case for the kind of neural networks
used here.

4.2 A hyperbolic problem

We consider a parametric transport equation in two dimensions of space and set p = 3.
Given μ = (μ1, μ2, μ3) ∈ 𝒫 , the problem consists in finding u : Ω × [0, T] 󳨃→ ℝ satisfy-
ing

𝜕u
𝜕t
(x, t; μ) + a(x, t; μ)∇u(x, t; μ) = 0, x ∈ Ω, t ∈ (0, T), μ ∈ 𝒫 , (1.7)

together with the initial condition u(x, 0; μ) = u0(x; μ) for all x ∈ Ω and μ ∈ 𝒫 , with
Ω = (0, 4) × (0, 4) and T = 2|μ1|

−1. The vector field a is chosen such that there is
no inflow boundary, and thus no boundary condition to enforce. We consider μ1 ∈
[−2,−0.5] ∪ [0.5, 2], μ2 ∈ [0.15, 0.3], μ3 ∈ [50, 150], and we set a(x, t; μ) =

μ1π
2 (

2−x2
x1−2 ) and

u0(x; μ) = tanh(−μ3√(x1 − 2)2 + (x2 − 2.5)2 − μ2).
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In this particular case, μ1 is a parameter ruling the velocity, μ2 characterizes the size
of the support of the initial condition u0, and μ3 is a regularization parameter for the
initial condition. As before, we assume that observed values ui are available at given
points Yi = (xi, yi, ti), i = 1, . . . ,Nobs, and that there is no noise in the measurements.
We start by choosing α = 2 in the objective function (1.4). To ensure that the values ui
allow to recover the optimal parameter, the points Yi are chosen randomlywith uniform
distribution in the set {(x, y, t) ∈ Ω×[0, T] : u(x, y, t; μ∗) > umin}. For direct computations,
weuse aneural network𝒩 ∈ ϒ200,4(σ; 6, 1) constructed and trained as in Section 2. See [2]
for more details.

Numerical results are illustrated in Table 1.3, for two different numbers of measure
points Nobs and different μ

∗. As for the elliptic problem, we report the mean value and
the standard deviation of the computed μ over a sample of 10 realizations of the PSO
algorithm,with themeasure points changing from one realization to the other. Note that
all parameters μ∗, except the first one, lie on the boundary of𝒫 , and should therefore be
more challenging to capture accurately. In each case, the algorithm has stopped before
reaching the maximum number of iterations.

Table 1.3: Results of the PSO algorithm, for Npart = 200, umin = −0.9, α = 2, and various values of μ∗.
μ∗ (exact) μ∗ (computed)

Nobs = 30(1.25, 0.225, 100) (1.25, 0.225, 107) ± (0.00106, 0.000327, 13.2)(2, 0.3, 50) (2.00, 0.300, 52.1) ± (0.00187, 0.000958, 3.21)(2, 0.15, 100) (2.00, 0.150, 113) ± (0.00261, 0.000823, 8.56)(0.5, 0.3, 50) (0.498, 0.302, 55.2) ± (0.00584, 0.00459, 22.9)(1, 0.2, 150) (1.01, 0.209, 134) ± (0.0273, 0.0255, 25.3)(0.5, 0.15, 150) (0.500, 0.151, 136) ± (0.000745, 0.000828, 12.3)
Nobs = 100(1.25, 0.225, 100) (1.25, 0.225, 100) ± (0.0000964, 0.0000404, 0.746)(2, 0.3, 50) (2.00, 0.300, 53.4) ± (0.00142, 0.000384, 5.35)(2, 0.15, 100) (2.00, 0.150, 109) ± (0.000451, 0.000168, 4.37)(0.5, 0.3, 50) (0.496, 0.302, 47.3) ± (0.00206, 0.00254, 5.58)(1, 0.2, 150) (1.00, 0.201, 138) ± (0.000731, 0.00310, 21.3)(0.5, 0.15, 150) (0.501, 0.152, 128) ± (0.00395, 0.00512, 9.66)
We note that μ1 and μ2 are recovered with good accuracy for all the parameters
that we tested. Nevertheless, we observe in some cases less accurate recovery and/or
large variability among calculations for the parameter μ3 ruling the size of the bound-
ary layer. This lack of accuracy may come from the error introduced by the neural net-
work approximation and/or from the lownumber of observations in the boundary layer
around the initial condition. Furthermore, we see that, as expected, the larger the num-
ber of observations (Nobs), the smaller the standard deviation of the results.
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In order to increase the accuracy of the recovered μ3, we investigate whether a ℓ
1-

based objective function ismore efficient to capture the sharp gradients in the boundary
layer. Thus, we consider the cost functional (1.4) with α = 1.

Numerical results for Nobs = 100 are shown in Table 1.4. We note that the choice
of a ℓ1 cost functional indeed allows in most cases to capture μ3 more accurately and to
reduce the variability across calculations. The uncertainty that remains in the recovery
of μ∗ = (0.5, 0.15, 150) is explained by the fact that this parameter corresponds to the
function u(⋅; μ) with the smallest support and the steepest boundary layer, making it
hard to capture exactly by the neural network.

Table 1.4: Results of the PSO algorithm, for Npart = 200, Nobs = 100, umin = −0.9, α = 1, and various values
of μ∗.
μ∗ (exact) μ∗ (computed)(1.25, 0.225, 100) (1.25, 0.225, 103) ± (0.00290, 0.00150, 7.27)(2, 0.3, 50) (2.00, 0.299, 51.3) ± (0.00107, 0.000302, 1.12)(2, 0.15, 100) (2.00, 0.149, 104) ± (0.000424, 0.000124, 2.70)(0.5, 0.3, 50) (0.495, 0.301, 50.9) ± (0.00226, 0.00147, 1.96)(1, 0.2, 150) (1.00, 0.200, 148) ± (0.000148, 0.0000729, 4.38)(0.5, 0.15, 150) (0.500, 0.151, 134) ± (0.000216, 0.000605, 9.03)
Figure 1.4 shows the evolution of the cost functional during the iterations of the
PSO algorithm, for 10 realizations of the algorithm and different μ∗. The cost functional
evolves in a very similar way to the elliptic model problem, with three distinct phases.
Note that for μ∗ = (2.0.3, 50) and μ∗ = (0.5, 0.3, 50), the parameters are accurately recov-
ered, but the cost functional stagnates above 10−2, mainly due to error introduced by
the neural network approximation. For this model problem with Npart = 200, the PSO
algorithm typically takes around 6[s] when Nobs = 30 and 20[s] when Nobs = 100.

Figure 1.4: Evolution of the cost functional during the PSO iterations, for different parameters μ∗. Npart =
200, Nobs = 100, umin = −0.9, α = 1.
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4.3 An elliptic problem with more parameters

Finally, we choose as a last numerical experiment the elliptic problem

{
−∇ ⋅ (a(x; μ)∇u(x; μ)) = f (x), (x, μ) ∈ Ω × 𝒫 ,
u(x; μ) = 0, (x; μ) ∈ 𝜕Ω × 𝒫 .

(1.8)

As in [9], we take Ω = [0, 1]2, 𝒫 = [−√3,√3]9, and consider f (x) = 10 sin(2π(x1 + x2)) and
a(x; μ) = 1 + 0.1∑16i=1 ψi(x)μi, with

ψ1 = λ1ϕ1(x1)ϕ1(x2), ψ2 = √λ1λ2ϕ1(x1)ϕ2(x2), ψ3 = √λ2λ1ϕ2(x1)ϕ1(x2),

ψ4 = λ2ϕ2(x1)ϕ2(x2), ψ5 = √λ1λ3ϕ1(x1)ϕ3(x2), ψ6 = √λ3λ1ϕ3(x1)ϕ1(x2),

ψ7 = √λ2λ3ϕ2(x1)ϕ3(x2), ψ8 = √λ3λ2ϕ3(x1)ϕ2(x2), ψ9 = λ3ϕ3(x1)ϕ3(x2),

ψ10 = √λ1λ4ϕ1(x1)ϕ4(x2), ψ11 = √λ4λ1ϕ4(x1)ϕ1(x2),

ψ12 = √λ2λ4ϕ2(x1)ϕ4(x2), ψ13 = √λ4λ2ϕ4(x1)ϕ2(x2),

ψ14 = √λ3λ4ϕ3(x1)ϕ4(x2), ψ15 = √λ4λ3ϕ4(x1)ϕ3(x2),

ψ16 = λ4ϕ4(x1)ϕ4(x2),

where {λj ,ϕj}, j = 1, 2, 3, are the four first eigenpairs of the Karhunen–Loève expansion
of a 1D Gaussian random field of covariance C(x, x′) = e|x−x′|. We refer to [9] for an
illustration of the basis functions ψi. Figure 1.5 shows the solution u(⋅; μ) corresponding
to different parameters μ.

Figure 1.5: Left: Snapshot of an averaged solution u(⋅; μ). Right: Cut of the solutions u(⋅; μ) along the diago-
nal x1 = x2 for various parameters μ.
We truncate the expansion of a at i = 4, i = 9, and i = 16 (corresponding to the
eigenpairs {λj ,ϕj}, for j = 1, 2, 3, resp.), obtaining thus three different networks𝒩

4,𝒩 9,
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and𝒩 16. To train the latter, 3000 finite element simulations are performed, which takes
around 7 hours offline. The training of the networks then take around 11 hours offline
in the three cases.

Unlike the first two test cases, no analytical solution is known for the problem (1.8).
For each of the three sizes of expansion, we therefore use the finite element solution
computed on a very fine grid (withmesh size h = 0.005) as the exact solution to generate
the data {ui}

Nobs
i=1 .

In the sequel, we compare the performances of the PSO algorithm for the different
expansions and different number of measures points and number of particles.

Table 1.5 reports the mean value ± the standard deviation of the objective function
F and the CPU time, computed over 50 realizations of the algorithm, performed with
randomly chosen parameters. We observe that the performances of the algorithm are
not significantly impacted as the dimension of the parameter space is increased. Simi-
larly, the time taken by the algorithm to converge naturally depends on the number of
observation points and of particles, but only weakly on the dimension of the parameter
space.

Table 1.5: Average performances of the PSO algorithm, for different number of observations Nobs, number
of particles Npart and different sizes of expansion NKL.

NKL Nobs Npart F CPU [s]

4 100 100 1.89 ⋅ 10−8 ± 5.66 ⋅ 10−8 9.07 ± 3.18
1000 8.62 ⋅ 10−9 ± 9.06 ⋅ 10−9 32.9 ± 12.0

400 100 2.02 ⋅ 10−8 ± 3.04 ⋅ 10−8 17.43 ± 7.55
1000 1.29 ⋅ 10−8 ± 8.36 ⋅ 10−9 124 ± 48.8

9 100 100 5.29 ⋅ 10−8 ± 1.59 ⋅ 10−7 11.8 ± 3.80
1000 1.44 ⋅ 10−8 ± 2.88 ⋅ 10−8 45.1 ± 13.1

400 100 2.83 ⋅ 10−8 ± 6.78 ⋅ 10−8 24.9 ± 8.43
1000 1.64 ⋅ 10−8 ± 2.08 ⋅ 10−8 171 ± 36.7

16 100 100 2.98 ⋅ 10−8 ± 3.25 ⋅ 10−8 12.6 ± 4.14
1000 2.39 ⋅ 10−8 ± 3.44 ⋅ 10−8 53.4 ± 15.9

400 100 4.54 ⋅ 10−8 ± 8.17 ⋅ 10−8 28.1 ± 8.06
1000 2.73 ⋅ 10−8 ± 2.19 ⋅ 10−8 184 ± 56.5

Table 1.6 illustrates, for Nobs = 400 and Npart = 1000, the mean value ± the standard
deviation of the error committed on each component of the parameters μ. We observe
that the last components of the parameter becomemore andmore difficult to recover ac-
curately. This is easily explained as those components correspond to the basis functions
that are more oscillatory and have smaller amplitude.

Finally, Table 1.7 illustrates, similar to the other experiments, for Npart = 1000,
Nobs = 400, n = 3, and different targeted parameters μ

∗, the parameters returned by
the PSO algorithm.
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Table 1.6: Average error for each component of the targeted parameter μ and different sizes of expan-
sions NKL.

NKL 4 9 16

μ1 1.53 ⋅ 10−3 ± 2.58 ⋅ 10−3 2.58 ⋅ 10−3 ± 2.22 ⋅ 10−3 5.94 ⋅ 10−3 ± 3.84 ⋅ 10−3
μ2 3.53 ⋅ 10−3 ± 4.11 ⋅ 10−3 1.03 ⋅ 10−2 ± 2.80 ⋅ 10−2 2.02 ⋅ 10−2 ± 1.42 ⋅ 10−2
μ3 2.67 ⋅ 10−3 ± 3.36 ⋅ 10−3 5.98 ⋅ 10−2 ± 4.47 ⋅ 10−3 2.17 ⋅ 10−2 ± 1.67 ⋅ 10−2
μ4 2.23 ⋅ 10−2 ± 2.56 ⋅ 10−2 1.80 ⋅ 10−2 ± 4.71 ⋅ 10−2 6.73 ⋅ 10−2 ± 4.06 ⋅ 10−2
μ5 1.14 ⋅ 10−2 ± 2.19 ⋅ 10−2 3.94 ⋅ 10−2 ± 2.82 ⋅ 10−2
μ6 9.72 ⋅ 10−3 ± 1.27 ⋅ 10−2 3.87 ⋅ 10−2 ± 2.77 ⋅ 10−2
μ7 2.77 ⋅ 10−2 ± 2.98 ⋅ 10−2 9.66 ⋅ 10−2 ± 7.00 ⋅ 10−2
μ8 5.43 ⋅ 10−2 ± 1.87 ⋅ 10−1 9.09 ⋅ 10−2 ± 7.52 ⋅ 10−2
μ9 9.00 ⋅ 10−2 ± 6.26 ⋅ 10−2 1.24 ⋅ 10−1 ± 9.37 ⋅ 10−2
μ10 6.28 ⋅ 10−2 ± 4.77 ⋅ 10−2
μ11 5.86 ⋅ 10−2 ± 4.80 ⋅ 10−2
μ12 1.80 ⋅ 10−1 ± 1.22 ⋅ 10−1
μ13 1.91 ⋅ 10−1 ± 1.48 ⋅ 10−1
μ14 3.21 ⋅ 10−1 ± 2.03 ⋅ 10−1
μ15 3.01 ⋅ 10−1 ± 2.24 ⋅ 10−1
μ16 5.97 ⋅ 10−1 ± 4.47 ⋅ 10−1
Table 1.7: Results of the PSO algorithm, for Npart = 1000, Nobs = 400, n = 3, α = 2, and various values of μ∗.
μ∗ (exact) μ∗ (computed)

(0.866, 0.866, 0.866, 0.866, 0.866,
0.866, 0.866, 0.866, 0.866)

(0.869, 0.866, 0.861, 0.866, 0.861, 0.860, 0.865, 0.845, 0.848) ±
(0.00154, 0.00371, 0.00505, 0.0166, 0.00921, 0.0104, 0.0282, 0.0251,
0.100)

(−0.957, −0.0973, 0.114, 0.144,−1.17, 1.30, −1.44, −0.904, 0.663) (−0.955, −0.0999, 0.111, 0.150, −1.17, 1.30, −1.45, −0.923, 0.623) ±
(0.00141, 0.00460, 0.00785, 0.0165, 0.00987, 0.00957, 0.0500, 0.0293,
0.0733)

(1.73, 1.73, 1.73, 1.73, 1.73, 1.73,
1.73, 1.73, 1.73)

(1.73, 1.71, 1.72, 1.67, 1.71, 1.73, 1.67, 1.79, 1.80) ± (0.00164, 0.00468,
0.00353, 0.0255, 0.0142, 0.0118, 0.0314, 0.219, 0.147)

(1.73, 1.73, −1.73, 1.73, −1.73,−1.73, −1.73, 1.73, 1.73) (1.74, 1.72, −1.73, 1.71, −1.75, −1.75, −1.74, 1.72, 1.81) ± (0.00265,
0.00524, 0.00473, 0.0220, 0.0171, 0.0136, 0.0422, 0.0541, 0.155)

(0, 0, 0, 0, 0, 0, 0, 0, 1.73) (0.00135, −0.0079, −0.00370, 0.00798, 0.00753, −0.00182, 0.00857,
0.0126, 1.65) ± (0.00155, 0.00565, 0.00409, 0.00812, 0.0107, 0.00863,
0.0288, 0.0356, 0.0369)

We note that the algorithm allows to recover a good approximation of the parame-
ter μ∗ overall. As already underlined above, the components of the parameter become
harder to capture accurately as the corresponding basis functions become more oscil-
latory and of smaller amplitude. Finally, we note that the value of the cost functional is
lower than for the first two test cases. This can be explained by the fact that the solution
u has much higher amplitude in the first test case and exhibits boundary layers that are
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hard to capture correctly in the second test case, whereas the solution ismuch smoother
and has smaller amplitude for this last experiment. Figure 1.6 shows the evolution of the
cost functional for 10 iterations of the PSO algorithm and different μ∗. We note that the
evolution is similar to the one observed for the first two test cases, and thus does not
depend significantly on the dimension of the parameter space.

Figure 1.6: Evolution of the cost functional during the PSO iterations, for different parameters μ∗. Npart =
1000, Nobs = 400.
5 Conclusions and perspectives

A framework for parameter identification for parametric PDEs has been presented. The
direct solution of the differential equations is approximated with an adaptive finite
elements-neural network solver that has been previously validated in the literature.

Optimization algorithms for the solution of the inverse problem have been pro-
posed. Gradient-typemethods show a fast convergence, but with rather small attraction
basin, especially when the dimension of the parameter set becomes large or when the
exact solution are near the boundaries of that set. For robustness reasons, derivative-
free approaches, such as particle-swarm optimization methods, have been favored.

Numerical experiments have shown that parameter identification can be achieved
in a robust manner, for parameters whose dimension goes up to 16. Future work will in-
clude heuristics to better couple derivative-free approaches for the efficient localization
of an initial guess for gradient-type methods. A requirement of this coupling is to deter-
mine the appropriate indicators to estimate the appropriate timing to switch between
algorithms.
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Abstract: In this article, we present two numerical methods to create a database for
the approximation of the value function of a bilevel optimal control problem. The first
method is based on the computation of the value function via indirect simple shooting,
which implies to find the zeros of functions. The second one amounts to solve Cauchy
problems. These two techniques are compared, in terms of prior information, compu-
tation cost, and data distribution, on an industrial application: the torque split and gear
shift optimal control problem on hybrid electric vehicles.
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1 Introduction
The value function is a central object in optimal control theory that describes how the
optimal cost depends on the initial conditions. This function was studied in the 1950s by
Richard Bellman and leads to the Hamilton–Jacobi–Bellman (HJB) partial differential
equations. These equations provide necessary and sufficient conditions for an optimal
control problem, aswell as the optimal control in a feedback form. They are the baseline
of dynamic programming [2] and reinforcement learning [14], which are two of themain
optimal control methods used in industrial applications. However, these methods are
subject to the curse of dimensionality, which is a key numerical issue for embedded
solutions.
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The Pontryagin maximum principle [12] also introduced in the 1950s gives nec-
essary optimality conditions for optimal control problems, and leads to the indirect
numerical methods, which promise to be accurate and fast enough to be used for em-
bedded solutions. For a description of classical numerical methods for optimal control
problems, see [4].

A new method based on a bilevel decomposition of the optimal control problem,
presented in [5], promises to reduce the number of computations and to be fast enough
for embedded solution. This method uses some value functions between fixed times,
which can rarely be calculated explicitly, and the strategy is to approximate them from
a set of precomputed data. The main objective of this paper is to propose and compare
two methods to create the associated database. The first method is based on the com-
putation of the value function on a given grid thanks to the resolution of the shooting
equations obtained from the Pontryagin maximum principle, while the second method
amounts to evaluate the value function on a computed grid thanks to the integration of
the underlying Hamiltonian flow.

The article is organized as follows. We first introduce the motivations in Section 2
based on the bilevel optimal controlmethod. Thenwe present the twomethods to create
the value function database in Section 3. We compare in Section 4 the numerical results
we have obtained when applying these two methods to an industrial application: the
torque split and gear shift optimal control of a hybrid electric vehicle. Finally, Section 5
concludes the article.

2 Motivations
This paper is motivated by the torque split and gear shift optimal control problem de-
scribed in [5] and used for the numerical results in Section 4. Another motivation is the
resolution of this problemby the bilevel optimal controlmethod, fully detailed in [5] and
briefly presented in Section 2.2, which is robust, fast, and that can be embedded. One cru-
cial feature of this method is the computation of approximations, denoted Ci(a, b) here-
after, of value functions, denoted Vi(a, b) and representing the optimal cost to transfer
the state from the initial condition a to the target b. In the same reference [5], the cost
approximations Ci are modeled by neural networks, trained on specific databases. The
goal of this paper is to explain the method (referred as Method 2 in the following) used
to create these databases in [5], but also to compare it to a more intuitive but naive ap-
proach (referred as Method 1 in the following).

2.1 Optimal control problem

We consider the following optimal control problem in Bolza form:
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(OCP)

{{{{{{
{{{{{{
{

min
x,u ∫tft0 f 0(t, x(t), u(t)) dt + g(x(tf )), (2.1)

s. t. ẋ(t) = f (t, x(t), u(t)), t ∈ [t0, tf ] a. e., (2.2)
u(t) ∈ U, t ∈ [t0, tf ], (2.3)
x(t0) = x0, (2.4)

where the function f 0:ℝ × ℝn × ℝm → ℝ, the terminal cost g:ℝn → ℝ, and the state
dynamic function f :ℝ×ℝn ×ℝm → ℝn are of class C 1. The initial and final times t0 < tf
are fixed, as well as the initial state x0 ∈ ℝ

n. The control domain U ⊂ ℝm is a nonempty
set. Solving (OCP) consists in finding an absolutely continuous1 state x ∈ AC([t0, tf ],ℝ

n)
and an essentially bounded2 control u ∈ L∞([t0, tf ],ℝm), which minimize the cost (2.1)
and satisfy the constraints (2.2), (2.3), and (2.4).

Remark. For conciseness and clarity, we consider an optimal control problem in this
Bolza form but our approach can be easily extended to a more general problem with
fixed final state or mixed limit conditions for instance.

2.2 Bilevel optimal control method

Considering intermediate times t0 < t1 < ⋅ ⋅ ⋅ < tN < tN+1 = tf , the optimal control
problem (OCP) can be decomposed into the following bilevel optimal control problem:

(BOCP) {
minX ∑

N
i=0 Vi(Xi,Xi+1) + g(XN+1),

s. t. X = (X0, . . . ,XN+1) ∈ X, X0 = x0,

where for all i ∈ ℕN := {0, . . . ,N}, the functions Vi are the intermediate value functions:
for any admissible3 pair (a, b), Vi(a, b) is the optimal cost of

(OCPi,a,b) {{{{{
{{{{{
{

Vi(a, b) = minx,u ∫ti+1ti
f 0(t, x(t), u(t)) dt,

s. t. ẋ(t) = f (t, x(t), u(t)), t ∈ [ti, ti+1] a. e.,
u(t) ∈ U, t ∈ [ti, ti+1],
x(ti) = a, x(ti+1) = b.

The set X appearing in (BOCP) is defined as follows: X ∈ X ⊂ (ℝn)N+2 if, for all i ∈ ℕN ,
the pair (Xi,Xi+1) is admissible for (OCPi,Xi ,Xi+1 ). As detailed in [5], problem (BOCP) can be
seen as a bilevel optimal control problem [8].

1 AC([t0, tf ],ℝn) is the set of absolutely continuous functions on [t0, tf ] valued in ℝn .
2 L∞([t0, tf ],ℝm) is the set of essentially bounded functions on [t0, tf ] valued in ℝm .
3 The pair (a, b) is admissible for (OCPi,a,b) if b is reachable at time ti+1 from a at ti .
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In many applications, the intermediate value functions Vi cannot be computed ex-
plicitly. Thus, it has been proposed in [5] to replace them by approximations denoted Ci.
This leads to a hierarchical method in two steps, called Macro–Micro. The first step con-
sists in solving the finite-dimensional optimization problem

(Macro) {
minX ∑

N
i=0 Ci(Xi,Xi+1) + g(XN+1),

s. t. X ∈ X, X0 = x0,

to get the intermediate state X̂ = (X̂0, . . . , X̂N+1). The second step is to solve N + 1 inde-
pendent optimal control problems of the following Lagrange form:

(Micro)

{{{{{{
{{{{{{
{

minx,u ∫ti+1ti
f 0(t, x(t), u(t)) dt,

s. t. ẋ(t) = f (t, x(t), u(t)), t ∈ [ti, ti+1] a. e.,
u(t) ∈ U, t ∈ [ti, ti+1],
x(ti) = X̂i, x(ti+1) = X̂i+1,

to get the state and command trajectory on each subinterval [ti, ti+1]. This method is
suboptimal, due to the approximation error between Ci and Vi, but it promises to be
faster and to require less computations than classical methods, which is particularly
interesting for embedded applications.

However, before applying the Macro–Micro method, we need to build the approx-
imation functions Ci. We postpone to Section 3 the creation of the optimal values
database, which will be used for that purpose, and which is the main contribution
of this article. From now on, we consider one optimal control problem of the prob-
lem (Micro), for a given fixed i ∈ ℕN . The next section gives some classical details about
the so-called simple indirect shooting method to solve it.

2.3 Indirect method

The considered optimal control problem of problem (Micro) may be solved by the classi-
cal indirect simple shooting method, which is based on the Pontryagin maximum prin-
ciple [12]. The core function of this principle is the pseudo-Hamiltonian

h(t, x, p, u) = −f 0(t, x, u) + (p | f (t, x, u)),

where (⋅ | ⋅) stands for the usual scalar product inℝn. For a given initial state and costate
couple zi = (xi, pi) ∈ ℝ

n × ℝn, let us define the problem of finding the state and costate
trajectory z(⋅) solution of

{{{
{{{
{

ż(t) =
#»

h (t, z(t), u(t)), t ∈ [ti, ti+1] a. e.,
h(t, z(t), u(t)) = maxw∈U, h(t, z(t),w), t ∈ [ti, ti+1] a. e.,
z(ti) = zi,

(2.5)
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where
#»

h is the pseudo-Hamiltonian vector field defined by

#»

h (t, (x, p), u) = (∇ph(t, (x, p), u), −∇xh(t, (x, p), u)).

If we assume that the exponential map exp #»

h : (ti+1, ti, zi) 󳨃→ z(ti+1) is a well-defined ap-
plication, where z(⋅) is a solution of problem (2.5), then the maximum principle leads to
the resolution of the two-points boundary value problem

(TPBVP) {
(xi+1, pi+1) = exp #»

h (ti+1, ti, (xi, pi)),
xi = X̂i, xi+1 = X̂i+1.

To use simple notation, let us define x̄i+1(zi) by
x̄i+1(zi) = πx(exp #»

h (ti+1, ti, zi)), (2.6)

where πx(x, p) = x is the projection on the state space.
In the following, we assume that for all initial and final admissible state (a, b), if

(x, u) is a solution of (OCPi,a,b), then there exists p ∈ AC([ti, ti+1],ℝn) such that the pair
(x, p) is a solution of (TPBVP). Such a pair solution of problem (2.5) is called an extremal.
A solution of (TPBVP) is an extremal that satisfies the boundary conditions, and it is
called a BC-extremal. This assumption is linked to the normality of the BC-extremals
associated to the solution (cf. [1] formore details). For the sake of simplicity,we denote by
̄ci(zi) the cost of the state and command trajectory, given by the solution of problem (2.5),
with the initial state and costate conditions zi = (xi, pi). We also consider the following
hypothesis that will be numerically verified in our application.

Hypothesis 2.1. Let (xi, xi+1) be a given initial and final admissible state. Then all the
zeros of

pi 󳨃→ x̄i+1(xi, pi) − xi+1 (2.7)

are associated to the same state and command trajectory (x, u), depending on the pair
(xi, xi+1).
Remark. Under the previous assumptions and Hypothesis 2.1, for all initial and final
admissible state (a, b), there exists at most one solution of (OCPi,a,b).
Remark. Hypothesis 2.1 comes from our application but is not necessary to apply the
two proposed methods described in Section 3. However, it simplifies their descriptions
and helps to understand theirmain characteristics. In fact, consider another application
where it does not hold, namely where there are several zeros of (2.7) associated to dif-
ferent state-control pairs. If we still have a unique solution of (OCPi,a,b), we have to add
another step to the two proposed methods, which consists simply of keeping the zero
with the lowest cost. On the other hand, if there are several solutions, we can either pick
one or keep all since it is not an issue to have redundant points in the database.
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The indirect simple shooting method aims to solve (TPBVP) by finding a zero of the
shooting function

Si,X̂i ,X̂i+1 (pi) = x̄i+1(X̂i, pi) − X̂i+1. (2.8)

Thanks to Hypothesis 2.1, all the zeros of the shooting function lead to the same optimal
cost and, therefore, only one of them need to be found. On the opposite, without this
hypothesis, it would be necessary to find all the zeros and to compare them in terms of
cost to get the optimal one.

Equation (2.8) is solved using a classical Newton-like solver, and it is well known
that finding a good initial guess for the costate is a critical issue. However, given a solu-
tion X∗ of (BOCP), if Vi is differentiable at (X∗i ,X∗i+1), it is established [3] that the vector
−∇aVi(X

∗
i ,X
∗
i+1) is a zero of Si,X∗i ,X∗i+1 . Unfortunately, Vi is not known, but since Ci is an

approximation of Vi, the vector −∇aCi(X̂i, X̂i+1) could be a good initial guess for the asso-
ciated optimal control problem of the problem (Micro) shooting function [7]. This initial
guess is used with a geometric preconditioning method of the shooting function on the
proposed application in [6].

Now that we have described how to solve the optimal control problems of the prob-
lem (Micro), we will focus on the creation of a database for the computation of Ci, which
is the main contribution of this paper.

3 Data generation
In this section, we shall describe the creation of a database𝔻i containing optimal values
of (OCPi,xi ,xi+1 ) for various pairs (xi, xi+1):

𝔻i ⊂ {(xi, xi+1, c) | (xi, xi+1) admissible and Vi(xi, xi+1) = c}.
Two methods are presented to achieve this goal. They are compared in terms of prior
information, computation cost, and data distribution.

3.1 Method 1

The first method consists in computing the value function Vi on a given grid by solving
optimal control problems thanks to the simple shooting method. This is the intuitive
approach compared to the second method presented in the next section. Let 𝕏i be a
discretization of admissible initial and final states. For all (xi, xi+1) ∈ 𝕏i, we solve the
optimal control problem (OCPi,xi ,xi+1 ) by an indirect simple shooting method and store
the corresponding optimal value Vi(xi, xi+1) in𝔻i. The main complexity comes from the
fact we have to solve equations, which essentially amounts to invert the exponential
map given in (2.6). Algorithm 2.1 provides an overview of these steps.
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Algorithm 2.1Method 1.
Require: 𝕏i
Ensure: 𝔻i
for all (xi, xi+1) ∈ 𝕏i do

pi ← solve(Si,xi ,xi+1 (pi) = 0) ⊳ Newton solver
c ← ̄ci(xi, pi) ⊳ Optimal cost
𝔻i.append(xi, xi+1, c) ⊳ Storage

end for

Prior information
First of all, the set 𝕏i needs to be created as follows: the initial state is first discretized,
then for each of these values the set of associated reachable final states has to be deter-
mined and discretized. This ensures that the space of initial and final state is fully ex-
plored and that all pairs (xi, xi+1) ∈ 𝕏i are admissible, which prevents the Newton solver
to fail. The determination of the reachable final states is a difficulty in this method. See
the remark on page 25 for details about how we compute this set of reachable states in
our application.

Computation cost
For each iteration of the Newton solver used to find a zero of the shooting function, at
least one integration of the Hamiltonian vector field is required.

Data distribution
By construction, the distribution of the pairs (xi, xi+1) is fully controlled inside the admis-
sibility set. For example, a uniformdistributionmay be chosen for an easy interpolation.

3.2 Method 2

The second method, described in Algorithm 2.2, is based on a discretization ℤi of the
initial state and costate space. For all zi = (xi, pi) ∈ ℤi, the exponential map zi+1 =
(xi+1, pi+1) = exp #»

h (ti+1, ti, zi) is computed, and Hypothesis 2.1 ensures that Vi(xi, xi+1) =
̄ci(xi, pi). Compared to Method 1, here we only perform a direct computation of the ex-
ponential map exp #»

h instead of inverting it.

Prior information
Since there are no admissibility constraints on (xi, pi), the set ℤi can be the Cartesian
product between the discretization of initial state and costate. Nevertheless, the range of
the costate discretizationmust bewell chosen in order to ensure a full exploration of the
reachable states xi+1 while limiting the number of useless calls of the exponential map.
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Algorithm 2.2Method 2.
Require: ℤi
Ensure: 𝔻i
for all zi = (xi, pi) ∈ ℤi do

xi+1 ← x̄i+1(zi) ⊳ Final state
c ← ̄ci(zi) ⊳ Optimal cost
𝔻i.append(xi, xi+1, c) ⊳ Storage

end for

Computation cost
In contrast to Method 1, no (Newton) solver is involved here. Hence, only one evaluation
of exp #»

h is needed to compute a point of𝔻i.

Data distribution
In thismethod, the distribution of the reached final states xi+1 is nomore controlled. The
main consequence is the risk of empty zones. Fortunately, we shall see in Section 4 that,
in our application, a sufficient density in the setℤi ensures a satisfactory distribution of
reached states xi+1.
4 Results

Presentation of the numerical experiments
The considered application is the optimal control of the torque split and the gear shift of
a Hybrid Electric Vehicle (HEV) on theWorldwide harmonized Light vehicles Test Cycle
(WLTC). The goal is tominimize the fuel consumption of the Internal Combustion Engine
(ICE) for fixed initial condition and fixed or free final state of charge of the battery by
acting on the gear and on the torque split between the ICE and the Electric Motor (EM).
We refer to [9, 10, 11, 13, 15, 16] for a general presentation of these kinds of applications.

Remark. The model of the considered application is given by an industrial code devel-
oped by the company, Vitesco Technologies, which uses tabulated data tomodel complex
functions as transmission torque losses or fuel consumption of the ICE. We refer to [5]
for a more detailed presentation of this specific nonlinear model.

This problemcanbe formulated as (OCP) andwe consider thatwe stand in the frame
of the assumptions stated in Section 2.3. The bilevel method can be applied in this con-
text, and the time interval (1800 seconds of the WLTC) is arbitrary decomposed into 18
time subintervals of 100s.

The goal of this section is to compare the two methods presented in Sections 3.1
and 3.2 on our HEV application. For this purpose and to clarify the presentation of the
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results, we only focus on the first subinterval [0, 100] andwe fix the initial state, denoted
x0 to 0.5. So next, we apply the two methods to create the database𝔻0.

Validation of Hypothesis 2.1
The evolution of the function p0 󳨃→ x̄1(x0, p0) is shown in Figure 2.1. It can be noticed
that for all p0 ∈ [p

−
0 , p
+
0 ], the function (2.6) is injective. Moreover, for all p0 ≤ p

−
0 (resp.,

p0 ≥ p
+
0 ), we numerically verified that the extremal resulting from the exponential map

is associated to a unique (x, u). Hence, the Hypothesis 2.1 can be considered numerically
valid.

Figure 2.1: Evolution of the function (2.6), with a fixed initial state x0 = 0.5. The red interval on the y-axis
corresponds to the admissible final state set at time t1, and the blue interval on the x-axis corresponds to
the useful costate initialization set, mentioned in the Prior Information paragraph of Method 2.

Remark. As discussed in Section 3, the final states must be chosen in [x−1 , x+1 ] for
Method 1. In contrast, for Method 2 they naturally belong to this interval, but although
the initial costate can be taken inℝn, its useful range is limited to the interval [p−0 , p+0 ]; cf.
Figure 2.1. In our application, the bounds x−1 (resp., x+1 ) can be evaluated by simulation,
fixing the command u = 0 (resp., the command that maximizes ẋ(t) at each time step).

Results analysis
In order to compare both methods in terms of number of calls to the exponential map,
475 points (xi, xi+1, c) have been generated for various initial and final admissible states
withMethod 1.We observe that theNewton solver needs in average 11.2 iterations to find
a zero, whichmeans that thismethod requires at least 11.2 timesmore calls to exp #»

h than
Method 2. Hence, the computation time needed to obtain a point withMethod 1 is at least
11.2 times longer than with Method 2.
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The two methods are now compared in terms of distribution of the final states.
First, 10 points of𝔻0 are generated by eachmethod. As expected, we can observe in Fig-
ures 2.2a and 2.2b that the final states are obviously uniformly distributedwithMethod 1,
while there are not with Method 2. Second, for at least the same computational cost as
Method 1, 112 points of 𝔻0 are generated by Method 2. The results are shown in Fig-
ure 2.2c. It can be observed that if the distribution remains nonuniform, the coverage of
the reachable interval [x−1 , x+1 ] is much better than the one obtained by Method 1.

Figure 2.2: Value function data created by the two proposed methods. The black points correspond to the
computed points by the methods.

Remark. These results have been presented on the first subinterval of 100 seconds
of the WLTC for a unique initial state x0 = 0.5. Note that Method 2 has been imple-
mented in [5] on all the 18 subintervals of the WLTC on a fine discretization of initial
states and costates. Method 2 has been preferred essentially because it is fast and there
is no equation to solve, just numerical integration to perform. In [5], this torque split
and gear shift optimal control problem has been solved by the previously described
bilevel method with neural networks Ci to approximate the value functions Vi, trained
on databases created by Method 2.
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5 Conclusion

The Macro–Micro method proposed in [5] requires the approximation of value func-
tions, which can be performed using a database composed of points (a, b,Vi(a, b)). We
present two numerical methods to create such a database. The first one, based on the
computation of the value functions Vi(a, b) for a set of given pairs (a, b), requires to find
an initial costatep′ solution of the shooting equation that appears in the indirectmethod.
The second method consists in evaluating the exponential map exp #»

h for a set of given
pairs (a, p), where p is the initial costate to get a final state b′ and the corresponding cost
̄ci(a, p), which under Hypothesis 2.1, is the optimal one: Vi(a, b

′) = ̄ci(a, p).
The pros and cons of both methods are gathered in Table 2.1. The uncontrolled dis-

tribution obtained by Method 2 can be balanced by its favorable computation cost. In-
deed, in our application, for at least the same number of calls to the exponential map
as in Method 1, it appears that the domain of reachable final states is well covered. This
makes this Method 2 really competitive.

Table 2.1: Pros and cons of Method 1 and Method 2.

Method 1 Method 2

Pros Controlled distribution Computation cost
Cons Prior knowledge of admissible domain Prior knowledge of initial costate range

Computation cost Non controlled distribution

Once the database is created, the associated value function approximation Ci has to
be built. Awide range ofmethods canbeused such as neural networksmodels. The latter
are renowned for their generalization capacities and their ability to provide the gradient
of the approximation Ci through the retropropagation technique. Indeed, the availabil-
ity of this gradient should ease the resolution of the problem (Macro) and provide a good
initialization for the resolution of the optimal control problems of the problem (Micro)
by the indirect method.

Another perspective is to use the gradient of the value function to improve the fit-
ting of the approximations Ci. Indeed, it can be shown under some assumptions that the
gradient of the value functionVi(xi, xi+1) is the vector (−pi, pi+1). Therefore, the computa-
tion of the Hamiltonian flow (xi+1, pi+1) = exp #»

h (ti+1, ti, (xi, pi)) provides the optimal cost
transition Vi(xi, xi+1) as well as its associated gradient. An extended database containing
this additional information on the gradient could then be created without additional
cost and used for instance to train Physics-Informed Neural Networks (PINNs).
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Graph neural networks to predict strokes from
blood flow simulations

Abstract: A novel approach for predicting stroke risk using graph neural networks
(GNNs) from computational fluid dynamics (CFD) simulations of blood flow in patient-
based arterial vessel geometries is proposed. Atherogenesis is the build-up of plaque
along arterial vessel walls. It is influenced by the geometrical configuration of the ves-
sel, typically in the vicinity of a bifurcation. Furthermore, some geometric features of
the bifurcation such as larger curvature can cause intense perturbations in the flow.
Using simulations of blood flow, it is possible to obtain flow parameters such as the dis-
tribution of wall shear stress, which would otherwise be impossible to measure. GNNs
enable learning of the complex relationships linked to the geometry of the blood vessel
and the development of atherosclerosis. Our approach provides new insights into the
relationship between blood flow patterns and stroke risk, potentially enabling more
personalized prevention and treatment strategies.

Keywords:Machine learning, graph neural networks, graph convolutions, cardiovascu-
lar disease, ischemic strokes, hemodynamic simulations
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1 Introduction
In this work, we present an application of graph neural networks (GNNs) [45, 19, 3] to the
problem of predicting the risk of ischemic strokes [13] using simulations of blood flow in
arteries. Ischemic strokes are typically caused by atherosclerosis, which is a condition
that presents as a localized constriction of arteries that supply blood to the heart and the
brain. Cardiovascular diseases are a major cause of death and disability worldwide and
understanding its pathology is of considerable importance. Specifically, the presence of
plaque alone need not be a sign to assume that there is a risk of the development of

Acknowledgement: The authors gratefully acknowledge financial support from the Federal Ministry of Ed-
ucation and Research (Bundesinisterium für Bildung und Forschng, BMBF), under the project MLgSA (FKZ:
05MM20UKD) and the computational resources provided by the RHRZ high performance computing center
via the ‘‘Elwetritsch” cluster at the RPTU Kaiserslautern-Landau. We also thank our colleagues at RPTU in Lan-
dau and at the University of Jena for providing the simulation data sets. We also acknowledge the feedback
and comments from two anonymous reviewers, which greatly improved the present article.

Rohit Pochampalli, Nicolas R. Gauger, Scientific Computing Group, University of Kaiserslautern-Landau
(RPTU), Kaiserslautern, Germany, e-mails: rohit.pochampalli@scicomp.uni-kl.de,
nicolas.gauger@scicomp.uni-kl.de

Open Access. © 2025 the author(s), published by Walter de Gruyter GmbH, Berlin/Boston. This work is
licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783111376776-003



30 � R. Pochampalli and N. R. Gauger

a stroke. Instead, it is the “presence of thrombosis-prone plaque,” which is of greater
relevance [12].

Simulations of blood flowonpatient-based arterialwall geometries (i. e., geometries
generated from computed tomography (CT) scans) provide a novel approach tomeasure
blood flow parameters, especially those that cannot be measured in vivo. The pipeline
of such an application would consist of the following steps: isolation of the artery geom-
etry from scans of the patient, generation of a suitable computational mesh from this
geometry, and simulation of blood flow using an appropriate flow model (see [8], [34]
and [35]).

The distribution of wall shear stresses on the arterial vessel walls is quite relevant
to the application at hand. Investigations into the pathology of atherogenesis show that
the distribution of wall shear stress (WSS) has a primary role. For instance, lower WSS
is to be expected in the interior of branches with larger curvature [17]. Gnasso et al.
[18] conclude that WSS is distributed asymmetrically among the left and right and that
lower WSS indicates presence of atherosclerotic lesions, whereas Dolan, Kolega, and
Meng [7] conclude that high WSS and a positive WSS gradient indicate the destabiliza-
tion of plaque. The geometric structure of the arteries is of significant importance to
atherogenesis as the configuration of vessels along a bifurcation influence the flow, and
consequently, the WSS [39].

One is naturally led to the question ofwhether amapping between theWSSdistribu-
tions and the risk of an ischemic stroke can be learned by amachine learning algorithm.
It is our hypothesis that presence of high WSS gradients and the corresponding local
structure possess enough information to assess stroke risk. For this task, we develop a
GNN model that maps a blood flow simulation to a risk category. The GNN isolates high
WSS gradient locations using a novel clustering procedure based on the node-based total
variation of the WSS (Section 3). In Section 1.1, we list some related research that apply
machine learning methods to problems associated with strokes.

The task of approximating a mapping between wall shear stress and risk of stroke
would require the consideration of perturbations in the wall sheer stress as well as the
proximity of these perturbations to a bifurcation or other geometric characteristics such
as the vessel curvature. Therefore, we rule out simple models in favor of neural net-
works that employ convolutional filters, which are the primary choice to learn from
data with spatially dependent features. Each simulation naturally conforms to a graph
structure if the computational grid is treated as a collection of nodes and edges. TheWSS
is then interpreted as a node feature and edges have weights corresponding to their
lengths in space. In Section 3, we elaborate on how such a structure yields possibilities
for learning from the spatial features alongside with the WSS.

An alternative to treating the simulations as graphs would be to work directly with
images. While this is considerably faster due to the lack of geometry extraction and sim-
ulation steps, there are nontrivial issues with image based approaches. Several image
classification data sets are comprised of tens of thousands if not millions of data points
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[27, 6]. Second, induction from image data requires a preprocessing step called registra-
tion, which is the transformation of these images into a common coordinate system in
order to treat each data point on an equal footing. This is especially important inmedical
applications where nonrigid structures are present [30, 36]. Finally, CNNs suffer from a
lack of interpretability in their representations. It is not always clear why an image is
assigned to a particular class from looking at the activations of the filters. This problem
is somewhat mitigated by GNNs as we show in the results of our clustering layer, which
constrains the receptive field of the model to nodes with high total variation.

1.1 Related work and contributions

A variety of research is associated with the application of machine learning techniques
toward problems related to strokes. There is considerable separation in the research
based on the problem addressed and the type of machine learning algorithm used. For
instance, the following works have applied one or several machine learning models in-
cluding k-nearest neighbors, random forests, support vector machines, gradient boost-
ing, or neural networks to problems such as: predicting the functional outcome of some
treatment [32, 23, 42]; classification into types of stroke disease [20, 1, 16], and segmenta-
tion of problem regions [41]. This is only a small selection of the published research in
this field.

Graph classification has been studied before using kernels [25], boosting [44] and
linear programming [37], to name a few.We are concerned with a class of supervised al-
gorithms called message passing algorithms, which were developed as generalizations
of convolutions [5]. This leads to the graph neural network (GNN) model, which is used
to classify graphs based on recursive compression and aggregation of the node feature
information [45, 3, 19, 38]. GNNs have been shown to possess universal function approx-
imation properties [4]. To our knowledge, the novelty of our work stems from the use of
CFD simulations of blood flow in the arteries as inputs to a GNN to predict stroke risk.
The methodology used to extract subgraphs based on node total variation is also new.

2 Background

This section provides background on graphs, total variation on graphs, GNNs, and other
details of the machine learning setup. An undirected graph 𝒢 is a tuple of sets (𝒱 , ℰ)
where for each edge e ∈ ℰ , there are nodes u, v ∈ 𝒱 such that [u, v] := e is the edge
joining u and v. Graphs are represented by their adjacency matrices A ∈ ℝ|𝒱 |×|𝒱 |, the
entries of which stipulate edge connectivity, and optionally, edge weight matrices E ∈
ℝ|𝒱 |×|𝒱 | where eij : ℰ → ℝ is the Euclidean length of the edge. The neighborhood 𝒩 (u)
of a node u is the set of nodes v such that [u, v] ∈ ℰ . The degree du of a node u is the



32 � R. Pochampalli and N. R. Gauger

number of edges incident on u. For any subset of nodes, V ⊂ 𝒱 , the coboundary of V
[31], written δ(V ) is the set of edges that have one end in V and the other not in V .
Functions on graph domainsmap each node in the graph to a real scalar or vector. Scalar
functions on graphs will be called signals. The total variation (TV) of real or complex
valued functions is a well-studied object in analysis [15]. A related concept of TV is used
in signal processing with applications in image processing [29]. The notion of TV used in
our work can be derived from the graph difference operator originally defined inWang
et al. [43] or similar notions found in Jung et al. [24] and Hansen and Bianchi [22], where
it is a part of the objective function or regularization.

We say that data is graph-structured if each data point can be represented as a tuple
consisting of a set of nodes, a corresponding adjacency matrix, a node feature matrix
X ∈ ℝ|𝒱 |×m, which appends an m-vector of features at each node of the graph. Given
graph-structured data, 𝒮 := {𝒢1, . . . ,𝒢s} and a set of labels 𝒞 := {c1, . . . , cl}, the graph
classification problem seeks to learn a classifier h:𝒢k 󳨃→ ck that maps each graph to its
correct label ck ∈ 𝒞. In practice, each graph 𝒢k in 𝒮 is a tuple consisting of the adjacency
matrix𝒜k , the node features 𝒳k and possibly others such as edge features𝒲k .

GNNs operate on graph-structured data using message passing operations, which
preserve the graph structure of the input. Message passing is comprised of two steps
called themessage and update, which are denoted here byϕ andψ, respectively. The kth

iteration of the message passing operation updates hidden features hku , corresponding
to a node u ∈ 𝒱 , using messages taken from the graph neighborhood𝒩 (u) as follows:

hk+1u = ψ
k(hku ,ϕ

k({hkv ; euv ∀v ∈ 𝒩 (u)})). (3.1)

Moreover, the initial features are just the set of node features h0u = xu.
A specific type of message passing sequence called GraphSAGE (introduced in [21])

is used in our model. Here, after the aggregation of features from neighbors of a node u,
a set of weight matricesW t for t ∈ {1, . . . , T} are defined, which are used to propagate
information between different layers of the network. In other words, if T GraphSAGE
layers are present, then at each layer, the computations performed are:

hk+1𝒩 (u) = ϕk({hkv ; euv ∀v ∈ 𝒩 (u)}), (3.2)

hk+1u = σ(W
t CONCAT(hku ,h

k+1
𝒩 (u))). (3.3)

In Eq. (3.2), at each node in the neighborhood of u, an embedding is generated from ag-
gregating the features from all other nodes. In Eq. (3.3), these features are concatenated
with the features of the corresponding node and combined using the weight matrices.
Here, σ is an activation function and in our case, the ReLU function. Themessageϕ in the
GraphSAGE convolution is a simple linear operator. Finally, pooling layers are used to
extract a graph level representationh𝒢 fromnode featureshv in order to perform graph
classification. An example is the global mean pooling layer that returns the average of
the feature vectors over all nodes h𝒢 =

1|𝒱 | ∑v∈𝒱 hv.
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Subsequently, h𝒢 is passed to a multilayer perceptron (denoted by MLP) and then
transformed into a categorical variable. The latter assigns a probability for the input
data point corresponding to each label. The error with respect to the true label can be
found with the Binary Cross Entropy (BCE) function when there are just two categories.
The BCE lossℒBCE for a samplewith true label y and corresponding predicted probability
p is defined as follows:

ℒBCE( y, p) = −[ y log(p) + (1 − y) log(1 − p)]. (3.4)

This loss is then averaged over all the samples in the batch or mini-batch.

3 Methods

3.1 Variation on graphs

We fix a graph 𝒢 = (𝒱 , ℰ) in order to avoid cumbersome notation. The TV of a signal f
(on 𝒢) at a node v is defined as

TVf (v) := 1
dv
∑

u∈𝒩 (v)󵄨󵄨󵄨󵄨 f (u) − f (v)󵄨󵄨󵄨󵄨. (3.5)

This is a signal on the same graph with interesting properties. First, TVf is subadditive
and absolutely homogeneous, that is, for any signals f , g, real numbers α, β, and every
node v, we have

TVαf+βg(v) ≤ |α|TVf (v) + |β|TVg(v). (3.6)

It can be used to define a seminorm on the space of signals ℱ := { f | f :𝒢 → ℝ} as

‖ f ‖TV := maxv∈𝒱 TVf (v). (3.7)

‖ f ‖TV inherits the properties of subadditivity and absolute homogeneity from TVf (⋅).
Call two functions in ℱ equivalent if their difference is a constant. This partitions the
signal space into equivalence classes. Thus, a function has norm 0 if and only if it is a
constant, which is in the equivalence class of 0. We have proved the following.

Lemma 3.1. ‖ f ‖TV is a norm on the set of equivalence classes of signals on a specific
graph 𝒢.

Intuitively, TVf (v) captures the oscillation of the signal f in the neighborhood of v. It
is easy to see that TVf (v) = 0 implies that the signal f is constant on δ({v}), whereas nodes
with high TV show jumps or oscillatory behavior on their respective coboundaries. Thus,
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the TV offers a simple way to cluster nodes on the graph by demarcating those nodes v
that have high TV on δ({v}). From Eq. (3.6), we conclude that as long as two signals are
affinely dependent they produce the same clusters. Apropos our hypothesis, oscillatory
WSS is expected to be localized near bifurcations or bottlenecks and high TV nodes are
expected to reproduce this behavior.

3.2 GNNmodel and training

The data consists of 159 simulations of blood flow that are performed on patient based
meshes created by RPTU Kaiserslautern-Landau in Landau and the University of Jena
[8, 33, 35]. The database is available online [9]. The data set is labeled to form a binary
categorizationwith 61 points labeled as at risk based on an estimated stenosis degree (cf.
[10, 11, 34] for estimation details) of higher than 50%. For cross validation, the data set
is split into 75% training and 25% testing subsets. Adjacency and edge weight matrices
for each simulation are computed and stored in sparse matrix format.

Themodel is comprised of a single GraphSAGE layer followed by a TV based cluster-
ing layer, several GraphSAGE layers, and then a feedforward layer. The implementation
details of the clustering layer are now described. The top n nodes, ranked in terms of
the total variation, and their immediate neighbors are extracted to form a subset V ′ of
the vertices V by a function we call RankTV.

This creates a subgraph 𝒢′ upon adjoining the set of edges {[u, v] ∈ E | u ∈ V ′
and v ∈ V ′}. If this subgraph is disconnected, we find the shortest path between a pair
of clusters Ci and Cj as

d(Ci, Cj) := min
u∈Ci ,v∈Cj d(u, v), (3.8)

where d(u, v) is the shortest path between nodes u and v. If two clusters are closer than a
stipulated path length, they are connected, possibly adding nodes along the shortest path
if necessary. Finally, the layer updates the nodes and edges to return the subgraph 𝒢′.

The clustering layer produces a compressed localized representation of the entire
graph. Compression of the graph is necessary for two reasons: froma computational per-
spective, this reduces the memory footprint of the algorithm, especially stemming from
the computation of gradients on such large graphs. Second, this prioritizes the receptive
field of the network on the nodes that are likely to be associated with the generation of
stenosis. As a direct consequence of the above, clustering proves to be a remedy for the
oversquashing problem that plagues GNNs [2]. Moreover, learning from these clusters
would also support our hypothesis that the local structure around areas of high WSS
gradient are especially important to the prediction of stroke risk. In Figure 3.1, we show
the results of the clustering layer on some simulations.

We now describe the rest of the neural network. The subgraph 𝒢′ forms the input to
a set of T GraphSAGE convolutions. The outputH(T) is pooled using the globalmean pool
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Figure 3.1: Results of the clustering layer. On top is the raw WSS data for a simulation. After message pass-
ing, points with highest total variation are clustered and extracted (bottom).

operator (which is equivalent to taking the average of the rows of the matrix H(T)) and
then transformed into a binary class using a simple feedforward layer. The loss function
that is optimized is the BCE between the ground truth label and the label predicted by
the GNN.

The pseudocode of the overall model is shown in Algorithm 3.1. Note some of the
notation used therein: We denote the matrix of node features at layer k as H(k), which
has size n × f (k), where n is the number of nodes and f (k) is the number of features at
layer k. Thus, H(k)u denotes the row u in this matrix or the features of node u.
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Algorithm 3.1 GNN model for stroke risk prediction.
Require: Graph 𝒢 = (V , E,X), min path length d
Ensure: Output y
1: Initialize H(0) ← X
2: H(1) ← GraphSAGE(𝒢)
3: procedure TotalVariationClustering(𝒢, d)
4: V ⊃ V ′ ← RankTV(H(1)) ⊳ Total Variation
5: E ⊃ E′ ← [u, v] ∀u ∈ V ′
6: {C1, . . . , CM }← FindConnectedComponents(𝒢′ = (V ′, E′,H(1)′))
7: for all Clusters Ci ∈ {C1, . . . , CM } do
8: dCi ← min ShortestPath(Ci, Cj)
9: if dCi < d then
10: V ′ ← AddNodesOnPath(dCi )
11: end if
12: end for
13: return updated graph 𝒢′ = (V ′, E′)
14: end procedure
15: H(T) ← GraphSAGE(𝒢′)
16: hG ←

1|V | ∑v∈V H(T)v ⊳ Global Mean Pooling Layer
17: y← MLP(hG) ⊳ Output Layer
18: return y

4 Results

The graph neural network is implemented in Pytorch-Geometric [14]. Results with a
graph neural network with optimizers Adam [26] and AdamW [28] are shown in Fig-
ure 3.2. The training process was repeated with several configurations of hyperparam-
eters, as listed below, with very similar performance. The starting learning rate varied
between 1 × 10−2 and 1 × 10−3 and weight decay set between 1 × 10−5 and 5 × 10−4. The
clustering layer extracts the top 50 nodes with the highest total variation. We set 5 as the
maximumpath length forwhich clusters are coalesced. The feature length (width) of the
GraphSAGE layers (after clustering) was varied among 16 and 32 and the dropout [40]
rate was varied among 30%, 40%, and 50%. In these cases, themodel accuracy plateaus
between 82.5% and 87.5%. For the figure shown in Figure 3.2, the GraphSAGEmodel has
depth 4 and width 16, with a dropout rate of 0.5 and we use a 3-layer MLP (of width 16).
The precision recall curve, on the test set, for the model trained with AdamW is shown
in Figure 3.3.
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Figure 3.2: Plot of the optimization over 100 epochs (horizontal axis). The axis on the left is for the training
and testing loss trends, measured in terms of the BCE loss function (cf. Eq. (3.4)), using optimizers Adam
(solid and dashed blue) and AdamW (solid and dashed red). The axis on the right measures the testing
accuracy trends for Adam (solid green) and AdamW (dashed green).

Figure 3.3: Precision-recall curve of the model trained with AdamW on the test set.
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5 Conclusion

In this work, we have applied graph neural networks to simulations of blood flow in ar-
terial vessels to predict the risk of stroke. This particular approach is novel with respect
to the general methodology from preprocessing the fluid dynamics simulations to the
features and the clustering methodology used in the model. The GNN’s receptive field
is restricted to a subgraph (extracted using node TV) in order to facilitate our hypothe-
sis that the distribution of WSS near bifurcations may be a predictive factor for stroke
risk. Incidentally, this has the effect of mitigating the oversquashing effect of GNNs. For-
malizing the arguments about TV on graphs, as well as expanding this particular GNN
methodology to larger data sets is planned for future work.
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such as molecular dynamics, and their simulation forms a common basis for analysis.
While simulations produce useful trajectories, obtaining macroscopic information di-
rectly from micro state data presents significant challenges. This paper addresses this
gap by introducing the concept of membership functions being the macro states them-
selves.We derive equations for the holding times of thesemacro states and demonstrate
their consistency with the classical definition. Furthermore, we discuss the application
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Solving the initial value problem is referred to as simulation of the system. The states of
the generated trajectory are denoted as themicro states of the system.

As an illustration, consider the field of biomolecular system simulation [7]. Here,
a common mechanism being studied is the transformation of an inactive micro state
of a receptor protein into an active state (by accordingly changing the coordinates of
its atoms). The process can be mathematically modeled by the overdamped Langevin
dynamics, a stochastic differential equation for the 3D coordinates of each atom in the
protein and the solvent [6]. Typically these are analyzed by simulation of the model,
resulting in trajectories in a high-dimensional space.

However, often the main focus of interest lies on the macro state behaviour of the
system. A possible question to answer would be: What is the mean first passage time for
an inactive receptor protein to become active? The two macro states in this regard are
denoted as “inactive” versus “active.” At first glance, macro states S are subsets of the set
of micro states Ω. In general, when given a starting set S ⊂ Ω of the system we want to
know, how long on average the process stays in this set [20]. How long does a trajectory
starting in the inactive macro state remains there before leaving it, that is, switching to
the active macro state? The answer is given by the mean holding time tmh(x) defined by
the integral:

tmh(x) =
∞
∫
0

pS(x, t) dt,

where x denotes the micro state of the system (the starting point x(0) = x of the trajec-
tory) and the function pS(x, t) denotes the probability that a trajectory is still in set S and
has never left it during the whole time interval [0, t]. Formally, pS(x, t) = Px(TS > t) is
the holding probability of S conditioned on starting at themicro state xwith TS being the
first exit time of S. tmh (also calledmean first exit time) is then given by tmh(x) = 𝔼x[TS].

If tmh(x) denotes the expected time until the system reacts, then

r(x) = −∇tmh(x) = −∇
∞
∫
0

pS(x, t) dt

points into the direction where this time decreases the most. This can be seen as the
micro-state-dependent reaction path direction r(x).

There is a conceptual problem now. We want to know the mean holding time for
the macro state and not for every single micro state, but tmh is a function of the micro
states—themean holding time in S depends on the starting point. Speaking of the “mean
holding time of the macro state S” would only make sense if it was independent of the
micro-states position inside that macro state, that is, if there was a set S ⊂ Ω and an exit
rate c1 > 0 allowing for a separation of the type

pS(x, t) = 1S(x) e
−c1t , (4.1)
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where 1S is the indicator function of the set S. InMarkov statemodeling, it is often asked
for a decomposition of the state space Ω into subsets Swhich can be identified as “macro
states” [11]. The separation approach (4.1) is a prerequisite forMarkovianity of themacro
state S and is approximately valid, if “leaving the set S” is a very rare event compared
to the mixing within S. The constant c1 > 0 corresponds to the exit rate of S, because in
this case tmh(x) = 1S(x)

1
c1
is independent of the choice of the starting point in S. This

decomposition, however, is not possible in general and corresponds to instantaneous
transitions, which do not provide reaction paths inside S.

Classically, the computation of (micro-state) mean holding times in the case of an
S-based theory is provided by solving a partial differential equation [9]:

ℒtmh(x) = −1,

for all x ∈ S with the boundary condition tmh(x) = 0 for all x ̸∈ S. In this equation,
the differential operator ℒ is the infinitesimal generator of the Koopmann operator of
an autonomous Markov process and the equation essentially prescribes the mean hold-
ing time to decrease by one time unit per time unit until hitting the boundary. If the
decomposition tmh(x) = 1S(x)

1
c1
were valid, then this equation would read

ℒ1S(x) = −c11S(x). (4.2)

Under the assumption of an ergodic system (e. g., for nondegenerate diffusion) the
only set-based solutions are S = Ω with c1 = 0 (the process never leaves Ω) or S = 0.
Clearly, these trivial solutions are not of any use. How canwe solve this conceptual prob-
lem?

When deriving exit rates for biomolecular processes, then the macro states of this
system cannot be rigorously described as subsets S in micro-state space. Rather, tran-
sitions are gradual from something that is more inactive to something that can be de-
scribed asmore active.We propose replacing the indicator function 1S in (4.1) by amem-
bership function χ : Ω→ [0, 1], which quantifies how much a micro state x ∈ Ω belongs
to the starting macro state. The theoretical background of our article, therefore, starts
with the more general separation of space and time via

pχ(x, t) = χ(x) e
−c1t . (4.3)

By definition, it satisfies the exponential decay of pχ in t and at t = 0 the probability to be
assigned to the starting state is given by χ. Therefore, the χ functions with the smallest
exit rates c1 are the most persistent observables or measurements on the system satisfy-
ingMarkovianity. Considering that amacro state should be a function of themicro states
and exhibit orderly, in our case Markovian, dynamics this gives rise to the fundamental
idea of identifying the macro state with the membership function: χ is the macro state
and the macro state is given in and through χ. Generalizing the classical set-based de-
scription to that by a χ-function allows us to obtain nontrivial macro states, which have
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proper exit rates and, therefore, allow for a closed description of their dynamics. In this
regard, our ansatz can be seen as a consequence of the desire for a coarse-grained de-
scription that is exactly reproducing the slowest timescales, which is not possible with
set-based decompositions.

At this point, we have not provided a method to compute χ yet. χ cannot be chosen
arbitrarily. In order to preserve the Markovian long term behavior of the system, a pro-
jection of themicro system to two different macro states has to be based on an invariant
subspace of ℒ [19, 21]. Further, requiring a decomposition into two complementary (i. e.,
such that they add up to one) macro states, the simplest nontrivial solution is given by

ℒχ(x) = −c1 χ(x) + c2(1 − χ(x)) (4.4)

with c1, c2 > 0, and χ, 1 − χ describing the two macro states. These can be computed
using PCCA+ [2] or ISOKANN [12, 16] and form an invariant subspace of ℒ, which also
guarantees long-term consistencywith the original dynamics [21].Whereas any solution
to (4.4) leads to a dynamically closedmacroscopic description, wewill in general aim for
solutions with small rates c1, c2, which represent temporally stable macro states.

In order to derive (4.4), one has to understand how the Markov property of a pro-
jected Markov process can be completely preserved. It means that projection and prop-
agation of the system have to commute. Thus, the projection has to be based on an in-
variant subspace of ℒ. The constant function is an eigenfunction of ℒ. Thus, a linear
combination of a constant function and of a further eigenfunction leads to a feasible
membership function χ. If we apply ℒ to such a linear combination, we arrive at (4.4).
For the whole derivation, we refer to [20].

In Section 2 of this paper, we demonstrate that our macro state formalism based on
the χ-function is consistent with the traditional set-based method: We show that when
the χ-functions approach indicator functions the χ based equations reduce to the classi-
cal ones.We furthermotivate its physicalmeaning by giving a path-based interpretation
of the resulting holding probabilities in terms of the Feynman–Kac formula.

In Section 3, we will suggest an approach to apply these theoretic results to extract
reaction paths from a set of given samples, before demonstrating its application to a
molecular system given by the μ-opioid receptor in Section 4.

2 Theory of macroscopic exit rates

In the following, a consistent theory about macroscopic quantities based on a member-
ship function χ : Ω→ [0, 1] is derived.More precisely, the following quantities of interest
are discussed:
– the definition of a macro state via χ(x),
– the corresponding position-independent exit rate c1,
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– the mean holding time tmh(x), and
– the reaction direction r proportional to the gradient −∇χ.

Note that computing reaction directions r is possible for sets S, too, as described in the
introduction. However, for sets we do not get this simple gradient form −∇χ. The theory
in this section is largely based on [20, 3]. We will extend the theory with statements
about consistency and use it to support of the interpretation of χ as macro states, as
explained in the introduction. The computation of χ will play an important role in our
bio-molecular example; see Section 4.

2.1 Defining macro states via membership functions

The starting point in the introduction is that pχ = χe
−c1t would be away to define holding

times of macro states from a conceptual point of view to be able to interpret c1 as an
exit rate. The choice of χ is not arbitrary, but motivated by the necessity of an invariant
subspace projection leading to (4.4). At this point, it is not yet shown that pχ when using
the solution χ of (4.4) is consistent with the stochastic meaning of a holding probability.
Wewill now demonstrate that it converges to the established definition if χ becomes the
indicator function of a set.

We start by recalling some basic definitions. Let the state space Ω of a molecular
system comprising N atoms be given as Ω = ℝ3N where the position of each individual
atom is described by three Cartesian coordinates. Let ρ(x, t) : Ω ×ℝ→ [0, 1] denote the
probability density distribution of states of the nonlinear stochastic dynamics at time t.
More precisely, the dynamics is given as a Markov process for which an infinitesimal
generator ℒ∗ : L1(Ω)→ L1(Ω) (a differential operator, e. g., the Fokker–Planck operator)
can be constructed that captures this time-dependent stochastic process. This operator
is linear and describes the infinitesimal propagation of ρ(x, t):

(ℒ∗ρ)(x, t) = d
dt
ρ(x, t). (4.5)

It also gives rise to its adjoint generator ℒ : L∞(Ω) → L∞(Ω), which propagates ob-
servables instead of state densities. The partial differential equation (4.4) defining χ is
formulated in terms of this adjoint. In this regard, χ can also be interpreted as an ob-
servable, that is, themeasurement of themacro state. To allow for their interpretation as
holding probability, we are interested in solutions χ(x) : Ω→ [0, 1] with corresponding
constants c1 > 0, c2 > 0.

Assume such χ and c1, c2 are given. We then define the χ-holding probability as

pχ(x, t) := χ(x)e
−c1t (4.6)

such that (4.4) becomes



46 � A. Sikorski et al.

ℒ∗pχ = −c1pχ + c2pχ 1 − χχ . (4.7)

Rearranging results in

ℒ∗pχ − c2pχ 1 − χχ = −c1pχ . (4.8)

Due to the relationship

𝜕
𝜕t
pχ =
𝜕
𝜕t
χ(x)e−c1t = −c1 χ(x)e−c1t = −c1pχ . (4.9)

Equation (4.8) can also be represented as follows:

ℒ∗pχ − c2pχ 1 − χχ = 𝜕𝜕t pχ . (4.10)

The solution of the partial differential equation (4.10) together with the initial condition

pχ(x, 0) = χ(x)e
−c1 ⋅0 = χ(x) (4.11)

can be given in terms of the Feynman–Kac formula [20, 3, 5]:

pχ(x, τ) = 𝔼[χ(xτ) ⋅ exp(−c2

τ

∫
0

1 − χ(xt)
χ(xt)

dt)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
x0 = x]. (4.12)

This representation allows us to interpret the solution as an expectation over realiza-
tions of the stochastic process and, therefore, builds the bridge from an abstract defini-
tion to its interpretation as a probability.

To this end, let us consider the case where χ ≈ 1,S . The expectation is to be taken
over all trajectories starting in x0. Once any such trajectory leaves the set S the integral
becomes infinite and exponential function evaluates to 0. Otherwise, the exponential
stays 1, as well as χ(xτ) = 1. We therefore recover the definition of classical holding
probability pχ(x, τ) = pS(x, τ) in (4.1), that is, the probability to stay in S for time τ at
least; see also (9) and (10) in [20], as well as (3.31) in [15].

We summarize this result in the following proposition.

Proposition 4.1. Let χ ≈ 1,S be a solution to (4.4). Then the χ-holding probability approx-
imates the classical holding probability of S:

pχ(x, t) ≈ pS(x, t).

With regard to this interpretation, pχ(x, t) is seen as the holding probability of the
macro state χ. Due to the separated term e−c1t in (4.6), the holding probability decreases
exponentially with the decay constant c1. This means that c1 is the exit rate from χ. Since
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the function value ofpχ(x, 0) = χ(x) is interpreted as aholding probability, it is necessary
that χ can only take values in the interval [0, 1].

The time integral over the holding probability is the mean holding time tmh(x),
which is proportional to the inverse of the exit rate c1:

tmh(x) =
∞
∫
0

pχ(x, t) dt =
∞
∫
0

χ(x)e−c1t dt = lim
t→∞[− 1c1 χ(x)e−c1t]t0 = 1

c1
χ(x). (4.13)

The mean holding time immediately leads to a definition of a reaction direction:
Following the gradient of tmh increases the time until “a reaction takes place.” Therefore,
by defining the reaction direction r : Ω→ ℝ3N ,

r(x) = −∇tmh(x) = −
1
c1
∇χ(x) ∝ −∇χ(x), (4.14)

we obtain a vector field along which the mean holding time decreases uniformly and
which is proportional to ∇χ. This also means that χ itself can be understood as an order
parameter, that is, a reaction coordinate for the system. Note that we obtain this time
independent result only as a consequence of the initial time separation ansatz for pχ .
By integrating curves tangential to r, one can obtain reaction paths in Ω. In Section 3,
we will make use of the order parameter interpretation to subsample a representative
reactive path from a given pool of simulation data.

The possibility of calculating these quantities of interest from (4.4) is a motivation
to develop an efficient method for solving this equation. We will now show how to ex-
press these quantities in terms of the Koopman operator, before discussing ISOKANN,
an algorithm for their computation.

2.2 Membership functions from Koopman operator

So far, the description of χ was based on the infinitesimal generator ℒ but a suitable
analytical solution of the corresponding partial differential equation (4.4) is not avail-
able. However, it is possible to transform (4.4) into an equation for which a constructive
solution is possible. We will now show how we can similarly formulate it in terms of
the Koopman operator 𝒦 and how we can switch between the formalisms and work
out the relation between χ function and eigenfunctions of 𝒦τ . The problem of actually
computing χ will then be addressed in the next subsection.

The Koopman operator 𝒦τ is the time-integral or solution operator of ℒ∗ for some
lag-time τ > 0 and can be formally defined as 𝒦τ = eτℒ

∗
. It can also be defined by its

action on observable functions f : Ω→ ℝ:

(𝒦τ f )(x) := 𝔼[ f (x(τ)) | x(0) = x], (4.15)
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where the expectation is taken over independent realizations x of the process, starting
in x(0) = x. It can be understood as the expected measurement 𝒦τ f of an observable
f after a lag time τ. Being an expectation value its action can be approximated using
Monte-Carlo estimates over simulations,making it particularly suitable for applications.

To transform (4.4) into an equation for 𝒦τ , we substitute

α = c1 + c2 (4.16)

to arrive at the following equation:

ℒ∗χ = −αχ + c2. (4.17)

This shows that ℒ acts as a shift-scale operator on χ if and only if χ solves (4.4). Making
use of the formal exponential representation of𝒦τ and its series expansion, one obtains
[20, 3]

𝒦τχ = e−ταχ + c2
α
(1 − e−τα). (4.18)

Setting

γ1 = e
−τα, γ2 =

c2
α
(1 − γ1), (4.19)

this becomes

𝒦τχ = γ1 χ + γ2. (4.20)

So, just as with equation (4.17),𝒦τ acts as a shift-scale if and only if χ is a solution to (4.4).
Noting that 𝒦τ1,= 1, we further see that f := χ − c2

α is an eigenfunction of 𝒦τ with
eigenvalue γ1:

𝒦τ(χ − c2
α
) = γ1 χ +

c2
α
(1 − γ1) −

c2
α
= γ1(χ −

c2
α
). (4.21)

These findings are summarized in the following proposition.

Proposition 4.2. Let the parameters c1, c2, α, γ1, γ2 satisfy their relations above. The fol-
lowing are equivalent:
– χ solves the ISOKANN problem (4.4).
– ℒ acts as a shift-scale on χ with scale −α and shift c2.
– 𝒦τ acts as a shift-scale on χ with scale γ1 and shift γ2.
– χ − c2

α is an eigenfunction of 𝒦τ with eigenvalue γ1.

The above identities allow us to switch between the infinitesimal generator and
Koopman framework. In particular, we can compute the exit rate c1 from the Koopman
parameters γ1 and γ2:
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α = − lnγ1
τ
, c2 =

αγ2
1 − γ1
, c1 = α − c2. (4.22)

This allows to estimate the respective constants, for example, the exit rate c1, by evalu-
ating χ and𝒦τχ at sample points x ∈ Ω and solving the linear regression problem (4.20).

2.3 ISOKANN for computing membership functions

The ISOKANN (Invariant subspaces of Koopman operators learned by a neural network)
method [12, 17, 16] is a fixed-point iteration, which combines the use of a neural network
for representing the high-dimensional χ function with the Koopman formalism to en-
able its training on simulation data.

On convergence, it returns χ that solves (4.4), (4.17), and (4.20). Solving the partial
differential equations involvingℒ∗ directly is not feasible due to the high dimensionality
ofmolecular systems.Molecular simulations on the other hand enable us to estimate the
action of𝒦τ on an observable. For this reason, attempts to solve (4.20) by using the action
of 𝒦τ for the calculation of (𝒦τχi)(x), where χi is the ith iterate of χ and x is a training
point. It approximates the expectation value

(𝒦τχi)(x) := 𝔼[ χi(x(τ)) | x(0) = x], (4.23)

by a Monte Carlo estimate over trajectory simulations x starting in different starting
points x. The next iterate is then given by the shift-scaled 𝒦τχi:

χi+1 := 𝒦τχi −min(𝒦
τχi)

‖𝒦τχi −min(𝒦τχi)‖∞ , (4.24)

which is motivated by inverting the shift and scale of (4.20), such that the solution χ
to (4.20) is indeed a fixed point. The initial guess χ0 is chosen randomly. ISOKANN is
based on the powermethod, an iterativemethod used to obtain the dominant eigenfunc-
tion of a linear operator. In ISOKANN, additional scaling and shifting in each iteration
ensures that it does not converge to the constant function, but against the membership
function χ(x) : Ω → [0, 1] [17]—similar to targeting the second eigenvalue in the in-
verse power method. In order to represent the iterates χi, we approximate them by a
neural network. The equality assignment in the iteration (4.24) thus becomes a super-
vised learning problem at data points x with labels given by the corresponding right
hand side of (4.24) evaluated on the previous generation of the network. The iterations
are then terminated by a stopping criterion, which can be either a high correlation co-
efficient (χi(xn), χi+1(xn))n or a small empirical loss ‖χi − χi+1‖2, indicating that we found
an approximate solution to (4.20).

Assuming infinite data and perfect representation by the neural network, this it-
eration indeed converges to the solution χ of (4.20) [17] with the smallest rate c1. It is
spanned by the constant eigenfunction with eigenvalue 0 and the second eigenfunction
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with eigenvalue closest to 0. This solution is unique, if the corresponding eigenvalue is
simple. In practice however, for a cluster of low-lying eigenvalues, this routine can re-
sult close to one of multiple possible membership functions (each representing one of
these slower processes). In that case, the procedure can be repeated and the resulting
membership functions can be used to construct an invariant subspace of 𝒦.

One of ISOKANN’smain benefits is that it avoids discretizing the state space,which is
crucial for the application to high-dimensional systems and avoiding the curse of dimen-
sionality [12]. In the ISOKANN algorithm, it is possible to train artificial neural networks
by collecting many short-term trajectories of simulation length τ from different starting
points in high-dimensional spaces. Thus, ISOKANN can be applied to many independent
short-time trajectories or it can even decide where in Ω to enrich simulation data [17].
In our illustrative example, we will apply it to a small number of medium-length trajec-
tories. The resulting χ function will then be used to subsample a reactive path from the
data, which leads us to the next section.

3 Extracting reaction paths from simulations
Once we obtained a χ function from ISOKANN, we might be tempted to directly com-
pute a reaction path following the gradient of χ as in (4.14). This, however, is problem-
atic as the neural network approximation is good only in the region of sufficient train-
ing data. The gradient of χ, however, could point away from this region, accumulating
more andmore approximation errors and quickly lead to unobserved unphysical states.
One might solve this problem by projecting back to the physical regime, for example,
via energy minimization. This, however, requires access to the original systems poten-
tial/forces and is not only computationally expensive but also involved from an imple-
mentation perspective.

We now propose an alternative method, which can be applied as a post-processing
step to already sampled simulation data without requiring further information about
the system. Applied as a post-processing step to molecular simulations, together with
ISOKANN, the subsampled reaction path provides researchers with a direct step-by-step
representation of the slowest process (which is contained in the simulation data) by
identifying this process and filtering out the intermediate fluctuations.

To this end, we understand the learned χ values as an order parameter for a set
of simulation data in Ω. As shown in (4.13), the membership values are interpreted to
be proportional to mean holding times of a macro state. The level sets of the function
χ(x) in this regard correspond to micro states x which “take place simultaneously” in
this newly defined time axis. By interpreting this mean-holding-time as a “temporal”
parameter, we can extract macroscopic reaction paths from simulation data. Replacing
the time from the simulation by χ furthermore allows us to incorporate data of different
simulations, treating themmerely as χ ordered data points, and thus allowing for higher
resolution of the results.
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The core problem of choosing a path through the data samples consists of balancing
the progress in the reaction direction,∇χ, versus spatial movement on the level sets of χ.
More formally we look for an ordered list I ⊂ J = {1, . . . ,N} of samples from simulation
points XJ = (xj)j∈J in Ω, such that χ(xj) is an increasing sequence with smooth spatial
transitions, that is, without large deviations xj+1 − xj . To this end, we will model the
spatial movement as a Brownian motion through the time-parameter χ.

For the classical Brownian motion dXt = σ dWt , the probability of obtaining a spe-
cific set of samples, conditioned on the sampling time points ti, is given by the finite-
dimensional distribution [9] (in our case we assume b ≡ 0 and σ(x) ≡ σ as well as
t = χ):

p(x1, . . . , xn|t1, . . . , tn) = (
n−1
∏
i=1 (2πσ2Δti)−d/2) exp(− n−1∑i=1 ‖xi+1 − xi‖22σ2Δti

). (4.25)

This formula is typically used to obtain the probability given a specific set of Δti =
ti+1 − ti. In our case, we will use it to also compare different sampling times ti by setting
p(x1, . . . , xn|t1, . . . , tn) = p(x1, . . . , xn, t1, . . . , tn), which allows to balance temporal with
spatial jumps. This can be justified from a Bayesian perspective as prescribing a uni-
form prior on the number and length of time intervals (as we have no preference for
specific Δt values to appear in the solution) although further investigation of this view
may be warranted. The parameter σ plays the role of a smoothing parameter, balancing
the likelihood of jumps in space or time. A high σ allows for more erratic jumps over
short time spans while a lower σ favors spatially closer jumps possibly necessitating
longer time-spans, as illustrated in Figure 4.1.

Figure 4.1: Illustration of the maximum likelihood path (4.25) on 100 points distributed uniformly in space
and time. For lower σ values (left), the path prefers less jumps with small spatial displacement, while for
higher σ (right) the path goes through more points at the cost of more erratic movement. Note that this
is just an illustration of the maximum likelihood path with synthetic data in classical time t (which in our
application will be replaced by χ).
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We now continue to find the maximum likelihood path through our sampling data
by replacing the classical time parameter with the samples χ value, such that Δti =
χ(xi+1) − χ(xi).

Taking the logarithm allows us to transform (4.25) into a sum of log probabilities,
log p(x1, . . . , xn) = ∑

n
i=1 log p(xi, xi+1) with

log p(x, y) = log((2πσ2( χ( y) − χ(x)))−d/2) − ‖ y − x‖2

2σ2(χ( y) − χ(x))
. (4.26)

Finding the maximal likelihood path then corresponds to solving the shortest path
problem froma (set of) point(s) χ(xi) ≈ 0 to a (set of) point(s) χ(xi) ≈ 1with edge distance
eij between two points (nodes)

eij = {
− log p(xi, xj) if χ(xi) < χ(xj),
∞ otherwise,

(4.27)

where transitions forward in time (i. e., increasing χ-value) are enforced by the corre-
sponding∞ weight. The shortest path problem can be solved with the Bellman–Ford
algorithm [4].

Of course, the assumption of uniform Brownian motion for the underlying dynam-
ics is far-fetched for an actual molecular system. However, with only finite simulation
data, the locally possible jumps will be dictated mainly by the available data which al-
ready incorporates the physical drift. The Brownian assumption introduces only a small
bias, which is largely negligible for the choice of paths in the temporal, that is, χ direc-
tion, as any larger deviations from the Brownian distribution will already be reflected
in the available data.

We believe this can be improved in cases where the acceleration (force andmasses)
and the diffusion coefficient σ of the dynamics are known. This, however, is not straight-
forward, as we have replaced the ordinary time with χ, which requires some projection
of the stochastic process.

In this regard, our proposed algorithmcanbeunderstood as a simple heuristic filter-
ingmethod to obtain a smooth path through already provided samples along the learned
reaction coordinate from χ = 0 to χ = 1 (or vice versa). The result is the most-likely path
(under the Brownian assumption) between the extremal conformations identified by χ.
Being composed of the actually simulated, hence physically relevant, data it provides a
smooth transition through the identified slowest process indexed by the mean holding
time of the corresponding macro state.

4 Illustrative example: opioid receptor
To illustrate the added value of χ computation, we will show an molecular dynam-
ics (MD) example, which is part of a pharmaceutical project. We first learned the χ
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function from molecular simulation trajectories and applied the described reaction
path extraction along χ to a high-dimensional molecular system consisting of 4,734
atoms. The application background is given by understanding pain relief using opioids.
Strong painkillers like morphine and fentanyl act upon a special type of receptor in
the body known as the (MOR). This receptor is part of the family of opioid receptors
and is a G-protein coupled receptor found in various parts of the body such as brain,
spinal chord, and gastrointestinal tract [10]. The indiscriminate activation of the MOR
across the whole body is one of the causes of severe side-effects of this family of strong
painkillers [1].

However, it is proven that chemical changes at site of inflammation cause the cre-
ation of a micro environment [13]. The knowledge about the local micro environment
can be used to design peripherally restricted strong pain killers with potentially less
side-effects [18]. Different micro environments may lead to different dynamics of the
MOR. One possible chemical change of theMOR in inflamed tissue postulates the forma-
tion of disulfide bonds as the concentration of reactive oxygens species goes up.

4.1 Algorithmic details

Our input data is taken from 10 different simulations of the MOR. After the primary
proximity analysis on the active structure of theMOR (Protein Data Bank (PDB) ID 8EF5),
a disulfide bondwas introduced in the inactive structure of theMOR in between location
CYS159 and CYS251 (Protein Data Bank ID 7UL4) [22, 14]. Ten simulations (with explicit
water andwith a lipid-bilayer for theMOR) were run. Each simulation spans an interval
of 100 nanoseconds, totaling to 1 microsecond.

After simulation, pairwise distances over all α-carbons that can be observed to be
closer then a threshold (dmax = 12 Å) at least once over the simulation time (normalized
to mean 0 and standard deviation 1) serve as input features of the corresponding neural
network of the ISOKANN algorithm [16]. The action of the Koopman operator in (4.24) is
estimated with one sample each forward and backward along the time axis, justified by
the reversibility of the system. This is used to train the χ-function. With taking forward
and backward steps, it is avoided that χ has all its mass in the terminal point. A uni-
directed trajectory, that is, if only forward or only backward steps were taken, would
“transport” the χ values along the trajectory to the final point in the estimation of the
Koopman operator: The Koopman estimation of each point in (4.24) would simply be the
χ value at the trajectories predecessors point. Over time, all pointswould attain the value
of the first point, whereas the shift-scale would enforce the last point to remain distinct.

The neural network is a multilayer perceptron with 3 fully connected hidden lay-
ers of size (6161, 336, 18) with sigmoid activation functions and a single linear output
neuron. For the optimization, we use ADAM with a learning rate of η = 1e−4 with a L2
regularization of λ = 1e−2 and a mini-batch size of 128. After training χ for 30,000 iter-
ations, we concluded convergence based on the plateauing of the mean squared error
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of the ISOKANN residuals at around 5e−4. The described shortest path is extracted with
σ = 0.7 resulting in 1,231 selected frames.

Using a large regularization, for the neural network enforces a smooth structure to
the χ function, which may also be understood as a smoothing of the data and thereby
artificially connecting spatially adjacent samples. With regularization, ISOKANN thus
isolates the spatially large transitions, which amount to macroscopic changes.

4.2 Application to MOR
ISOKANN serves as an efficient tool to analyze rare events in the simulation of the
μ-opioid receptor. As mentioned earlier, finding a solution function χ of (4.20) with a low
exit rate c1 corresponds to the identification of a “reaction coordinate.” In Figure 4.2,
the resulting χ-values along 10 independent molecular simulations are shown (blue
dots). One can see that the lowest and highest values of χ are not to be found within
one trajectory. Using ISOKANN, it is possible to extract the “dynamically most distant”
frames from the simulation; see Figure 4.3. Indeed the χ-values correspond to a reac-
tion coordinate for the transition from an inactive to an active macro state of MOR.
Although none of the 10 trajectories simulates this process completely, we can extract
the time-determining steps along the reaction path by using the shortest path routine
described in Section 3. The picked path is rather small in length (1,231 frames, orange
in Figure 4.2) as compared to entire trajectory of 10,000 stored frames. It displays a
physically plausible and compellingly smooth transition between the extremal states.

Figure 4.2: The membership value χ(x) for each state (frame) x obtained from 10 independent simula-
tions, with each simulation comprising 1,000 frames. The y-axis represents the macroscopic transition,
showing that different trajectories cover distinct segments of this transition while exhibiting partial overlap
with other trajectories. The extracted reaction path (orange line) progresses monotonously from χ ≈ 0 to
χ ≈ 1 while maintaining (not depicted) spatially smooth transitions. Note that it incorporates the data from
among all 10 simulations and even jumps between them where facilitated by small spatial distances in Ω.
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Figure 4.3: Visualization of the MOR states (teal) at the beginning (left) and end (right) of the reaction path
from Figure 4.2 (orange). The superimposed purple and green structures are known to be representative
of the inactive (PDB 7UL4), respectively, active (PDB 8EF5) states. We can see that ISOKANN isolates close
similar to these known metastabilities from the simulation trajectories without their a priori knowledge.
The reactive path clearly displays the tilting motion (black arrow) undergone by the transmembrane helix 6.

Whereas it was not at all clear whether the supplied simulation data was sufficient
a priori, the resulting path identifies the known crystal structures and a path between
them. Figure 4.3 displays the modified MOR (teal) with a disulfide bond at the starting
point of the reaction path aligningwith the inactive structure of the unmodified, natural
state of theMOR (purple). Laboratory experiments suggest partial activation of theMOR,
which is confirmed by the shortest path analysis in the tilting movement of the trans-
membrane helix 6 (bottom left) outwards like it is seen in the fully activated, natural
MOR crystal structure (green). It is noteworthy that the start and end points of the reac-
tive pathwere determinedwithout prior knowledge of the crystal structures. Extracting
these extremal states and the reaction path from the raw trajectory data frame-by-frame
would pose a considerable challenge.

Using a linear regression to estimate γ1, γ2 in (4.20), we can compute the exit rate
for a given lag time τ = 0.1 ns by (4.22) resulting in c1 ≈ 0.06 ns

−1.
5 Conclusion

In bridging the conceptual gap between micro state and macro state analyses, we intro-
duced the notion of mean holding probabilities pχ(x, t) = χ(x)e

−c1t represented in terms
of membership functions χ, which we interpret as the macro state itself. Taking this as a
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theoretical starting point, the computation ofmean holding times tmh ∝ χ, which gener-
alizes their classical set-based definitions, and of reaction paths along r ∝ −∇χ has been
shown. Being proportional to a mean holding time, χ(x) represents a kind of temporal
order of micro states x ∈ Ω in a high-dimensional space Ω thereby serving as a reaction
coordinate.

We briefly described ISOKANN, a machine-learning-based algorithm, which we use
to approximately solve the high-dimensional partial differential equation (4.4) defin-
ing χ. In a further step we interpret the values of the obtained solution χ to define the
weights of edges of a graph, in which the vertices represent biomolecular micro states
of an opioid-receptor simulation. Solving a shortest path problem for this graph allows
us to obtain a subsample of the simulation data, which captures the time-determining
steps of macro molecular transitions.

Our method is able to pick micro states from different independent MD trajectories
generated for the same biomolecular system in order to combine them into one “tempo-
rally and spatially” ordered path between macro states; see Figure 4.2. This path shows
the time-determining steps of a rare transition event between the macro states.

In our example, this approach effectively condenses 10,000 frames into a concise set
of 1,231 frames. Using ISOKANN together with shortest path computation extracts what
“really is to be seen” in the trajectories. In this case, the extracted path accurately depicts
the transition of themodifiedMOR froman inactive to an active state as also indicated in
experimental conditions. It further enhances our understanding of the role of a disulfide
bond resulting from oxidative stress. Supported by this findings detailed experiments
highlighting the role of implicated cysteins pair (159 and 251) out of other 2 pairs are
planned. This example highlights ISOKANN’s potential to significantly streamline the
analysis of long-term MD simulations and extract meaningful reaction paths.
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Adaptive gradient-enhanced Gaussian process
surrogates for inverse problems

Abstract: Generating simulated training data needed for constructing sufficiently accu-
rate surrogate models to be used for efficient optimization or parameter identification
can incur a huge computational effort in the offline phase. We consider a fully adaptive
greedy approach to the computational design of experiments problem using gradient-
enhanced Gaussian process regression as surrogates. Designs are incrementally defined
by solving an optimization problem for accuracy given a certain computational bud-
get. We address not only the choice of evaluation points but also of required simulation
accuracy, both of values and gradients of the forward model. Numerical results show
a significant reduction of the computational effort compared to just position-adaptive
and static designs as well as a clear benefit of including gradient information into the
surrogate training.
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1 Introduction
The response ofmanyparameter-dependent physicalmodels can be described by a func-
tional relation ymapping parameters p to observable quantities y(p). The inverse prob-
lem of inferring model parameters p frommeasurements ym is frequently encountered
in various fields including physics, engineering, finance, and biology. Point estimates
p∗, for example, the maximum likelihood estimate argminp‖ y(p) − y

m‖, are often com-
puted by optimization methods or by sampling the posterior probability distribution of
the parameters given the measurement data [7, 16].

Often, y is only available as a complex numerical procedure, such as the numeri-
cal solution of a partial differential equation. Solving an optimization problem for pa-
rameter estimation is then computationally expensive. The effort can be too high for
online and real-time applications. Fast surrogate models approximating y are utilized
as a replacement for the forward model when solving the inverse problems, in particu-
lar when both parameters p and measurements ym are low-dimensional. Various types
of surrogates are employed, including polynomials, sparse grids, tensor trains, artifi-
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cial neural networks, and Gaussian process regression (GPR) [27, 38], on which we focus
here.

Surrogate models rely on values y(pi) at specific evaluation points pi as training
data. The quality of the resulting surrogate heavily depends on the number and posi-
tion of these sample points. Constructing an accurate surrogate model can become com-
putationally expensive when a large number of evaluations is required. Consequently,
strategies for selecting near-optimal evaluation points have been proposed, in particu-
lar for analytically well-understood GPR [25]. A priori point sets [10, 23] are effectively
supplemented by adaptive designs [3, 15, 18, 31]. Active learning relies on pointwise es-
timates of the surrogate approximation error for guiding the selection process, usually
including the parameter point that maximizes some acquisition function into the train-
ing set [14, 20, 36].

When numerical procedures like finite element (FE) solvers are employed to com-
pute training data, the resulting evaluations of y(pi) are affected by discretization and
truncation errors. While uniformly high accuracy can be used, this incurs a high com-
putational effort. The trade-off between accuracy and cost has received limited system-
atic investigation. Besides two-level approaches using a low-fidelity and a high-fidelity
model [22], an adaptive choice of evaluation tolerances has been proposed [26]. Signifi-
cant efficiency gains by joint optimization of evaluation position and tolerance given a
limited computational budget have been achieved [29].

In the current paper, we extend [29] by including gradient information. Gradi-
ents of FE simulations can often be obtained efficiently by solving tangent or adjoint
equations [11]. We make use of gradient-enhanced GPR (GEGPR) promising higher ac-
curacy than standard GPR [8, 35, 36]. Due to the high information content of gradient
data, the required number of evaluation points is small compared to gradient-free
GPR. We devise a greedy-type strategy that simultaneously optimizes the next positions
and tolerances for a forward model and gradient evaluation. For that, we extend the
accuracy and work models used in the optimizer to take gradient computation into
account.

For measuring the accuracy of the surrogate model, we adopt a goal-oriented ap-
proach [32], assessing the approximation error by its impact on the accuracy of the iden-
tified parameter. We aim for a uniform absolute tolerance or, if that is not reachable, at
least a uniform bounded deterioration relative to the exact model results. We focus on
adaptive FE simulations, where standard a priori error estimates and coarse estimates
of the computational work are available.

The remainder of the paper is structured as follows: In Section 2, we formalize the
parameter identification and surrogate model construction problems, introducing no-
tation and GEGPR. Their adaptive construction is given in Section 3 after introducing
gradient-enhanced work and accuracy models. Numerical experiments are provided in
Section 4.
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2 Surrogate-based parameter identification

First, we briefly define the parameter identification as maximum posterior evaluation
in a Bayesian context, before introducing GEGPR surrogate models. For a more detailed
discussion, we refer to [29].

2.1 Inverse problem

Let the forward problem y : 𝒳 ⊂ ℝd → ℝm of mapping a parameter vector p ∈ 𝒳 to
a model output y(p) ∈ ℝm be Lipschitz-continuously differentiable and the parameter
space𝒳 be bounded and closed.We assume that numerical approximations yτ(p) of y(p)
and y′τ′ (p) of the derivative y′(p) can be computed, satisfying the error bounds ‖ yτ(p) −
y(p)‖ ≤ τ and ‖ y′τ′ (p) − y′(p)‖ ≤ τ′, respectively, for any given tolerances τ, τ′ > 0
in some norms ‖ ⋅ ‖. We consider the simplest Bayesian setting of normally distributed
measurement errors with likelihood covariance Σl ∈ ℝ

m×m and a Gaussian prior with
covariance Σp ∈ ℝ

d×d and mean p0. Given measurements ym, we are interested in the
maximum posterior point estimate p(ym), a minimizer of the negative log-posterior

J(p; ym) := 1
2
󵄩󵄩󵄩󵄩 y(p) − y

m󵄩󵄩󵄩󵄩
2
Σ−1l
+
1
2
󵄩󵄩󵄩󵄩p − p

0󵄩󵄩󵄩󵄩
2
Σ−1p

(5.1)

over p ∈ 𝒳 , where the norm induced by a positive symmetric definite matrix A is
denoted by ‖v‖2A := vTAv. By regularity of y and compactness of 𝒳 , J is Lipschitz-
continuously differentiable, and a not necessarily unique, minimizer exists. For the nu-
mericalminimization of (5.1), we consider a Gauss–Newton (GN)method [4] and assume
that the forward model is compatible and the measurement errors sufficiently small
such that the residual y(p(ym))− ym is small, such that the GNmethod converges locally.

2.2 Gradient-enhanced Gaussian process regression

We aim at building a surrogatemodel y∗ for y : 𝒳 → ℝm based on a set of evaluations of
the model and its derivative with certain tolerances τ, τ′. We directly consider GEGPR;
see [36] and the references therein, and refer to [6, 17, 24, 29] for purely value-based GPR
surrogate modeling.

2.2.1 Designs and training data

We define D := {𝒟 : 𝒳 → (ℝ+ ∪ {∞})2 | cardX(𝒟) ∈ ℕ} as the set of admissible designs,
where X(𝒟) := {p ∈ 𝒳 | mink∈{1,2}{𝒟(p)k} <∞} is the evaluation set. For pi ∈ X(𝒟), the
design𝒟(pi) = [τi, τ

′
i ] defines the evaluation tolerances for values and derivatives of the
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forward model y forming the training data yi = yτi (pi) and y
′
i = y
′
τ′i
(pi). Note that𝒟

′ ≤ 𝒟
for two designs 𝒟′ and 𝒟 implies that 𝒟′ is a refinement of 𝒟, since X(𝒟′) ⊃ X(𝒟) and
τ′i = 𝒟′(pi) ≤ 𝒟(pi) = τi for τi ∈ X(𝒟) hold. Here, we use the componentwise partial
ordering on ℝ2.

We assume for simplicity that the componentwise evaluation errors ei = yi − y(pi)
and e′i = y′i − y′(pi) are independent and normally distributed, that is, ei ∼ 𝒩 (0, τ2i Im)
and e′i ∼ 𝒩 (0, (τ′i )2Imd), where we denote the identity matrix of dimensionm by Im and
identify e′i ∈ ℝm×d with its column-major vector representation in ℝmd .
Remark. The assumption of normally i. i. d. evaluation errors is of course unrealistic.
Discretization errors may be biased, as in P1 finite elements for the simple 1D Poisson
problem with constant source term. They are for sure correlated locally in parameter
space, as discrete decisions on mesh refinement, truncating an iterative solver, or re-
jecting time steps separate the parameter space into disjoint cells within which the er-
rors are highly correlated, but between them there is less or no correlation. Ideally, one
would have a stochastic model of the inexact evaluation errors, as considered in prob-
abilistic numerics [2, 13]. Such models are, however, complex and extremely difficult to
obtain a priori. Thus, we use the simplistic assumption of normally and independently
distributed evaluation errors. Despite the obvious shortcomings of this assumption, it
works surprisingly well in numerical examples.

The complete model evaluation at a parameter point pi thus comprises a vector
yi ∈ ℝ

m and a matrix y′i ∈ ℝm×d . Being interested in a joint representation of values
y and derivatives y′, we introduce the extended forward model z : 𝒳 → ℝm+md , p 󳨃→
(y(p), y′(p)) as the vector representation of the complete evaluation. Analogously, we
define the approximate evaluations ẑi = (yi, y

′
i ) ∈ ℝ

m+md . The training data is then
distributed as

ẑi ∼ 𝒩 (z(pi), Ei), Ei = [
τiIm

τ′i Imd] . (5.2)

Remark. In principle, the tolerances for computing values y and derivatives y′ can be
chosen independently. In practical computation, however, when evaluating derivatives,
obtaining the value at the same position pi with the same accuracy τi = τ

′
i usually comes

for free. We therefore restrict the attention to designs satisfying τi ≤ τ
′
i for all i.

2.2.2 Gaussian process prior

Assume that forwardmodels are a Gaussian process, that is, model evaluations z(pi) are
jointly normally distributed for any finite evaluation set X = {pi | i = 1, . . . , n}, which
forms the GPR prior distribution

πprior(Z) = 𝒩 (ζ , K̃) (5.3)
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for joint model responses Z = (z(pi))i=1,...,n ∈ ℝn(m+md) with given mean ζ . The structure
of Z induces a nested block form of the covariance matrix K̃ = (K̂ij)ij , i, j = 1, . . . , n
(see [30, 36]) with

K̂ij = [
Kij K ′ij
K ′ji K ′′ij ] . (5.4)

Here, Kij = k(pi, pj)K ∈ ℝ
m×m is the covariance of the model values y(pi) and y(pj),

assumed to be separable, that is, defined as a product of a positive definite kernel k
depending on the evaluation positions pi and pj only, and a matrix K describing the
covariance of model response components independently of the evaluation position.
Most often, k is assumed to depend on the distance of pi and pj only, such that k(pi, pj) =
k(‖pi − pj‖). A common choice is the Gaussian kernel k(x) = exp(−σx2).

The remaining blocks K ′ij ∈ ℝm×dm and K ′′ij ∈ ℝdm×dm describe the covariance of
model values and model derivatives y′ and of the covariance of model derivatives,
respectively. Since differentiation is a linear operation, the derivatives are again nor-
mally distributed, and the covariances are given in terms of the kernel’s derivatives
as cov(y(p), y′(q)) = ∇qk(p, q); see [25, Chapter 9.4]. We therefore can write the matrix
blocks in terms of the Kronecker product ⊗ as

K ′ij = 𝜕pjk(pi, pj) ⊗ K , K ′ji = 𝜕pik(pi, pj) ⊗ K , K ′′ij = 𝜕pi𝜕pjk(pi, pj) ⊗ K . (5.5)

2.2.3 Regression

Given approximate complete evaluations Ẑ = (ẑi)i=1,...,n ∈ ℝn(m+md) according to (5.2),
the GPR likelihood is πlike(Ẑ | Z) = 𝒩 (Z, Ẽ), with Z = z(X) the exact forward model
evaluations and Ẽ = diag(E1, . . . , En). With the GPR prior (5.3), the GPR posterior proba-
bility for the complete model response Z is πpost(Z | Ẑ) ∝ πlike(Ẑ | Z)πprior(Z) by Bayes’
rule. As a product of two Gaussian distributions, πpost is again Gaussian, with covariance
Γ = (K̃−1 + Ẽ−1)−1 and mean Z̄ = Γ(K̃−1ζ + Ẽ−1Ẑ). In particular, for pn, the marginal co-
variance Γ𝒟(pn; τn, τ

′
n) ∈ ℝ

m(1+d)×m(1+d) according to the block structure of Z and Γ is a
monotone function of τn and τ

′
n, that is, Γ𝒟(pn, τn+δ, τ

′
n+δ
′) ⪰ Γ𝒟(pn, τn, τ′n) for δ, δ′ ≥ 0.

Regression is performed for a point pn with unknown model response, that is, for-
mally τn = τ

′
n = ∞, by extracting the marginal mean z𝒟(pn) = Z̄n ∈ ℝ

m+md and the
marginal covariance Γ𝒟(pn). Note that z𝒟(pn) = (y𝒟 , y

′
𝒟)(pn) provides an estimate for

both, values and derivatives of the model at pn, and Γ𝒟(pn) quantifies the uncertainty
of this estimate. Due to the choice (5.5) for the prior covariance of values and gradients,
the GPR model is consistent, that is, the derivative estimate y′𝒟 coincides with the para-
metric derivative of the value estimate y𝒟 .

Remark. If the components of the model response are assumed to be uncorrelated, the
covariance matrix K is diagonal. With the independence of the evaluation errors postu-
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lated in (5.2), both K̃ and Ẽ and, therefore, Γ decompose intom independent blocks, one
for each component. Then theGPR canbe performed independently for each component
using a simpler scalar GPRmodel. An appropriate covariancemodel for the components
can, however, result in superior results [1].

3 Adaptive training data generation

Replacing exact model evaluations y(p) in the objective (5.1) by a cheaper GPR model
y𝒟(p) based on a design 𝒟 yields maximum posterior point estimates

p𝒟(y
m) = argmin

p∈𝒳 J𝒟(p; y
m) :=

1
2
󵄩󵄩󵄩󵄩 y𝒟(p) − y

m󵄩󵄩󵄩󵄩
2
Σ−1l
+
1
2
󵄩󵄩󵄩󵄩p − p

0󵄩󵄩󵄩󵄩
2
Σ−1p

and saves computational effort when computing Gauss–Newton steps Δp𝒟(p, y
m) by

solving

(y′𝒟(p)TΣ−1l y′𝒟(p) + Σ−1p )Δp𝒟 = (y𝒟(p)′)TΣ−1l (y𝒟(p) − ym) + Σ−1p (p0 − p).
It also incurs both some error p𝒟(y

m)−p(ym) of the resulting identified parameters and
a considerable computational effort for evaluating the model according to the design𝒟
beforehand.

If computational resources are limited, the challenge is to determine which param-
eters pi simulations should be run with, and which tolerances τi, τ

′
i should be used to

achieve the best accuracy. This design of experiments problem for 𝒟 involves balanc-
ing the competing objectives of minimizing the expected approximation error E(𝒟) of
the surrogate model and minimizing the computational effortW (𝒟) required to create
the training data. Since little is known about the model derivative y′, and consequently,
about E(𝒟) before any simulations have been performed, we follow a sequential de-
sign of experiments approach [29] by incrementally spending computational budget of
size ΔW . In each step, we thus have to solve an incremental design problem for 𝒟̃ ∈ D
refining a given preliminary design 𝒟:

min
𝒟̃≤𝒟 E(𝒟̃) subject toW (𝒟̃|𝒟) ≤ ΔW . (5.6)

We will establish quantitative error estimates E(𝒟) and work modelsW (𝒟), and then
develop a heuristic for approximately solving problem (5.6).

3.1 Accuracy model

First, we need to quantify the parameter reconstruction error p𝒟(y
m) − p(ym) in terms

of the measurement error variance Σl and the surrogate model approximation quality
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y𝒟 −y depending on the design𝒟. We start by establishing an estimate of the parameter
reconstruction error for deterministic functions y(p) and y𝒟(p).

Theorem 5.1. Assume that y is twice continuously differentiable with uniformly bounded
first and second derivatives in a neighborhood B of a minimizer p∗ ∈ 𝒳 of J(p; ym) for
some measurement data ym ≈ y(p∗), such that the residual ‖y(p∗) − ym‖Σ−1l is sufficiently
small and y′(p∗)Σ−1l y′(p∗) + Σ−1p is positive definite.

Then there are ̄ϵ, ̄ϵ′ > 0 as well as constants a, a′ depending on p∗, such that for all
ϵ ≤ ̄ϵ and ϵ′ ≤ ̄ϵ′ and surrogate models y𝒟 : ℝd → ℝm with ‖ y𝒟 − y‖L∞(B) ≤ ϵ and ‖ y′𝒟 −
y′‖L∞(B) ≤ ϵ′ there is a locally unique minimizer p𝒟(ym) of J𝒟 satisfying the error bound

󵄩󵄩󵄩󵄩p𝒟(y
m) − p∗󵄩󵄩󵄩󵄩 ≤ aϵ + a′ϵ′. (5.7)

A more detailed claim and the proof is given in [29, Corollary 3.1.1].
Though the constants a(p∗), a(p∗)′ are quantitatively unavailable for concrete prob-

lems, Theorem 5.1 establishes a linear relation between the surrogate model accuracy
in terms of ϵ and ϵ′, and the incurred error p𝒟(ym) − p∗ in the parameter estimate. The
factors a and a′ can be estimated numerically by bounding linearized error transport
through a Gauss–Newton iteration.

We aim at aminimal absolute reconstruction error, but due tomeasurement errors,
we cannot expect the error to be much less than the true posterior standard deviation
level

e0(p) =
󵄩󵄩󵄩󵄩 y
′(p)TΣ−1l y′(p) + Σ−1p 󵄩󵄩󵄩󵄩1/2,

even if the exact forward model is used. For a closely related definition of the unavoid-
able error level in terms of Theorem 5.1, we refer to [29]. With an expected error of mag-
nitude e0, we consider a small relative error with respect to e0 incurred by the surrogate
model error to be acceptable. We therefore define the local error quantity:

e𝒟(p) :=
a(p)ϵ + a(p)′ϵ′
1 + αe0(p)

. (5.8)

Since during the construction of the surrogate model y𝒟 by minimizing (5.6) the
measurement values ym, and hence the parameter position p = p(ym) of interest are
unknown, the error quantity (5.8) needs to be considered over the whole parameter
region 𝒳 . We therefore define the accuracy model

E(𝒟) := ‖e𝒟‖Lq(𝒳 ) for some 1 ≤ q <∞, (5.9)

that is to be minimized by selecting an appropriate design 𝒟. Choosing q ≈ 1 would
focus onminimizing the average parameter reconstruction error, while choosing q very
large would focus on the worst case and impose a roughly uniform accuracy. For the
numerical experiments in Section 4, we have chosen q = 2.
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Still missing are the surrogatemodel error bounds ϵ, ϵ′ in terms of the design𝒟. Un-
fortunately, for virtually all cases of practical interest, there is little hope for obtaining
simultaneously rigorous and quantitatively useful bounds. For GPR surrogate models,
the global support of the posterior probability density precludes the existence of a strict
bound, though its fast decay provides thresholds that are with high probability not ex-
ceeded. The assumed normal distribution of errors z(p) − z𝒟(p) ∼ 𝒩 (0, Γ𝒟(p)) implies
that both the Euclidean norm ‖ y(p) − y𝒟(p)‖2 and the Frobenius norm ‖ y

′(p) − y′𝒟(p)‖F
are generalized-χ2-distributed, and hence formally unbounded. Instead of a strict
bound, we use a representative statistical quantity for ϵ and ϵ′ based on the marginal
covariance Γy𝒟 = Γ𝒟(p)1:m,1:m, such as the mean [19]

ϵ := tr(Γy𝒟 ). (5.10)

Analogously, ϵ′ can be defined in terms of Γy′D = Γ𝒟(p)m+1:m(d+1),m+1:m(d+1). Inserting the
chosen values of ϵ and ϵ′ into (5.8) completes the accuracy model.

One advantage of integrating derivative information into the GPR surrogate is that
there is an explicit variance estimate available for defining ϵ′. In contrast, GPR surro-
gates defined only in terms of the values y as considered in [29]must rely on an empirical
relation of ϵ and ϵ′.
3.2 Work model

The evaluation of the forward model y(p) usually involves some kind of numerical
approximation, resulting in an approximation yτ(p). While in principle any accuracy
‖ yτ(p) − y(p)‖ ≤ τ for arbitrary tolerance τ > 0 can be achieved, this requires a compu-
tational effortW (τ) to be spent on the evaluation. For adaptive finite element compu-
tations in ℝl with ansatz order r and N degrees of freedom, we expect a discretization
error ϵ = 𝒪(N−r/l) [5]. Assuming an optimal solver with computational work 𝒪(N), we
obtain a work model W (τ) = τ−2s with s = l/(2r) > 0; see [34]. W is monotone and
satisfies the barrier propertyW (τ) → ∞ for τ → 0 and the minimum effort property
W (τ)→ 0 for τ →∞.

Including gradient information is of particular interest if derivatives can be com-
puted efficiently, for example, with adjoint methods, such that the cost of derivative
computation is a small multiple c of the value computation cost, and independent of the
number d of parameters [11]. This leads to the work modelW (τ′) = c(τ′)−2s.

The computational effort incurred by a design 𝒟 is then

W (𝒟) := ∑
pi∈X(𝒟) τ−2si + c (τ

′
i )
−2s. (5.11)

Being interested in incremental designs, we assume 𝒟 to be a design already realized.
Evaluating the model on a finer design 𝒟̃ ≤ 𝒟 can consist of simulating the model for
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parameters p ̸∈ X(𝒟), or improving the accuracy of already performed simulations for
p ∈ X(𝒟) with 𝒟̃(p)k < 𝒟(p)k for some k ∈ {1, 2}, or both. If already conducted simu-
lations can be continued instead of started again, the computational effort of obtaining
the training data set 𝒟̃ from 𝒟 is

W (𝒟̃ | 𝒟) = W (𝒟̃) −W (𝒟). (5.12)

3.3 The design of computer experiments problem

The design problem (5.6) is combinatorial in nature due to the unknown number n of
evaluation points and the decision between introducing new points or reusing existing
ones. It is therefore highly nonlinear and difficult to treat rigorously due to the param-
eter locations pi to be optimized. In particular, relaxing the design to the space of non-
negative regular Borel measures, as used in [21], is not feasible due to the nonlinearity
of the work model (5.12).

We therefore take a heuristic two-stage approach. We simplify the problem by de-
coupling the choice of evaluation positions pi from the choice of evaluation accuracies
τi, τ
′
i . In the first stage, we select a few promising additional points for inclusion into the

evaluation set X . In the second stage, the evaluation tolerances τi and τ
′
i are then op-

timized for minimal error E(𝒟̃) given the computational budget constraintW (𝒟̃|𝒟) ≤
ΔW . Then the necessary evaluations of the forward model are performed and the GP
surrogate model is updated, yielding improved error estimates for the next incremen-
tal design.

A parameter point p is particularly promising for inclusion if its predicted impact
on the overall error E is large. The impact can be estimated by the local derivative of
e𝒟(p)

q with respect to work spent for approximating y(p). We assume τ′ = βτ for some
β ≥ 1 and consider

𝜕e𝒟(p)
𝜕W (p)
(β) = 𝜕e𝒟(p)
𝜕(ϵ, ϵ′) (𝜕ϵ, ϵ′)𝜕τ (dWdτ )−1
=
[a(p), a(p)′]
1 + αe0(p)

[tr
𝜕Γy𝒟
𝜕(τ, τ′) , tr 𝜕Γy′D𝜕(τ, τ′)] [1β] τ2s+1

(−2s)(1 + cβ−2s) .
Neglecting constant factors, which are irrelevant for the relative merit of candidate
points, and evaluating the derivatives at the current tolerance level tr(Γy𝒟 ), we define
the acquisition function

ϕ(p) = max
β≥1 e𝒟(p)q−1 𝜕e𝒟(p)𝜕W (p)

(β). (5.13)

As it is often only practical to compute derivatives along with the values or not at all,
we may restrict the choice of β to the two extreme cases β ∈ {1,∞}. Selecting candidate
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points for inclusion into the evaluation set X can be based on finding local maximizers
of the acquisition function ϕ, or finding the best points from a random sampling or from
low discrepancy sequences.

With the evaluation set X fixed, the optimization problem (5.6) reduces to the non-
linear programming problemmin ̃τ, ̃τ′ E( ̃τ, ̃τ′) for the newevaluation tolerances ̃τ, ̃τ′, sub-
ject to the pure improvement requirement ̃τ ≤ τ, ̃τ′ ≤ τ′, and the computational budget
constraintW ( ̃τ, ̃τ′) ≤ W (τ, τ′) + ΔW . For convexity reasons, we consider an equivalent
reformulation in terms of v = τ−2 and v′ = (τ′)−2:

min
ṽ,ṽ′∈ℝn+ E(ṽ, ṽ′)q s. t. ṽ ≥ v, ṽ′ ≥ v′, ṽ′ ≤ ṽ, W(ṽ, ṽ′) ≤ W(v, v′) + ΔW . (5.14)

Theorem 5.2. The objective Ẽ(ṽ, ṽ′)q is convex.
Proof. As in [29, Theorem 3.2], ϵ = tr(Γy𝒟 ) and ϵ

′ = tr(Γy′𝒟 ) are convex in v and v′ at all
p ∈ 𝒳 , and consequently, e𝒟(p) is convex as well. Due to convexity and monotonicity,
e𝒟(p)

q, and due to linearity, also its integral E are convex.

Remark. In contrast to purely value-based GPR surrogates, here the objective Eq is in
general not strictly convex since the covariance kernel containing entries of the form
𝜕pik(pi, pj) is not pointwise positive.

The convexity of the admissible set {ṽ ∈ ℝn+j+ | W (ṽ) ≤ ΔW +W (v)} depends on the
exponent s in the work model (5.11). Clearly, for s ≥ 1,W is convex, whereas for s < 1
it is in general nonconvex, not even quasiconvex. In combination with Theorem 5.2, we
obtain the following result.

Corollary 5.3. For exponents s ≥ 1, the tolerance design problem (5.14) is convex.

Finite elements of order r in l dimensions with an optimal solver yield s = l/(2r).
Consequently, for linear finite elements in two or three space dimensions, any mini-
mizer is a global one, most often unique and nonsparse. In contrast, higher-order finite
elements with r ≥ 2 lead to s < 1 and non-convex admissible sets. Their pronounced
corners on the coordinate axes make the sparsity of a minimizer likely; see Figure 5.1
right. This agrees with intuition: if increasing the accuracy at a specific sample point is
computationally expensive, it is advantageous to distribute the work on a lower accu-
racy level to several points. If increasing the accuracy is cheap, then it is often better to
increase the accuracy of a single point, that to some extent, shares its increased accuracy
in a certain neighborhood. Level lines of the gradient-enhanced objective E(v) are also
shown (green). A smaller error can be achievedwith the same amount of computational
work. Note that gradient data does not affect the convexity of the problem.

While in the convex case s ≥ 1 the optimization is straightforward with any nonlin-
ear programming solver, the nonconvex case is more difficult. Fortunately, guaranteed
global optimality is in practice not necessary. The expected sparsity structure suggests a
particular heuristic approach: For i = 1, . . . , n+j, consider ṽi = v+aeiwith a > 0, such that
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Figure 5.1: Sketch of the design problem (5.14) for n = 2 points. Level lines of the objective E(v) without
gradient data are drawn by blue lines, whereas those of the budget constraint are indicated by dashed
lines. The gradient-based version of E(v) is drawn by solid green lines. Left: For s > 1, there is a unique
nonsparse solution. Middle: A smaller correlation length makes sparsity even less likely. Right: For s < 1, the
admissible sets are nonconvex, and we may expect multiple local sparse minimizers.

W (v) = ΔW +W (𝒟), that is, the accuracy of only a single point is improved, and select
the design ṽi with smallest objective. If this satisfies the necessary first-order conditions,
accept it as solution. Otherwise, perform a local minimization starting from this point.

4 Numerical examples
Wepresent twonumerical examples, a low-dimensional onewith simplemodel function
y, and a PDE model. We compare the results of the adaptive phase with and without
gradient data.

4.1 Analytical example

As a model y, we consider the rotated parabolic cylinder, that is,

yϕ(p) = (cos(ϕ)(p1 + p2) + sin(ϕ)(p2 − p1))
2 for p ∈ 𝒳 = [0, 2]2, ϕ ∈ ℝ>0.

We acquire m = 3 measurements for ϕ ∈ {0, 2, 4}, assume different accuracies of these
independent measurements, and a likelihood ΣL = 10

−2 diag(1, 0.1, 1) with a prior mean
of p0 = (1.0, 1.5) and variance Σp = 10

−2I .
We start with an initial design of seven evaluation points (see Figure 5.2) and an

evaluation variance of σ2 = 0.1. We use the work model with s = 1/2. Evaluation of
the error quantity E from (5.9) is performed by Monte Carlo integration. To determine
candidate points for inclusion in the evaluation set X , we sample the acquisition func-
tion (5.13) for β ∈ {0,∞}. Only the point with the largest value is included, and gradient
information included by setting τ′ = τ if β = 1 obtained a higher value. The adaptive
phase is terminated if the error E drops below the desired tolerance TOL = 10−2.
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Resulting designs
Figure 5.2 illustrates the resulting design with (left) and without (right) gradient data.
Black dots are evaluation points without gradient data, while red triangles mark points
with gradient information. The size of each marker corresponds to the evaluation ac-
curacy, with larger markers indicating higher accuracy. Red dots represent the initial
design, while the color mapping represents the estimated error. The gradient-based al-
gorithm required 24 points, 11 of them with gradient information, each with different
evaluation accuracy. The purely value-based design required 30 points. A comparison of
the computational costs of the two systems shows that the regular systemwithout gradi-
ent data requires costs ofW (𝒟) = 1.09⋅106, while the gradient-enhanced system requires
costs ofW (𝒟) = 0.11 ⋅ 105, and thus costs 10 times less to achieve the desired accuracy.

Figure 5.2: Contour plot of the local error density, left with gradient information, right without. Red points
show the initial design. Adaptively added data points are indicated by black dots. Small markers indicate
low accuracy. Gradient information is indicated by red triangles. The color mapping shows the estimated
local reconstruction error evaluated on a dense grid of 103 points. The designs were obtained using an
incremental budget of ΔW = 104 with a desired tolerance of TOL = 0.01.
Convergence
Figure 5.3 presents the error against the computational work with different incremen-
tal budgets. On the left, we compare designs with gradient data (solid lines) and with-
out (dashed lines). On the right, we compare adaptive designs with gradient data with
a position-adaptive design using uniform tolerances for values and gradients. Includ-
ing derivative information is clearly more efficient, by roughly one order of magnitude,
but also leads to pronounced nonmonotone convergence. This is likely an effect of the
larger condition number of the covariance matrix when including derivative informa-
tion, which can lead to suboptimal solutions and high variance in the hyperparameter
optimization performed in every step. In contrast, value-based designs exhibit a mostly
monotonic behavior. Also apparent is that smaller incremental budgets are more ef-
ficient, in particular, for low desired accuracy. On the right, the behavior of uniform
tolerance designs is shown. For large tolerances (τ = 10−1), the computational work is



Adaptive gradient-enhanced Gaussian process surrogates for inverse problems � 71

Figure 5.3: Estimated global error E(𝒟) versus accumulated computational work in GEGPR surrogates.
Left: E(𝒟) for different incremental work ΔW . Solid lines with gradient data. Right: Different uniform toler-
ances in position-adaptive designs compared with different curves for ΔWg = 100.
small, but the desired accuracy is not reached. Smaller tolerances (τ ≤ 10−2) achieve the
desired accuracy, but at amuch higher cost, roughly two orders of magnitude andmore.

Reliability of local error estimates
The error model (5.9) is coarse and may not capture the actual error in identified pa-
rameters correctly. It is affected both by linearization error in estimated error trans-
port and the GPR error estimate, which in turn depends also on the hyperparameter
optimization. We compare the estimated global error E(𝒟) to the actually obtained er-
rors. For 1600 points pi, sampled randomly from 𝒳 , we compute the local error esti-
mate ei = e𝒟(pi) from (5.8), and compare this to the expected actual error, approxi-
mated by the sample mean ẽi := n

−1
k ∑

nk
k=1 ‖p(y(pi) + δi,k) − p𝒟(y(pi) + δi,k)‖ with realiza-

tions δi,k of the measurement error distributed as 𝒩 (0, Σl). The identified parameters
p(y(pi)+δi,k) and p𝒟(y(pi)+δi,k) have been computed by a Gauss–Newtonmethod start-
ing from pi and using the truemodel and the surrogate, respectively. The Gauss–Newton
iteration is only locally convergent, but in this setting, the problem’s nonlinearity and
the sampled errors δi,k are sufficiently small for the method to converge to the near-
est local minimizer without further globalization. We construct histograms of the ratio
ei/ẽi. Ratios less than 1 indicate an underestimation of the error, while values greater
than 1 indicate an overestimation. The results in Figure 5.4 suggest that value-based and
gradient-enhanced GPR surrogates behave similar. The coarse a priori error estimate
is not strictly reliable, but appears to be reasonably accurate for steering the adaptive
design process.

Parameter reconstruction
For an exemplary parameter reconstruction, we assume a true parameter p∗ = (1, 1.5)
and exact measurements. Table 5.1 shows the reconstructed parameter p lying well
within the prescribed global tolerance with comparable errors.
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Figure 5.4: Log-histogram of ei/ ̃ei for value-based GPR (blue) and GEGPR (orange) surrogates.
Table 5.1: Reconstruction result p using the surrogate model for ΔW = 104 to be compared with the true
parameter p∗.

p1 |p1 − p∗1 | p2 |p2 − p∗2 |
value 0.9968 0.0032 1.496 0.0047
value+gradient 0.9978 0.0022 1.502 0.0023

4.2 FEM example

Scatterometry is a more complex problem from optical metrology [12, 28, 9]. The aim
is to identify geometric parameters in a nano-structured diffraction pattern from the
intensity of reflected monochromatic light of different polarizations and incidence an-
gles ϕ, θ; see Figure 5.5 and [37]. A forward model y(p) was developed using JCMsuite1

as a solver for the governing Maxwell’s equations. The model is parametrized by the
geometry of the line grid sample; see Figure 5.5 and Table 5.2.

The numerical model maps model parameters p = [cd, t, rtop, rbot] ∈ 𝒳 ⊂ ℝ4 to
m = 4 zero’th-order scattering intensities y(p) ∈ ℝ4, given by incrementing θ from 5° to
11° in steps of 2°, utilizing P-polarized light with an angle of incidence ϕ = 0°.

At the beginning, 𝒳 is covered with 27 = 128 points from a Sobol sequence. Accord-
ing to the known measurement uncertainty, we set Σl = 10

−2 diag(8.57, 8.56, 8.60, 8.63)
and ask for E(𝒟) ≤ TOL = 10−3.
1 https://www.jcmwave.com/jcmsuite
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Figure 5.5: Left: Scatterometry setup used for the characterization of periodic nanostructures on surfaces.
The incident light is varied at angles θ and ϕ and the diffraction patterns are recorded. Right: Geometry
parametrized in terms of radii rtop and rbot, height of the grating, side wall angle (swa), critical dimension
(cd), and oxide layer thickness (t).

Table 5.2: The parameter domain𝒳 for the scatterometry problem.

Parameter cd t rtop rbot h swa

range [24, 28] nm [4, 6] nm [8, 10] nm [3, 7] nm 48.3 nm 87.98°

Convergence
In Figure 5.6, we plot the estimated global error against the computational work. On the
left, we a GPR design (dashed) with a GEGPR design (solid) for the same incremental
budget ΔW . As in the analytical example, including gradient information, improves the
efficiency at the cost of a nonmonotone convergence behavior. The improved efficiency
is consistent, though quantitatively highly varying, over a wide range of incremental

Figure 5.6: Estimated global error E(𝒟) versus computational work. Left: E(𝒟) for the same incremental
work ΔW = ΔWg. The subscript g indicates a gradient enhanced surrogate model. Right: Two different fixed
evaluation accuracies within a position-adaptive algorithm compared to a fully adaptive gradient-enhanced
design for ΔWg = 103.
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Table 5.3: Observed performance improvement factorW/Wg due to including gradient information in the
adaptive design selection for different incremental budgets.

ΔW 103 104 105 106

W/Wg 10 500 10 50

work budgets, as shown in Table 5.3. Note that the performance gain factor 500 for ΔW =
104 is a lucky outlier and suggests that the actual performance gain is subject to high
variance.

In Figure 5.6 right, we compare the presented approach with position-adaptive de-
signs using fixed-finite element grids. The coarse grid has a maximum edge length of
hc = 16 nm, the fine grid has a maximum edge length of hf = 1 nm, corresponding to FE
discretization errors ϵc = 10

−2 and ϵf = 10−4, respectively. When commencing with the
coarse grid, the error reduction in the curve is initially gradual. However, it significantly
accelerates beyond a certain threshold, identified asW ≈ 3 ⋅ 107. Interestingly, beyond
this threshold, the presence of pronounced oscillations becomes evident, causing the
error to temporarily plateau between W = 2 ⋅ 108 and W = 4 ⋅ 108. Subsequently, the
curve resumes its descent and eventually achieves the desired tolerance level around
W ≈ 2 ⋅109. Notably, during the analysis, it was observed that within the aforementioned
oscillation range, the hyperparameter optimization for a specific parameter component
failed to yield satisfactory results. As a result, it was necessary to set this parameter to
a default value of L = 1, providing a plausible explanation for the observed behavior.

Surprisingly, we encountered difficulties in achieving convergence for the fine
grid. Despite an initial rapid decrease in error, the curve exhibited pronounced oscilla-
tions across various settings, necessitating the termination of the procedure. Additional
tests involving different constant hyperparameters and varied hyperparameter bounds
within the optimization failed to yield any improvements. Consequently, further re-
search is required to comprehensively elucidate and resolve this issue.

Thus, in the direct comparison between fully adaptive and semiadaptive algorithm,
we can see that we can save computational work by a factor of ≈ 100.

Reliability of local error estimator
As before, we employ 74 = 2401 parameter points to generate the estimated local errors
ei and the expected true errors ẽi with and without gradient information. A FE simula-
tion on afine gridwithmaximumedge length of 1 nm is used as the exact forwardmodel.
In contrast to the analytical example, the GPR and GEGPR surrogates differ slightly, with
GPR consistently overestimating the true errors; see Figure 5.7. This suggests that the
GPR model should provide smaller actual errors than aimed at. Again, the GEGPR er-
ror estimator is not strictly reliable, but apparently sufficiently robust for steering the
adaptive design selection process.
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Figure 5.7: Log-histogram of ei ⋅ ̃e−1i . The blue histogram was generated for the regular model, while the
orange histogram was generated for the gradient-enhanced model.

Parameter reconstruction
We perform an exemplary parameter reconstruction with true parameters ptrue =
(26.0, 5.0, 10.5, 5.0)nm and simulated measurements with artificial measurement noise
of size 10−3. The parameters are recovered within the imposed tolerance, as shown in
Table 5.4.

Table 5.4: Reconstruction results for the scatterometry problem.

Parameter pCD |ΔpCD| pt |Δpt | ptop |Δptop| pbot |Δpbot|

value 26.001 1.000E-3 4.992 0.878E-3 10.502 2.00E-3 4.991 9.20E-3
value+gradient 25.999 0.983E-4 4.999 0.812E-4 10.499 0.87E-4 4.999 1.54E-4

5 Conclusion
The joint adaptive selection of evaluation positions and evaluation tolerances with a
greedy heuristic improves the efficiency of building a GPR surrogate from finite ele-
ment simulation significantly. Including gradient information enhances this further if
derivatives can be computed cheaply. In numerical experiments, improvement factors
between 100 and 1000 have been observed compared to methods relying on only select-
ing evaluation positions. While the error estimator based on the GPR variance is not
strictly reliable, it appears to be sufficiently well suited for steering the adaptive design
selection.



76 � P. Semler and M. Weiser

Several open questions remain, and need to be addressed in the future, such as
the higher sensitivity of gradient-enhanced surrogate models to hyperparameter opti-
mization, leading to less desirable nonmonotone convergence. One limitation of the ap-
proach is the assumption of normally and independently distributed evaluation errors
with vanishing mean, which is quite obviously not realistic. The use of non-Gaussian
stochastic process regression as well as biased evaluation errors correlated in parame-
ter space are therefore of high interest. Moreover, besides real-time parameter identifi-
cation, surrogate models are also used in sampling posterior distributions with Markov
chain Monte Carlo methods. Here, a different notion of error and a different organiza-
tion of forward model evaluation are necessary [33].
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these problems is generally difficult for numerical methods. Multiscale methods have
been developed to make numerical simulations of such problems feasible; examples
are the multiscale finite element [12], homogeneous multiscale [9], generalized finite el-
ement [4], or variational multiscale [16] methods.

In recent years, inspired by the early work by Lagaris et al. [17], machine learning-
based techniques for the solution of partial differential equations (PDEs) have been
developed. In this paper, we focus on physics-informed neural networks (PINNs) [25];
other methods, such as the Deep Ritz method [10], have been developed around the
same time. Those methods have many potential advantages: they are easy to imple-
ment, allow for direct integration of data, and can be employed to solve inverse and
high-dimensional problems. However, their convergence properties are not yet well un-
derstood, and hence the resulting accuracy is often limited. This can be partly accounted
to the spectral bias of neural networks (NNs) [24], meaning that NNs tend to learn low
frequency components of functions much faster than high frequency components. In
multiscale problems, the high frequency components typically correspond to the fine
scales, whereas the low frequency components correspond to the coarse scales. There-
fore, multiscale problems are also particularly challenging to solve using PINNs.

In this paper, we aim to combine two techniques that have recently been developed
to improve the training of PINNs in this context. On the one hand, we consider themulti-
fidelity training approach introduced for PINNs [21] and extended to Deep Operator Net-
works (DeepONets, [18]) in [14, 19, 6]. In particular, we consider the approach of stacked
PINNs [13] in which multiple networks are stacked on top of each other, such that mod-
els on top of the stack may learn those features that are not captured by the previous
models. On the other hand, we employ multilevel Schwarz domain decomposition neu-
ral network architectures [8], which are based on the finite-basis PINNs (FBPINNs) [22]
approach. In this approach, the learning of multiscale features is improved by local-
ization. In particular, the network architecture is decomposed, such that the individual
parts of the network learn features on the corresponding spatial or temporal scale. For
an overview on the combination of domain decomposition approaches and machine
learning see, for instance, [11].

In related recent works, methods for iteratively training PINNs to progressively
reduce the errors have been developed; see [1, 2, 3, 31]. These approaches, which vary in
their implementation details, train each new network to reduce the residual from the
previous network. In contrast, the work presented here trains for the entire solution at
each iteration.

This paper is structured as follows: First, in Section 2, we describe the methodologi-
cal framework. In particular, we first discuss PINNs in Section 2.1, then we describemul-
tifidelity stacking PINNs in Section 2.2, as well as the domain decomposition approach
in Section 2.3. Next, we introduce the specific domain decomposition in time employed
in themodel problems in Section 3. In Section 4, we present numerical results for several
model problems, a pendulum, and a two-frequency problem as well as the Allen–Cahn
equation. We extend the results to DeepONets in Section 5. We conclude with a brief
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discussion of the current and future work in Section 6. All training parameters used to
generate the results are given in Table 6.1.

2 Methodology

2.1 Physics-informed neural networks

Weconsider a generic differential equation-based problem in residual form: Find u such
that

𝒜u = 0 in Ω,
ℬu = 0 on 𝜕Ω,

(6.1)

where𝒜 is a differential operator and ℬ an operator for specifying the initial or bound-
ary conditions. The solution u is defined on the domain Ω and should have sufficient
regularity to apply 𝒜 and ℬ. In order to solve Eq. (6.1), we follow [17] and employ a
collocation approach. In particular, we exploit that solving Eq. (6.1) is equivalent to solv-
ing argminℬu=0 on 𝜕Ω ∫Ω(𝒜u(x))2 dx. We discretize the solution using a neural network
û(x, θ), with parameters θ, and the integral is approximated by the sum

argmin
ℬû(x,θ)=0 on 𝜕Ω ∑xi∈Ω(𝒜û(xi, θ))2,

where the collocation points xi are sampled from Ω. Different types of neural network
architectures may be employed, and we will employ a combination of the approaches
explained in Sections 2.2 and 2.3.

The initial or boundary conditions in the second equation of Eq. (6.1) can be en-
forced via hard or soft constraints. In the approach of hard constraints, they are explic-
itly implemented in the neural network function; cf. [17]. In this paper, we employ the
approach of soft constraints instead, in which we incorporate the constraints into the
loss function:

argmin
θ

λr ∑
xi∈Ω(𝒜û(xi, θ))2 + λbc ∑xi∈𝜕Ω(ℬû(xi, θ))2 (6.2)

Here, λr and λbc weight the residual of the differential equation and the initial and
boundary conditions in the loss function, respectively. As discussed, for instance in [28],
an appropriate weighting is crucial for the convergence in optimizing Eq. (6.2) using a
gradient-based optimization method. θ denotes all the trainable parameters in the net-
work.

This approach has also been denoted as physics-informed neural networks (PINNs)
in [25].
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2.2 Multifidelity stacking PINNs

Multifidelity PINNs use two NNs to learn the correlation between low- and high-fidelity
physics [21]. The goal is to train a linear network (with no activation function) to learn
the linear correlation between the low- and high-fidelity models, and a nonlinear net-
work to learn the nonlinear correlation. By training a linear network, the resulting
model is more expressive than just assuming that the correlation between the models
is the identity. Moreover, under the assumption that the main part of the correlation is
linear, separating the network into the linear and nonlinear parts allows for a smaller
nonlinear network.

To train amultifidelity PINN,wefirst train a standard single fidelity PINN ûSF(x, θSF).
In a second step, we then train a multifidelity network ûMF, which consists of linear
and nonlinear subnetworks that learn the correlation between the single fidelity PINN
ûSF(x, θSF) and the solution:

ûMF(x, θMF) = (1 − |α|)ûMFlinear(x, û
SF, θMF) + |α|ûMFnonlinear(x, û

SF, θMF). (6.3)

The linear network does not have activation functions to force learning a linear correla-
tion, and can be very small. α is a trainable parameter to enforce maximizing the linear
correlation.

The loss function in Eq. (6.2) is modified to include the penalty α4:

argmin
θ

λr ∑
xi∈Ω(𝒜û(xi, θ))2 + λbc ∑xi∈𝜕Ω(ℬû(xi, θ))2 + λαα4 (6.4)

In multifidelity stacking PINNs as presented in [13], multifidelity PINNs are trained
recursively, each taking the output of the previously trained stacking layer as input. In
this way, the previous layer serves as the low-fidelity model for the new stacking layer.
The difference between [13] and the current work is that [13] does not consider domain
decomposition, so each stacking layer has a singlemultifidelity PINN covering the entire
domain. The approach considered here ismore flexible, and aswewill show in Section 4,
results in smaller relative errors when trained on the same equations.

2.3 Domain decomposition-based neural network architectures

It has been observed in [22] that the high frequency components in the solution can be
learned better if a domain decomposition is introduced into the PINN approach. To scale
to larger numbers of subdomains, this approach has first been extended to two-levels
in [7] and then to an arbitrary number of levels in [8]. The general idea of the domain
decomposition-based finite basis PINNs (FBPINNs) is to decompose the computational
domain Ω into J overlapping subdomains Ωj , Ω = ⋃

J
j=1 Ωj . As before, Ω may be a space-

time domain, and in this work we will focus on domain decomposition in time. On each
subdomain, we define a space of network functions 𝒱j = {ûj(x, θj) | x ∈ Ωj , θj ∈ Θj},
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Figure 6.1:Multilevel overlapping domain decomposition of Ω with L = 3 levels.
where ûj(x, θj) denotes a PINN model, Θj = ℝ

kj is the space of all trainable neural net-
work parameters, and kj is the number of network parameters.

In order to represent the global solution of a given problem, we define window
functions ωj with supp(ωj) ⊂ Ωj such that {ωj}

J
j=1 form a partition of unity, that is,

∑Jj=1 ωj = 1 on Ω. Then we can define a global neural network space 𝒱 = ∑
J
j=1 ωj𝒱j , and

the global FBPINN function reads û(x, θ) = ∑Jj=1 ωjûj(x, θj). It has been observed that
this approach may significantly improve the performance of PINNs; cf. [22]. However,
similar to classical domain decomposition methods [27], the one-level approach is not
scalable to large numbers of subdomains; see [7, 8].

To improve the scalability and the performance for multiscale problems, a hierar-
chy of domain decompositions may be employed. Define L levels of domain decomposi-
tions, with the overlapping domain decomposition at level l denoted by D(l) = {Ω(l)j }J (l)j=1,
where Ω = ⋃J

(l)

j=1 Ω(l)j and J (l) is the number of subdomains at level l; cf. Figure 6.1. Even
though there is generally no restriction on the overlapping domain decompositions, we
choose J (1) = 1, so the first level corresponds to a single global subdomain, and J (l) < J (l+1)
for all l = 1, . . . , L.

Now, on each level l we define window functions ω(l)j to be a partition of unity, so

∑J
(l)

j=1 ω(l)j = 1, and supp(ω(l)j ) ⊂ Ω(l)j . Similar to the one-level case, this yields the global
neural network space 𝒱 = ∑Ll=1∑J (l)j=1 ω(l)j 𝒱(l)j and the global network function defined in

terms of θ = ⋃Ll=1 θ(l) and θ(l) = ⋃J (l)j=1 θ(l)j :

û(x, θ) = 1
L

L
∑
l=1 û(l)(x, θ(l)) with û(l)(x, θ(l)) = J (l)∑

j=1ω(l)j û(l)j (x, θ(l)j ). (6.5)

It has been observed in [7, 8] that due to increased communication between the sub-
domain models, the multilevel FBPINN approach may significantly improve the perfor-
mance over the one-level approach.

2.4 Stacking FBPINNs

We combine the multifidelity stacking PINNs and the FBPINNs as follows: In the first
level, we train a standard single fidelity PINN across the full domain Ω(0) = Ω. Then, for
each level l > 0, we use a FBPINN network architecture modified to consist of multifi-
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delity networks that takes as input the network from the previous level l − 1:

û(l)(x, θ(l)) = J (l)∑
j=1ω(l)j û(l)j,MF(x, û(l−1), θ(l)j ). (6.6)

We note that Eq. (6.6) differs from Eq. (6.5) by a factor of 1/L, because the output of
FBPINNs is the sum of the networks trained at all levels, while the output of stacking
FBPINNs is the sum of the networks for the final level. The networks at level l learn the
correlation between the output of the l − 1 level and the solution, and take as input the
previously learned solution û(l−1)(x, θ(l−1)):

û(l)j,MF(x, θ(l)j ) = (1 − |α|)û(l)j,lin(x, û(l−1), θ(l)j ) + |α|û(l)j,nonlin(x, û(l−1), θ(l)j ).
3 Domain decomposition in time

In this work, we are particularly interested in cases where classical PINNs fail to learn
the temporal evolution, such as a damped pendulum and the Allen–Cahn equation. We
consider a domain Ω = X× [0, T]where X denotes the spatial domain and T ∈ ℝ. There-
fore, for the stacking FBPINN approach, we consider the domain decomposition in time:

Ω(l)j = [ (j − 1)T − δT/2J (l) − 1 ,
(j − 1)T + δT/2

J (l) − 1 ],

where δ > 1 is the overlap ratio. For l = 0, we take Ω(0)1 = [0.5T − δT/2, 0.5T + δT/2]. The
partition of unity functions are given by ω(l)j = ω̂(l)j

∑J
(l)
j=1 ω̂
(l)
j

, where

ω̂(l)j (t) = {1 l = 0,
[1 + cos(π(t − μ(l)j )/σ(l)j )]2 l > 0,

(6.7)

μ(l)j = T(j − 1)/(J (l) − 1), and σ(l)j = (δT/2)/(J (l) − 1). For simplicity, we take J (l) = 2l in each
case. An illustration of the window functions for T = 1 and l = 2 (J (2) = 4) is given in
Figure 6.2.

Figure 6.2:Window functions ωj for l = 2 and T = 1.
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As set up, each network only covers a small part of the time domain. To ease train-
ing, we scale the input in each domain to be in the range [−1, 1] by using a scaled time ̂t =
t(l−1)/T−j as the input to network j. This scaling improves the robustness of the training.

In our applications, we calculate the relative ℓ2 error
‖u(x)−û(x,θ)‖2‖u(x)‖2 where u denotes

the exact solution and û denotes the output from the multifidelity FBPINN.

4 Results
4.1 Pendulum
While a relatively simple system, accurately training a PINN to predict the movement
of a pendulum for long times presents challenges [29]. The pendulummovement is gov-
erned by a system of two first-order ODEs for t ∈ [0, T],

ds1
dt
= s2, (6.8)

ds2
dt
= −

b
m
s2 −

g
L
sin(s1), (6.9)

where s1 and s2 are the position and velocity of the pendulum, respectively. We employ
the same parameters used in [29], that is, m = L = 1, b = 0.05, g = 9.81, and T = 20. We
take s1(0) = s2(0) = 1.We compare the results with those for the stacking PINN from [13],
which uses the same multifidelity architecture but only a single PINN on each level. As
shown in Figure 6.3, the stacking FBPINN is able to reach a significantly lower relative
ℓ2 error. In addition, each network in the stacking FBPINN is significantly smaller than
the networks used in the stacking PINN with the result that, at three stacking layers,
the stacking FBPINN reaches a relative ℓ2 error of 7.4 ⋅ 10

−3 with only 34 570 trainable
parameters. In comparison, the best case stacking PINN from [13] requires four stacking
levels to reach a relative ℓ2 error of 1.3 ⋅ 10

−2 with 63 018 trainable parameters.

Figure 6.3: Stacking FBPINN results for the pendulum problem: Left: Stacking FBPINN results for an il-
lustrative example of s1 (top) and s2 (bottom) as a function of time for the pendulum problem up to five
stacking FBPINN levels. Right: Pendulum relative ℓ2 training errors comparing the work in the current
paper (solid line) with the approach from [13] (dashed lines).
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4.2 Multiscale problem
We now consider a toy model problem with a low and high frequency component, in-
spired by [22]:

ds
dx
= ω1 cos(ω1x) + ω2 cos(ω2x),

s(0) = 0,

on domain Ω = [0, 20] with ω1 = 1 and ω2 = 15. The exact solution for this problem is
s(x) = sin(ω1x) + sin(ω2x).

The results are shown in Figure 6.4. After two stacking levels, the stacking FBPINN
reaches a relative ℓ2 error of 4.2 ⋅ 10

−3, with 7 822 trainable parameters. A comparable
relative ℓ2 error of 6.1 ⋅ 10

−3 is reached after 10 stacking levels with a stacking PINNwith
11 179 trainable parameters. Also shown in Figure 6.4 (right) is the best case SF network
from [13], which has a relative ℓ2 error of 9.5 ⋅ 10

−2 with 16 833 trainable parameters.
The stacking FBPINN outperforms the SF PINN with an error more than an order of
magnitude lower, with less than half the trainable parameters. Additionally, the final
stacking FBPINN reaches a relative ℓ2 error of 8.3 ⋅ 10

−4, an order of magnitude lower
than the final stacking PINN.

Figure 6.4: Stacking FBPINN results for the multiscale problem: Left: Stacking FBPINN results for the sin-
gle fidelity level 0 and the first four stacking FBPINN levels. Right:Multiscale relative ℓ2 training errors
comparing the work in the current paper with [13].

4.3 Allen–Cahn equation
Our third example is based on the Allen–Cahn equation and is given by

st − 0.0001sxx + 5s
3 − 5s = 0, t ∈ (0, 1], x ∈ [−1, 1],

s(x, 0) = x2 cos(πx), x ∈ [−1, 1],
s(x, t) = s(−x, t), t ∈ [0, 1], x = −1, x = 1,
sx(x, t) = sx(−x, t), t ∈ [0, 1], x = −1, x = 1.

The Allen–Cahn equation presents difficulties for PINNs when attempting to learn the
full solution from t = 0 to 1 with a single PINN; see, for example, [32, 20, 26].
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Figure 6.5: Stacking FBPINN results for the Allen–Cahn equation. Left: Stacking FBPINN results for the
single fidelity level 0 and the first two stacking FBPINN levels. Right: Line plots of the results from the
stacking FBPINN at t = 0.25 (top) and t = 0.75 (bottom).
We solve the Allen–Cahn equation by dividing the time domain into subdomains, as
presented in Section 3. The corresponding results for the stacking FBPINN are shown in
Figure 6.5. The relative ℓ2 error for applying two levels of the stacking FBPINN is 5.9⋅10

−3.
Previously reported values for the relative error in literature include 1.68 ⋅ 10−2 for the
backward compatible PINN [20] and 2.33 ⋅ 10−2 for PINNs with adaptive resampling [32].
5 Extension to DeepONets
The method presented in Section 2 can be extended seamlessly to multifidelity stack-
ing DeepONets from [14, 13]; we denote the resulting method as finite-basis DeepONets
(FB-DONs). For the sake of brevity, we refer to [18, 14, 13] for details on the DeepONet
approach. As an example, we present results for the pendulum problem in Section 4.1
and train a model mapping given initial conditions (s1(0), s2(0)) to the corresponding
solution (s1(t), s2(t)) on the whole time interval [0, 20]. This is referred to as operator
learning since we learn amapping between the initial conditions and the solution space
instead of a single solution. One each level l, l > 0, we train 2l DeepONets with partition
of unity functions as defined in Eq. (6.7). As training data, we employ 50 000 randomly
chosen pairs (s1(0), s2(0)) ∈ [−2, 2] × [−1.2, 1.2], and the loss is given by Eq. (6.2) and the
differential equations in Eqs. (6.8) and (6.9). After training, the resulting FB-DON model
is then able to predict the solution for any initial condition in the training range, as
shown in Figure 6.6. Training parameters are given in Table 6.2.

6 Discussion
In this paper, we have introduced the stacking FBPINN and FB-DON approaches. For
the considered time-dependent problems, stacking FBPINNs yielded more accurate re-
sults than stacking PINNs alone, and in some cases, they additionally required fewer
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Figure 6.6: Stacking FB-DON results for the pendulum system at two different sets of initial conditions.

total trainable parameters. This indicates that a domain decomposition in time can
greatly improve the performance of stacking PINNs. In contrast to prior work on stack-
ing PINNs and DeepONets, stacking FBPINNs and FB-DONs use a sum of subdomain
networks weighted by the partition of unity functions on the corresponding level. In
contrast to multilevel FBPINNS in [8], in which the subdomain networks are summed
across all levels and trained simultaneously, the architecture and training of stacking
FBPINNs and FB-DONs is sequential with respect to the levels; the idea is similar to mul-
tiplicative coupling as discussed in [7] but implemented differently using the stacking
approach. This difference allows for stacking FBPINNs and FB-DONs to consider differ-
ent equations on different levels, akin to simulated annealing, as considered in [13], or
to consider different physical models at different length scales. We leave this for future
work. The extension to stacking FB-DONs allows for use of physics-informed FB-DONs
as surrogate models in place of traditional numerical solvers. The computation of a
solution using a trained stacking FB-DONs is very efficient: it requires only one forward
pass of the networks and, therefore, the computational time compared with classical
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numerical solvers can be greatly reduced. One advantage of the FB-DON approach is
that it can be used in conjunction with existing methods for increasing accuracy of
physics-informed DeepONets, including long-time integration [29] and adaptive weight-
ing schemes [30, 15, 23].

7 Training parameters
Table 6.1: Training parameters for the FBPINN results in the paper. The learning rate is set using the
exponential_decay function in Jax [5] with the given learning rate and decay rate and 2 000 decay steps.
The training parameters used for the stacking PINN results are given in [13].

Section 4.1 Section 4.2 Section 4.3

Level 0 learning rate & decay rate 5 ⋅ 10−3, 0.99 10−3, 0.99 10−4, 0.99
Level 0 network width 100 32 100
Level 0 network layers 3 3 6
Level 0 iterations 200 000 200 000 200 000
Nonlinear network width 32 16 200
Nonlinear network layers 3 4 4
Linear network size [2, 4, 2] [1, 5, 1] [1, 5, 1]
MF learning rate & decay rate 5 ⋅ 10−3, 0.99 5 ⋅ 10−3, 0.95 5 ⋅ 10−3, 0.95
BC batch size 1 1 128
Residual batch size 400 400 1024
Iterations 200 000 300 000 300 000
λr , λbc , λα 1.0, 1.0, 1.0 10.0, 1.0, 1.0 10.0, 1.0, 10−5
Level 0 activation function swish swish tanh
MF activation function swish swish swish

Table 6.2: Training parameters for the FBDeepONet results in the paper. The learning rate is set using the
exponential_decay function in Jax [5] with the given learning rate and decay rate and 2 000 decay steps.

Section 5

Level 0 learning rate & decay rate 5 ⋅ 10−3, 0.9
Level 0 branch and trunk width 100
Level 0 branch and trunk layers 5
Level 0 iterations 100 000
Nonlinear branch and trunk width 100
Nonlinear branch and trunk layers 3
Linear branch and trunk width 10
Linear branch and trunk layers 1
MF learning rate & decay rate 5 ⋅ 10−3, 0.9
BC batch size 1 000
Residual batch size 10 000
Iterations 200 000
λr , λbc , λα 1.0, 1.0, 1.0
Level 0 activation function sin
MF activation function sin
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Constrained piecewise linear optimization by
an active signature method

Abstract: In this paper, we consider the solution of optimization tasks with a piecewise
linear objective function and piecewise linear constraints.Wepropose the so-called Con-
strained Active SignatureMethod (CASM) that explicitly exploits the given piecewise lin-
ear structure. Finite convergence of the algorithm is proven. Numerical results for three
test cases including linear complementarity constraints illustrate the performance of
CASM.
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1 Introduction and definitions

Motivated by numerous applications, there has been a growing interest in optimization
problems that lack differentiability. One important class of such problems is given by
piecewise linear functions, where corresponding optimization tasks arise, for example,
as local models [16] or in the training of deep neural networks with the Rectified Linear
Unit (ReLU) as the activation function [20].

So far, there is only a limited number of algorithms to solve constrained nonsmooth
optimization problems available. Possible approaches comprise, for example, quasi-
Newton methods [4] and bundle methods [17]. They all have in common that they do
not exploit the structure that is available in the nonsmooth setting. For unconstrained
optimization problems with piecewise linear (PL) objective functions, the so-called Ac-
tive Signature Method (ASM) for determining local minima has been proposed in [8].

Acknowledgement: The authors thank the DFG for support within project B10 in the TRR 154 Mathematical
Modelling, Simulation and Optimization using the Example of Gas Networks (project ID: 239904186). The research
was funded partly by the DFG under Germany’s Excellence Strategy—The Berlin Mathematics Research Cen-
ter MATH+ (EXC-2046/1, project ID:390685689).
The authors appreciate the constructive feedback of the reviewers. In addition, the authors would like to ex-
press their sincere thanks to Marc Steinbach for his detailed feedback on this optimization approach.
The data that support the findings of this study are available from the corresponding author upon request.
Conflicts of Interest: The authors declare no conflict of interest.

Timo Kreimeier, Andrea Walther, Andreas Griewank, Humboldt-Universität zu Berlin, 6 Unter den
Linden, 10099 Berlin, Germany, e-mail: andrea.walther@math.hu-berlin.de

Open Access. © 2025 the author(s), published by Walter de Gruyter GmbH, Berlin/Boston. This work is
licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783111376776-007



94 � T. Kreimeier et al.

This approach explicitly builds on the nonsmooth structure yielding optimality condi-
tions that can be verified in polynomial time. In [11], the general setting of nonlinear,
so-called abs-smooth constrained optimization problems was considered and optimal-
ity conditions that can be also verified in polynomial time were given. However, no
solution algorithm was proposed.

In this paper, an extension of ASMwill be presented, which, in addition to the PL ob-
jective function, also takes PL (in)equality constraints into account. It exploits explicitly
the nonsmooth structure of the optimization problem such that it can guarantee that a
local minimizer is reached by the algorithm. Using the reformulations

max(x1, x2) =
1
2
(x1 + x2 + |x1 − x2|) and

min(x1, x2) =
1
2
(x1 + x2 − |x1 − x2|)

aswell as [19, Prop. 2.2.2], it follows that every continuous PL function canbe represented
in an abs-linear form as introduced for the first time in [6].

Definition 7.1. A continuous PL function f :ℝn → ℝ is in abs-linear form if y = f (x) is
given by

y = d + a⊤x + b⊤z, (7.1a)

z = c + Zx +Mz + L|z|, (7.1b)

with the switching vector z ∈ ℝs containing the switching variables, and constantsd ∈ ℝ,
a ∈ ℝn, b, c ∈ ℝs, Z ∈ ℝs×n, L,M ∈ ℝs×s, where L and M are strictly lower triangular.
Equation (7.1b) is called a switching system. The signature vector is defined as σ(x) =
(sgn(z1(x)), . . . , sgn(zs(x))) ∈ {−1, 0, 1}

s and the signature matrix as Σ(x) = diag(σ(x)).

Here and throughout, |z| denotes the componentwise modulus of a vector z. With-
out loss of generality, we can set d = 0. In contrast to previous publications, for example,
[8], a slightly different abs-linear form is defined to cover more general formulations of
the target function and to unify the formulation of the constraints considered in this pa-
per. Frequently, fixed signature vectors σ ∈ {−1, 0, 1} and corresponding fixed signature
matrices Σ = diag σ are considered that do not depend of x. Therefore, the dependence
on x is explicitly stated if there is one.

It is possible to decompose the ℝn into polyhedra as follows (cf. [9]): For a fixed
σ ∈ {−1, 0, 1}s and the resulting signature matrix Σ = diag(σ), we define the signature
domain

𝒫σ := {x ∈ ℝ
n | sgn(z(x)) = σ} ⊂ 𝒫σ := {x ∈ ℝ

n | Σz(x) = 󵄨󵄨󵄨󵄨z(x)
󵄨󵄨󵄨󵄨},

where 𝒫σ is called extended signature domain. The sets 𝒫σ are given as inverse images
of σ representing a disjoint decomposition of ℝn into relatively open polyhedra. The
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boundaries of the polyhedra 𝒫σ are usually the sets where the PL function f is nons-
mooth.Motivated by the graphical representation in lowdimensions, these sets of points
are called kinks.

The optimization problem for which we will present and analyze a solution algo-
rithm, that is, the constrained abs-linear optimization problem (CALOP), has the struc-
ture

min
x∈ℝn ,z∈ℝs a⊤x + b⊤z such that

0 = g + Ax + Bz + C|z|, (CALOP)
0 ≥ h + Dx + Ez + F|z|,
z = c + Zx +Mz + L|z|,

where g ∈ ℝm, h ∈ ℝp, A ∈ ℝm×n, B, C ∈ ℝm×s, D ∈ ℝp×n, and E, F ∈ ℝp×s. As can be seen,
we assume that the objective function combined with the switching system in the last
constraint is in abs-linear form; cf. Equation (7.1). For later use, we define H :ℝn → ℝp,
(x, z, |z|) 󳨃→ h + Dx + Ez + F|z|.

It is important to note that for the application of the algorithm proposed in this
paper the user does not have to state the function evaluation in the form (CALOP), since
correspondingly adapted AD tools like ADOL-C [7] can generate this representation from
a given code segment evaluating the piecewise target function and the piecewise linear
(in)equality constraints.

The remainder of the paper is organized as follows: In Section 2, theASM is extended
to cover also PL constrained optimization problems of the form (CALOP) as one main
contribution of the paper. This includes also a statement on finite convergence for the
new algorithm. Numerical results for different test problems are presented in Section 3.
Finally, the paper concludes with a summary and an outlook in Section 4.

2 The constrained active signature method

In this section, we extend the ASM proposed in [8] to problems of the form (CALOP).
Due to the additional equality and inequality constraints, the set of feasible points could
be empty. Throughout, we assume that this is not the case such that the iteration can
start with a feasible point. Subsequently, feasibility is maintained, that is, the derived
algorithm is a feasible point method. If no feasible starting point is given from the appli-
cation context, one can calculate such a starting point with a Phase-I-likemethod known
from linear optimization (cf. [18, Chapter 16]).
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2.1 The algorithm

Within an iteration, first a search direction is calculated as described in the following
first paragraph. Then a step size is calculated as explained in the second paragraph. The
third paragraph discusses the optimality condition. Based on these three main compo-
nents, the entire algorithm is stated in the last paragraph of this subsection.

Computing a descent direction
Tofind a localminimum, the basic idea is to optimize a penalized version of the objective
function on the polyhedra as defined by the signature vectors switching from one poly-
hedron to the next in an appropriate way. For this purpose, we add a quadratic penalty
term with a positive definite matrix Q = Q⊤ ∈ ℝn×n to the target function ensuring that
there exists a minimizer on each polyhedron. Fixing one signature vector σ ∈ {−1, 0, 1}s,
we obtain from (CALOP) the restricted optimization problem

min
x∈ℝn ,z∈ℝsa⊤x + b⊤|Σ|z + 12x⊤Qx such that (7.2a)

0 = g + Ax + +B|Σ|z + CΣz, (7.2b)
0 ≥ h + Dx + E|Σ|z + FΣz, (7.2c)
0 = |Σ|z − ̃c − Z̃x, (7.2d)
0 ≤ Σz, (7.2e)

with Z̃ = (Is −M − LΣ)
−1Z and ̃c = (Is −M − LΣ)−1c. Here, a fixed Q allows to apply CASM

also for a broader range of problems. For example, when considering LASSO problems,
the quadratic part of the LASSO problem can be coded using the matrix Q. For the un-
constrained case, this approach was considered in [8]. Due to the fixed-signature vec-
tor, this optimization problem is smooth with a quadratic objective function and linear
constraints. Applying standard KKT theory with Lagrange multipliers δ ∈ ℝm, ν ∈ ℝp,
λ ∈ ℝs, and μ ∈ ℝs, we obtain the following necessary optimality conditions:

0 = a⊤ + x⊤Q + δ⊤A + ν⊤D − λ⊤Z̃, (7.3a)
0 = b⊤|Σ| + δ⊤(B|Σ| + CΣ) + ν⊤(E|Σ| + FΣ) + λ⊤|Σ| − μ⊤Σ, (7.3b)
0 = g + Ax + B|Σ|z + CΣz, (7.3c)
0 ≥ h + Dx + E|Σ|z + FΣz, (7.3d)
0 = |Σ|z − ̃c − Z̃x, (7.3e)
0 ≤ Σz, 0 ≤ μ, 0 = μ⊤Σz, (7.3f)
0 ≤ ν, 0 = ν⊤(h + Dx + E|Σ|z + FΣz). (7.3g)

The optimization problem (7.2) could be solved using a standard QP method. However,
we want to exploit the structure provided by the signature vector as an additional fea-
ture. Thus,multiplying Equation (7.3b) by Σ from the right and using Equation (7.3f) yield
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0 ≤ μ⊤|Σ| = b⊤Σ + δ⊤(BΣ + C|Σ|) + ν⊤(EΣ + F|Σ|) + λ⊤Σ. (7.4)

Due to the complementarity condition μ⊤Σz = 0, this inequalitymust hold as an equality.
Hence, it follows that

−b⊤Σ = δ⊤(BΣ + C|Σ|) + ν⊤(EΣ + F|Σ|) + λ⊤Σ.
Thus, with ω = sgn(H(x, |z|)) and Ω = diag(ω) denoting the projection onto the inactive
inequality constraints, we get the linear system

[[[[[[

[

Q 0 −Z̃⊤ A⊤ D⊤
0 0 Σ ΣB⊤ + |Σ|C⊤ ΣE⊤ + |Σ|F⊤
Z̃ −|Σ| 0 0 0
A B|Σ| + CΣ 0 0 0
Ω̄D Ω̄(E|Σ| + FΣ) 0 0 Ω

]]]]]]

]

[[[[[[

[

x̂
ẑ
λ
δ
ν

]]]]]]

]

= −

[[[[[[

[

a
Σb
̃c
g
Ω̄

]]]]]]

]

, (7.5)

where Ω̄ = Ip − |Ω| forces the active inequalities to vanish. The matrix Ω in the right
lower corner ensures that ν is zero for the inactive inequality constraints. Due to the
assumption that a feasible starting point exists, Equation (7.5) always has a solution,
which does not necessarily have to be unique. Denoting such a solution by (x̂, ẑ, λ, δ, ν),
we define for the current iterate x and z the directions toward the next iterate as

Δx := x̂ − x and Δz := ẑ − z. (7.6)

If Δx = 0, one has Δz = 0 due to the assumed abs-linear form. For Δx = 0 and Δz = 0,
it follows from Equations (7.5) and (7.2e) that x and z satisfy the KKT conditions for the
optimization task (7.2), that is, x is optimal on the current polyhedron defined by σ a
situation denoted by feasible signature optimal.

Computing a step size β
For the solution (x̂, ẑ) of Equation (7.5), we check if σ(x̂) = σ is still valid and that the
inequality constraints of Equation (7.3) still hold to ensure feasibility. For this purpose,
we calculate two step sizes. First, we consider the step length βz from the current x in
the direction Δx to a possible kink, that is, a sign change in one component of z, given by

βz = inf
1≤l≤s{βzl = −zlẑl − zl

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(ẑl − zl)σl < 0} ∈ (0,∞]. (7.7)

If βz <∞, the first index for which the minimum is attained is denoted by jz. For βz < 1,
there exists a blocking kink. For x ∈ 𝒫σ it follows for σi ̸= 0 also that zi(x) ̸= 0. Thus, for
σ with σi ̸= 0, one has zi(x) ̸= 0. Hence, β

z > 0 must hold. Second, we consider the step
length from the current x in direction Δx to a possible blocking inequality constraint
Hl(x, z, Σz), 1 ≤ l ≤ p. This step size β

H is given by
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βH = inf
1≤l≤p{βHl = Hl

Hl − Ĥl

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(Ĥl − Hl)ωl < 0} ∈ (0,∞], (7.8)

where H = H(x, z, Σz), Ĥ = H(x̂, ẑ, Σẑ), and l denotes the lth component of H and Ĥ ,
respectively. If βH <∞, jH is set to the smallest index forwhich theminimum is attained.
For βH < 1, there exists a blocking inequality constraint, that is, the solution x̂ is not
feasible. Therefore, the new iterate x+ should be chosen such that the jH th components
ofH(x+, z+, Σz+) andω(x+) drop to zero in comparison toH(x, z, Σz) andω, respectively.
Setting ω+jH = 0 changes the optimality system (7.3) and a new solution of Equation (7.5)
has to be computed. If βH ≤ βz, thenwe have zjH ẑjH ≥ 0 and the iterate x̂ is still contained
in 𝒫σ , that is, σ(x̂) = σ is still valid. Since all inactive constraints are encoded in ω, one
must have βH > 0. The actual step size is determined as

β = min{βz, βH , 1} ∈ (0, 1], (7.9)

where the upper bound 1 on β ensures with the update x+ = (1− β)x + βx̂ = x + βΔx that
the next iterate is still feasible for the optimization task (7.2) and the current σ . As can
be seen, the case β < 1 corresponds to the activation of a kink or inequality constraint,
respectively.Wewill refer to this situation as a restriction of σ orω, respectively. If β = 1,
one has for the new iterate x+ = x̂ that σ(x+) = σ andω(x+) = ω. In this case, x+ is called
signature stationary since the two signature vectors are kept.

Checking the optimality
If x+ is signature stationary on the current polyhedron 𝒫σ , one has to check whether x

+
is aminimizer of (CALOP). If this is the case, the iteration stops. Otherwise, the optimiza-
tion continues in one of the neighboring polyhedra 𝒫σ̃ with σ̃ ≻ σ , where

σ̃ ⪰ σ ⇐⇒ σ̃jσj ≥ σ
2
j for j = 1, . . . , s.

Such a σ̃ can be decomposed into σ + γ where |σ|⊤|γ| = 0. Replacing Σ in the optimality
conditions (7.3) by the corresponding Σ+Γ and using zσ̃(x) = zσ+γ(x) = (Is− L̃Γ)−1( ̃c+ Z̃x),
most of the relations are still fulfilled by x̂, ẑ and λ. Just Equation (7.4) changes in that it
has as many new nontrivial component as γ, which can be written as

0 ≤ μ⊤|Γ| = (b⊤ + δ⊤B + ν⊤E + λ⊤)Γ + (δ⊤C + ν⊤F − λ⊤L̃)|Γ|,
where Γ = diag(γ). This condition is violated if and only if there exists at least one index
k such that γ = −sgn(bk + δ

⊤Bek + ν⊤Eek + λk)ek satisfies
0 > (δ⊤C + ν⊤F − λ⊤L̃)ek − 󵄨󵄨󵄨󵄨b⊤ + δ⊤B + ν⊤E + λ⊤󵄨󵄨󵄨󵄨ek and σk = 0, (7.10)

which represented the strongest condition. In addition, we must check whether any of
the components νl , 1 ≤ l ≤ p of the Lagrange multiplier ν associated with the inequality
constraints is negative. If ν ≥ 0 does not hold, we choose the component for which ν ≥ 0
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is most violated and drop the corresponding constraint. Hence, the associated entry of
ω is set to −1 relaxing ω. If ν ≥ 0 holds, the current iterate is feasible signature optimal.
Then we check the optimality condition given by Equation (7.10). If Equation (7.10) is
not fulfilled for at least one index k, the current point is not a minimizer of (CALOP) and
we leave a kink by relaxing σ setting the corresponding entry σk to a nonzero value via
σ+ = σ + γ.
The overall algorithm
Putting everything together, one obtainsAlgorithm7.1 consisting of three parts: The com-
putation of the search direction (cf. line 2), the determination of the step size and in case
of blocking kinks and/or inequality constraints the restriction of σ and/orω, respectively
(cf. lines 3–6) and the verification of optimality and the relaxation of kinks or constraints
if required (cf. lines 7–15). As can be seen from line 2 of Algorithm 7.1, in each iteration
of CASM one system of linear equations, (see Equation (7.5)) has to be solved. The di-
mension of this system depends on the dimensions n, s,m, and p, that is, the number of
variables, the number of kinks, as well as the number of equality and inequality con-
straints, respectively. The numerical examples in Section 3 serve as an illustration for
this complexity. Depending on the software used, properties such as the block structure
(see also [13, Lemma 4.9]) or sparsity can be exploited to reduce to overall computational
effort. In the applications considered so far, the matrices occurring in (CALOP) are usu-
ally very sparse. The complexity of the remaining steps is negligible.

Algorithm 7.1 Constrained active signature method (CASM).
Require: Optimization problem (CALOP), feasible start point x ∈ ℝn, β = 0
Set: z := z(x) via Equation (7.1), σ := σ(x) and ω := ω(x)
1: loop
2: Compute (x̂, ẑ, λ, δ, ν) by solving Equation (7.5)
3: Compute βz via Equation (7.7), βH via Equation (7.8) and β via Equation (7.9)
4: Set (x+, z+) = (1 − β)(x, z) + β(x̂, ẑ)
5: if βH = β then Restrict ω
6: if βz = β then Restrict σ
7: if β = 1 then
8: if ν ≱ 0 then
9: Relax ω, set β = 0
10: else
11: if Equation (7.10) holds true then
12: Relax σ , set β = 0
13: else
14: return (x+, z+)
15: Set (x, z) = (x+, z+)
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2.2 Convergence analysis of CASM

First, we examine the question, whether CASM yields a monotone decreasing sequence
of function values. Using standard assumptions, one can show that the solution of the
saddle point system (7.5) yields a descent direction (Δx, Δz) as defined above in Equa-
tion (7.6). Since the proof is rather technical without offering any additional benefit,
we refer here to the corresponding Lemma 4.10 in the PhD thesis of T. Kreimeier [13].
Next, we reformulate the optimization problem (7.2) in that we minimize for a given
point (x̄, z̄) just along the direction (Δx, Δz). Furthermore, we consider only equality
constraints and the active inequality constraints described by the projection Pℐ , where
ℐ = ℐ(x) collects the indices of the active inequality constraints at x. Then we obtain for

fΔ(Δx, Δz) := (a + Qx̄)
⊤Δx + b⊤|Σ|Δz + 1

2
Δx⊤QΔx

the optimization problem:

min(Δx,Δz)∈ℝn+s fΔ(Δx, Δz) such that

0 = AΔx + B|Σ|Δz + CΣΔz, (7.11)
0 = P⊤ℐ(DΔx + E|Σ|Δz + FΣΔz),
0 = |Σ|Δz − Z̃Δx.

This optimization task comprises exactly the same constraints as the saddle point sys-
tem (7.5). Hence, it will be used to show descent. Under additional regularity assump-
tions, the descent direction is even unique. For this purpose, we employ the following
constraint qualification (cf. [11, 13]).

Definition 7.2 (LIKQ). Let an optimization problem of the form (CALOP) and a signature
vector σ ∈ {−1, 0, 1}s be given. The Linear Independence Kink Qualification (LIKQ) holds
at a feasible point xσ if the active Jacobian

𝒥σ =
[[

[

A + B|Σ|Z̃ + CΣZ̃
Pℐ(D + E|Σ|Z̃ + FΣZ̃)

PαZ̃

]]

]

∈ ℝ(m+|ℐ|+|α|)×n,
at xσ has full row rankm + |ℐ| + |α|. Here, α denotes the active switching set α(x) = {i ∈
{1, . . . , ̃s} | zi(x) = 0}.

Hence, LIKQ is very similar to the standard regularity condition LICQ for the smooth
case in that it requires that the gradients of the active constraints must be linearly inde-
pendent. For LIKQ, this additionally applies to the constraints related to the active kinks
together with the active constraints.

Lemma 7.3. Let (Δx∗, Δz∗) be a solution of Equation (7.11) with Δx∗ ̸= 0. Suppose that
the zero vector is no solution of Equation (7.11). Then fΔ(⋅, ⋅) is strictly decreasing along
(Δx∗, Δz∗). If LIKQ holds, this direction is unique.
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Proof. The proof is rather technical; see [13, Lemma 4.11].

Theorem 7.4. Suppose that an optimization problem of the form (CALOP) is given, LIKQ
holds at every feasible point and let Q = Q⊤ ∈ ℝn×n be a positive definite matrix. Then,
for any feasible starting point x ∈ ℝn, Algorithm 7.1 terminates after finitely many it-
erations at a minimizer of the quadratically penalized version of the optimization prob-
lem (CALOP).

Proof. Algorithm 7.1 prioritizes the multiplier ω of the inequality constraints; see line
8 versus line 11. Therefore, as long as the signature vector σ does not change, the pro-
posed approach resembles an active set method to solve QPs. Furthermore, we always
ensure a decrease in the target (see Lemma 7.3) and a step size β > 0. Such an approach
determines a minimizer of problems with the structure (7.2) in finitely many steps; see,
for example, [18, Chap. 16].

If the current iterate is a feasible signature stationary point of (7.2) for the cur-
rently active set of constraints, Algorithm 7.1may change also the signature vector σ (see
line 12) resulting in a change to a different polyhedron. Since there are only finitelymany
polyhedra and the value of the function value is consistently reduced, Algorithm 7.1 can
modify the signature vector only finitely many times leading to a finite convergence of
the overall algorithm.

The last theorem considers the penalized version of the original optimization
task (CALOP). Hence, when Algorithm 7.1 stops at a local minimizer of the penalized
version in line 14, one has to verify that the current iterate is a minimizer of the orig-
inal problem (CALOP). If this is not the case, one has to reduce the quadratic penalty
term and start Algorithm 7.1 again. If (CALOP) has a minimizer and the influence of
the penalty term is driven to zero in finitely many steps, this yields convergence to a
minimizer of (CALOP) as proven next. In our numerical tests preformed so far, such a
reduction was not necessary.

Theorem 7.5. Suppose that for an optimization problem of the form (CALOP) the target
function f is bounded from below on the bounded, feasible set. Let LIKQ hold at every
feasible point. Then, for Q → 0, the solutions generated by Algorithm 7.1 converge to a
solution of the original optimization problem.

Proof. See the proof of [13, Theorem 4.13].

3 Numerical results

We implemented Algorithm 7.1 in Matlab and illustrate its performance by means of
three constrained PL test problems.
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Example 7.6 (Constrained HUL). In [12], Hiriart-Urruty and Lemaréchal considered the
piecewise linear and convex function φ : ℝn → ℝ,

φ(x) = max{max{−100, 2x1 + 5|x2|}, 3x1 + 2|x2|}.

To test our algorithm, we add the two constraints

H1(x) = −0.25x1 − x2 − 10 ≤ 0,

H2(x) = 2 − 0.2|x1 + 9| − |x2 + 1| ≤ 0,

and choose the feasible starting point x0 = (9,−2.5). After reformulation of the max
functions by means of the absolute value, this optimization problem requires the six
switching variables and the target function

z1 = x2, z2 = −100 − 2x1 − 5|z1|,

z3 = −50 − 2x1 + 0.5|z1| + 0.5|z2|, z4 = x1 + 9,

z5 = x2 + 1, z6 = 2.25|z1| + 0.25|z2| + 0.5|z3|,

y = −25 + 2x1 + z6,

for example, one has n = 2, s = 6,m = 0, and p = 2.
Using Algorithm 7.1, 15 iterations are needed. Figure 7.1 shows a plot of the resulting

kinks originating from the objective function (blue lines) and from the constraints (cyan
blue lines). The inequality constraints are marked by the red lines and, therefore, the
red area represents the feasible set. Finally, the iterates generated by Algorithm 7.1 are
denoted by the black dots. In the plot, only 8 of the 15 iterations are marked. This is due
to the fact that some of the iterations duplicate the point x when σ and ω are restricted
or relaxed, that is, kinks or constraints are activated or deactivated.

Figure 7.1: Iterates generated by Algorithm 7.1 for Example 7.6.

Example 7.7 (Constrained Rosenbrock–Nesterov II). According to [10], Nesterov sug-
gested the Rosenbrock-like test function:
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φ : ℝn → ℝ, φ(x) = 1
4
|x1 − 1| +

n−1
∑
i=1 󵄨󵄨󵄨󵄨xi+1 − 2|xi| + 1󵄨󵄨󵄨󵄨

that is PL and nonconvex. It has the global minimizer x∗ = (1, 1, . . . , 1) ∈ ℝn and 2n−1 − 1
other Clarke stationary points none of which is a local minimizer [10]. From the litera-
ture [10], it is known that the starting point x01 = −1, x

0
i = 1, 2 ≤ i ≤ n is particularly

challenging, since the nonoptimal, stationary points tend to lie on the way to the only
minimizer. In this paper, we consider constrained problems, therefore we add the PL
constraint

n
∑
i=1 |xi − 1| ≥ 1

2n
.

Hence, there is an n-dimensional rhombus around the globalminimizer, which is cut out
of the ℝn. The remaining 2n−1 − 1 stationary points are still feasible and the minimizer
is given by

x∗i = 1 − 2i−1
2n − 1
⋅
1
2n
∈ (0, 1) for 1 ≤ i ≤ n.

For 1 ≤ n ≤ 20, the number of iterations required by CASM is shown in Table 7.1. The
number of switches is given by s = 3n − 1. Hence, the number of visited polyhedra is
much less than the total number of polyhedra given by 2s. We also applied the MPBNGC
solver [17] that implements a multiobjective proximal bundle method for nonconvex,
nonsmooth, and generally constrained minimization. For n = 1, MPBNGC needed seven
iterations, already for n = 2, the solver got stuck after seven iterations at a nonoptimal,
stationary point. The same behavior was observed for larger values of n.

Table 7.1: Number of iterations of CASM needed for Example 7.7 and different values of n.

n 1 2 3 4 5 6 7 8 9 10

# 2 5 14 27 64 117 238 439 856 1685

n 11 12 13 14 15 16 17 18 19 20

# 3382 6807 13592 26285 42994 82995 131096 262173 605342 1119907

Example 7.8. Next, we consider a linear complementarity problem given by

Mx + q ≥ 0 and x⊤(Mx + q) = 0 (7.12)

for 0 ≤ x ∈ ℝn,M ∈ ℝn×n, and q ∈ ℝn. In [2], the linear complementarity problem (LCP)
is formulated as a system of PL equations
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min(x,Mx + q) = 0, (7.13)

where the minimum operator acts componentwise. In the same paper, the authors
present an algorithm that can be viewed as a semismooth Newton method and show
nonconvergence, for example, forM set to

M3 =
[[

[

1 0 2
2 1 0
0 2 1

]]

]

and M4 =

[[[[[[

[

1 0 1
2

4
3

4
3 1 0 1

2
1
2

4
3 1 0

0 1
2

4
3 1

]]]]]]

]

.

Furthermore, they pointed out that the LCP has a unique solution for any q ∈ ℝn if and
only ifM is a P-matrix, that is,M has positive principal minors detMII for all nonempty
I ⊂ {1, . . . , n}. To solve (7.13) with CASM, we reformulate the LCP as

min
x∈ℝn n
∑
i=1󵄨󵄨󵄨󵄨min(xi, (Mx + q)i)󵄨󵄨󵄨󵄨,

where q = 1 as the vector with 1 in every component of appropriate dimension. For
the starting point set to the first unit vector in ℝn as also proposed in [2], CASM needs
five iterations in both cases, that is, forM = M3 andM = M4, respectively, to reach the
solution, that is, the zero vector of the appropriate dimension. In [2, Proposition 3.7], it
is shown that the algorithm proposed in that paper does not converge but generates a
circle of three and four reoccurring iterates, respectively, for these settings.

4 Summary and outlook

We considered optimization problemswith a piecewise linear target function and piece-
wise linear constraints as they arise, for example, in linear complementarity problems
or certain bilevel optimization problems. For this purpose, we developed an extension
of the already known active signature method for the constrained case by handling the
inequality constraints in an active set sense. Numerical results for two test cases illus-
trate the performance of the resulting Constrained Active Signature Method (CASM).

The optimization problems presented in this paper have been of academic nature.
In the future, we want to apply the algorithm to larger problems stemming from re-
alistic applications. For example, solution approaches for the optimization of gas net-
works yield constrained piecewise linear subproblems; cf. [1, 15]. The first promising re-
sults were already obtained; see [14]. The optimization problems considered there are of
much larger dimension having more than 500 optimization variables, 1,000 constraints,
and almost 2,000 switches. A more involved implementation could solve the system of
linear equations in parallel to speed up the step computation. However, it is important
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to note that the proposed algorithm does not target the solution large-scale problems
like the training of huge deep neural networks. This is mainly due to the matrix-based
representation of the considered function class. An optimization approach that is more
suitable for nonsmooth and large scale problems is considered in [3].

The constrained active signature method proposed in this paper could be used as a
solver for the inner loop problemof a solver for constrained piecewise smooth problems
starting, for example, from the SALMIN approach [5]. However, similar to the smooth sit-
uation, this can lead to infeasible iterates in the outer loop dealing with the nonlinear
problem. Therefore, appropriate strategies to handle this infeasibility need to be devel-
oped.
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Abstract:We propose to train neural networks (NNs) using a novel variant of the “Ad-
ditively Preconditioned Trust-region Strategy” (APTS). The proposed method is based
on a parallelizable additive domain decomposition approach applied to the neural net-
work’s parameters. Built upon the TR framework, the APTS method ensures global con-
vergence toward a minimizer. Moreover, it eliminates the need for computationally ex-
pensive hyper-parameter tuning, as the TR algorithm automatically determines the step
size in each iteration. We demonstrate the capabilities, strengths, and limitations of the
proposed APTS training method by performing a series of numerical experiments. The
presented numerical study includes a comparison with widely used training methods
such as SGD, Adam, LBFGS, and the standard TR method.
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1 Introduction
We consider the following supervised learning problem:

min
θ∈ℝn ℓ(θ;𝒟) := minθ∈ℝn 1p p

∑
i=1 l(𝒩 (xi; θ,𝒟), ci), (8.1)

where ℓ:ℝn 󳨀→ ℝ is the training loss, 𝒩 denotes the neural network (NN), and θ ∈ ℝn

are its parameters. The tuple (xi, ci) ∈ 𝒟 is an input-target pair in the labeled data set𝒟
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with cardinality p. The loss function l:ℝd≥0×ℝd≥0 󳨀→ ℝmeasures the difference between
the predicted target ̂ci := 𝒩 (xi; θ,𝒟) and the exact target ci ∈ ℝ

d [21]. Minimizing (8.1)
is called training and successful training implies the model’s capability to accurately
predict unseen data [42], that is, the data not contained in the data set 𝒟.

Several optimization techniques are applicable for training neural networks. The
most prominent approaches include for example stochastic gradient descent (SGD) [52,
6, 14], ADAptive Moment estimation (Adam) [32, 46, 47], and the limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (LBFGS) algorithm [44], each with unique features and
challenges. The SGDmethod is efficient, and generalizeswell, but requires careful hyper-
parameter tuning and diminishing step sizes for global convergence [52, 6, 14]. Adam is
efficient and adjusts its learning rate adaptively but lacks theoretical global convergence
guarantees for nonconvex problems and may even face issues with convex problems
[32, 46]. The LFBGS method approximates the Hessian using the secant pairs [44] and it
is therefore suited for solving ill-conditioned problems. However, the LBFGS method is
computationally more expensive than the first-order methods and it requires a use of
novel techniques for evaluating the secant pairs in stochastic settings [4, 3]. Trust-Region
(TR) methods [11], though less common, are gaining recognition in machine learning.
Their popularity arises mostly from the fact that they adjust the step size dynamically at
each iteration and that they offer global convergence for convex as well as nonconvex
minimization problems [44, 11]. However, its extension to multi-level settings [25] and to
stochastic settings requires nontrivial theoretical and algorithmic adjustments; see, for
example, [45, 13, 20, 22, 23, 34].

With growing data and network complexity, parallelization approaches become es-
sential [9, 5, 49, 27]. Current parallel approaches include data-parallel andmodel-parallel
methods. Data parallelism divides data among processing units, each training a model
copy, which is especially useful for large data sets [48]. This paradigm has been applied
in SGD variants [52, 43, 51], ensemble learning [31, 15], and federated learning [40, 41, 38].
In contrast, model parallelism aims at training different parts of the NN across different
processing units [2].

Recently, domain decomposition (DD) methods show promise in parallelizing NN’s
training [48, 2, 43]. DD methods were originally proposed for solving discretized partial
differential equations. The idea behind these methods is to subdivide the main problem
into smaller subproblems, a solution of which is used to enhance the solution process of
the original problem. The subproblems are typically solved independently of each other,
that is, in an additivemanner,which in turn enables parallel computing [10, 50, 19, 17, 39].
Notable examples of additive nonlinear DD methods include ASPIN [8], GASPIN [26],
RASPEN [16], or APTS [24].Whilemost of thesemethodswere developed for solving non-
linear systems of equations, APTS and GASPINwere specifically designed for addressing
nonconvex minimization problems, such as one given in Equation (8.1). Furthermore,
both APTS andGASPIN employ a TR globalization strategy and, therefore, provide global
convergence guarantees.
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In the field ofmachine learning, DD approaches are increasingly utilized to enhance
NN training. The decomposition and composition of deep Convolutional Neural Net-
works (CNNs), as discussed in [28, 29], offer insights into accelerating training through
subnetwork transfer learning. In [30], the authors explore layer-parallel training of
deep residual neural networks (ResNets), demonstrating their effectiveness in tasks
like image classification. In [35], the authors introduce preconditioning strategies for
physics-informed neural networks (PINNs), employing a nonlinear layerwise precondi-
tioner for the LFBGS optimizer. Finally, in [33], the authors present a novel CNN-Deep
Neural Network (DNN) architecture that is inspired by DD methods, specifically made
formodel-parallel training. This architecture is designed to handle various image recog-
nition tasks effectively. It incorporates local CNN models or subnetworks that process
either overlapping or nonoverlapping segments of the input data, such as subimages,
demonstrating its adaptability and efficiency in different image recognition scenarios.
These studies collectively underscore the significance of DD methods in training NNs
across different domains.

In this work, we introduce a variant of the APTSmethod [24] to the field of machine
learning. Unlike conventional NN-training methods, the unique aspect of our proposed
algorithm is its ability to:
– Guarantee global convergence in deterministic settings,
– Eliminate the need for extensive hyperparameter tuning, and
– Enable parallelization.

Thus, APTS allows for a first step to perform training on large supercomputers with
efficient and parameter-free approaches. We demonstrate the convergence properties
of the proposed method numerically by utilizing benchmark problems from the field of
classification. Our numerical study includes a comparative analysiswith the SGD, Adam,
and LFBGS methods.

The paper is organized as follows. In Section 2, we briefly recall the TR method and
we provide a detailed explanation of the APTS optimizer. Then, in Section 3, we show
numerical results comparingAPTSwith classic optimization strategies using two famous
data sets, that is, MNIST and CIFAR-10. Finally, in Section 4, we draw conclusions.

2 Training methods
In this section, we provide a comprehensive explanation of the fundamental principles
and techniques associated with the TR and APTS methods, focusing on their application
to the training of NNs.

2.1 Trust-region method
TR methods [44, 11] are advanced globally convergent iterative algorithms utilized in
nonlinear, convex, and nonconvex optimization to find local minima of objective func-
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tions. These methods iteratively construct a simplified model of the objective function
within a localized vicinity of the iterate estimate, referred to as the trust region. The
size of the trust region is adaptively adjusted at each iteration to ensure an accurate
approximation of the true function behavior.

More precisely, in the TR framework at iteration k, the optimization problem (8.1)
is approximated by a first- or second-order model mk . In order to obtain the search di-
rection sk , the modelmk is minimized as follows:

min‖s‖≤Δk mk(s) = min‖s‖≤Δk ∇ℓ(θk ;𝒟)Ts + 12 sTHks , (8.2)

where Hk ∈ ℝn×n is a symmetric matrix, typically an approximation to the Hessian of ℓ
at θk , and Δk > 0 is the TR radius. In case of a first-order model mk , the quadratic term
in (8.2) vanishes. The quality of the step sk obtained by solving (8.2) is assessed using the
ratio

ρk = ℓ(θ
k) − ℓ(θk + sk)

mk(0) −mk(sk)
, (8.3)

where ℓ(θk)−ℓ(θk +sk) is the actual reduction andmk(0)−mk(sk) is the predicted reduc-
tion. The TR radius and parameters are then updated based on the value of ρk . If ρk ≈ 1,
the modelmk provides a good approximation of the objective function, so the TR radius
can be increased and the parameters can be updated. Otherwise, if ρk is smaller than a
given threshold η > 0, the TR radius is shrunk and the parameters remain unchanged.
We refer the reader to [11] for a more detailed explanation and the algorithm.

In thiswork,we adopt the Limited-memory Symmetric Rank 1 (LSR1)method [18, 44]
for approximating the Hessian of ℓ. The LSR1 approach systematically generates an ap-
proximation of the Hessian matrix by incorporating Rank 1 updates derived from gra-
dient differences at each iteration. As the number of updates accumulates and reaches
the predetermined limit, l, themost recent update replaces the oldest one, ensuring that
the total number of updates remains constant at l. Unlike the LBFGS method, which en-
sures a positive definite approximatedHessian, the LSR1method allows for an indefinite
Hessian approximation, potentially providing more accurate curvature information.

In order to solve efficiently the subproblem (8.2), we employ the Orthonormal Basis
SR1 (OBS) technique proposed in [7]. The OBS method leverages an orthonormal basis
spanned by the LSR1 updates to transform the dimensions of the TR subproblem from
n × n to a more manageablem ×m, where typicallym ≪ n.

2.2 APTS with the decomposition of network’s parameters

APTS [24] is a right-preconditioned TR strategy designed for solving non-convex opti-
mization problems. In this work, we construct the nonlinear preconditioner by utilizing
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the layerwise decomposition of NN’s parameters [35]. Thus, in order to define theN sub-
domains, we introduce the projectors

Ri : ℝ
n 󳨀→ ℝni , i = 1, . . . ,N , with RiR

T
j = 0, ∀i ̸= j, (8.4)

where the second property implies that the subsets of parameters generated by Ri are
pairwise disjoint. Here, n denotes the dimensionality of the global parameter vector, and
ni represents the dimensionality of the local parameter vector, associated with the ith
subdomain. We can now define the ith network copy as 𝒩i(⋅; θi,ϕi,𝒟), where the sub-
domain parameters θi = Riθ are defined as the set of trainable parameters. Moreover,
with a slight abuse of notation, we define ϕi = θ \ θi as the remaining nontrainable
parameters. Clearly, the overall structure of 𝒩 does not change—what changes is the
trainable/nontrainable setting of its parameters.

The APTS algorithm can be executed using the entire data set or on minibatches,
with the latter scenario being referred to as Stochastic APTS (SAPTS). Although the con-
vergence proof of the deterministic version does not transfer directly to the stochastic
version, the numerical results provided in Section 3 are promising. Algorithm 8.1 pro-
vides a summary of the proposed APTS training algorithm. In steps 2 and 4, we establish
the convergence criteria and select the training approach, which can be either using the
full data set (APTS) or employing amini-batch strategy (SAPTS). In steps 5–6, we compute
and store the loss and gradientwith the current training data set. The vector g is normal-
ized in step 6 so that it has a similar length to s (see step 11), such that their contribution
is similar in step 16. In step 8,we synchronize all the local TR radii ΔL,iwith the global one
and all the network copies,𝒩i, with the current global parameters from𝒩 . This synchro-
nization preserves the state of trainable and nontrainable parameters that were previ-
ously established. Following this, in step 9, we initiate a series of TR iterations for each
local network copy, which we call local TR iterations. At each iteration, the local TR algo-
rithm will perform steps with length in the interval [ΔLmin, Δ

L
max]with increase/decrease

factors α, β, and reduction/acceptance ratios η1, η2. This process iterates until the cumu-
lative step size falls below the predefined global TR radius, ΔG, signified by the condition
ski,j = ‖θki,0 − θki,j‖∞ ≤ ΔG, where i denotes the submodel and 0 and j are the local TR itera-
tions. The iteration haltswhen either ski,j equals ΔG orwhen the iteration count reaches ν.

Following the local TR iterations, step 10 involves aggregating all the updated
weights from the local networks and summing them up. Here, we emphasize that
the update sk made in step 11 is bounded by the global TR radius ΔG, that is,

󵄩󵄩󵄩󵄩θ
k − θ̃󵄩󵄩󵄩󵄩∞ = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 N∑i=1 RTi θki,0 − N

∑
i=1 RTi θki,new

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞ =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

N
∑
i=1 RTi (θki,0 − θki,new)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞ ≤ ΔG.
In addition, the operator RTi serves the specific purpose of padding the vector θ

k
i,new with

zeros, transforming it to the same dimensionality as θk . This ensures a nonoverlapping
aggregation during the summation process of RTi θ

k
i,new across i = 1, . . . ,N , a condition

which follows from the property of Ri delineated in equation (8.4).
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Algorithm 8.1: Scheme of APTS/SAPTS in weight.
Input: Objective function ℓ, the data set 𝒟 or mini-batches D1,D2, . . . , main NN

𝒩 (⋅; θ0,𝒟), NN copies𝒩i(⋅; θ
0
i,0,ϕ0,𝒟), maximum local TR iterations ν, the

value of the Boolean fdl variable, global TR radius ΔG and the min/max
global TR radii ΔGmin/Δ

G
max, the decrease/increase factors 0 < α < 1 < β

(local and global TR), the min/max radii ΔLmin/Δ
L
max of the local TR,

the reduction/acceptance ratios 0 < η1 < η2 < 1 (local and global TR).
1 epoch← 0
2 while not converged do
3 k ← 0
4 for D ∈ [𝒟] (APTS) or D ∈ [D1,D2, . . .] (SAPTS) do
5 ℓk ← ℓ(θk ;D)
6 gk ← − ∇ℓ(θk ;D)‖∇ℓ(θk ;D)‖∞ ΔG
7 for i ∈ {1, . . . ,N} in parallel do
8 Set (θki,0,ϕk)← (Riθk , θk \ Riθk) and ΔLi ← ΔG

9 θi,new ←minθi ℓ(θi;D) using ν TR steps on𝒩i(⋅; θ
k
i,0,ϕk ,D)

10 Gather and sum up all local updates: θ̃ ← ∑Ni=1 RTi θki,new
11 Evaluate the preconditioning step: sk ← θk − θ̃
12 Update the weights of the main model𝒩 as θk+ 12 ← θk + sk

13 w ← 0, Δ̃← ΔG

14 while ℓ(θk+ 12 ;D) > ℓk and w ̸= 1 and fdl == True do
15 w ← min{w + 0.2, 1} and Δ̃← max{ΔGmin, αΔ̃}

16 θk+ 12 ← θk + wgk+(1−w)sk‖wgk+(1−w)sk‖∞ Δ̃
17 θk+1 ← argminθ ℓ(θ;D) using one TR step on𝒩 (⋅, θk+ 12 ,D)
18 k ← k + 1

19 epoch← epoch + 1

In step 12, we evaluate the preconditioning step, that is, the search direction ob-
tained during the preconditioning iteration. This direction is then used to update the
weights of the global model in step 13. In steps 14–16, in case the forced decreasing loss
(fdl) input variable is set to True, we make sure that the current loss ℓ(θk+ 12 ;D) on the
global model is smaller than the old loss ℓk . If this is not a case, then we modify sk by
averaging itwith the gradient gk . Moreover,we reduce the radius Δ to shrink sk . This pro-
cess is different from the one in [24] and it is inspired by the Dogleg method [44], which
is repeated until a step is accepted or until the step is the gradient, that is, when w = 1.

In the final phase, a single TR iteration is executed on the global neural network
𝒩 in step 17. The resulting step will have length in [ΔGmin, Δ

G
max] and TR will be set with

increase/decrease factors α, β and reduction/acceptance ratios η1, η2.
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3 Numerical results
In this section, we compare the performance of APTS against well-established training
algorithms such as SGD, LBFGS, and Adam. All tests, accessible through the repository
in [12], were conducted using Python 3.9, with the implementation leveraging PyTorch
version 2.0.1+cu117. For SGD, LBFGS, and Adam,we utilized the standard optimizers pro-
vided by PyTorch.

We tuned the hyperparameters of SGD, LBFGS, and Adam to ensure a fair compari-
son, recording the average best results in 10 trials across various parameter configura-
tions. Specifically:
– For SGD, we evaluated 63 combinations, varying the learning rate in [10−4, 1] and

the momentum in [0.1, 0.9].
– For LBFGS, we considered 45 combinations, adjusting both the learning rate within

the interval [10−4, 1] and the history size (the amount of stored updates of the Hes-
sian) within [3, 50]. Note that we set the line_search_fn parameter to strong_

wolfe.
– For Adam, we examined 13 different learning rates within the interval [10−5, 10−1].
For these three algorithms, all other input parameters were kept as their standard Py-
Torchdefault values.Moreover, the selected optimal parameters are shown in the legend
of the figures. In contrast, APTS and TR were consistently run with the same set of input
parameters across all tests. Detailed descriptions of these settings can be found in the
next section.

Afterwards, we provide a detailed analysis of the obtained results, highlighting the
characteristics of APTS in comparison to SGD, LBFGS, Adam, and TR. Note that in the ab-
sence of themini-batch strategy, the SGD optimizer simplifies to the traditional Gradient
Descent (GD) algorithm.We remark that one epoch of APTS consists in the precondition-
ing step and the global step in lines 4–17 of Algorithm 8.1.

Finally, some of the following plots will depict the average test accuracy and train-
ing loss (represented by a solid line) alongside the variance observed in the worst and
best runs (indicated by dashed lines) across 10 independent trials, each initialized with
different random NN parameters.

3.1 APTS implementation details and parameter configuration

The PyTorch programming environment imposes certain constraints on the level of con-
trol one has over parameter training. Parameters are configured in vectors, with entire
vectors designated as either trainable or nontrainable. This means that, for instance, a
fully connected layer, which consists of weights and biases, is stored as a structure com-
posed by two distinct vectors of learnable parameters, and they can be configured to be
trained independently. Therefore, the projectors Ri in Equation (8.4) are built in a way
to maximize the efficiency in training, that is, there will not be two weights belonging to
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the same PyTorch vectors with different trainable/non-trainable settings. Furthermore,
the projectors are randomly generated, that is, if we have a total ofM vectors of param-
eters and we want to split them across N models, each model will have approximately
round(MN ) randomly selected trainable vectors.

Key configurations in our implementation of the APTS algorithm are as follows:
– In step 8 of APTS, that is, Algorithm 8.1, the amount of subdomains (submodels𝒩i)

is specified in the legend of the figures in Section 3 and the trainable weight vectors
are randomly selected.

– In step 10, concerning the local TR, we configured:
– A maximum amount of iterations to ν = 5.
– A minimum radius of ΔLmin = 0, an initial radius equal to the current global TR

radius ΔL = ΔG, and a dynamically adjustedmaximum radius ΔLmax = Δ
G−‖θki,0−

θki,j‖ at the jth iteration to ensure that the cumulative step remains bounded by
the global TR radius.

– Whenever a quadratic model (8.2) is considered, history size for the SR1 Hes-
sian is set to 5. Moreover, at the start of the preconditioning iteration, the local
Hessian history is synchronized with the global one.

– The reduction and acceptance ratios 0 < η1 < η2 < 1 are the standard values
for TR, that is, η1 = 0.25 and η2 = 0.75.

– The decrease and increase factors α and β are set to 0.5 and 2, respectively.
– In step 17, which involves the global TR:

– Minimum, maximum, and initial radii are set to ΔGmin = 10
−4, ΔGmax = 10−1, and

ΔG = 10−2, respectively.
– The values of α, β, η1, η2 match the ones of the local TR.
– The reduction and acceptance ratios match those of the local TR.
– Whenever a quadraticmodel (8.2) is considered, history size for the SR1 approx-

imated Hessian is set to 5.

Note that both the global and local TR use the infinity norm to compute the length of
the steps. This does not conflict with 2-norm used by the OBS method, as the 2-norm is
bounded by the infinity-norm.

In the numerical results Section 3, the TR method as stand-alone solver, denoted by
TR in the figures, has the same settings as the global TR method in APTS.

3.2 MNIST

We conducted some preliminary experiments using the MNIST data set [37]. This data
set comprises 60,000 training images and 10,000 test images of handwritten digits, each
of which is a 28 × 28 pixel grayscale image. For this experiment, we considered a Fully
Connected Neural Network (FCNN) trained on the entire data set, that is, without the use
of a mini-batch strategy.
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The FCNN used in our experiments consists of three fully connected layers (6 Py-
Torch vectors), resulting in a total of 26,506 parameters. To investigate the performance
of APTS, we configured it with 2, 4, and 6 subdomains and with an enabled/disabled
forced-decreasing-loss parameter (fdl), while other parameters are reported in Sec-
tion 3.1.

Observing Figure 8.1a, we note that Adam, LBFGS, and GD achieve comparable lev-
els of accuracy. However, GD exhibits amarginally higher number of epochs to converge
and a greater variance in its results. The TR variants, utilizing both first- and second-
order information in Equation (8.2) (denoted by ord = 1 and ord = 2, respectively),
demonstrate a slower convergence compared to the benchmark algorithms. TR(ord = 2)
overtakes its first-order counterpart TR(ord = 1) after 70 epochs. This can be attributed
to the enhanced reliability of the approximated Hessian close to a minimizer of the
training loss, which has a flatter landscape in comparison to the initial training phase.
Moreover, the introduction of second-order information tends to stabilize the variation
among TR iterations compared to the first-order approach.

Figure 8.1: Comparison of APTS variants and baseline optimizers on FCNN trained on MNIST.

In Figure 8.1b, the APTS variants employing first- and second-order derivatives with
fdl turned off are presented. The use of second-order derivatives seems to facilitate a
smoother progression of the loss function over the training epochs. Conversely, reliance
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on first-order derivatives results inmore fluctuating loss values. Nonetheless, both vari-
ants converge to comparable levels of loss and accuracy, with a limited variance suggest-
ing a consistent convergence pattern across different runs.

Figures 8.1c and 8.1d showcase the APTS variants with fdl enabled. Here, the appli-
cation of second-order information leads to reduced variance and marginally superior
accuracy relative to the first-order variant. Additionally, an increase in the number of
subdomains correlates with improved performance. APTS with 6 subdomains not only
slightly outperforms the 2 and 4 subdomain configurations in terms of accuracy, but also
shows a reduced variance. This enhanced performance likely results from the added
subdomains enabling more thorough exploration of the loss landscape through inde-
pendent parameter adjustments, in contrast to the constrained exploration provided by
a lower count of subdomains. This concept aligns with prior studies advocating for dis-
tinct weight and bias training strategies to improve training dynamics [1].

A comparison of Figures 8.1a, 8.1b, and 8.1c reveals that APTS with six subdomains,
with fdl disabled and first-order information, attains similar performances to Adam,
with Adam reaching the maximum accuracy slightly faster, and a marginally superior
accuracy and lower loss than its counterpart with fdl enabled. This highlights the im-
portance of unrestricted parameter exploration in improving training efficiency, similar
to the exploration afforded by a higher subdomain count.

3.3 CIFAR-10

Following ourMNIST investigation,we evaluated the solution strategies using the CIFAR-
10 data set [36], containing 50,000 training and 10,000 test 32 × 32 color images across
10 classes. For these experiments, we employed the ResNet18 architecture from the Py-
Torch librarywith 11,689,512 parameters stored in 62 PyTorch vectors. Trainingwas con-
ducted using a mini-batch strategy, with 20 overlapping mini-batches, each containing
2,975 samples, whichwere createdwith a 1% overlap between themini-batches in order
to reduce variance.

In Figure 8.2, we present a comparative analysis between stochastic Adam and var-
ious configurations of SAPTS. Specifically, Figure 8.2a features SAPTS with 2, 15, and 30
subdomains, a first-order TR approach for the subproblems, and with the feature fdl
deactivated. In Figure 8.2b, the number of subdomains is set to 60 while we vary param-
eters such as fdl and order. We do not provide results for SGD here as Adam achieved
a higher test accuracy, and our aim is to provide a comparison with APTS.

Our primary focus was on configurations with fdl = False and ord = 1. The ratio-
nale behind this is that activating fdl (as shown in Figure 8.2b) leads to a deterioration
in the generalization abilities of SAPTS, albeit with a higher reduction in loss compared
to other SAPTS variants. Regarding ord = 2, SAPTS exhibited poor generalization and
did not significantly reduce the loss. However, it maintained a smoother loss curve com-
pared to other tested SAPTS variants as in the previous nonstochastic cases.
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Figure 8.2: Comparison of APTS variants and baseline optimizers on CNN trained on CIFAR-10.

When analyzing SAPTS with fdl = False and ord = 1 across different numbers
of subdomains, we observe a correlation similar to that in non-stochastic tests: SAPTS’
performance improves with an increased number of subdomains. Additionally, when
comparing SAPTS with 60 subdomains against Adam, we find that SAPTS demonstrates
marginally better generalization over a longer period and requires only a few more
epochs to match the performance level of Adam.

4 Conclusion

In this work, we employed APTS method, which utilized the decomposition of the NN’s
parameters, to efficiently train neural networks. Our numerical study reveals that the
proposed APTS method attains comparable or superior generalization capabilities to
traditional optimizers like SGD, LBFGS, and Adam. The strength of the developed APTS
method lies in absent hyper-parameter tuning and in its parallelization capabilities.
Moreover, the APTS achieves faster convergencewith a growing number of subdomains,
showing encouraging algorithmic scalability.
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Abstract: This article introduces the concept of trustworthy optimization learning, a
methodology to design optimization proxies that learn the input/output mapping of
parametric optimization problems. These optimization proxies are trustworthy by de-
sign: they compute feasible solutions to the underlying optimization problems, provide
quality guarantees on the returned solutions, and scale to large instances. Optimization
proxies are differentiable programs that combine traditional deep learning technology
with repair or completion layers to produce feasible solutions. The article shows that
optimization proxies can be trained end-to-end in a self-supervised way. It presents
methodologies to provide performance guarantees and to scale optimization proxies to
large-scale optimization problems. The potential of optimization proxies is highlighted
through applications in power systems and, in particular, real-time risk assessment and
security-constrained optimal power flow.
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1 Introduction

Optimization technologies have beenwidely successful in industry: they dispatch power
grids, route transportation and logistic systems, plan and operate supply chains, sched-
ule manufacturing systems, orchestrate evacuations and relief operations, clear mar-
kets for organ exchanges to name only a few. Yet there remain applications where op-
timization technologies still face computational challenges, including when solutions
must be produced in real time or when there are planners and operators in the loop
who expect fast interactions with an underlying decision-support system.

Many engineering applications however operate on physical infrastructures that
change relatively slowly. As a result, optimization technologies are often used to solve
the same core optimization problem repeatedly on instances that are somewhat similar
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in nature. In other words, these applications require solving parametric optimization
problems of the form

Φ(x) = argmin
p

fx(p) subject to hx(p) = 0 & gx(p) ≥ 0

wherex represents instance parameters that determine the objective function fx and the
constraints hx and gx. A solution to such a parametric optimization is a mapping from
inputs x to outputs p = Φ(x), which are optimal solutions to an optimization problem.
In addition, it is reasonable to assume that the instance parameters x are characterized
by a distribution learned from historical data.

These considerations led to the belief that machine learning could learn these para-
metric optimization problems and replace optimization altogether. A machine learn-
ing model, say a deep neural network, could be trained to approximate the mapping
x 󳨃→ Φ(x) using, as input, a data set 𝒟 = {xi}i∈[n] of instance parameters or a data set
𝒟∗ = {(xi,Φ(xi))}i∈[n] that contains pairs of instance parameters and their associated
optimal solutions.

The supervised learning indexsupervided learning version of this learning task con-
sists in fitting the parameters θ of a parametric function Φ̃θ to minimize a loss function
of the form

1
n

n
∑
i=1ℒ(xi, Φ̃θ(xi))

where

ℒ(x,p) = 󵄩󵄩󵄩󵄩p − Φ(x)
󵄩󵄩󵄩󵄩

and is known as an empirical risk minimization under constraints. Interestingly, since
the parametric optimization problem is available in explicit form, it is possible to define
a self-supervised version of the learning task that only uses the data set 𝒟. Assume that
Φ̃θ(x) returns a feasible solution p̃, that is, hx(p̃) = 0 & gx(p̃) ≥ 0.

1 The self-supervised
learning task amounts to minimizing

1
n

n
∑
i=1 fx(Φ̃θ(xi))

which is expressed in terms of the objective function fx of the original parametric opti-
mization problem (e. g., [7, 20]). This self-supervised approach has a significant benefit:
it does not rely on the availability of optimal solutions which may be costly to obtain in
practice. In addition, the objective function in supervised learning approaches may not
be perfectly aligned with the objective of the original optimization problem, reducing
the accuracy of the learning step.

1 The paper discusses repair layers to achieve this later.
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Unfortunately, in engineering tasks, such an approximation is typically not satisfac-
tory: by virtue of being a regression task, the machine learning predictions are unlikely
to satisfy the problem constraints, whichmay have some significant consequenceswhen
optimizationmodels are used to plan, operate, or control physical infrastructures. Early
research on this topic combines machine learning and Lagrangian duality [8], using a
loss function of the form

ℒ(x,p) = 󵄩󵄩󵄩󵄩p − Φ(x)
󵄩󵄩󵄩󵄩 + λ
󵄨󵄨󵄨󵄨hx(p)
󵄨󵄨󵄨󵄨 + νmax(0,−gx(p)).

The multipliers λ and ν can be trained by mimicking subgradient methods for comput-
ing Lagrangian duals, alternating between training themachine learningmodel and ad-
justing the multipliers by subgradient steps. However, although they reduce constraint
violations, the resulting machine learning models are not guaranteed to find feasible
solutions.

This paper reviews progress in designing and implementing trustworthy optimiza-
tion proxies, that is, learning architectures that fuse machine learning and optimization
in order to produce feasible solutions with quality guarantees in a scalable way. In ad-
dition, the paper illustrates that trustworthy optimization proxies can deliver outcomes
that cannot be achieved by the two technologies independently, opening a new avenue
to overcome the limitations of optimization technologies mentioned earlier. It focuses
on continuous optimization and the methodological contributions are illustrated with
applications in power systems. Applications of optimization proxies in supply chains,
manufacturing, and transportation, where the optimization problems contain discrete
variables, can be found in [12, 17, 30, 3].

2 Optimization proxies

A high-level outline of the architectures of optimization proxies is shown in Figure 9.1.
Optimizationproxies combine a predictive component (typically a deepneural network)
that produces an approximation p̃ with a repair layer that transforms p̃ into a feasible
solution p̄, that is, p̄ satisfies hx(p̄) = 0 & gx(p̄) ≥ 0. In a first approximation, the re-
pair layer can be thought of as a projection of p̃ into the feasible space of the optimiza-
tion problem. It could be computed for instance using the following optimization model
[26]:

p̄ = argmin
p
‖p − p̃‖ subject to hx(p) = 0 & gx(p) ≥ 0

In practice, however, there are limitations with this approach:
– The projection may be computationally expensive and the optimization proxy may

not bring significant benefits compared to the original optimization.



124 � P. Van Hentenryck

Figure 9.1: The architecture of optimization proxies.

– When training themodel end-to-end in the style of [9, 7], the projectionmayagain in-
troduce significant computational costs. Other approaches (e. g., [13, 25, 11]) assume
that a strictly feasible point is available, which is not always the case in practice.

As a result, whenever possible, it is preferable to design dedicated repair layers and
learning architectures to ensure fast training and inference times.

Differentiable programming
The repair layers of optimization proxies may rely on differentiable programming, a
generalization of deep neural networks that exploits Dynamic Computational Graphs
(DCGs). These DCGs can be automatically and transparently differentiated, making it
possible to train optimization proxies end-to-end efficiently. For illustration purposes,
consider a simplified version of the Economic Dispatch (ED) run by the Independent
Systems Operators (ISOs) in the United States:

min
p,ξth c(p) +Mth‖ξth‖1 (9.1a)

s. t. e⊤p = e⊤d, (9.1b)

0 ≤ p ≤ p̄, (9.1c)

f − ξth ≤ Φ(p − d) ≤ ̄f + ξth, (9.1d)

ξth ≥ 0. (9.1e)

The goal of the ED optimization is to find a generator dispatch thatminimizes generation
costs and satisfies the power balance, reserve, and generator constraints. (The reserve
constraints are omitted here for simplicity). Objective (9.1a) minimizes the generation
costs and the violations of the line thermal limits. Constant Mth is a large coefficient
to ensure that these constraints are almost always satisfied. Constraints (9.1b) capture
the global power balance and Constraints (9.1c) enforce minimum and maximum lim-
its on each generator energy. Constraints (9.1d) express the thermal constraints on each
branch using a power transfer distribution factor representation. As traditional in elec-
tricitymarkets in the US [14, 15], the thermal constraints are soft constraints, that is, they
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can be violated but doing so incurs a (high) cost. By virtue of being a regression, the ap-
proximation p̃ in the proxy does not satisfy the power balance constraint. The repair
layer however uses ideas from control systems, and scales all generators proportion-
ally, up or down, to obtain a feasible solution p̄ as follows:

p̄ = {
(1 − η↑)p̃ + η↑g if 1⊤p̃ < 1⊤d
(1 − η↓)p̃ + η↓g otherwise

where η↑ and η↓ are defined as
η↑ = 1⊤d − 1⊤p̃

1⊤g − 1⊤p̃ , η↓ = 1⊤p̃ − 1⊤d
1⊤p̃ − 1⊤g

and g and g are the lower and upper bounds on the generators. This repair layer is
differentiable almost everywhere and can thus be naturally integrated in the training
of the machine learning model. The optimization proxy, which is depicted in Figure 9.2
for the ED problem with reserve constraints, guarantees feasibility during training and
inference.

Figure 9.2: The optimization proxy for the economic dispatch problem.

More precisely, the optimization proxy is a differentiable program Φ̃θ that can be
trained end-to-end using self-supervised learning. Φ̃θ can be trained using stochastic
gradient descent: Its loss function

c(p̂) +Mth
󵄩󵄩󵄩󵄩 ̂ξth
󵄩󵄩󵄩󵄩1

is backpropagated through the repair layers to adjust the parameters θ of the neural
network. Once trained, the resulting differentiable program Φ̃θ∗ with tuned parameters
θ∗ can be used at inference time to produce a feasible solution Φ̃θ∗ (x) in milliseconds
for any instance x [5].
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Primal-dual learning
Another approach to find feasible solutions is to develop optimization proxies that adapt
traditional optimization algorithms to the learning context. Consider the constrained
optimization problem:

argmin
p

fx(p) subject to hx(p) = 0,

wherex represents instance parameters that determine the objective function fx and the
equality constraintshx. TheAugmented LagrangianMethod (ALM) solves unconstrained
optimization problems of the form

fx(p) + λ
Thx(p) +

ρ
2
1⊤hx(p)2, (9.2)

where ρ is a penalty coefficient and λ are the Lagrangian multiplier approximations.
These multipliers are updated using the rule

λ← λ + ρhx(p). (9.3)

Primal-Dual Learning (PDL) [20] jointly learns two neural networks: a primal neural
network Pθ that learns the input/output mapping of the ALM unconstrained optimiza-
tions and a dual network Dϕ that learns the dual updates. The overall architecture of
PDL is shown in Figure 9.3. At each iteration, the primal learning step updates the pa-
rameters θ of the primal network while keeping the dual network Dϕ fixed. After com-
pletion of the primal learning, PDL applies a dual learning step that updates the pa-
rameters ϕ of the dual network Dϕ. The training of the primal network uses the loss
function

ℒp(p|λ, ρ) = fx(p) + λ
Thx(p) +

ρ
2
1⊤hx(p)2,

which is the direct counterpart of the unconstrained optimization (9.2). The dual learn-
ing training uses the loss function

ℒd(λ|p, λk , ρ) =
󵄩󵄩󵄩󵄩λ − λk + ρhx(p)

󵄩󵄩󵄩󵄩,

which is the direct counterpart of the update rule for the Lagrangian multipliers of the
ALM (9.3). These two steps, that is, the training of the primal and dual networks, are it-
erated in sequence until convergence. Observe that PDL is self-supervised and does not
require labeled data. PDL has been applied to preventive Security-Constrained Optimal
Power Flow (SCOPF) problems with automatic primary response [19], an application
which cannot be solved by state-of-the-art optimization and is discussed later in the
paper.
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Figure 9.3: The architecture of primal-dual learning (from [20]).

3 Quality guarantees

An ideal outcome in optimization practice is to produce a pair of primal and dual so-
lutions with a small duality gap. Optimization proxies also have the ability to find dual
feasible solutions for many convex optimization problems arising in engineering, thus
providing a quality guarantee to any primal solution delivered by another optimization
proxy. In other words, it is possible to design two optimization proxies, that is, a pair
of primal and dual differentiable programs, that deliver primal and dual feasible so-
lutions respectively. To illustrate the dual optimization proxies, consider the following
linear program and its dual:

min cTx
s. t. Ax ≥ b

l ≤ x ≤ u

max bTy + lTλ − uTγ
s. t. yA − λ + γ = c

y, λ, γ ≥ 0

The formulation of the primal optimization reflects the fact that, in almost all engineer-
ing problems, the decision variables have lower and upper bounds. This is an important
property because it makes it possible to systematically restore feasibility in the dual
space. Indeed, the dual optimization proxy can predict y and then use λ and γ, that is,
the dual variables associated with the bound constraints, to obtain a dual feasible so-
lution. In other words, the dual optimization proxy predicts a subset of the variables
and its completion layer obtains a dual feasible solution by carefully assigning the duals
attached to the primal bound constraints. In fact, the optimal values for λ and γ admit a
closed-form solution [10]:

γ = |c − yA|+ and λ = |c − yA|−,
where |x|+ = max(0, x) and |x|− = max(0,−x) denote the positive and negative parts of
x ∈ ℝ. Themethodology underlying dual optimization proxies is illustrated in Figure 9.4.

Dual optimization proxies have first been proposed for the Second-Order Cone
Programming (SOCP) relaxation of the AC power flow equations in [21]. The completion
layer is particularly interesting in that paper: it uses properties of the dual optimal
solutions to determine how to complete the set of dual variables not predicted by the
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Figure 9.4: The structure of dual optimization proxies.

neural network. Again, the dual optimization proxy is a differentiable program that
can be trained end-to-end to produce feasible solutions at training and inference times.
Experimental results have shown that the resulting proxies can find near-optimal dual
feasible solutions. See also [24] for a generalization of this result to dual conic proxies.

More generally, a methodology to find quality guarantees for an optimization prob-
lem Φ can be summarized as follows:
1. Find a convex approximation Ψ to problem Φ.
2. Obtain the dual Ψd of Ψ.
3. Derive a dual optimization proxy Ψ̃d for Ψd .

Now, given an instance x, the pair ⟨Φ̃(x), Ψ̃d(x)⟩ provides a pair of primal and dual fea-
sible solutions.

4 Scalability

Optimization problems in engineering often have outputs of high dimensions, which
makes them quite different from traditional applications of machine learning. Interest-
ingly, given that they operate on physical or highly engineered infrastructures, there is
often significant structure in the output space. Figure 9.5 depicts the results of a Prin-
cipal Component Analysis (PCA) on the output space of an Optimal Power Flow (OPF),
where the x-axis represents the principal component ratio (i. e., the ratio of the number
of the principal components in use to the dimension of the optimal solution) and the
y-axis represents the explained variance ratio (i. e., the ratio of the cumulative sum of
eigenvalues of the principal components in descending order to the sum of the all eigen-
values). The analysis shows that an almost lossless compression can be achieved with a
few principal components. For instance, for the 13659_pegase test case, 1% of principal
components preserves 99.92% of information of the AC-OPF (OPF using an Alternative
Current (AC) formulation) optimal solutions.

These observations can be used to design optimization proxies that learn in a small
subspace of the principal components and then maps the solution into the original out-
put space, as shown in Figure 9.6. This approach, called Compact Optimization Learning
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Figure 9.5: Principal component analysis of optimal power flows (from [18]).

Figure 9.6: The structure of compact optimization
learning. The optimization proxy Rϕ predicts a small
subset z of the principle components from input x,
which are then mapped by the linear transformation
W into the actual output space p.

[18], dramatically reduces the number of parameters to fit during training. It allows for
the design of optimization proxies that learn optimal power flows for the largest elec-
trical power grids.

5 Compositionality
Optimization models often appear as components in other optimization models. This is
the case in decomposition techniques, bilevel optimization, and stochastic optimization
for instance. One interesting question is whether optimization proxies can be as com-
positional as traditional optimization models. A neural network with ReLU activation
functions can be encoded as a MIP, but this is not necessarily desirable given the result-
ing nonconvexities and computational challenges. An intriguing possibility is the use
of convex neural networks, or more precisely, Input-Convex Neural Networks (ICNNs).
A neural network with ReLU activation functions computes a convex function if all its
weights are constrained to be nonnegative. An input-convex neural network generalizes
the idea: it adds a first layer whose weights are unconstrained, and skip connections to
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all other “convex” layers. More precisely, the kth layer (k > 0) of an input-convex neural
network is of the form

xk = hk(xk−1) = ReLU(Wkxk−1 + Hkx0 + dk), (9.4)

where xk and xk−1 denote the outputs of layer k and k−1, x0 denotes the input of the
ICNN, dk is the bias vector, andWk , Hk are weight matrices. Skip-connections feed the
ICNN input x0 to each layer. The coefficients ofWk are nonnegative, whereas Hk may
take positive or negative values without affecting convexity [1]. Once trained, the input-
convex neural network defines a convex function and its gradients with respect to its
inputs, which meets the requirements of a number of applications. It has been shown
that input-convex neural networks can approximate the objective value of AC-OPF, its
second-order cone relaxation, and its DC approximation with high accuracy, opening
many promising avenues for practical applications [23]. For instance, Figure 9.7 com-
pares the accuracy of an ICNN and a regular ReLU-based neural networks for estimating
the objective value of the SOCP relaxation of the optimal powerflowon the RTEnetwork.

Figure 9.7: The performance of ICNNs on the SOCP relaxation of optimal power flow (from [23]).

When successful, a trained ICCN provides a high-fidelity approximation of the value
function of an optimization problem and its gradients with respect to the inputs. This
is exactly the functionalities needed by Benders decomposition (and its generalizations)
when applied to deterministic and stochastic optimization problems. The ICCN can then
replace a complex optimization subproblem to speed up these applications when only
the optimal sub-objective value and its gradients are needed. ICNNs should also beuseful
for bilevel optimization problems, although case studies are necessary to demonstrate
their benefits in these settings.

6 The impact of optimization proxies
Optimization proxies have the potential to transform various classes of applications for
which they may bring orders of magnitude improvements in efficiency. One such appli-
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cation is real-time risk-assessment of power systems. System operators are increasingly
worried about the operational and financial risks in energy grids, given the significant
growth in volatility coming from renewable sources of energy and the electrification
of the transportation infrastructure. They are interested in dashboards able to quantify
such risks in real time. Consider for instance the real-time risk-assessment framework
described in Figure 9.8, which runs a collection of Monte Carlo scenarios. For each sce-
nario, it is necessary to run 288 optimizations, one for every 5 minutes of the next 24
hours. These 288 optimizations for a specific scenario take about 15 minutes, and the
risk assessment platform needs to evaluate thousands of them. By replacing these opti-
mizations by a proxy, every scenario can now be evaluated in about 5 seconds [5]. It then
becomes possible to quantify asset-level, system-level, and financial risks in an electri-
cal power grid in real time. For instance, Figure 9.9 reports the probability of an adverse
event for the next 24 hours using the risk assessment framework E2ELR [4] that uses the
optimization proxies described earlier in this paper. It compares E2ELR with various
learning architectures that have been proposed in the past (e. g., DeepOPF, DC3) and the
ground truth (i. e., GRB) that denotes the risk assessment using a state-of-the-art opti-
mization solver. The left figure depicts the probability of an adverse event on the bal-
ance constraint: both the ground truth and E2ELR show no such event. In contrast, the
other methods systematically report potential adverse events, since they cannot guar-
antee feasibility of that constraint. The right figure shows the violations of the thermal
limit of a congested line. Again, E2ELR isolates the potential violations with great accu-
racy. Other methods report many false positives across the day.

Figure 9.8: A risk assessment framework with optimization proxies.
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Figure 9.9: Probability of an adverse event with a proxy-based risk assessment (from [4]).

Optimization proxies also have the ability to deploy optimization models that would
otherwise be too complex tomeet real-time requirements. By shiftingmost of the compu-
tational burden offline during training, optimization proxies provide a way to produce
high-quality solutions to optimization models that cannot be solved fast enough to meet
real-time constraints. An interesting example is the security-constrained optimal power
flow problem that captures the automatic primary response of generators in case of
transmission line or generator contingencies. The solving of the SCOPF on a real network
takes multiple hours, even using advanced optimization methods [27]. Interestingly, an
optimization proxy, called PDL-SCOPF, that mimics the column and constraint genera-
tion algorithm of [27] can be trained in reasonable time and produce high-quality solu-
tions inmilliseconds [19]. The training is self-supervised and uses the primal-dual learn-
ing methodology presented earlier. The overall architecture is depicted in Figure 9.10:
its repair layer, not only restores feasibility of the base (precontingency) dispatch, but
also uses a binary search that computes the responses of the contingency dispatches.
The resulting differentiable program, which uses a repair layer inspired by the original
column and constraint generation algorithm [27], computes sophisticated DCGs at each
iteration that are backpropagated to tune the primal fully connected network. On the

Figure 9.10: Primal-dual learning for security-constrained optimal power flow (from [19]).
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RTE network (6,515 buses), PDL-SCOPF can be trained in less than 3 hours, and produces
a feasible solution in 10 milliseconds with an optimality gap below 1%.

7 Conclusion

This article introduced the concept of trustworthy optimization learning, a methodology
to design optimization proxies that learn the input/output mapping of parametric opti-
mization problems. These optimization proxies are trustworthy by design: they compute
feasible solutions to the underlying optimization problems, provide quality guarantees
on the returned solutions, and scale to large instances. Optimization proxies are dif-
ferentiable programs that combine traditional deep learning technology with repair or
completion layers.

The article highlighted that such optimization proxies can be trained end-to-end
in a self-supervised manner and do not need a large collection of pre-solved instances.
It presented a methodology to produce quality guarantees by exploiting the bounds on
primal variables and convex optimization. The article also showcased the idea of primal-
dual learning that mimics, in a learning framework, existing augmented Lagrangian
methods to find solutions to complex nonlinear problems. The potential of input-convex
neural networks to provide learning building blocks was also discussed.

This fusion of machine learning and optimization has the potential to open new
applications for optimization technology. The article illustrated this potential on two
case studies. It showed that optimization proxies can replace optimization models in
risk assessment frameworks for energy systems in order to meet real-time constraints.
It also indicated that optimization proxies deliver near-optimal solutions to security-
constrained optimal power flow applications that are too challenging for practical uses
with existing technology.

There are many avenues for further research, as this area is still in its infancy. Dual
optimization proxies provide guarantees at inference time for a given instance, but it
would be beneficial to obtain formal worst-case guarantees after the learning phase
[28, 16]. This has been studied by various authors and additional work is needed for scal-
ing existing approaches [2, 29, 22, 31, 6]. Despite some successes (e. g., [12, 17, 30, 3]), combi-
natorial optimization problems and mixed continuous-discrete optimization problems
also raise significant challenges, as gradients are not available. Applications in stochastic
optimization and bilevel optimization also seem fertile areas for trustworthy optimiza-
tion learning.
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Abstract: Many existing Neural Network (NN) pruning approaches rely on either re-
training or inducing a strong bias in order to converge to a sparse solution throughout
training. A third paradigm, “compression-aware” training, aims to obtain state-of-the-art
dense models that are robust to a wide range of compression ratios using a single dense
training run while also avoiding retraining. We propose a framework centered around
a versatile family of norm constraints and the Stochastic Frank–Wolfe (SFW) algorithm
that encourage convergence to well-performing solutions while inducing robustness to-
wards filter pruning and low-rank matrix decomposition. Our method outperforms ex-
isting compression-aware approaches and, in the case of low-rank matrix decomposi-
tion, it also requires significantly less computational resources than approaches based
on nuclear-norm regularization. Our findings indicate that dynamically adjusting the
learning rate of SFW, as suggested by Pokutta et al. [57], is crucial for convergence and
robustness of SFW-trained models and we establish a theoretical foundation for that
practice.

Keywords: Compression aware training, neural networks, stochastic Frank–Wolfe,
pruning, constrained optimization
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1 Introduction

The astonishing success of Neural Networks (NNs) relies heavily on over-parameterized
architectures [79] containing up to billions of parameters. Consequently, modern net-
works require large amounts of storage and increasingly long, computationally inten-
sive training and inference times, entailing tremendous financial and environmental
costs [64]. To address this, a large body of work focuses on compressing networks, re-
sulting in sparse models that require only a fraction of memory or floating-point opera-
tions while being as performant as their dense counterparts. Recent techniques include
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the pruning of individual parameters [26, 24, 49, 8] or group entities such as convolu-
tional filters and entire neurons [46, 2, 51, 75], as well as classical matrix- or tensor-
decompositions [80, 65, 72, 48] in order to reduce the number of parameters.

A higher degree of sparsification typically leads to a degradation in predictive
power of the network. Addressing this, two main paradigms emerged: pruning after
training, like Iterative Magnitude Pruning (IMP) [26], is characterized by a three-stage
pipeline of regular (sparsity-agnostic) training followed by prune-retrain cycles that
are either performed once (One-Shot) or iteratively. The need for retraining to recover
pruning-induced losses is often considered to be an inherent disadvantage and compu-
tationally impractical [50, 20, 70, 49, 85]. Alternatively, pruning during training avoids
retraining by inducing strong inductive biases to converge to a sparse model at the end
of training [82, 13, 37, 50]. A drawback of such approaches is the necessity to train one
model per sparsity level, while IMP just needs one pretrained model to generate the
entire accuracy-vs.-sparsity frontier.

A third paradigm, being the focus of this work, emerges when no retraining is al-
lowed and training multiple times to generate the accuracy-vs.-sparsity tradeoff fron-
tier is prohibitive. Ideally, the optimization procedure is “compression-aware” [3, 56] or
“pruning-aware” [53], allowing to train once and then being able to compress to var-
ious degrees while keeping most of the performance without retraining (termed prun-
ing stability). Compression-aware training procedures are expected to yield state-of-the-
art dense models, which are robust to pruning without its hyperparameters being se-
lected for a particular level of compression. While many such methods employ SGD-
variants to discriminate between seemingly “important” and “unimportant” parame-
ters [20, 13, 19, 83], actively encouraging the former to grow and penalizing the latter,
an interesting line of research considers using optimizers other than SGD. An optimiza-
tion approach that is particularly suited is the first-order and projection-free Stochastic
Frank–Wolfe (SFW) algorithm [23, 7, 57, 66, 53]. While being used throughout various
domains of machine learning for its highly structured, sparsity-enhancing update di-
rections [39, 78, 12, 9], the algorithm has only recently been considered for promoting
sparsity in NN architectures.

Addressing the issue of compression-aware training, we propose leveraging the
SFW algorithm in conjunction with a family of norm constraints that actively encour-
age robustness to convolutional filter pruning and low-rank matrix decomposition.
Our approach, using the group-k-support norm and variants thereof [4, 58, 52], is able
to train state-of-the-art image-classification and semantic-segmentation architectures
on large data sets to high accuracy while biasing the network toward compression-
robustness. Similarly, motivated by the work of Pokutta et al. [57] and concurrent to our
work,Miao et al. [53] showed the effectiveness of k-sparse constraints, focusing solely on
unstructured weight pruning. Our approach generalizes the unstructured pruning case
and further mitigates existing convergence and hyperparameter stability issues. To the
best of our knowledge, our work is the first to apply SFW for structured pruning tasks.
In analyzing the techniques introduced by Pokutta et al. [57], we find that the gradient
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rescaling of the learning rate is important for obtaining high performing and pruning
stable models. We lay the theoretical foundation for this practice by proving the con-
vergence of SFW with gradient rescaling in the nonconvex stochastic case, extending
results of Reddi et al. [60].

Contributions
The contributions of our work can be summarized as follows:
1. We propose a constrained optimization framework centered around a versatile

family of norm constraints, which together with the SFW algorithm, produces
well-performing models that are robust toward filter pruning as well as low-rank
matrix decomposition. We empirically show that the proposed method is able to
perform on par with or better than existing approaches. In the decomposition case,
our approach can require significantly less compute resources than nuclear-norm
regularization based approaches.

2. As a special case, our derivation includes the unstructured pruning setting. We
show that our approach enjoys favorable properties when compared to the existing
k-sparse approach [57, 53].

3. We empirically show that the robustness of SFW-trained NNs can largely be at-
tributed to the usage of the gradient rescaling of the learning rate. To justify the
usage of gradient rescaling theoretically, we prove the convergence of SFW with
batch gradient dependent step size in the non-convex setting.

Related work
The Frank–Wolfe (FW) or conditional gradient algorithm [23, 44] is widely used in ma-
chine learning for handling complex structural requirements efficiently [39, 78, 22, 34,
55]. Lacoste-Julien [38] extended the convergence theory of FW to the nonconvex set-
ting, while Hazan and Luo [27] and Reddi et al. [60] provide convergence rates for the
stochastic variant of the algorithm (SFW). Accelerated variants include variance reduc-
tion approaches [27, 76, 63], adaptive gradients [16], and momentum [54, 14]. For a com-
prehensive review, see Braun et al. [9].

SFWhas also received increased interest for trainingNNswith studies exploring pa-
rameter constraints [59], SFWapplied for shallownetworks [71], NN-specific variants [7],
adversarial training [66], and achieving benchmark performances in image classifica-
tion [57]. While classical FW has been applied to sparsity problems inmachine learning,
few have explored its structure-enhancing benefits in deep learning. Grigas et al. [25] re-
move neurons from three-layer convolutional networks. Pokutta et al. [57] constrain the
parameters to lie within a k-sparse polytope, resulting in a large fraction having small
magnitude. Miao et al. [53] leverage this idea for unstructured pruning in the “once-
for-all” [10] pruning-aware training setting. We refer to Hoefler et al. [30] for a detailed
account of sparsification approaches.
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2 Methodology: compression-aware training
For x ∈ ℝn, we denote the ith coordinate of x by [x]i. The diagonal matrix with x on its
diagonal is denoted by diag(x) ∈ ℝn,n. For p ∈ [1,∞], the lp-ball of radius τ is denoted
by Bp(τ). ‖x‖0 denotes the number of nonzero components of x ∈ ℝ

n. For any compact
convex set 𝒞 ⊆ ℝn, let us further denote the l2-diameter of 𝒞 by𝒟(𝒞) = maxx,y∈𝒞 ‖x − y‖2.
As usual, we denote the gradient of a function ℒ at θ by ∇ℒ(θ) and the batch gradient
estimator by ∇̃ℒ(θ). We abuse notation and apply univariate functions to vectors in an
elementwise fashion, for example, |x| denotes the vector |x| := (|x1| . . . , |xn|). If not indi-
cated otherwise, we treat a tensor x of a network as a vector x ∈ ℝn.

Constrained optimization using stochastic Frank–Wolfe
We aim at optimizing the parameters θ of an NN while enforcing structure-inducing
constraints by considering the constrained finite-sum optimization problem

min
θ∈𝒞 ℒ(θ) = min

θ∈𝒞 1
m

m
∑
i=1 ℓi(θ), (10.1)

where the per-sample loss functions ℓi are differentiable in θ and 𝒞 is a compact, convex
set. When using SGD, imposing hard constraints requires a potentially costly projection
back to 𝒞 to ensure feasibility of the iterates [15]. An alternative is the Stochastic Frank–
Wolfe (SFW) algorithm [23, 7, 57], being projection-free and perfectly suited for yielding
solutions with structural properties. To ensure feasibility, SFWdoes not use the gradient
direction for its updates but rather chooses a boundary point or vertex of 𝒞 that is best
aligned with the descent direction. In each iteration t, SFW calls a linear minimization
oracle (LMO) on the stochastic batch gradient ∇t = ∇̃ℒ(θt) to solve

vt = argmin
v∈𝒞 ⟨v, ∇t⟩, (10.2)

which is then used as to update the parameters using the convex combination

θt+1 ← (1 − ηt)θt + ηtvt , (10.3)

where ηt ∈ [0, 1] is a suitable learning rate. If the initial parameters θ0 are ensured to lie
in the convex set 𝒞, then the convex update rule ensures feasibility of the parameters
in each iteration. Solving Equation (10.2) is often much cheaper than performing a pro-
jection step [34, 15], in many cases even admitting a closed-form solution. If 𝒞 is given
by the convex hull of (possibly infinitely many) vertices, a so-called atomic domain, then
the solution to Equation (10.2) is attained at one of these vertices.

Inducing structure through the feasible region
Apart from constraining the parameters to satisfy a certain norm constraint, for exam-
ple, a bounded Euclidean norm as in the case of weight decay, the unique update rule
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Equation (10.3) of the SFW algorithm can be used to induce structure through the feasi-
ble region. A structured feasible regionwith update directions vt satisfying highly struc-
tural constraints, cannot only enhance generalization [59, 57] but also induce desirable
network properties like sparsity. A recent example is the k-sparse polytope introduced
by Pokutta et al. [57] as a generalization of the l1-ball B1. The k-sparse polytope 𝒞 = Pk(τ)
is defined as the convex hull of vectors v ∈ {0,±τ}nwith atmost k nonzero entries, which
form the solution set to Equation (10.2). For small k, vt exhibits a high degree of sparsity
and by Equation (10.3) only k parameters are activated while all remaining parameters
are discounted strongly, encouraging convergence toward sparse solutions [57, 53].

In the following,we propose leveraging a suitable family of norm constraints, which
arise naturally from l2-regularization with sparsification requirements. In general, our
goal is to choose the constraints to result in sparse update directions when applying the
update rule of Equation (10.3), discriminating between predefined groups of parameters
resulting in a decay on seemingly “unimportant” groups of parameters while allowing
others to grow. Similarly to Pokutta et al. [57] and Miao et al. [53], we control the degree
of sparsification with a tunable hyperparameter k such that the update vectors vt are
k-sparse, that is, nonzero at most k entries. However, existing approach are limited to
the sparsification of NNs on an individual-weight basis (i. e., unstructured pruning) and
may lead to hyperparameter and convergence instability. We construct constraints for
structured sparsification, while also including the unstructured case. In addition, we
ensure that (similar to classical SGD), the individual parameters receive updates corre-
sponding to the magnitude of the gradient, enabling better convergence independent of
the choice of k.

2.1 Inducing group sparsity to NNs

Given a disjoint partition of the network’s parameters into groups G ∈ 𝒢, we define the
group-k-support norm [58] ball of radius τ as

𝒞𝒢k (τ) = conv{v | ‖v‖0,𝒢 ≤ k, ‖v‖2 ≤ τ}, (10.4)

where ‖v‖0,𝒢 is the smallest number of groups that are needed to cover the support
of v, that is, its nonzero entries. In other words, the vertex set of 𝒞𝒢k (τ) is given by all
(vectorized) parameters for which the Euclidean norm is bounded by τ and where at
most k groups contain nonzero entries. Here, the definition of a set of groups 𝒢 is left
abstract, as it could be any disjoint partition of the parameters, that is each parameter
wmust lie in exactly one group w ∈ G ∈ 𝒢.

Choosing 𝒢 as the set of all convolutional filters of the lth convolutional layer, we
can now state the solution to Equation (10.2) as follows. For a filter G ∈ 𝒢, let ‖x‖G be
the l2-norm of x ∈ ℝn when only considering elements of G. Given the batch gradient
of the lth convolutional layer ∇lt , let G1, . . . ,Gk be the k groups or filters with the largest
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gradient l2-norm ‖∇
l
t‖Gi and let 𝒞 := H = ⋃

k
i=1 Gi. The solution to Equation (10.2) is then

given by

[vt]i = {
−τ[∇lt ]i/‖∇

l
t‖H if i ∈ H ,

0 otherwise.

A proof can be found in Rao et al. [58]. Originally, the norm was motivated by the group
lasso [74], which is common in the statistics and classical machine learning literature.
To the best of our knowledge, these constraints have not been previously applied to
deep NNs. SFW applied to 𝒞 := 𝒞𝒢k (τ) updates the k filters whose gradient entries corre-
spond to those of fastest loss decreasewhile accounting for the distribution ofmagnitude
among them instead of using the samemagnitude for all parameters. Due to the convex
update rule, the weights of the remaining filters are decayed, eventually resulting in
few of them not being close to zero and thus making the trained network robust toward
filter pruning. Figure 10.4 in the Appendix A shows how different values of k as a frac-
tion of the overall number of filters influence the relative distance to the prunedmodel,
indicating that k allows controlling the degree of robustness toward sparsification.

Unstructured sparsity as a special case
Our approach is easily extendable to the pruning of other groups, such as neurons. A spe-
cial case arises when each weight is a group on its own group, naturally extending the
above rationale to unstructured pruning. One then recovers the k-support norm [4], be-
ing a suitable candidate for comparison to the k-sparse polytope approach leveraged by
Miao et al. [53]. The k-sparse approach suffers from twodrawbacks, both beingmitigated
by our proposed method.

First of all, all activated parameters will receive an update of same magnitude,
namely τ. This hinders convergence, especially when k is larger. Consider, for example,
the worst-case scenario in which k equals the number of parameters n, then every sin-
gle parameter of the network will receive an update of magnitude τ, essentially losing
the entire information of the gradient apart from the entrywise sign. On the contrary,
the k-support normwith k = nwill lead to optimization over the l2-ball, yielding the de-
fault and best converging case of NN training. Figure 10.5 in the Appendix A shows the
facilitated convergence of our approach,which is nonetheless highly robust towards un-
structured pruning. The k-sparse approach performs well in the medium to high spar-
sity regime, but quickly collapses for higher compression rates. A clear advantage of
k-support norm ball constraints is that SFW is able to obtain this performance in the
high compression regime while not suffering from underperformance before pruning.

Second, Pokutta et al. [57] and Miao et al. [53] specify the desired l2-diameter 𝒟 of
𝒞 = Pk(τ) to control the regularization strength and then in turn choose the radius τ
such that 𝒟(Pk(τ)) = 𝒟. Defined this way, τ depends on k as τ = 𝒟/(2√k). This is coun-
terintuitive, since k controls both the amount of activated parameters as well as the
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magnitude of the parameter updates, resulting in unnecessarily coupled parameters.
As opposed to the k-sparse polytope, the diameter of the k-support norm ball does not
depend on k, and hence decouples the parameters k and τ as desired. Figure 10.6 in the
Appendix A shows the successful decoupling of the radius and k. The k-support norm
ball is less sensitive to hyperparameter changes and obtains better results throughout a
wide range of hyperparameter configurations than its k-sparse counterpart.

2.2 A different sparsity notion: pruning singular values

So far,we considered one particular notion of sparsity, namely that of the existence of ze-
ros in a matrix or tensor. Instead of removing individual parameters or groups thereof,
networks can also be compressed after training by decomposing parameter matrices
into a product of smaller matrices, allowing one to replace a layer by two consecutive
ones that require a drastically smaller amount of FLOPs at inference [18]. The key in-
gredient is the truncated singular value decomposition (SVD), where setting the small-
est singular values to zero leads to an optimal low-rank approximation by virtue of
the Eckart–Young–Mirsky theorem. More precisely, given a rank r parameter matrix
𝒲 ∈ ℝn,m with singular values σ = (σ1, . . . , σr) and SVD U ∈ ℝn,r , Σ ∈ ℝr,r , V ∈ ℝm,r , the
k-SVD of𝒲 approximates𝒲 as

𝒲 = UΣVT =
r
∑
i=1 uiσivTi ≈ k

∑
i=1 uiσivTi = UkΣkVT

k ,

where themagnitude of “pruned” singular values quantifies the error in approximation.
A detailed account of this approach can be found in the Appendix A. A natural approach
to ensure robustness to matrix decomposition is hence based on penalizing the nuclear
norm ‖𝒲‖∗ = ‖σ(𝒲)‖1 [65, 3], which requires the costly computation of the full SVD in
each iteration.

When constraining the parameters to have bounded nuclear norm instead of penal-
izing it, the LMO solution to Equation (10.2) utilized by SFW can be computed efficiently
by requiring only the first singular value-vector-pair [34]. Extending this notion to con-
sider the k largest singular pairs, we propose utilizing the spectral-k-support norm [52],
for which the ball of radius τ is defined as

𝒞σk (τ) = conv{𝒲 | rank(𝒲) ≤ k,
󵄩󵄩󵄩󵄩σ(𝒲)
󵄩󵄩󵄩󵄩2 ≤ τ}, (10.5)

where ‖σ(𝒲)‖2 is the 2-Schattennorm of 𝒲 , being the l2-norm of the vector of singu-
lar values σ(𝒲) of matrix 𝒲 ∈ ℝn×m [34]. The following lemma allows to efficiently
compute the LMO solution to batch gradient ∇t ∈ ℝ

n×m.
Lemma 10.1. Let 𝒲t = −τ‖σ(Σk)‖

−1
2 UkΣkV

T
k ∈ 𝒞σk (τ), where UkΣkV

T
k is the truncated

k-SVD of ∇t such that only the k largest singular values are kept. Then𝒲t is a solution to
Equation (10.2).
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A proof can be found in the Appendix A. Note that similar to the group-k-support
norm ball taking the magnitude of k largest gradient groups into account, the scaling by
Σk‖σ(Σk)‖

−1
2 takes the magnitude of k largest singular values into account. In Section 3.2,

we study the capabilities of SFWwhen constraining the spectral-k-support norm of con-
volutional tensors, which account for the majority of FLOPs at inference [26]. While
there exist higher-order generalizations of the SVD to decompose tensors directly [cf.
42, 35], we follow the approach of interpreting the tensor 𝒲 ∈ ℝn×c×d×d with c in-
channels, n convolutional filters, and spatial size d as an (n × cd2)-matrix [3, 32].

3 Experimental results
We trained convolutional architectures like Residual Networks [28] andWide Residual
Networks [77] on data sets including ImageNet-1K [62], TinyImageNet [41], CIFAR-100,
CIFAR-10 [36], and PSPNet [81] on CityScapes [17]. Details on training setups and grid
searches are in the Appendix A, following the pruning guidelines of Blalock et al. [8]. We
averaged results over two seeds, reportingmin-max bands for plots and standard devia-
tions for tables. We used 10% of the training data as a validation set for hyperparameter
selection. Our code is available at github.com/ZIB-IOL/compression-aware-SFW.

In the compression-aware setting, we are interested in finding single hyperparam-
eter configurations that performwell under a wide variety of compression rates, that is,
without tuning hyperparameters for each sparsity. When comparing the performance
for multiple compression rates at once, we have to decide how to select the “best” hy-
perparameter configuration. To that end, we select the configuration for each method
that results in the highest on-average validation accuracy among all sparsities at stake.

3.1 Compression awareness: structured filter pruning

We apply the PFEC method [46] for convolutional filter pruning, sorting filters by their
l1-norm and removing the smallest to achieve desired compression, maintaining uni-
form sparsity across layers. Unlike Li et al. [46], we adopt a One-Shot approach without
retraining. Our approach, SparseFW, is compared to the natural baseline of momentum
SGD training and several recent filter pruning methods: SSL [68] uses a group penalty,
GLT [2] applies a group-lasso followed by soft-thresholding, ABFP [19] balances filter
penalization and growth, and SFP [29] allows filter recovery by soft pruning after each
epoch. SparseFW introduces group-k-support norm constraints, with hyperparameters
for the feasible region’s radius and k, specifying the fraction of filters to activate in each
convolutional layer per iteration. Nonconvolutional layers are optimized via SGD using
default hyperparameters.

Figure 10.1 shows the accuracy-vs.-sparsity tradeoff for ResNet-50 trained on
ImageNet-1K. SparseFW is able to converge to solutions that are robust to a wide range
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of filter pruning ratios, maintaining performance even at high sparsities, unlike most
methods except ABFP. Detailed results for other datasets and architectures are in the
Appendix A.

Figure 10.1: Accuracy-vs.-sparsity tradeoff curves for
structured convolutional filter pruning on ImageNet.
The plots show the parameter configuration with
highest test accuracy after pruning when averaging
over all sparsities at stake.

3.2 Compression awareness: low-rank decomposition

We compare SparseFW with spectral-k-support norm constraints to other approaches
aiming for robustness to tensor decomposition. At the end of training, we prune the
smallest singular values of each layer, replacing it with two layers matrix as described
in the Appendix A. This corresponds to a uniform pruning approach, noting that there
exist other ways to determine per-layer pruning ratios [48].

Apart from the standard momentum SGD with weight decay baseline, we examine
low-rankmethods likeNUC [18] and SVDEnergy [3], which use nuclear norm regulariza-
tion and singular value thresholding [11], respectively. Note that while the authors pro-
posed to apply the thresholding after each epoch, we found it to be more effective when
applying it after every iteration, however, at the cost of decreased efficiency.TRP [72] sets
parameters to a low-rank representationperiodically, the singular value pruning thresh-
old being a hyperparameter. Force Regularization (FR) [69] forces convolutional filters
to lie in a lower-dimensional subspace without having to compute the nuclear norm.

Figure 10.2 shows post-pruning test performance (accuracy or IoU) for WideRes-
Net on CIFAR-100, PSPNet on CityScapes, and ResNet-50 on TinyImageNet across sparsity
levels, indicating the fraction of pruned singular values. SparseFW consistently outper-
forms others, with minimal accuracy loss at high sparsity and negligible degradation at
medium sparsity. For semantic segmentation, SparseFW reduces the IoU impact, how-
ever, also resulting in larger decreases, which we attribute to the usage of a pretrained
backbone. Again, the performances correspond to the on-average best hyperparameter
configuration.

Low-rank methods typically opt for either high-accuracy but costly singular value
decomposition or more efficient, albeit less precise, approximations [73]. SparseFW
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Figure 10.2: Test performance-vs.-sparsity tradeoff curves for low-rank tensor decomposition on CIFAR100
(left), CityScapes (middle), and TinyImageNet (right).

addresses this tradeoff by focusing on the most significant singular vector-value pairs
through k-SVD, optimizing for both precision and efficiency. The full SVD of an n × m
matrix demands𝒪(nmmin(n,m)) operations, but computing k-SVD is more efficient for
small k ≤ min(n,m) [1]. Table 10.1 demonstrates SparseFW’s superior images-per-second
throughput compared to methods like NUC, SVDEnergy, and TRP, which all require full
SVD in each iteration, using consistent hardware (24-core Xeon Gold with Nvidia Tesla
V100 GPU). FR, avoiding SVD, nearly matches regular training’s efficiency but generally
underperforms. SparseFW’s throughput advantage is dependent on k, with efficiency
reported for the k given by the on-average best performing hyperparameter configura-
tion.We emphasize thatweused a naive implementation of the k-SVDpowermethod [6],
noting that there aremore sophisticated and faster algorithms to compute the k-SVD [1].

Table 10.1: Training images-per-second throughput of the low-rank methods in comparison to the baseline
of regular training.

# training images per second

Method CIFAR-10 CIFAR-100 TinyImageNet

Baseline 5664 1197 756
SparseFW (ours) 1156 372 338
NUC 566 204 160
SVDEnergy 493 174 98
FR 4397 1140 742
TRP 565 199 159

3.3 The impact of the learning rate schedule

The learning rate ηt ∈ [0, 1] determines the length of the parameter update relative to
the size of the feasible region. This coupling between regularization strength and step
size makes the tuning of the learning rate cumbersome. To decouple the tuning of the
learning rate from the size of the feasible region, Pokutta et al. [57] propose two different
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learning rate rescalingmechanisms: diameter rescaling and gradient rescaling, the latter
being used throughout our experiments in the preceding sections. While the former
divides the learning rate by the l2-diameter 𝒟(𝒞) of 𝒞, gradient rescaling rescales the
update direction length to that of the batch gradient, that is, η̂t := ηt‖∇t‖2/‖vt − θt‖2.

The impact of normalization schemes on convergence and pruning robustness re-
mains largely unexplored, especially since SFW’s learning rate directly influences the
decay of nonactivated parameters. Figure 10.3 demonstrates that gradient rescaling sur-
passes diameter rescaling inmaintaining test accuracy both before and aftermagnitude-
pruningwhen appliedwith k-support normconstraints.We interpret this result in detail
in the Appendix A. The following theorem lays the theoretical foundation by showing
that incorporating the batch gradient norm into the learning rate leads to convergence
of SFW at the specified rate, that is, the expected product of exact gradient norm and the
Frank–Wolfe Gap

𝒢(θt) = maxv∈𝒞 ⟨v − θt ,−∇L(θt)⟩,
being the measure of convergence [60], decays at a rate of 𝒪(T−1/2). The precise state-
ment as well as a proof can be found in Appendix A.5.

Figure 10.3: ResNet-18 on CIFAR-10: For each prun-
ing amount, the best hyperparameter configuration
w. r. t. the accuracy after pruning (pruned) is de-
picted. The corresponding value before pruning
(dense) is depicted as a dashed line.

Theorem 10.2 (Convergence of gradient rescaling, informal). Let L be M-smooth, ℓ be
G-Lipschitz and ηt = ‖∇t‖η for appropriately chosen η and all 0 ≤ t < T. If θa is chosen
uniformly at random from the SFW iterates {θi}i<T , then we have 𝔼 [𝒢(θa) ⋅ ‖∇L(θa)‖] =
𝒪(T−1/2), where 𝔼 denotes the expectation w. r. t. all the randomness present.
4 Discussion and outlook

We proposed to utilize a versatile family of norm constraints to, together with the SFW
algorithm, train deep NNs to state-of-the-art dense performance as well as robustness to
compression for awide range of compression ratios. Our experimental results show that
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SFW can leverage highly structured feasible regions to avoid performance degradation
when performing convolutional filter pruning or low-rank tensor decomposition. For
the latter, SFW can significantly outperform similar methods both in terms of accuracy
and efficiency. As a special case, our proposed approach includes the unstructured prun-
ing case and we showed how utilizing the proposed norm can mitigate the drawbacks
of and improve upon the results of Miao et al. [53]. We hope that our findings regarding
the importance of the learning rate rescaling as well as Theorem 10.2 stimulate further
research in the direction of compression-aware training with SFW.

We emphasize that our results hold primarily in the setting that we described,
namely that of compression-aware training, where the training is sparsity-agnostic and
retraining is prohibitive. Our goal was to show the versatility of SFW, which provides
a suitable algorithmic framework for enforcing structure throughout training. If the
sparsity can be incorporated into training, significantly more complex approaches can
be applied.

Appendix A
In the following, we detail the technical details, hyperparameter grids, additional ex-
periments as well as proofs of the theoretical results. Since the initial version of this
paper, there has been follow-up work to improve the performance of pruned models in
the case where retraining is feasible. We show that weight-averaging multiple models
retrained from the sameprunedbasemodel, albeitwith varyinghyperparameter config-
uration, yields sparse models with enhanced generalization capabilities [86]. Similarly,
we address the issue of retraining in a resource-constrained setting by retraining only a
small, but critical subset of the parameters without performance degradation compared
to full retraining [84].

A.1 Technical details

We employmomentum SFW [57] and local constraints, that is, we use a separate feasible
region per layer. Note that the expressivity of the network can be severely limited if τ
is chosen too small. As suggested by Pokutta et al. [57], we do not tune the radius τ of
the feasible region 𝒞(τ) directly but rather specify a scalar factor w > 0 and set the
l2-diameter of the feasible region of each layer as

𝒟 = 2w𝔼(‖θ‖2),

where the expected l2-norm of the layer parameters θ are simply estimated by comput-
ing the mean among multiple default initializations. 𝒟 is then in turn used to compute
τ such that 𝒟(𝒞(τ)) = 𝒟. This allows us to control the l2-regularization strength of each
layer.We do not prune biases and batch-normalization parameters, as they only account
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for a small fraction of the total number of parameters yet are crucial for obtaining well-
performing models [21]. Apart from the direct comparison between diameter and gra-
dient rescaling, we use gradient rescaling throughout all experiments.

While there exist multiple successful strategies to retrain after pruning [61, 40, 85],
the compression-aware training setting requires the methods to be compared directly
after pruning without retraining. However, similar to Li et al. [45] and Peste et al. [56],
we notice that the validation accuracy after pruning can be significantly increased by
recomputing the batch-normalization [33] statistics, which have to be recalibrated since
the preactivations of the hidden layers are distorted by pruning. To that end, we recom-
pute the statistics on the train data set after pruning and note that in practice only a
fraction of the training data is necessary to recalibrate the batch-normalization layers.

In the following, we state technical details of our approaches to structured and un-
structured pruning, as well as low-rank matrix decomposition.

A.1.1 Structured filter and unstructured pruning

As outlined in the main section, we follow the approach of Li et al. [46] and remove
the convolutional filters with smallest l1-norm. Since each filter might correspond to
a different number of parameters, depending on the convolutional layer it is located
in, the l1-norm of filters is incomparable among different layers. We hence follow the
local approach and prune the same amount in each convolutional layer until the desired
sparsity is met. Since this will lead to the same theoretical speedup, independent of the
algorithm at stake, we omit these values.

For unstructured pruning, we employ the usual magnitude pruning, that is, we re-
move the parameters with smallest absolute value until we meet the desired level of
compression. As we found it to work best among all algorithms, we prune globally, that
is, we select the smallest weights among all network parameters eligible for pruning.We
note however that there exists several different magnitude-based selection approaches
[cf., e. g., 26, 24, 43].

A.1.2 Low-rank matrix decomposition

We describe the rationale behind the decomposition of matrices with (preferably) low
rank. Low-rank matrix decomposition is centered around the idea of truncating the
singular value decomposition (SVD). Let θ = UΣVT = ∑ri=1 uiσivTi be the SVD of rank-r
matrix θ ∈ ℝn×m, whereui, vi are the singular vectors to singular valuesσ1 ≥ ⋅ ⋅ ⋅ ≥ σr > 0.
The goal is now to find the best low-rank approximation θ̂ ∈ ℝn×m to θ, namely to solve

min
rank(θ̂)≤t󵄩󵄩󵄩󵄩θ − θ̂󵄩󵄩󵄩󵄩F . (10.6)

By the Eckart–Young–Mirsky theorem, a minimizer is given by UtΣtV
T
t := ∑

t
i=1 uiσivTi ,

where the smallest t − r singular values are truncated. If the singular values now decay
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rapidly, that is, only the first t singular values contain most of the energy of θ, then this
approximation can be applied as a post-processing step without much change in the
output of a linear layer [18]. Consequently, a natural approach to ensure stability w. r. t.
matrix decomposition is based on encouraging the parametermatrices to have low-rank
throughout training, most prominently done by regularizing the nuclear norm of the
weight matrix [65, 3]. If t is small, then the number of FLOPs can be drastically reduced
by decomposing a layer into multiple layers. For linear layers this is straightforward:
let (θ, β) be weights and biases of a linear layer with SVD of θ as above. For input x, the
layer computes

θx + β = UΣVTx + β ≈ Ut(ΣtV
T
t x) + β, (10.7)

being interpretable as the consecutive application of two linear layers: (ΣtV
T
t , 0) fol-

lowed by (Ut , β), possibly reducing the number of parameters from nm to t(n + m).
For a four-dimensional convolutional tensor θ ∈ ℝn×c×d×d , where c is the number of
in-channels, n the number of convolutional filters, and d is the spatial size, we cannot
directly construct the SVD. However, we follow an approach similar to those of Alvarez
and Salzmann [3] and Idelbayev and Carreira-Perpinán [32], interpreting θ as a (n× cd2)
matrix, whose truncated SVD decomposition allows us to replace the layer by two con-
secutive convolutional layers, the first one having t filters, c channels, and spatial size d,
followed by n filters, t channels, and spatial size of one.

A.2 Experimental setup and extended results

Table 10.2 shows the exact training configurations we used throughout all experiments,
where we always relied on a linearly decaying learning rate, as suggested by Li et al.
[47]. In the following, we state the hyperparameter grids used as well as full tables and
missing plots.

Table 10.2: Exact training configurations used throughout the experiments. For all data sets and archi-
tectures we use a linear decay of the learning rate starting from 0.1. The dense test accuracy refers to the
optimal accuracy we achieve using momentum SGD with weight decay. For the semantic segmentation task
we report the Intersection-over-Union (IoU) on the test set.

Data set Network (number of
weights)

Epochs Batch size Momentum Dense test
accuracy/IoU

CIFAR-10 ResNet-18 (11 Mio) 100 128 0.9 95.0% ±0.04%
CIFAR-100 WideResNet-28x10 (37 Mio) 100 128 0.9 76.7% ±0.2%
TinyImagenet ResNet-50 (26 Mio) 100 128 0.9 64.9% ±0.1%
ImageNet ResNet-50 (26 Mio) 90 1024 0.9 75.35% ±0.1%
CityScapes PSPNet (68 Mio) 200 12 0.9 58.5 IoU ±0.5
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A.2.1 Structured filter pruning

If not specified otherwise, we use weight decay values of 1e-4, 5e-4. Tables 10.3, 10.4, 10.5
and 10.6 compare the filter pruning approaches for CIFAR-10, CIFAR-100, TinyImagenet
and ImageNet, respectively.

CIFAR-10 hyperparameter grids
– SparseFW: k ∈ {0.1, 0.2, 0.3}, l2-multiplier w ∈ {10, 20, 30}.
– SSL: Filter group penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3).
– GLT: Filter group penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3), lasso tradeoff

(0, 0.5).
– ABFP: k ∈ {0.1, 0.2, 0.3, 0.4}, filter group penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3,

5e-3).
– SFP: k ∈ {0.5, 0.6, 0.7, 0.8}, sparsification start epoch {0, 10, 25}.

CIFAR-100 hyperparameter grids
– SparseFW: k ∈ {0.15, 0.2, 0.25, 0.3}, l2-multiplier w ∈ {20, 30, 40}.
– SSL: Filter group penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3).
– GLT: Filter group penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3), lasso tradeoff

(0, 0.5).
– ABFP: k ∈ {0.1, 0.2, 0.3, 0.4}, filter group penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3,

5e-3).
– SFP: k ∈ {0.6, 0.7, 0.8, 0.9}, sparsification start epoch {0, 10, 25}.

TinyImagenet hyperparameter grids
– SparseFW: k ∈ {0.15, 0.2, 0.25, 0.3}, l2-multiplier w ∈ {20, 30, 40}.
– SSL: Filter group penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3).
– GLT: Filter group penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3), lasso tradeoff

(0, 0.5).
– ABFP: k ∈ {0.1, 0.2, 0.3}, filter group penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3).
– SFP: k ∈ {0.6, 0.7, 0.75, 0.8, 0.85, 0.9}, sparsification start epoch {0, 20, 50}.

Imagenet hyperparameter grids
If not specified otherwise, we use weight decay values of 1e-4 for all algorithms.
– SparseFW: k ∈ {0.15, 0.2, 0.25, 0.3, 0.35}, l2-multiplier w ∈ {20, 25, 30, 35}.
– SSL: Filter group penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3).
– GLT: Filter group penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3), lasso tradeoff

(0, 0.5).
– ABFP: k ∈ {0.1, 0.2, 0.3}, filter group penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3).
– SFP: k ∈ {0.6, 0.7, 0.75, 0.8, 0.85, 0.9}, sparsification start epoch {0, 20, 50}.
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Figure 10.4: ResNet-18 on CIFAR-10: Relative dis-
tance to filter pruned model corresponding to 70%
sparsity when training with the proposed approach
and varying the fraction of activated filters.

Table 10.3: ResNet-18 on CIFAR-10: Comparison of filter pruning approaches. For each sparsity, we indicate
the achieved test accuracy after pruning averaged over all random seeds including standard deviation.

Sparsity

Method 60% 70% 80% 90%

Baseline 60.32 ±0.18 32.83 ±0.52 14.49 ±4.68 10.92 ±0.20
SparseFW 90.72 ±0.09 90.39 ±0.16 87.51 ±0.44 35.15 ±1.30
SSL 91.26 ±0.13 87.13 ±1.72 63.66 ±0.36 16.25 ±1.24
GLT 68.54 ±6.12 45.42 ±6.99 21.03 ±3.69 9.36 ±0.22
ABFP 91.45 ±0.49 91.43 ±0.52 91.17 ±0.42 28.91 ±0.71
SFP 88.90 ±3.78 67.66 ±17.25 28.44 ±12.21 10.55 ±1.33

Table 10.4:WideResNet on CIFAR-100: Comparison of filter pruning approaches. For each sparsity, we indi-
cate the achieved test accuracy after pruning averaged over all random seeds including standard deviation.

Sparsity

Method 10% 20% 30% 40%

Baseline 71.78 ±2.29 65.30 ±2.82 51.33 ±0.34 35.00 ±2.59
SparseFW 72.21 ±0.30 72.24 ±0.29 72.20 ±0.23 71.23 ±0.18
SSL 72.10 ±1.20 67.51 ±0.25 59.26 ±0.77 42.18 ±2.67
GLT 74.08 ±0.87 69.37 ±1.54 54.43 ±4.77 28.19 ±6.30
ABFP 71.49 ±0.12 71.50 ±0.17 71.53 ±0.11 71.51 ±0.13
SFP 73.45 ±0.35 73.47 ±0.34 73.05 ±0.04 63.82 ±2.14

A.2.2 Unstructured weight pruning

CIFAR-10 hyperparameter grids
For both the k-sparse polytope as well as k-support norm ball, we tune the fractional
k ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and the multiplier w ∈ {10, 20, 30, 40, 50}.

Figure 10.6 compares the two feasible regions in an even larger hyperparameter
search. The rows correspond to the k-sparse polytope (above) and k-support norm ball
(below), respectively. The left column shows a heatmap of the test accuracy before prun-
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Table 10.5: ResNet-50 on TinyImagenet: Comparison of filter pruning approaches. For each sparsity, we
indicate the achieved test accuracy after pruning averaged over all random seeds including standard devia-
tion.

Sparsity

Method 10% 20% 30% 40% 50% 60%

Baseline 62.20 ±0.26 57.44 ±0.04 49.69 ±0.47 39.63 ±0.69 26.75 ±1.32 13.04 ±0.46
SparseFW 62.49 ±0.15 62.51 ±0.03 62.34 ±0.13 61.84 ±0.22 60.98 ±0.03 58.01 ±0.41
SSL 60.44 ±0.37 58.86 ±0.59 56.58 ±1.46 53.06 ±2.28 46.82 ±2.69 36.79 ±2.11
GLT 60.71 ±0.46 57.47 ±1.09 51.75 ±0.52 42.96 ±1.36 30.09 ±1.17 14.86 ±1.21
SFP 62.06 ±0.38 62.07 ±0.37 62.06 ±0.37 62.06 ±0.37 49.31 ±1.33 26.76 ±2.22
ABFP 60.28 ±0.63 60.31 ±0.69 60.28 ±0.58 60.20 ±0.59 60.20 ±0.49 59.99 ±0.55

Table 10.6: ResNet-50 on Imagenet: Comparison of filter pruning approaches. For each sparsity, we indi-
cate the achieved test accuracy after pruning averaged over all random seeds including standard deviation.

Sparsity

Method 10% 20% 30% 40%

Baseline 65.37 ±0.25 37.78 ±1.46 7.33 ±0.48 0.65 ±0.04
SparseFW 70.50 ±0.19 69.28 ±0.00 66.03 ±0.26 58.95 ±0.67
SSL 70.73 ±0.08 60.05 ±0.19 32.08 ±0.35 9.58 ±0.30
GLT 72.93 ±0.20 63.39 ±1.98 41.80 ±0.36 14.53 ±1.94
SFP 70.69 ±0.07 69.97 ±0.38 69.28 ±0.89 17.92 ±7.73
ABFP 70.54 ±0.23 69.33 ±0.33 66.29 ±1.56 59.27 ±0.39

ing. While both approaches lead to well performing models for a wide range of hyper-
parameter configurations (indicated as the radius multiplier w on the x-axis and k on
the y-axis), the k-support normball reaches higher results and converges properly for all
configurations at stake. The k-sparse polytope approach fails to yield adequately trained
dense models when the radius is relatively small but k becomes larger, which is coun-
terintuitive, since larger k allows a larger fraction of the parameters to be activated. The
right column shows the corresponding heatmap of the test accuracy right after pruning.
Clearly, the proposed approach is robust to pruning for a wider hyperparameter range.

Miao et al. [53] showed that SFW (with k-sparse polytope constraints) outperforms
SGDwith weight decay, which in turn clearly, and unsurprisingly, outperforms the SFW-
based approachwhen it is allowed to retrain. Our experiments indicate that while being
less robust to pruning, SGD is able to reach on-par or better results after retraining,
even when SFW is allowed to be retrained for the same amount of time. Leaving the
domain of compression-aware training, this raises a more general question: in the case
that retraining is not prohibited, is it beneficial to aim for robustness at pruning when
trying to maximize the post-retraining accuracy?

Figure 10.7 illustrates an experiment where we investigate this exact question by
performing One-Shot IMP [26] to a sparsity of 95% and retraining for 10 epochs using
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Figure 10.5: ResNet-18 on CIFAR-10: Accuracy-vs.-
sparsity tradeoff curves for unstructured weight
pruning comparing our approach to the existing
k-sparse approach.

Figure 10.6: ResNet-18 on CIFAR-10: Contour plot when performing a large hyperparameter search over
the radius and k of the feasible regions, where the first row corresponds to the k-sparse polytope and
the second one corresponds to the k-support norm ball. The left column shows the test accuracy before
pruning, while the right column shows the test accuracy after pruning. The k-support norm approach leads
to better performing dense models given the hyperparameter search at stake, which in turn are more
stable to pruning.

Figure 10.7: ResNet-18 on CIFAR-10: Test accuracy heatmap before pruning (left), after pruning (middle)
and after retraining (right) when training SGD and applying One-Shot pruning, tuning both the weight
decay during training (x-axis) as well as during retraining (y-axis).
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LLR [85].We tuned both theweight decay for regular retraining as well as theweight de-
cay for the retraining phase. Not surprisingly, there is a weight decay sweet spot when it
comes to maximizing the prepruning accuracy (left). The middle plot shows that higher
weight decay typically leads to more robustness to pruning, however a too large weight
decay hinders convergence of the dense model and might lower the performance after
pruning. Surprisingly, however, as depicted in the right plot showing the test accuracy
after retraining, the optimal parameter configuration is the one that leads to the high-
est accuracy before pruning, which is also the least robust to pruning. This aligns with
previous findings of Bartoldson et al. [5], who question the strive for pruning stability
when retraining is not prohibitive.

A.2.3 Low-rank matrix decomposition

Tables 10.7, 10.8, 10.9, 10.10 and 10.11 compare the filter pruning approaches for CIFAR-10,
CIFAR-100, TinyImagenet, ImageNet and CityScapes, respectively.

CIFAR-10 hyperparameter grids
– SparseFW: k ∈ {0.1, 0.15, 0.2, 0.25, 0.3}, l2-multiplier w ∈ {20, 30, 50}.
– NUC: Nuclear norm penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 8e-3, 5e-3, 1e-2, 5e-2).
– SVDEnergy: Nuclear norm thresholding λ (1e-2, 5e-2, 1e-1, 3e-1, 5e-1, 7e-1, 9e-1, 1e-0,

5e-0).
– FR: Force regularization penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 8e-3, 5e-3, 1e-2,

5e-2).
– TRP:Nuclear normpenalty factor λ (0, 1e-4, 5e-4, 1e-3), Singular value threshold (2e-2,

5e-2). The reparameterization using the truncated SVD is applied after each epoch
except the last.

CIFAR-100 hyperparameter grids
– SparseFW: k ∈ {0.1, 0.15, 0.2, 0.25, 0.3}, l2-multiplier w ∈ {20, 30, 50}.
– NUC: Nuclear norm penalty factor λ (1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2,

5e-2).
– SVDEnergy: Nuclear norm thresholding λ (1e-2, 5e-2, 1e-1, 3e-1, 5e-1, 7e-1, 9e-1, 1e-0,

5e-0), Weight decay (1e-4, 2e-4, 5e-4).
– FR: Force regularization penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 8e-3, 5e-3, 1e-2,

5e-2).
– TRP: Nuclear norm penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3), Singular value

threshold (1e-1, 2e-1). The reparameterization using the truncated SVD is applied
after each epoch except the last.

TinyImageNet hyperparameter grids
– SparseFW: k ∈ {0.1, 0.15, 0.2, 0.25, 0.3}, l2-multiplier w ∈ {20, 30, 50}.
– NUC: Nuclear norm penalty factor λ (1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3).
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– SVDEnergy: Nuclear norm thresholding λ (1e-2, 5e-2, 1e-1, 3e-1, 5e-1, 7e-1, 9e-1, 1e-0,
5e-0).

– FR: Force regularization penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 8e-3, 5e-3, 1e-2,
5e-2).

– TRP: Nuclear normpenalty factor λ (0, 1e-5, 5e-5, 1e-4, 5e-4), Singular value threshold
(1e-1, 2e-1). The reparameterization using the truncated SVD is applied after each
epoch except the last.

ImageNet hyperparameter grids
If not specified otherwise, we use weight decay values of {1e-4} for all algorithms.
– SparseFW: k ∈ {0.1, 0.2, 0.3}, l2-multiplier w ∈ {20, 30, 50}.
– NUC: Nuclear norm penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3).
– SVDEnergy: Nuclear norm thresholding λ (1e-2, 5e-2, 1e-1, 3e-1, 5e-1, 7e-1, 9e-1, 1e-0,

5e-0).
– FR: Force regularization penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 8e-3, 5e-3, 1e-2,

5e-2).
– TRP: Nuclear normpenalty factor λ (0, 1e-4, 5e-4, 1e-3, 5e-3), Singular value threshold

(1e-1, 2e-1). The reparameterization using the truncated SVD is applied after each
epoch except the last.

CityScapes hyperparameter grids
– SparseFW: k ∈ {0.1, 0.2, 0.3}, l2-multiplier w ∈ {20, 30, 50}.
– NUC: Nuclear norm penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3).
– SVDEnergy: Nuclear norm thresholding λ (1e-6, 5e-6, 1e-5, 5e-5, 1e-2, 5e-2, 1e-1, 5e-1,

1e-0, 5e-0).
– FR: Force regularization penalty factor λ (1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 8e-3, 5e-3, 1e-2,

5e-2).
– TRP: Nuclear normpenalty factor λ (0, 1e-5, 5e-5, 1e-4, 5e-4), Singular value threshold

(1e-1, 2e-1). The reparameterization using the truncated SVD is applied after each
epoch except the last.

Table 10.7: ResNet-18 on CIFAR-10: Comparison of approaches for encouraging low-rank matrices through-
out training. The second column indicates the images-per-second throughput throughout training, where
higher throughput corresponds to higher efficiency.

Sparsity

Method # img/s 40% 50% 60% 70% 80% 90%

Baseline 5664 93.19 ±0.23 93.02 ±0.13 91.66 ±0.17 89.95 ±0.14 82.07 ±1.41 53.07 ±1.98
SparseFW 1156 92.19 ±0.11 92.12 ±0.21 92.14 ±0.23 91.96 ±0.22 90.72 ±0.05 74.94 ±2.40
NUC 566 92.56 ±0.18 92.48 ±0.27 92.59 ±0.17 92.45 ±0.33 89.82 ±0.07 64.83 ±1.16
SVDEnergy 493 92.75 ±0.81 92.62 ±0.64 92.48 ±0.30 91.68 ±0.42 87.99 ±2.18 65.23 ±8.99
FR 4397 94.75 ±0.03 94.46 ±0.01 94.02 ±0.05 92.54 ±0.32 85.39 ±0.43 56.94 ±4.11
TRP 565 92.59 ±0.47 92.68 ±0.37 92.59 ±0.38 92.01 ±0.52 89.05 ±1.97 61.85 ±1.77
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Table 10.8:WideResNet on CIFAR-100: Comparison of approaches for encouraging low-rank matrices
throughout training. The second column indicates the images-per-second throughput throughout train-
ing, where higher throughput corresponds to higher efficiency.

Sparsity

Method # img/s 30% 40% 50% 60% 70% 80%

Baseline 1197 75.57 ±0.10 74.28 ±2.59 73.52 ±0.95 64.67 ±11.12 56.04 ±2.24 10.97 ±8.29
SparseFW 372 75.53 ±0.18 75.69 ±0.04 75.75 ±0.08 75.37 ±0.40 75.30 ±0.10 73.28 ±2.02
NUC 204 75.96 ±0.29 74.86 ±1.53 72.35 ±0.48 68.57 ±4.95 55.97 ±2.80 5.40 ±2.12
SVDEnergy 174 75.69 ±0.95 75.14 ±0.18 74.11 ±0.81 66.76 ±4.41 55.40 ±3.04 30.82 ±26.87
FR 1140 73.14 ±1.17 70.52 ±0.58 69.69 ±0.18 60.52 ±3.34 46.86 ±9.03 5.30 ±3.22
TRP 199 74.34 ±0.62 72.80 ±0.29 71.40 ±0.95 64.96 ±1.77 47.74 ±8.07 12.56 ±1.25

Table 10.9: ResNet-50 on TinyImagenet: Comparison of approaches for encouraging low-rank matrices
throughout training. The second column indicates the images-per-second throughput throughout training,
where higher throughput corresponds to higher efficiency.

Sparsity

Method # img/s 70% 75% 80% 85% 90%

Baseline 756 62.90 ±0.66 61.17 ±1.41 56.53 ±1.02 46.01 ±1.76 19.94 ±0.21
SparseFW 338 61.58 ±0.02 61.41 ±0.07 61.00 ±0.01 59.94 ±0.18 54.87 ±0.14
NUC 160 61.98 ±1.05 61.11 ±1.18 58.44 ±1.19 50.89 ±1.11 26.20 ±2.40
SVDEnergy 98 60.94 ±0.46 59.91 ±0.45 58.25 ±0.83 51.59 ±0.67 27.34 ±7.00
FR 742 63.14 ±1.24 61.61 ±1.15 58.07 ±1.73 47.24 ±0.88 22.98 ±1.60
TRP 159 61.72 ±0.43 60.24 ±0.71 58.01 ±0.01 50.02 ±1.03 27.32 ±2.49

Table 10.10: ResNet-50 on Imagenet: Comparison of approaches for encouraging low-rank matrices
throughout training. The second column indicates the images-per-second throughput throughout train-
ing, where higher throughput corresponds to higher efficiency.

Sparsity

Method # img/s 70% 75% 80% 85% 90%

Baseline 1386 73.88 ±0.13 70.22 ±0.09 60.72 ±0.99 37.44 ±1.82 1.88 ±0.19
SparseFW 796 73.27 ±0.18 72.72 ±0.27 71.39 ±0.01 65.18 ±0.28 26.17 ±1.11
NUC 741 74.91 ±0.01 74.29 ±0.02 71.16 ±1.12 57.21 ±1.53 4.60 ±2.66
SVDEnergy 621 74.74 ±0.01 74.12 ±0.06 69.50 ±0.61 53.55 ±0.98 3.19 ±1.09
FR 1418 71.87 ±0.45 67.93 ±0.19 55.98 ±0.05 30.80 ±0.66 2.10 ±0.20
TRP 740 74.91 ±0.08 74.33 ±0.21 70.25 ±1.95 55.21 ±2.53 4.62 ±2.52

A.3 The dynamics of gradient rescaling

We found the denominator of gradient rescaling not to be subject to much variation,
whereas the batch gradient norm dynamically changes the learning rate over time. Fig-
ure 10.8 compares the evolution of ‖∇t‖ for two different radii of the k-support normball
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Table 10.11: PSPNet on CityScapes: Comparison of approaches for encouraging low-rank matrices through-
out training. The second column indicates the images-per-second throughput throughout training, where
higher throughput corresponds to higher efficiency.

Sparsity

Method # img/s 20% 30% 40% 50%

Baseline 38 52.47 ±0.14 47.31 ±0.67 42.95 ±0.48 35.56 ±0.51
SparseFW 11 52.95 ±0.45 49.70 ±0.78 46.63 ±0.61 38.11 ±0.28
NUC 7 51.68 ±0.12 47.67 ±0.03 42.40 ±0.42 37.28 ±0.25
SVDEnergy 5 51.76 ±0.35 46.82 ±0.28 42.81 ±0.33 36.47 ±0.09
FR 37 51.67 ±0.10 46.61 ±0.29 41.60 ±0.34 35.29 ±0.11
TRP 7 51.82 ±0.91 47.96 ±1.32 42.18 ±0.22 37.54 ±0.43

(with fixed k), wherewe compare to usual SGD trainingwithweight decay. For both SGD
and SFW, ‖∇t‖ is subject to noise and increases until 75% of the training process, despite
the continuous decrease of the train loss. In fact, the batch gradient norm is not signifi-
cantly smaller than at the start of training even though the loss converges. This behavior
might best be explainable by the presence of batch-normalization layers, whose inter-
play with weight decay has been analyzed by van Laarhoven [67] and Hoffer et al. [31]:
layers preceding a batch-normalization are rescaling invariant, that is, their output re-
mains unchangedwhenmultiplying all parameters by a scalar; however, rescaling them
results in inverse rescaling of the gradient norm in subsequent layers and iterations.
Weight decay continuously decreases the scale of the parameters, and hence increases
the scale of the batch gradient, where stronger decay of the former leads to stronger in-
crease of the latter. Since in gradient rescaling the norm of the batch gradient also influ-
ences the strength of the decay of the parameters, this process has a self-accelerating dy-
namic. This dynamic results in larger steps toward the (sparse) vertices of the k-support
norm ball, leading to a stronger decay on the previous parameter configuration, which
in turn increases the robustness to pruning, making gradient rescaling the method of
choice in that setting.

Figure 10.8: ResNet-18 on CIFAR-10: The evolution
of the batch gradient norm when training SFW for
different values of k and SGD for two weight decay
strengths. The metric is averaged with respect to
two random seeds and over all iterations within one
epoch.



Compression-aware training of neural networks using Frank–Wolfe � 159

A.4 Proofs of LMO constructions

In the following, we state the missing proof of the k-support norm LMO (being a special
case of the group-k-support norm) and Lemma 10.1.

Lemma 10.3. Given ∇t , let vt ∈ 𝒞k(τ) = conv{v | ‖v‖0 ≤ k, ‖v‖2 ≤ τ} such that

[vt]i = {
−τ[∇t]i/‖∇

topk
t ‖2 if i ∈ topk(|∇t|),

0 otherwise,

where ∇topkt is the vector obtained by setting to zero all n − k entries [∇t]j of ∇t with j ̸∈
topk(|∇t|). Then vt ∈ argminv∈𝒞k (τ)⟨v, ∇t⟩ is a solution to Equation (10.2).
Proof. By construction, all vertices v of 𝒞k(τ) satisfy ‖v‖2 = τ and are k-Sparse, that is,
‖v‖0 ≤ k. Note that being k-Sparse includes cases wheremore than n−k entries are zero.
The minimum of Equation (10.2) is attained at one such v. Further recall the following
reformulation of the euclidean inner product:

⟨v, ∇t⟩ = ‖v‖2‖∇t‖2 cos(∠(v, ∇t)) = τ‖∇t‖2 cos(∠(v, ∇t)), (10.8)

where ∠(v, ∇t) denotes the angle between v and ∇t . This term is minimized as soon as
the angle between v and ∇t is maximal. If v was not required to be k-Sparse, that is, v
would be allowed to lie anywhere on the border of B2(τ), the solution would clearly be
given by −τ∇t/‖∇t‖2. However, since v is k-Sparse, the vector maximizing the angle to ∇t
is the one that is closest to −τ∇t/‖∇t‖2 but is k-Sparse at the same time. This is exactly
the one claimed.

Lemma 10.4. Given ∇t ∈ ℝ
n×m, let𝒲t ∈ 𝒞

σ
k (τ) such that

𝒲t =
−τ
‖σ(Σk)‖2

UkΣkV
T
k ,

where UkΣkV
T
k is the truncated SVD of ∇t such that only the k largest singular values are

kept. Then𝒲t ∈ argminv∈𝒞σ
k (τ)⟨v, ∇t⟩ is a solution to Equation (10.2).

Proof. Recall that

𝒞σk (τ) = conv{𝒲 ∈ ℝ
n×m | rank(𝒲) ≤ k, 󵄩󵄩󵄩󵄩σ(𝒲)󵄩󵄩󵄩󵄩2 ≤ τ}.

Let 𝒲 be some minimizer. Note that rescaling a matrix by a scalar has no effect on its
rank. Let us hence assume that ‖σ(𝒲)‖2 = α for some α > 0 and characterize 𝒲 ∈
argminrank(v)≤k⟨v, ∇t⟩. Again, we have

⟨𝒲 , ∇t⟩F = ⟨
←󳨀𝒲 ,←󳨀∇t⟩2 = α

󵄩󵄩󵄩󵄩
←󳨀∇t
󵄩󵄩󵄩󵄩2 cos(∠(

←󳨀𝒲 ,←󳨀∇t)), (10.9)

where←󳨀x is there vectorized formofmatrix x. Sincewe can chooseα ≤ τ, this term ismin-
imal as soon as the angle∠(←󳨀𝒲 ,←󳨀∇t) ismaximal, that is, cos(∠(

←󳨀𝒲 ,←󳨀∇t)) < 0 and α = τ, where
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we use the same Euclidean-geometric interpretation as in the proof for Lemma 10.3
above. To obtain a maximal angle, we hence minimize the l2-distance between −

←󳨀𝒲 and
←󳨀∇t in compliance with the rank constraint. Since again ‖−←󳨀𝒲 −←󳨀∇t‖2 = ‖−𝒲 − ∇t‖F , the
Eckart–Young–Mirsky theoremyields the claim,wherewe rescale appropriately tomeet
the Schattennorm constraint.

A.5 Convergence of SFW with gradient rescaling
Before proving the convergence of SFW with gradient rescaling as stated informally in
Theorem 10.2, we first recall some central definitions and assumptions.

A.5.1 Setting

Let Ω be the set of training datapoints from which we sample uniformly at random. In
Equation (10.1), we defined a unique loss function ℓi for each datapoint. In the following,
let ℓ(θ,ωi) = ℓi(θ) for ωi ∈ Ω. Similar to Reddi et al. [60] and Pokutta et al. [57], we define
the SFW algorithm as in Algorithm 10.1, where the output θa is chosen uniformly at
random from all iterates θ0, . . . , θT−1.
Algorithm 10.1 Stochastic Frank–Wolfe (SFW).
Input: Initial parameters θ0 ∈ 𝒞, learning rate ηt ∈ [0, 1], batch size bt , number of
steps T .
Output: Iterate θa chosen uniformly at random from θ0, . . . , θT−1
1: for t = 0 to T − 1 do
2: sample i. i. d. ω(t)1 , . . . ,ω(t)bt ∈ Ω
3: ∇̃L(θt)←

1
bt
∑btj=1 ∇ℓ(θt ,ω(t)j )

4: vt ← argminv∈𝒞 ⟨∇̃L(θt), v⟩
5: θt+1 ← θt + ηt(vt − θt)
6: end for

Let us recall some definitions. We denote the globally optimal solution by θ⋆ and
the Frank–Wolfe Gap at θ as

𝒢(θ) = max
v∈𝒞 ⟨v − θ,−∇L(θ)⟩. (10.10)

We will use the same assumptions as Reddi et al. [60]. First of all, let us assume that L is
M-smooth, that is,

󵄩󵄩󵄩󵄩∇L(x) − ∇L( y)
󵄩󵄩󵄩󵄩 ≤ M‖x − y‖ (10.11)

for all x, y ∈ 𝒞, which implies the well-known inequality
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L(x) ≤ L( y) + ⟨∇L( y), x − y⟩ + M
2
‖x − y‖2. (10.12)

Further, we assume the function ℓ to be G-Lipschitz, that is, for all x ∈ 𝒞 and ω ∈ Ω we
have

󵄩󵄩󵄩󵄩∇ℓ(x,ω)
󵄩󵄩󵄩󵄩 ≤ G. (10.13)

A direct consequence is that the norm of the gradient estimator can be bounded as
‖∇̃L(θt)‖ ≤ G.

A.5.2 Convergence proof

The followingwell-established lemmaquantifies how closely ∇̃L(θ) approximates∇L(θ).
A proof can be found in Reddi et al. [60].

Lemma 10.5. Let ω1, . . . ,ωb be i. i. d. samples in Ω, θ ∈ 𝒞, and ∇̃L(θ) =
1
b ∑

b
j=1 ∇ℓ(θt ,ωj).

If ℓ is G-Lipschitz, then

𝔼󵄩󵄩󵄩󵄩∇̃L(θ) − ∇L(θ)
󵄩󵄩󵄩󵄩 ≤

G
b1/2 . (10.14)

In the following, we denote the gradient estimator at iteration t as ∇t := ∇̃L(θt) and
the l2-diameter 𝒟(𝒞) as 𝒟. Let β ∈ ℝ satisfy

β ≥ 2h(θ0)
MD2
, (10.15)

for some given initialization θ0 ∈ 𝒞 of the parameters, where h(θ0) = L(θ0) − L(θ
⋆)

denotes the optimality gap of θ0.

Theorem 10.6. For all 0 ≤ t < T, let bt = b = T and ηt = ‖∇t‖η where η = (
h(θ0)

TMD2G2β )
1/2. If

θa is chosen uniformly at random from the SFW iterates {θi : 0 ≤ i < T}, then we have

𝔼 [𝒢(θa) ⋅
󵄩󵄩󵄩󵄩∇L(θa)

󵄩󵄩󵄩󵄩] ≤
D
√T
(√h(θ0)MG2β + G

2 +
MGD
2√2
),

where 𝔼 denotes the expectation w. r. t. all the randomness present.

Proof. First of all, notice that ηt is well-defined: Using β as defined above, we have

η ≤ ( 1
2TG2
)
1/2
=
1
G

1
√2T
, (10.16)

and consequently, we obtain ηt = ‖∇t‖η ≤
1
√2T
≤ 1 by using that ‖∇t‖ ≤ G. By

M-smoothness of L, we have
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L(θt+1) ≤ L(θt) + ⟨∇L(θt), θt+1 − θt⟩ + M2 ‖θt+1 − θt‖2.
Using the fact that θt+1 = θt + ηt(vt − θt) and that ‖vt − θt‖ ≤ D, it follows that

L(θt+1) ≤ L(θt) + ηt⟨∇L(θt), vt − θt⟩ + MD2η2t2
. (10.17)

Now let

v̂t = argmin
v∈𝒞 ⟨∇L(θt), v⟩ = argmaxv∈𝒞 ⟨−∇L(θt), v⟩ (10.18)

be the LMO solution if we knew the exact gradient at iterate θt , where t = 0, . . . , T − 1.
This minimizer is not part of the algorithm but is crucial in the subsequent analysis.
Note that we have

𝒢(θt) = maxv∈𝒞 ⟨v − θt ,−∇L(θt)⟩ = ⟨v̂t − θt ,−∇L(θt)⟩. (10.19)

Continuing from Equation (10.17), we therefore have

L(θt+1) ≤ L(θt) + ηt⟨∇̃L(θt), vt − θt⟩ + ηt⟨∇L(θt) − ∇̃L(θt), vt − θt⟩ + MD2η2t2

≤ L(θt) + ηt⟨∇̃L(θt), v̂t − θt⟩ + ηt⟨∇L(θt) − ∇̃L(θt), vt − θt⟩ +
MD2η2t

2

= L(θt) + ηt⟨∇L(θt), v̂t − θt⟩ + ηt⟨∇L(θt) − ∇̃L(θt), vt − v̂t⟩ +
MD2η2t

2

= L(θt) − ηt 𝒢(θt) + ηt⟨∇L(θt) − ∇̃L(θt), vt − v̂t⟩ +
MD2η2t

2
,

where the first inequality is just a reformulation of Equation (10.17) and the second one
is due to the minimality of vt . Applying Cauchy–Schwarz and using the fact that the
diameter of 𝒞 is D, we therefore have

L(θt+1) ≤ L(θt) − ηt 𝒢(θt) + ηtD󵄩󵄩󵄩󵄩∇L(θt) − ∇̃L(θt)󵄩󵄩󵄩󵄩 + MD2η2t2
. (10.20)

Now note that ηt = ‖∇t‖η ≤ Gη, yielding

L(θt+1) ≤ L(θt) − ηt 𝒢(θt) + ηGD󵄩󵄩󵄩󵄩∇L(θt) − ∇̃L(θt)󵄩󵄩󵄩󵄩 + MD2G2η22
. (10.21)

Let θ0:t denote the sequence θ0, . . . , θt . Taking expectations and applying Lemma 10.5,
we get

𝔼θ0:t+1L(θt+1) ≤ 𝔼θ0:t+1L(θt) − 𝔼θ0:t+1[ηt𝒢(θt)] + DG2ηb1/2 + MD2G2η22
. (10.22)
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By rearranging and summing over t = 0, . . . , T − 1, we get the upper bound

T−1
∑
t=0 𝔼θ0:t+1[ηt𝒢(θt)] ≤ L(θ0) − 𝔼θ0:TL(θT ) + TDG2ηb1/2 + TMD2G2η22

≤ L(θ0) − L(θ
⋆) + TDG2η

b1/2 + TMD2G2η22
. (10.23)

Now fix t and apply the law of total expectation to reformulate

𝔼θ0:t+1[ηt𝒢(θt)] = 𝔼θ0:t𝔼θ0:t+1[ηt𝒢(θt) | θ0:t] = 𝔼θ0:t [𝒢(θt)η ⋅ 𝔼θ0:t+1[‖∇t‖ | θ0:t]], (10.24)

where we exploited that once θ0:t is available, 𝒢(θt) is not subject to randomness any-
more. The expectednormof the gradient estimator given θt depends only on theuniform
selection of samples, allowing us to exploit the unbiasedness of the estimator as well as
the convexity of the norm ‖ ⋅ ‖ using Jensen’s inequality as follows:

𝔼θ0:t+1[‖∇t‖ | θ0:t] = 𝔼ω[‖∇t‖ | θ0:t] (10.25)

≥ 󵄩󵄩󵄩󵄩𝔼ω[∇t | θ0:t]󵄩󵄩󵄩󵄩 (10.26)

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1
b

b
∑
j=1𝔼ωj
∇ℓ(θt ,ωj)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(10.27)

= 󵄩󵄩󵄩󵄩∇L(θt)
󵄩󵄩󵄩󵄩. (10.28)

Combining this with Equation (10.23), we obtain

η
T−1
∑
t=0 𝔼θ0:t [𝒢(θt) ⋅ 󵄩󵄩󵄩󵄩∇L(θt)󵄩󵄩󵄩󵄩] ≤ h(θ0) + TDG2ηb1/2 + TMD2G2η22

. (10.29)

Using the definition of θa, being a uniformly at random chosen iterate from
θ0, . . . , θT−1, we conclude the proof with the following inequality:

𝔼 [𝒢(θa) ⋅
󵄩󵄩󵄩󵄩∇L(θa)

󵄩󵄩󵄩󵄩] ≤
h(θ0)
Tη
+
DG2

b1/2 + MD2G2η2
(10.30)

≤
D
√T
(√h(θ0)MG2β + G

2 +
MGD
2√2
) (10.31)
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Abstract: This paper describes a method for data-driven approximation of nonlinear
systems, using the notion of generalized frequency response functions as provided
by the Volterra series theory. Using rational approximation, frequency-domain input–
output data are fitted to a bilinear model structure. The proposed algorithm performs
optimization of model coefficients through a greedy approach that relies on linear
least-squares solves only, thus ensuring speed and scalability.
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1 Introduction and background
The Volterra series theory for nonlinear systems [21, 20] is a modeling approach based
on expanding a given time-invariant input–output map y(t) = G[u(t)] using a series of
generalized time-domain convolutions as

y(t) =
∞
∑
m=1

t

∫
0

hm(τ1, . . . , τm)u(t − τ1) ⋅ ⋅ ⋅ u(t − τm)dτ1 . . . dτm, (11.1)

where u(t) is the system’s input (vanishing for t < 0), while y(t) is the output. This paper
focuses on single-input, single-output (SISO) systems, that is, u(t), y(t) ∈ ℝ are scalars.
In (11.1), the output is decomposed as a sum of contributions ym(t) from homogeneous
subsystems, whose response is given as a multidimensional convolution with the one-
sided kernel hm(τ1, . . . , τm). This series expansion is typically used to model mildly non-
linear systems since it has local validity around an operating point (in this case, u(t) = 0)
and it is ensured to be convergent if the amplitude of u(t) is sufficiently small (see [20, 5]
for details). Equation (11.1) is not enough to uniquely define the kernels hm, since dif-
ferent choices can describe the same input–output relation. Requiring that the hm’s are
symmetric, that is, invariant under arbitrary permutations of the arguments, leads to
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a unique definition that is particularly convenient because they can be easily obtained
analytically and measured from simulations. This formalism is valuable from a mod-
eling standpoint because it generalizes the well-known convolution formula of linear
systems, and allows defining generalized frequency response functions (GFRFs) through
the multivariate Laplace transform [10]

Hm(s1, . . . , sm) =
∞
∫
0

⋅ ⋅ ⋅
∞
∫
0

hm(τ1, . . . , τm)e
−∑mi=1 siτidτ1 . . . dτm (11.2)

where hm(τ1, . . . , τm) is the symmetric kernel and Hm(s1, . . . , sm) is also called the
degree-m symmetric transfer function.

The objective of this paper is to derive a dynamical model starting from sampled
data of symmetric transfer functions Hm(s1, . . . , sm). To this aim, a particularly conve-
nient choice of the model structure is that of bilinear systems. These can be represented
with the following state-space form:

ẋ(t) = Ax(t) + Nx(t)u(t) + Bu(t), y(t) = Cx(t). (11.3)

Such systems can be also viewed as time-varying linear systems, by rewriting the state
equation as ẋ(t) = A(t)x(t) + Bu(t) with A(t) = A + Nu(t). Therefore, stability and other
relevant properties can be deduced from the already existing theory for linear systems,
and hence, the bilinear structure has proven very useful and tractable for modeling. It
is also sufficiently general since a broad class of systems with analytic nonlinearities
can be embedded into a bilinear representation, for example, through the Carleman
linearization approach [7] as in [6]. Additionally, by imposing specific boundary condi-
tions for PDEs as in [3], bilinear models can be derived after semidiscretization in the
spatial domain. For bilinear systems, several model reduction (MOR) techniques have
been described as an immediate extension of their linear counterpart. Intrusive meth-
ods forMOR of bilinear systems, mostly based onmomentmatching (rational Krylov ap-
proaches) or balancing,were proposed in [6, 3] (see also the references therein), together
with optimality-enforced methods and matching of infinite series [23, 2, 13]. Then data-
driven approaches were also proposed, starting with a direct extension of the Loewner
framework to bilinear systems in [1], and with more recent work in [16] that uses time-
domain data to infer values of (symmetric) transfer functions; the latterwas extended to
quadratic systems in [17]. Subspace identification techniques for bilinear systems were
proposed in [12], while the problem of structure-preservingMORwas treated in [4]. This
paper proposes a novel approach toward data-driven approximation of GFRFs based on
rational fitting. We provide an extension of the vector fitting algorithm to the nonlinear
setting, featuring a greedy strategywhereby a sequence of linear least-squares problems
is solved to optimize the coefficients of a conveniently chosen bilinear model structure.

This paper is organized as follows. The notation and the model structure are pro-
vided in Section 2. The core ideas for fitting GFRFs are introduced in Section 2.1, followed
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by a discussion on the relation between the fitting error and the input–output response
in Section 2.2. Then algorithmic tools for rational approximation based on Vector Fitting
(VF) are reviewed and adapted in Section 2.3. Two numerical experiments are studied
and the results are reported in Section 3, before concluding with Section 4.

2 Formulation

In order to introduce the problem data, let us use the shorthand sm ≜ (s1, . . . , sm) to
denote a point in the m-dimensional frequency space. The starting point for model in-
ference is thus a data setℋ = {ℋm}

M
m=1 with evaluations of degree-m transfer functions

at an arbitrary set of points

ℋm = {(s
(k)
m , H̆
(k)
m ), k = 1, . . . ,Km}, m = 1, . . . ,M . (11.4)

This data is fitted with a predefined model structure corresponding to a particular bi-
linear dynamical system G with the following form:

G :
{{{
{{{
{

ẋ1(t) = A1x1(t) + B1u(t),
ẋm(t) = Amxm(t) + Nmxm−1(t)u(t), 2 ≤ m ≤ M ,
y(t) = ∑Mm=1 Cmxm(t). (11.5)

This was introduced in [20] as a way to construct bilinear realizations of Volterra trans-
fer functions. Its structure is such that all kernels beyond the firstM are zero, implying
that G is a polynomial system of degree M (i. e., the sum in (11.1) contains M terms).
In addition, state equations corresponding to every individual m in (11.5) correspond
to the mth degree homogeneous subsystem of G [20], that is, the mth term in (11.1). The
system (11.5) can be interpreted as a cascade of linear systemswith amultiplicative non-
linearity in between. Denoting with H(k)m the symmetric transfer functions of G evalu-
ated at s(k)m , the model coefficients should be optimized so that Hm is close to H̆m, that is,
H(k)m ≈ H̆(k)m .

It is to be mentioned that G in (11.5) could be recast into a standard bilinear system
format as in (11.3). Theway to do this is as suggested by the realization procedure in [20],
that is, by putting together the bilinear system matrices (A,B, C,N), as follows:

A = blkdiag{A1, . . . ,AM }, B = col{B1, 0, . . . , 0},

N =(

0
N2 0

N3 0
. . . . . .

) , C = (C1 ⋅ ⋅ ⋅ CM) .
(11.6)
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Different from [16], where the matrix N of the fitted bilinear system is computed to
match the realization (A,B, C) computed with the Loewner framework in the first step,
here we construct individual submodels (Am,Nm, Cm) at each step m ≥ 2. If necessary,
these submodels may be assembled into a standard bilinear system, by following (11.6).

2.1 Fitting of symmetric transfer functions

The symmetric transfer functions of (11.5) can be expressed recursively. Starting from
m = 1, let us define the auxiliary functions

X1(s1) = (s1I − A1)
−1B1, (11.7)

Xm(sm) = [(s1 + ⋅ ⋅ ⋅ + sm)I − Am]
−1NmQm(sm), m ≥ 2, (11.8)

Qm(sm) =
M
∑
i=1 Xm−1(sm\si), (11.9)

with sm\si ≜ (s1, . . . , si−1, si+1, . . . , sm). The symmetric transfer functions become
Hm(sm) = CmXm(sm), with the explicit formulation below:

Hm(sm) = {
C1(s1I − A1)

−1B1, m = 1,
1
m!Cm[(s1 + ⋅ ⋅ ⋅ + sm)I − Am]−1NmQm(sm), m ≥ 2.

(11.10)

Expressions (11.9)–(11.10) can be easily derived for the assumed system structure (11.5)
by applying the so-called growing exponential approach; see [20].

In principle, the approximation problem we need to solve is to find model parame-
ters so that the following cost function is minimized:

J =
M
∑
m=1 Km∑k=1󵄨󵄨󵄨󵄨Hm(s

(k)
m ) − H̆m(s

(k)
m )
󵄨󵄨󵄨󵄨
2. (11.11)

Our approach is to greedily optimize individual terms of the summation corresponding
to eachm. Starting fromm = 1, we consider the approximation

C1(s
(k)
1 I − A1)

−1B1 ≈ H̆1(s
(k)
1 ), k = 1, . . . ,K1, (11.12)

that is equivalent to fitting a univariate rational function to given data, a problemknown
as rational fitting and efficiently solvable using existing algorithms, such as AAA [19] or
vector fitting [15].

As for m > 1, the recursive expression in (11.10) clearly shows the main idea of our
formulation, based on observing that themth degree transfer function is the product of
a univariate transfer function

Fm(s) =
1
m!

Cm(sI − Am)
−1Nm, (11.13)
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evaluated at s = s1 + ⋅ ⋅ ⋅ + sm with the function Qm(sm), which only depends on
lower-degree subsystems. This implies that, if the system coefficients A1, . . . ,Am and
B1,N2, . . . ,Nm are known up to index m, the quantity Qm(sm) is entirely determined.
Therefore, the approximation problem is reduced to optimizing the coefficients of Fm(s)
for each higher-degree indexm = 2, . . . ,M so that

Fm(s
(k)
1 + ⋅ ⋅ ⋅ + s

(k)
m )Q(s

(k)
m ) ≈ H̆m(s

(k)
m ), k = 1, . . . ,Km, (11.14)

which can be tackled again with rational fitting algorithms. The greedy aspect of this
method lies in considering Q(s(k)m ) a given constant as resulting from optimization of
previous terms of the summation (11.11), rather than jointly optimizing all system pa-
rameters in (11.5) simultaneously.

2.2 Cost function and model error

Themotivation for using J in (11.11) as ameasure of model mismatch is that it works as a
proxy for theH2 norm of the error system. In particular, using the notation h̆m(τ1, . . . , τn)
for the true Volterra kernels of the original system and hm(τ1, . . . , τn) for the fitted
degree-M model, we can define the error em(τ1, . . . , τn) = hm(τ1, . . . , τn) − h̆m(τ1, . . . , τn).
Following the definition in [23, 13], the H2 norm of the error system E would be

‖E‖H2
= √
∞
∑
m=1 ‖em‖22, ‖em‖22 =

∞
∫
0

⋅ ⋅ ⋅
∞
∫
0

em(τ1, . . . , τm)
2dτ1 ⋅ ⋅ ⋅ dτm. (11.15)

Considering the magnitude of the output error e(t) = y̆(t) − y(t),

󵄨󵄨󵄨󵄨e(t)
󵄨󵄨󵄨󵄨 ≤ √

M
∑
m=1 ‖em‖22√ M

∑
m=1 ‖u‖2m2 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞
∑

m=M+1 y̆m(t)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (11.16)

This estimate shows that the error contains two components, the first one depends on
the modeling error of the firstM kernels, while the second is the unmodeled nonlinear-
ity of degree higher than M . The connection with the cost function J is made through
Plancherel’s theorem to express ‖em‖

2
2 in terms of the H2-norm of Em(sm) = Hm(sm) −

H̆m(sm),

M
∑
m=1 ‖em‖22 = M

∑
m=1 1
(2π)m

∞
∫−∞ ⋅ ⋅ ⋅

∞
∫−∞ 󵄨󵄨󵄨󵄨Em(jω1, . . . , jωm)

󵄨󵄨󵄨󵄨
2dω1 . . . dωm, (11.17)

and J can be viewed as a discrete analogue of the frequency-domain integrals.
As for the choice ofM , Equation (11.16) suggests that it should be chosen as the small-

est degree for which the error due to the higher-degree responses (m ≥ M +1) are cumu-



174 � A. Carlucci et al.

latively negligible compared to the modeling error ∑Mm=1 ‖em‖2 arising from the fitting
procedure.

2.3 Weighted vector fitting for GFRFs

This section completes the formulation by describing themain enabling tool to solve the
approximation problems (11.14) and (11.12), that is, theweighted vector fitting algorithm.
In particular, (11.12) can be tackled with the standard formulation of VF [15, 11, 14]. On
the other hand, (11.14) requires incorporating the arbitrary but knownweighting vectors
Q(s(k)m ) using a modified formulation such as [8], here reviewed for the specific problem
at hand. First of all, consider problem (11.14) for a particularm, restated as

minimize
K
∑
k=1󵄨󵄨󵄨󵄨Fm(s(k)1 + ⋅ ⋅ ⋅ + s(k)m )Q(s(k)m ) − H̆(k)m 󵄨󵄨󵄨󵄨2, (11.18)

where Fm(s) is unknown and represented in pole-residue form as

Fm(s) =
ν
∑
i=1 Ri

s − pi
, (11.19)

with the index m being omitted in both the Ri’s and also the pi’s. Note that this pole-
residue expansion is another way of parameterizing Fm(s) through coefficients Ri and
pi, instead of the coefficients Cm, Am, Nm used in (11.13). However, it is always possible to
write Fm(s) in the form (11.13) starting from the pole-residue (11.19), through a realization
procedure (see [14]).

Going back to the optimization problem in (11.18), a key observation is that if pi
are given constants, (11.18) is an easily solvable linear least-squares (LS) problem in the
variables Ri. However, if pi are to be optimized, this is no longer true and the problem
becomesmuchharder. For this reason, VF goes through a preliminary pole identification
phase to find poles pi through an iterated solution of a simplified problem. In this stage,
a double barycentric form is used to represent Fm(s) as

Fm(s) =
N(s)
d(s)
, N(s) =

ν
∑
i=1 Ni

s − qi
, d(s) = 1 +

ν
∑
i=1 di

s − qi
, (11.20)

using a set of auxiliary poles {qi}
ν
i=1. Starting from an initial guess of qi, this is updated

through several iterations where the following modified cost function is minimized:

min
K
∑
k=1󵄨󵄨󵄨󵄨N(s(k)1 + ⋅ ⋅ ⋅ + s(k)m )Q(s(k)m ) − H̆(k)m d(s(k)1 + ⋅ ⋅ ⋅ + s(k)m )󵄨󵄨󵄨󵄨2. (11.21)

Solving (11.21) at a given iteration yields coefficients di of d(s), that are used to update
the auxiliary poles for the next iteration through the rule qi ← zeros{d(s)}. In this way,
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(11.21) is optimized repeatedlywith an updated choice of qi each time. Upon convergence
or after a maximum number of iterations, the qi’s are chosen to be the model poles pi
in (11.19). Finally, (11.18) and (11.19) with fixed pi are solved via linear LS to find Ri.

Convergence to a given set of poles qi corresponds to the condition d(s) → 1, de-
tected either by checking whether the norm of coefficients ∑νi=1 d2i falls below a prede-
fined tolerance, or by looking at the maximum deviation |d(s) − 1|∞. Convergence of
VF is discussed in [18], where it is shown that the algorithm might not converge in a
strong sense. Nonetheless, VF still produces good solutions to the rational approxima-
tion problem, for which a globally optimal solution is hard to obtain due to the strongly
nonconvex nature of the related optimization problem. In fact, thanks to its robustness
and reliability, VF has become themethod of choice in design automation tools andflows
available on the market, in particular for electronic system design applications.

The proposed algorithm for symmetric transfer function fitting is summarized as
the pseudocode in Algorithm 11.1.

Algorithm 11.1 Approximation of GFRFs.
Require: M , Km, ν and the data setℋ as defined in (11.4)
Fit rational function H1(s) in pole-residue form to data H̆1(s

(k)
1 ) using VF

Turn pole-residue form of H1(s) into a realization (A1,B1, C1)
Compute Q2(s

(k)
2 ) for k = 1, . . . ,K2, as defined in (11.9)

form = 2, . . . ,M do
Fit Fm(s) in pole-residue form by solving (11.18) using weighted VF
Turn pole-residue form of Fm(s) into a realization (Am,Nm, Cm)
Compute Qm+1(s(k)m+1) for k = 1, . . . ,Km+1 as defined in (11.9)

end for

3 Numerical examples and discussion

3.1 Viscous Burgers’ equation

This section reports on the example of the viscous Burgers’ equation

𝜕
𝜕t
v(x, t) − ν 𝜕

2

𝜕x2
v(x, t) + v(x, t) 𝜕

𝜕x
v(x, t) = 0, (11.22)

describing the velocity v(x, t) of afluid in one spatial coordinate. The viscosity parameter
was set to ν = 0.02. By following [6], the PDE was semi-discretized in space through
a finite difference scheme with 200 points. The resulting nonlinear dynamical system
describing the temporal evolutionwas formulated as a quadratic-bilinear system of size
q = 200.



176 � A. Carlucci et al.

A data-driven bilinear model with degreeM = 2 could be constructed by sampling
the first- and second-degree transfer functions H1(s1) and H2(s1, s2). In particular, H1(s1)
was sampled on the imaginary axis at K1 = 200 points, log-spaced and corresponding
to the frequency band [10−5, 800]Hz. The function H2(s1, s2) was sampled at K2 = 4964
points, with both s1 and s2 purely imaginary and in the frequency interval [10

−5, 400]Hz.
Running the proposed algorithm with ν = 8 poles, 40 iterations, and M = 2 to approxi-
mateH1 andH2 leads to a fitted bilinearmodel with overall order 13. Frequency-domain
accuracy is reported in Figure 11.1, where the left panel shows the relative error with
respect to both s1 and s2, and the right panel directly compares the responses.

Figure 11.1: Error analysis for the example in Section 3.1. Left panel: Relative error on H2 for both s1 and
s2 on the imaginary axis. Right panel: Model-data comparison for H2(j2πf1, j2πf2) with respect to f2 and for
several fixed values of f1.

In the time domain, the responses of the full-order model are compared with the
fitted one in Figure 11.2 (left panel). In this experiment, t ∈ [0, 10] s and the input is an
amplitude-modulated chirp u(t) = 0.1 cos[2πf0(t)t][1 − 1/2 cos(2π2t)], with f0(t) sweep-
ing from 1mHz to 10Hz, in order to test accuracy over a broad frequency range. In the
right panel of Figure 11.2, we also show that the system nonlinearity is being modeled
correctly because adding the degree-2 subsystem leads to a substantial error reduction
compared to a simple degree-1 approximation (where only H1 is fitted).

3.2 Nonlinear RC ladder

This example is an electrical network with nonlinear elements, originally introduced
in [9]. In particular, it is an RC ladder circuit with diodes in parallel to resistors (see
Figure 11.3). The input u(t) is a current source, while the output y(t) is the voltage at the
first node.

Diodes have an exponential characteristic so that the original state equation con-
tains nonpolynomial nonlinearities. Therefore, starting from amodel with q = 50 states,
Carleman bilinearization was used to obtain a lifted bilinear model with qbil = 50

2 + 50.
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Figure 11.2: Time-domain solution of the example in Section 3.1. The left panel compares the full-order
model response with that of the fitted model (of degree 2). The right panel reports the instantaneous error
for two models with M = 1, 2, showing that the nonlinear (M = 2) model is more accurate than the linear
approximation (M = 1).

Figure 11.3: Nonlinear electrical network of the example in Section 3.2, picture adapted from [22].

The resulting system is considered the starting point for applying the proposed data-
driven modeling scheme.

We sampled H1(s1) at K1 = 101 points on the imaginary axis s1 = j2πf1, with f1 ∈
[10−1, 102] in addition to s(1)1 = 0. Regarding higher-order transfer functions, we ran-
domly selected K2 = 343 and K3 = 101 points to sample H2(s1, s2) and H3(s1, s2, s3).

Using the proposed algorithmwith ν = 6 poles and 20 iterations leads to the accurate
fitting of the firstM = 3 frequency responses, as shown in Figure 11.4 form = 2. In time-
domain, the model was tested in a 2-s long simulation with amplitude-modulated chirp
input u(t) = 2 ⋅ sin[2πf0(t)t + π/2][1 −

1
2 cos(2πt)], with f0(t) varying linearly from 0.5Hz

to 50Hz.

Figure 11.4: Error analysis for the example in Section 3.2. Left panel: Model-data comparison for the
degree-1 transfer function. Right panel: Degree-2 transfer function with respect to f2 for several fixed val-
ues of f1.
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Figure 11.5 compares the original and reduced model responses, showing that
adding higher-order transfer functions decreases the error and that the degree-3 model
is sufficient to produce a response that is indistinguishable from the full-order model
for this case. Note that the error curves depicted in Figure 11.5 are related to the time-
domain simulation used for testing that involves an oscillatory signal. The input has
here been chosen to push the system into a regime of nonlinear operation where the
contribution from the higher-order transfer functions can be appreciated and, in par-
ticular, models withM = 1, 2 are insufficient, as shown in Figure 11.6.

Figure 11.5: Time-domain solution for the example in Section 3.2. Left panel: Comparison of full-order and
fitted model of degree M = 3. Right panel: Evolution of instantaneous error with respect to model degree.

Figure 11.6: Left panel: Time-domain response of example in Section 3.2, highlighting the qualitative differ-
ence between models with M = 2 and M = 3. Right panel: Error in the time-domain solution of Figure 11.5,
measured as root mean square (RMS) and peak error (max. in t ∈ [0, 2]).
4 Conclusions

To summarize, this work described a new algorithm for data-driven approximation of
nonlinear input–output maps in the frequency domain, based on Volterra series. The
method uses samples of the symmetric transfer functions, directly measurable from re-
sponse evaluation, without requiring access to the first-principles description of the sys-
tem to be modeled. Compared to previous work [16], this framework is flexible as it can
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approximate GFRFs beyond the second degree. The entire procedure is fast and scal-
able as it consists of a sequence of linear least-squares optimization problems, thanks
to a greedy approach that provides simplicity in exchange for exact optimality. Future
work could address this issue, by investigating extensions of this algorithm in which
transfer functions are fitted simultaneously rather than sequentially.
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On the nonsmooth regularity condition LIKQ
for different abs-normal representations

Abstract:Nonsmoothness is widely present in practical optimization problems for phys-
ical, technological, methodological, or numerical reasons, for example, due to modeling
of valves or regularization with the ℓ1-norm. Many of these optimization problems can
be described by a composition of smooth functions and the evaluations of the absolute
value. Over the years, the precise definition of the resulting class of functions evolved
also due to an improved understanding of such functions. This work analyzes the differ-
ent representations of an element of this function class and the reformulation from one
version to another. It is proved that the linear independent kink qualification (LIKQ)
as one regularity condition needed for optimality conditions is preserved. Illustrative
examples demonstrate comprehension and application of the results, elucidating the
theoretical material.

Keywords: Nonsmooth optimization, abs-smooth function, linear independence kink
qualification, abs-normal formulation, active switching variables
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1 Introduction

Nonsmooth phenomena in physics, technology, and optimization are ubiquitous, mani-
festing naturally and frequently across a multitude of problem domains. These phe-
nomena characterized, for example, by sharp edges in functions or objective sur-
faces, challenge conventional smooth optimization techniques and demand special-
ized methodologies for effective solution. Consequently, there arises a pressing need
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for proficient tools and algorithms tailored to navigate the complexities inherent in
nonsmooth optimization landscapes, ensuring the development of robust and efficient
solutions to pertinent problems. Rockafellar’s book [13] is one seminal work in this
area, introducing subdifferentials and optimality conditions. More subdifferentials and
quasidifferentials along with corresponding optimality conditions were introduced,
for example, by Clarke [1] or Mordukhovich [12] in the years following. However, in
a numerical algorithm, these generalized derivatives and optimality conditions are
quite often intractable, since the set of generalized derivatives cannot be computed or
inclusions cannot be verified with an acceptable computational effort.

A few years ago, Griewank and Walther examined unconstrained finite-dimen-
sional nonlinear optimization problems, where the nonsmoothness is caused by possi-
bly nested occurrences of the absolute value function [6]. For example, any piecewise
smooth function that is specified by an evaluation procedure involving only smooth
elemental functions and piecewise linear functions like min and max fits into this set-
ting. Then the derivative information required by an optimization algorithms can be
practically computed for this class of functions using appropriately extended Algorith-
mic Differentiation (AD) tools like ADOL-C [5]. In [6], necessary and sufficient optimality
conditions were derived that can be verified in polynomial time in contrast to both the
Clarke and the Mordukhovich necessary condition, provided the regularity condition
LIKQ, which is similar to the linear independence constraint qualification (LICQ) in
the smooth case, holds. For this purpose, only classical smooth derivatives have to be
computed.

The theory of Griewank and Walther is extended to a certain class of nonsmooth
nonlinear programs in [7]. One of the key findings, also interesting for the present
work, was that LIKQ was preserved under the reformulation proposed in [7] such that
the results for the unconstrained case could be transferred. Hegerhorst-Schultchen and
Steinbach have shown that the considered class of nonsmooth nonlinear programs
is equivalent to the class of Mathematical Programs with Equilibrium Constraints
(MPECs) [8, 7]. Hence, the regularity condition LIKQ turns out to be equivalent to
MPEC-LICQ.

The compositions of smooth elemental functions and the absolute value function
abs(x) = |x| are widely used in practice. For example, max(0, x) is commonly known as
rectified linear unit (ReLU) function in the machine learning community [2]. Owing to
its ease of training and propensity for yielding superior performance metrics, ReLU is
used within many neural network architectures [15].

The paper is structured as follows: In Section 2, the development of the abs-smooth
form is illustrated highlighting the differences of three different formulations. Section 3
analyzes the transformation of these different function representations into each other.
The preservation of LIKQ for the different versions is studied in Section 4. Finally, Sec-
tion 5 provides a short summary and outlook.



On the nonsmooth regularity condition LIKQ � 183

2 Development of different abs-smooth forms
Throughout, we consider the minimization problems of the form

min
x∈ℝn φ(x) (12.1)

for a functionφ:ℝn → ℝ, y = φ(x) that exhibit so-called Level-1 nonsmoothness. Namely,
the objective function φ is defined as a composition of smooth elemental functions and
the absolute value function abs(x) = |x| as introduced in [6]. From an AD perspective,
any such function can be stated as shown in Table 12.1. Here, all consecutive smooth
elemental functions are combined into larger smooth elemental functionsψi(.) such that
all evaluations of the absolute value function can be clearly identified and exploited. The
number of absolute values occurring during the function evaluation will be denoted by
s ∈ ℕ. The arguments zi = zi(x) of the absolute value functions cause the switches in the
corresponding derivative values and therefore, z = (zi) ∈ ℝ

s is called switching vector.
The values of z always depend on the value of x. However, for notational simplicity, we
skip this dependence in the notation. The switching vector defines the signature vector
σ = (σi) = (sign(zi(x))) ∈ ℝ

s.

Table 12.1: Evaluation procedure including absolute value evaluations.

vi−n = xi i = 1 . . . n
zi = ψi(vj)j≺i
σi = sign(zi) }}}

}}}
}

i = 1 . . . s
vi = σizi = abs(zi)
y = ψs+1(vj)j≺s+1
An evaluation procedure as shown in Table 12.1, where zj can only influence zi if
j < i, was the starting point to derive abs-smooth forms. The calculation of derivative in-
formation for such an extended evaluation procedure in the sense of ADwas analyzed in
[3]. However, to build mathematical theory on top of it, an evaluation procedure is not a
beneficial representation of a function. Therefore, in [4, 6], the so-called abs-normal form
was introduced covering all functions that can be evaluated by a pseudocode as given
in Table 12.1. For that purpose, the calculation of all switching variables is formulated as
an equality constraint bymeans of a function F . Furthermore, the vector of the absolute
values of the switching variables is introduced as an extra argument of the target func-
tion f and the constraining function F . Thus, we obtain the following representation:

y = φ(x) = f (x, |z|), (12.2a)
z = F(x, |z|), (12.2b)

where f :ℝn+s → ℝ and F :ℝn+s → ℝs are at least once differentiable in the region of
interest. Here and throughout, |z| denotes the componentwise modulus of a vector z.
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Furthermore, sometimes |z| and similar vectors of absolute values are considered as
variable vectors in their own right. With this reformulation, the unconstrained prob-
lem in (12.1) can be stated as a constrained optimization problem with the equality
constraints given by (12.2b).

As mentioned already above, Equation (12.2) was called abs-normal form in earlier
papers like [4, 6]. To unify the notation, we will call such a representation of φ now abs-
smooth form of type (12.2).

Since Equation (12.2b) defines the arguments of the absolute value function and
hence also causes nonsmoothness, this equation is called switching equation. Motivated
by the evaluation procedure, it is assumed that for the calculation of zi only values zj ,
1 ≤ j < i, are needed. Hence, z is uniquely determined by Equation (12.2b). Further-
more, we assume that all components of z are used as arguments of the absolute value
function, that is, they are all used for the calculation of the objective function, such that
they indeed cause nonsmoothness. If this assumption does not hold, the corresponding
component of z can be eliminated yielding a reduced function representation without
further impact.

Depending on the specific application at hand it might be a bit restrictive to allow
only absolute values of the vector z as argument of F and f , respectively. An explicit
dependence on z might also lead to larger but much sparser derivative matrices. For a
discussion of this effect see, for example, [9]. Therefore, an alternative to the abs-smooth
form of type (12.2) is given by

y = φ(x) = ̂f (x, ẑ, |ẑ|), (12.3a)
ẑ = F̂(x, ẑ, |ẑ|), (12.3b)

where ̂f :ℝn+s+s → ℝ and F̂ :ℝn+s+s → ℝs are again at least once differentiable in the
region of interest. As above, we assume that ẑi only depends on values ẑj , 1 ≤ j < i, such
that ẑ is uniquely determined by Equation (12.3b) and that all ẑi serve as argument of an
absolute value evaluation that is used to calculate the value of the target function. We
will call this representation of an element of the function class considered in this paper
abs-smooth form of type (12.3).

As it turned out in the theoretical analysis, it might be advantageous to allow the
absolute value function only in the switching equation. This setting was considered, for
example, in [8, 11] yielding the representation

y = φ(x) = ̃f (x, z̃), (12.4a)
z̃ = F̃(x, z̃, |z̃|), (12.4b)

where ̃f :ℝn+(s+1) → ℝ and F̃ :ℝn+(s+1)+(s+1) → ℝs+1 are again at least once differentiable
in the region of interest. Once more, we assume that z̃ is uniquely determined by Equa-
tion (12.4b) in that for computing z̃i only values z̃j , 1 ≤ j < i are used.Wewill call this rep-
resentation of an element of the function class considered in this paper abs-smooth form
of type (12.4). It is important to note that for the abs-smooth form of type (12.4), the last
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element of z̃, that is, z̃s+1, is not used as an argument of the absolute value. Hence, it does
not cause any nonsmoothness. This observation alsomotivates our notation z̃ = (ẑ, z̃s+1),
where all components of ẑ ∈ ℝs are assumed to be used as arguments of the absolute
value similar to the abs-smooth forms of type (12.2) and (12.3).

To illustrate our later results, we consider the following target function that can be
seen as prototype of a very simple neural network.

Example 12.1. Let n := 4, s := 2. For x ∈ ℝ4 and z̃ ∈ ℝ2+1, define
F̃(x, z̃, |z̃|) := [[

[

2x1 + x2
x3
2 (|z̃1| + z̃1) + x4 − 2
|z̃2|

]]

]

,

̃f (x, z̃) := z̃3.

For z̃ as a solution to the switching equation (12.4b), that is, z̃ = F̃(x, z̃, |z̃|), using

ReLU(w) = max(w, 0) = (|w| + w)/2

yields

̃f (x, z̃) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
x3
2
(|z̃1| + z̃1) + x4 − 2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨x3 ReLU(z̃1) + x4 − 2

󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨x3 ReLU(2x1 + x2) + x4 − 2

󵄨󵄨󵄨󵄨

Thus, the functions ̃f and F̃ represent φ(x) = |x3 ReLU(2x1 + x2) + x4 − 2|.

3 Transitioning between abs-smooth forms

As described above, so far there are three possible different representations for a func-
tion that is given by a composition of smooth elemental functions and absolute value
evaluations: the abs-smooth form of type (12.2), the abs-smooth form of type (12.3), and
the abs-smooth form of type (12.4); which form is beneficial may depend on the specific
application at hand. Therefore, an obvious question is whether it is always possible to
transfer one representation into the other ideally preserving the regularity condition
LIKQ. Obviously, neither of the representations is unique, a fact that we state here for
completeness.

Proposition 12.2. For any two functions f and F in the abs-smooth form of type (12.2),
there are functions ̂f and F̂ in the abs-smooth form of type (12.3) which are equivalent in
the following sense:
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a) The solutions z and ẑ to their respective switching equations coincide.
b) Both forms represent the same nonsmooth function φ.

The same holds true for the converse direction of reformulation.

Proof. Let f and F be functions in the abs-smooth form of type (12.2) representing
some φ. For x ∈ ℝn and ẑ ∈ ℝs, define

̂f (x, ẑ, |ẑ|) := f (x, |ẑ|),
F̂(x, ẑ, |ẑ|) := F(x, |ẑ|),

(12.5)

that is, by ignoring the second input. Now, for a given x ∈ ℝn, let z ∈ ℝs be determined
by the switching equation (12.2b). By the definition of F̂ , we have

z = F(x, |z|) = F̂(x, z, |z|),

that is, z is equal to the unique solution ẑ ∈ ℝs of the switching equation (12.3b). Thus,
φ(x) = f (x, |z|) = ̂f (x, z, |z|) showing that ̂f and F̂ also represent φ.

Let ̂f and F̂ be functions in the abs-smooth form of type (12.3) representing some φ.
To obtain a representation in the abs-smooth form of type (12.2), we observe that ẑi =
F̂i(x, ẑ, |ẑ|) does only depend on the values of ẑ1, . . . , ẑi−1. Thus, omitting these spurious
dependencies in the notation, for z ∈ ℝs we define

F1(x, |z|) := F̂1(x),
Fi(x, |z|) := F̂i(x, F1(x, |z|), . . . , Fi−1(x, |z|), |z1|, . . . , |zi−1|), (12.6)

for i = 2, . . . , s and

f (x, |z|) := ̂f (x, F(x, |z|), |z|). (12.7)

Let again x ∈ ℝn be given and this time let ẑ ∈ ℝs denote the solution to the switching
equation (12.3b). Then, with ẑ1 = F̂1(x) = F1(x, |ẑ|), induction yields

ẑi = F̂i(x, ẑ1, . . . , ẑi−1, |ẑ1|, . . . , |ẑi−1|)
= F̂i(x, F1(x, |ẑ|), . . . , Fi−1(x, |ẑ|), |ẑ1|, . . . , |ẑi−1|)
= Fi(x, |ẑ|).

Thus, ẑ is equal to the unique solution z ∈ ℝs to the switching equation (12.2b), and
hence, φ(x) = ̂f (x, ẑ, |ẑ|) = ̂f (x, F(x, |ẑ|), |ẑ|) = f (x, |ẑ|).

Proposition 12.3. For any two functions ̂f and F̂ in the abs-smooth form of type (12.3),
there are functions ̃f and F̃ in the abs-smooth form of type (12.4) which are equivalent in
the following sense:
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a) The solution ẑ of the switching equation (12.3b) coincides with the first s components
of the solution z̃ of the switching equation (12.4b).

b) Both forms represent the same nonsmooth function φ.

The same holds true for the converse direction of reformulation.

Proof. Let ̂f and F̂ be functions in the abs-smooth form of type (12.3) representing
some φ. For x ∈ ℝn and z̃ ∈ ℝs+1, we define

F̃(x, z̃, |z̃|) := [
F̂(x, z̃1, . . . , z̃s, |z̃1|, . . . , |z̃s|)
̂f (x, z̃1, . . . , z̃s, |z̃1|, . . . , |z̃s|)

] ,

̃f (x, z̃) := z̃s+1. (12.8)

Now, for a given x ∈ ℝn let z̃ := (ẑ, y) ∈ ℝs+1 be the solution to (12.3), then
z̃ = [ẑ

y
] = [

F̂(x, ẑ, |ẑ|)
̂f (x, ẑ, |ẑ|)

] = F̃(x, z̃, |z̃|).

Thereby, it holds φ(x) = y = z̃s+1 = ̃f (x, z̃).
Let now ̃f and F̃ be functions in the abs-smooth form of type (12.4) representing

some φ. Recall that due to the switching structure, the value F̃(x, z̃, |z̃|) does not depend
on the argument z̃s+1. Thus, for any x ∈ ℝn, ẑ ∈ ℝs define

F̂i(x, ẑ, |ẑ|) := F̃i(x, (ẑ, 0),
󵄨󵄨󵄨󵄨(ẑ, 0)
󵄨󵄨󵄨󵄨) i = 1, . . . , s,

̂f (x, ẑ, |ẑ|) := ̃f (x, F̃(x, (ẑ, 0), 󵄨󵄨󵄨󵄨(ẑ, 0)
󵄨󵄨󵄨󵄨))

= ̃f (x, F̃(x, (ẑ, z̃s+1), 󵄨󵄨󵄨󵄨(ẑ, z̃s+1)󵄨󵄨󵄨󵄨)) for all z̃s+1 ∈ ℝ. (12.9)

For a given x ∈ ℝn, let z̃ := (ẑ, z̃s+1) be a solution to the switching equation (12.4b). Then
[
ẑ
z̃s+1] = z̃ = F̃(x, z̃, |z̃|) = [ F̂(x, ẑ, |ẑ|)F̃s+1(x, ẑ, |ẑ|)] .

Therefore, ẑ is a solution to the switching equation in (12.3b) for F̂ . Furthermore, φ(x) =
̃f (x, z̃) = ̃f (x, F̃(x, z̃, |z̃|)) = ̂f (x, ẑ, |ẑ|), where the last equality is due to the definition
in (12.9).

Example 12.4. Recall the abs-smooth form of type (12.4) given in Example 12.1:

F̃(x, z̃, |z̃|) = [[
[

2x1 + x2
x3
2 (|z̃1| + z̃1) + x4 − 2
|z̃2|

]]

]

,

̃f (x, z̃) = z̃3.

We find the abs-smooth form of type (12.3) by using Equation (12.9) in Proposition 12.3.
This yields
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F̂(x, ẑ, |ẑ|) = [ 2x1 + x2
x3
2 (|ẑ1| + ẑ1) + x4 − 2

] ,

̂f (x, ẑ, |ẑ|) = |ẑ2|.

From this, we obtain the abs-smooth form of type (12.2) by using Equation (12.6) and
Equation (12.7) in Proposition 12.2. This yields

F(x, |z|) = [ F̂1(x)
F̂2(x, F1(x, |z|), |z1|)

] = [
2x1 + x2

x3
2 (|z1| + 2x1 + x2) + x4 − 2

] ,

f (x, |z|) = ̂f (x, F(x, |z|), |z|) = |z2|.

4 Equivalence of the LIKQ conditions
For this section, fix x ∈ ℝn and z ∈ ℝs, ẑ ∈ ℝs and z̃ ∈ ℝs+1 as the solutions to the respec-
tive switching equations (12.2b), (12.3b), and (12.4b). In the smooth case, the regularity
requirement LICQ poses a condition on the active constraints resulting in a uniqueness
of the Lagrange multipliers. Exactly this uniqueness is needed to derive optimality con-
ditions that can be verified in polynomial time for the nonsmooth case. For this purpose,
we now specify the active constraints in the nonsmooth setting considered here.

Definition 12.5 (Signature vector and active switching variables). For a given switching
vector z ∈ ℝs, the vector σ := sign(z) ∈ {−1, 0, 1}s is called a signature vector. A switching
variable zi is called active if σi = 0, for i ∈ {1, . . . , s}. The active switching set α collects all
indices of active switching variables, that is,

α := {i ∈ {1, . . . , s} | σi = 0}. (12.10)

The size of the active switching set is defined as |α|.

It is important to note that by Proposition 12.2 and Proposition 12.3 we have zi = ẑi =
z̃i for i ∈ {1, . . . , s}. Hence, the definitions of σ and α are independent of the specific abs-
smooth form that is used. Note that the chosen x ∈ ℝn also determines a fixed signature
vector σ throughout this section.

To state and analyze the LIKQ condition for the three different function representa-
tions, it is beneficial to introduce some notation. We abbreviate the partial derivatives
of the switching functions F , F̂ , and F̃ by

Z := 𝜕F
𝜕x
(x, |z|), M := 0, L := 𝜕F

𝜕|z|
(x, |z|),

Ẑ := 𝜕F̂
𝜕x
(x, ẑ, |ẑ|), M̂ := 𝜕F̂

𝜕ẑ
(x, ẑ, |ẑ|), L̂ := 𝜕F̂

𝜕|ẑ|
(x, ẑ, |ẑ|),

Z̃ := 𝜕F̃
𝜕x
(x, z̃, |z̃|), M̃ := 𝜕F̃

𝜕z̃
(x, z̃, |z̃|), L̃ := 𝜕F̃

𝜕|z̃|
(x, z̃, |z̃|).

(12.11)
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Note that the derivativematrices M̂ , M̃ ,L, L̂, and L̃ are strictly lower triangular due to the
assumption made for all three abs-smooth forms, respectively. This is motivated by the
evaluation procedure shown in Table 12.1 as starting point of the nonsmooth approach
considered in this paper. Furthermore, this assumption ensures the invertibility of some
of the matrices considered below. Alternatively, one could assume a corresponding in-
vertibility directly. However, then instead of the simple solution of a linear system with
a triangular system matrix a more involved solution approach has to be applied.

Let Σ := diag(σ) ∈ ℝs,s. We refer to the matrix

∇zσ := (I − LΣ)−1Z ∈ ℝs×n (12.12)

as the Jacobian of type (12.2) for the fixed switching system

zσ = F(x, Σzσ). (12.13)

Notice that the inverse in (12.12) is well-defined due to the strictly lower triangular struc-
ture of L. The same argument applies for all the inverse matrices that are used through-
out this section. The term Jacobian as well as the symbol ∇zσ acknowledge the fact that
zσ as the solution to (12.13) can be seen as a function of x and its derivative can be ob-
tained by the implicit function theorem. Analogously, one obtains for the abs-smooth
form of type (12.3) the Jacobian

∇ẑσ := (I − M̂ − L̂Σ)−1Ẑ ∈ ℝs×n, (12.14)

for the fixed switching system

ẑσ = F̂(x, ẑσ , Σẑσ). (12.15)

With σs+1 := sign(z̃s+1) ∈ {−1, 0, 1} and Σ̃ := diag(σ, σs+1), we define the Jacobian for the
abs-smooth form of type (12.4) by

(∇ẑσ , ∇z̃σs+1) := ∇z̃σ := (I − M̃ − L̃Σ̃)−1Z̃ ∈ ℝ(s+1)×n, (12.16)

for the fixed switching system

z̃σ = F̃(x, z̃σ , Σ̃z̃σ). (12.17)

Then the required regularity condition as introduced in [6, Definition 2] can be formu-
lated as follows.

Definition 12.6 (Linear independence kink qualification (LIKQ)). A switching function F ,
̂F , or F̃ of type (12.2b), (12.3b), or (12.4b), respectively, is said to satisfy the LIKQ condition

at x, if the corresponding active Jacobian from (12.12), (12.14), or (12.16), respectively, has
full row rank |α|, which requires in particular that |σ| ≥ s − n.
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Proposition 12.7. The abs-smooth form of type (12.2) and the abs-smooth form of type
(12.3) have concurrent LIKQ, that is, a switching function F satisfies LIKQ at some x ∈ ℝn,
if and only if the corresponding function F̂ from Proposition 12.2 has LIKQ at x.

Proof. It is sufficient to show that the Jacobians ∇zσ and ∇ẑσ coincide under the refor-
mulations from Proposition 12.2. For i ∈ {1, . . . , s} and k ∈ {1, . . . , n}, the definition of F
from F̂ in Proposition 12.2 implies

𝜕Fi
𝜕xk
=

d
dxk

F̂i(x, F1(x), . . . , Fi−1(x, |ẑ1|, . . . |ẑi−2|), |ẑ1|, . . . , |ẑi−1|)
=
𝜕F̂i
𝜕xk
+
i−1
∑
j=1 𝜕F̂i𝜕ẑj 𝜕Fj𝜕xk .

Inmatrix representation, this identity readsZ = Ẑ+M̂Z, such that one hasZ = (I−M̂)−1Ẑ.
Analogously, one can also show that L = (I − M̂)−1L̂. From (12.14), it readily follows that

∇ẑσ = (I − M̂ − L̂Σ)−1Ẑ
= ((I − M̂)−1(I − M̂ − L̂Σ))−1(I − M̂)−1Ẑ
= ((I − (I − M̂)−1L̂Σ))−1(I − M̂)−1Ẑ
= (I − LΣ)−1Z
= ∇zσ .

For the converse reformulation, that is, if F̂ is defined by F , it holds that

Ẑ = 𝜕F̂
𝜕x
=
𝜕F
𝜕x
= Z,

L̂ = 𝜕F̂
𝜕|z|
=
𝜕F
𝜕|z|
= L,

M̂ = 𝜕F̂
𝜕z
= 0.

Thereby,

∇ẑσ = (I − M̂ − L̂Σ)−1Ẑ = (I − LΣ)−1Z = ∇zσ .
Proposition 12.8. The abs-smooth form of type (12.3) and the abs-smooth form of type
(12.4) have concurrent LIKQ, that is, a switching function F̂ satisfies LIKQ at some x ∈ ℝn,
if and only if the corresponding function F̃ from Proposition 12.3 has LIKQ at x.

Proof. By the reformulations of Proposition 12.3, the partial derivative of F̂ and F̃
(see (12.11)) are related by

Z̃ = 𝜕
𝜕x
[
F̂(x, ẑ, |ẑ|)
̂f (x, ẑ, |ẑ|)

] = [
Ẑ

𝜕x ̂f (x, ẑ, |ẑ|)
] ,
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M̃ = [
M̂ 0s×1

𝜕ẑ ̂f (x, ẑ, |ẑ|) 01×1] ,
L̃ = [

L̂ 0s×1
𝜕|ẑ| ̂f (x, ẑ, |ẑ|) 01×1] .

Thereby, using (12.14) and (12.16), the Jacobians are related by

∇z̃σ = (I − M̃ − L̃Σ̃)−1Z̃
= [

I − M̂ − L̂Σ 0s×1
−𝜕ẑ ̂f − 𝜕|ẑ| ̂f Σ 1

]
−1
Z̃

= [
(I − M̂ − L̂Σ)−1 0s×1
∗ 1

] Z̃

= [
(I − M̂ − L̂Σ)−1Ẑ
∗

] = [
∇ẑσ

∗
] ,

where * is some row matrix obtained as a result of the calculations. This last row is
not taken into account for this active Jacobian, hence the LIKQ condition is equivalent
under this reformulation.

The converse reformulation from the abs-smooth form of type (12.4) to the abs-
smooth form of type (12.3) yields

Z̃ = 𝜕
𝜕x
[
F̂(x, ẑ, |ẑ|)
F̃s+1(x, ẑ, |ẑ|)] = [ Ẑ

𝜕x F̃s+1(x, ẑ, |ẑ|)] ,
M̃ = [ M̂ 0s×1
𝜕ẑF̃s+1(x, ẑ, |ẑ|) 01×1] ,

L̃ = [ L̂ 0s×1
𝜕|ẑ|F̃s+1(x, ẑ, |ẑ|) 01×1] .

Similarly, as before, one obtains

∇z̃σ = (I − M̃ − L̃Σ̃)−1Z̃ = [(I − M̂ − L̂Σ)−1Ẑ
∗

] = [
∇ẑσ

∗
] ,

with a different row matrix for * , which is again irrelevant in the active Jacobian.

Remark 12.9. The results of Proposition 12.7 and Proposition 12.8 could also be ob-
tained by extending Proposition 12.2 and Proposition 12.3 for the fixed switching equa-
tions (12.13), (12.15), and (12.17). Afterwards, the implicit function theorem can be used to
show that (12.12), (12.14), and (12.16) are three different representations of the Jacobian
of zσ(x).

Example 12.10. Recall Example 12.4. We set x = (1,−2, 1, 2) such that z = σ = (0, 0),
α = {1, 2}, and thus |α| = 2. Additionally, for the abs-smooth form of type (12.4), we get
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z̃s+1 = 0 and σs+1 = 0. We compute the matrices from (12.11) for the different abs-smooth
forms as

Z = [2 1 0 0
1 1

2 0 1
] , M = 0, L = [0 0

1
2 0
] ,

Ẑ = [2 1 0 0
0 0 0 1

] , M̂ = [0 0
1
2 0
] , L̂ = [0 0

1
2 0
] ,

Z̃ = [[
[

2 1 0 0
0 0 0 1
0 0 0 0

]]

]

, M̃ = [[
[

0 0 0
1
2 0 0
0 0 0

]]

]

, L̃ = [[
[

0 0 0
1
2 0 0
0 1 0

]]

]

.

As Σ = 0 and Σ̃ = 0, we get

∇zσ = (I − 0 − 0)−1Z = Z = [1 0
1
2 1
] Ẑ = (I − M̂)−1Ẑ = ∇ẑσ .

Similarly, we also see that

∇z̃σ = (I − M̃)−1Z̃ = [[
[

1 0 0
1
2 1 0
0 0 1

]]

]

Z̃ = [Z
0
] .

In particular, as Z has full rank 2 all forms satisfy the LIKQ condition at x.

5 Summary

In this paper, three abs-normal formulations of the nonsmooth optimization problem
were considered. It was shown that the three variants, (12.2), (12.3), and (12.4) can be
reformulated into each other. The definition of LIKQ, for (12.2) given in [6] and for (12.4)
given in [10], was extended for the case of formulation (12.3), which exhibits an explicit
dependence on the switching variable z in both f and F . Furthermore, it was proven that
the LIKQ condition is invariant under the proposed reformulations. The results were
accompanied by an example, which was motivated by neural networks. Future work
could consider the weaker kink qualification MFKQ introduced in [14] as well as the
LIKQ condition under additional constraints as in [10].
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Philippe L. Toint
Divergence of the ADAM algorithm with
fixed-stepsize: a (very) simple example

Abstract: A very simple unidimensional function with Lipschitz continuous gradient
is constructed such that the ADAM algorithm with constant stepsize, started from the
origin, diverges when applied to minimize this function in the absence of noise on the
gradient. Divergence occurs irrespective of the choice of the method parameters.

Keywords: ADAM algorithm, machine learning, deterministic nonconvex optimization

1 Introduction

This short note provides a new explicit example of failure of the ADAM algorithm [3],
one of the most popular training methods in machine learning. Given the problem

min
x∈ℝn f (x) (13.1)

where f is continuously differentiable function from ℝn into ℝ with the Lipschitz con-
tinuous gradient, and a starting iterate x0, the ADAM sequence of iterates is defined
(see [4]), for i ∈ {1, . . . , n} and k ≥ 0, by the recurrences

[mk]i = β1[mk−1]i + (1 − β1)[gk]i, (13.2)

[vk]i = β2[vk−1]i + (1 − β2)[gk]2i , (13.3)

[xk+1]i = [xk]i − α [mk]i
√[vk]i
, (13.4)

where [v]i is the ith component of the vector v ∈ ℝn, mk is the kth “momentum,” xk
is the kth iterate, gk = ∇

1
xf (xk), β1 ∈ [0, 1) is the momentum parameter and β2 ∈ [0, 1)

is the “forgetting” parameter, and α > 0 is a (fixed) steplength/learning-rate parameter.
The recurrences (13.2) and (13.3) are initialized by setting, for i ∈ {1, . . . , n}, [m−1]i = [g0]i
and [v−1]i = [g0]2i , respectively. ADAM is intended to find first-order points for problem
(13.1), in the sense that, for each i ∈ {1, . . . , n}, |[gk]i| should converge to zero when k
tends to infinity. In practice, this algorithm is most often used in a stochastic context
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where the gradient gk is contaminated by noise (typically resulting from sampling) and
has generated a considerable interest in the machine learning community.

Despite its widespread use, difficulties with this algorithm are not new. In the
noiseless (deterministic/full batch) case, obstacles for proving convergence were in
particular mentioned in [2], essentially pointing out the possibility that second-order
terms in the Taylor’s expansion of the objective function could not vanish quickly
enough. In [4, Theorem 1], an example of nonconvergence on a convex function was
produced in the online-learning stochastic context, but this example crucially depends
on the nonzero variance of the noise. In a recent discussion at the June 2023 Thematic
Einstein Semester on Optimization and Machine Learning in Berlin, it was suggested
that, although likely, no explicit example of failure of Adam with fixed stepsize was
available for the deterministic case (where the variance is zero). This prompted the
author to produce the (very simple) one which is, for the record, detailed in the next
section. We note that an again convex but deterministic example had already been pro-
vided in the comprehensive analysis of ADAM’s behaviour (with decreasing stepsize)
detailed in [5] (see Propositions 3.3 and E1). This analysis describes conditions, which
delineate a region strictly included in [0, 1)2 such that ADAMwith parameters β1 and β2
chosen in this region generates a diverging sequence on this example. In contrast, the
simple example we are about to discuss is nonconvex and applies to the entire [0, 1)2,
but requires constant stepsize. It can therefore be seen as complementing the analysis
of [5].

2 The example

To show that the ADAM algorithm may fail to converge on nonconvex functions with
Lipschitz gradient, we will exhibit an example in dimension one, which we construct in
two stages. We first define sequences of iterates, together with associated function and
gradient values, which remain constant throughout the iterations. We next verify that
these sequences may be considered as generated by applying the ADAM algorithm to a
nonconvex objective function with Lipschitz gradient. (Since the example is unidimen-
sional, we omit the component indices (i) if what follows.) For k ≥ 0, let the sequence of
function values and gradients be defined by

fk = 0 and gk = −1, (13.5)

and the sequence of (potential) iterates be defined (from (13.2)–(13.4)) by x0 = 0 and

mk = β1mk−1 + (1 − β1)gk = −1, (13.6)

vk = β2vk−1 + (1 − β2)g2k = 1, (13.7)

xk+1 = xk − α mk
√vk
= xk + α, (13.8)
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for k ≥ 1, where we used (13.5) to derive the last equality in (13.6) and (13.7). Thus,

sk = xk+1 − xk = α, (13.9)

for k ≥ 0 and xk = αk tends to infinity. We now show that there exists a (nonconvex)
univariate function f1 defined on ℝ

+ with Lipschitz continuous gradient such that fk =
f1(xk) = 0 and gk = ∇

1
xf1(xk) = −1 for all k ≥ 0. Indeed, a simple Hermite interpolation

calculation based of these conditions yields that, for all t ∈ [αk, α(k + 1)],

f1(t) = −(t − αk) +
3
α
(t − αk)2 − 2

α2
(t − αk)3. (13.10)

We may then define

f (t) = {
f1(t) if t ≥ 0,
−t if t < 0,

so that f (t) is well-defined on the whole of ℝ has Lipschitz continuous gradient and is
such that the ADAM algorithm (13.6)–(13.8) applied on f starting from x0 = 0 generates
iterates with |gk | = 1 for all k ≥ 0. We thus conclude that the ADAM algorithm fails to
converge on this particular instance of problem (13.1). A graph of f (t) for t ∈ [−1, 10],
α = 1 is shown in Figure 13.1. One also verifies that the Lipschitz constant on the interval
[xk , xk+1] is given by

L = max
k≥0 sup

t∈[αk,α(k+1)]󵄨󵄨󵄨󵄨∇2t f (t)󵄨󵄨󵄨󵄨 = 6α .
Moreover, defining Tk(s) = fk + gks, it results from (13.5), [1, Theorem A.9.2], (13.9) and
the inequalities

󵄨󵄨󵄨󵄨 fk+1 − Tk(sk)󵄨󵄨󵄨󵄨 = sk ≤ 1α s2k and 󵄨󵄨󵄨󵄨gk+1 − ∇1sTk(s)󵄨󵄨󵄨󵄨 = |−1 + 1| ≤ 1α sk

Figure 13.1: The shape of f (t) for small values of |t|.
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that f (t) is bounded below by a constant only depending on α. As a consequence, we
see that, for any fixed (β1, β2) ∈ [0, 1)

2 and α > 0, there exist unidimensional functions
with Lipschitz continuous gradient whose gradient’s Lipschitz constant is as small as 6/α,
which is bounded below by a constant only depending on α and for which the ADAM algo-
rithm (13.6)–(13.8) starting from x0 = 0 generates iterates tending to infinity with constant
nonzero gradients (therefore failing to converge).

Since our example is unidimensional and since ADAM is defined componentwise,
the same conclusion obviously applies irrespective of n, the problem dimension. Indeed
divergence in a single component implies divergence on the whole space.

Our result thus extends that of [5] in that it includes methods for arbitrary (β1, β2) ∈
(0, 1)2 but fixed stepsize. Note that |∇1t f (t)| is bounded by L for all t ∈ ℝ, again at variance
with the example of this reference.

Observe that our conclusions would also hold if we had fixed gk to another negative
constant (we can multiply f by this constant) or if, instead of (13.4), we had considered

[xk+1]i = [xk]i − αk [mk]i
√ϵ + [vk]2i

, or [xk+1]i = [xk]i − αk [mk]i
ϵ +√[vk]2i

,

where ϵ is a small positive constant and the (now iteration-dependent) stepsizes αk are
bounded away from zero, but they do not apply in the more realistic situation where
stepsizes αk → 0 are used (as is for instance the case in [5, Proposition 1.1], where αk is
a multiple of 1/√k). We also remark that, because of the periodicity of our example, it
would be possible to derive a trigonometric variant.We finally note thatwe have chosen
a constant zero value for fk in order to simplify our bounds, but that it is also possible
to choose fk+1 > fk (leading to an monotonically increasing sequence of function values)
without qualitatively affecting our conclusion, although this leads to a larger value of L.
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