
Alexander Heinlein, Amanda A. Howard, Damien Beecroft, and
Panos Stinis
Multifidelity domain decomposition-based
physics-informed neural networks and
operators for time-dependent problems

Abstract:Multiscale problems are challenging for neural network-based discretizations
of differential equations, such as physics-informed neural networks (PINNs) and opera-
tor networks. This can be (partly) attributed to the so-called spectral bias of neural net-
works. To improve the performance of PINNs for time-dependent problems, a combina-
tion of multifidelity stacking PINNs and domain decomposition-based finite basis PINNs
is employed. In particular, to learn the high-fidelity part of the multifidelity model, a do-
main decomposition in time is employed. The performance is investigated for a pendu-
lumanda two-frequencyproblemaswell as theAllen–Cahnequation. It canbe observed
that the domain decomposition approach clearly improves the PINN and stacking PINN
approaches. Finally, it is demonstrated that the FBPINN approach can be extended to
multifidelity physics-informed deep operator networks.

Keywords: Multifidelity, domain decomposition, physics-informed neural network,
deep operator networks

MSC 2020: 65M22, 65M55, 68T07

1 Introduction
Many problems arising in science and engineering exhibit a multiscale nature, with dif-
ferent processes taking place on various temporal and spatial scales. The solution of

Acknowledgement: This project was completed with support from the U. S. Department of Energy, Ad-
vanced Scientific Computing Research program, under the Scalable, Efficient, and Accelerated Causal Reason-
ing Operators, Graphs and Spikes for Earth and Embedded Systems (SEA-CROGS) project (Project No. 80278).
Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the U. S.
Department of Energy (DOE) by BattelleMemorial Institute under Contract No. DE-AC05-76RL01830. The com-
putational work was performed using PNNL Institutional Computing.

Alexander Heinlein, Delft University of Technology, Delft Institute of Applied Mathematics, 4 Mekelweg,
2628 CD Delft, South Holland, Netherlands, e-mail: a.heinlein@tudelft.nl
Amanda A. Howard, Panos Stinis, Battelle Memorial Institute, P. O. Box 999, Richland, WA, 99352, USA,
e-mails: amanda.howard@pnnl.gov, panos.stinis@pnnl.gov
Damien Beecroft, University of Washington, Applied Mathematics, 7462 Woodlawn Ave NE, Seattle, WA,
98195, USA, e-mail: dob1998@uw.edu

Open Access. © 2025 the author(s), published by Walter de Gruyter GmbH, Berlin/Boston. This work is
licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783111376776-006

80 � A. Heinlein et al.

these problems is generally difficult for numerical methods. Multiscale methods have
been developed to make numerical simulations of such problems feasible; examples
are the multiscale finite element [12], homogeneous multiscale [9], generalized finite el-
ement [4], or variational multiscale [16] methods.

In recent years, inspired by the early work by Lagaris et al. [17], machine learning-
based techniques for the solution of partial differential equations (PDEs) have been
developed. In this paper, we focus on physics-informed neural networks (PINNs) [25];
other methods, such as the Deep Ritz method [10], have been developed around the
same time. Those methods have many potential advantages: they are easy to imple-
ment, allow for direct integration of data, and can be employed to solve inverse and
high-dimensional problems. However, their convergence properties are not yet well un-
derstood, and hence the resulting accuracy is often limited. This can be partly accounted
to the spectral bias of neural networks (NNs) [24], meaning that NNs tend to learn low
frequency components of functions much faster than high frequency components. In
multiscale problems, the high frequency components typically correspond to the fine
scales, whereas the low frequency components correspond to the coarse scales. There-
fore, multiscale problems are also particularly challenging to solve using PINNs.

In this paper, we aim to combine two techniques that have recently been developed
to improve the training of PINNs in this context. On the one hand, we consider themulti-
fidelity training approach introduced for PINNs [21] and extended to Deep Operator Net-
works (DeepONets, [18]) in [14, 19, 6]. In particular, we consider the approach of stacked
PINNs [13] in which multiple networks are stacked on top of each other, such that mod-
els on top of the stack may learn those features that are not captured by the previous
models. On the other hand, we employ multilevel Schwarz domain decomposition neu-
ral network architectures [8], which are based on the finite-basis PINNs (FBPINNs) [22]
approach. In this approach, the learning of multiscale features is improved by local-
ization. In particular, the network architecture is decomposed, such that the individual
parts of the network learn features on the corresponding spatial or temporal scale. For
an overview on the combination of domain decomposition approaches and machine
learning see, for instance, [11].

In related recent works, methods for iteratively training PINNs to progressively
reduce the errors have been developed; see [1, 2, 3, 31]. These approaches, which vary in
their implementation details, train each new network to reduce the residual from the
previous network. In contrast, the work presented here trains for the entire solution at
each iteration.

This paper is structured as follows: First, in Section 2, we describe the methodologi-
cal framework. In particular, we first discuss PINNs in Section 2.1, then we describemul-
tifidelity stacking PINNs in Section 2.2, as well as the domain decomposition approach
in Section 2.3. Next, we introduce the specific domain decomposition in time employed
in themodel problems in Section 3. In Section 4, we present numerical results for several
model problems, a pendulum, and a two-frequency problem as well as the Allen–Cahn
equation. We extend the results to DeepONets in Section 5. We conclude with a brief

Multifidelity DD NNs � 81

discussion of the current and future work in Section 6. All training parameters used to
generate the results are given in Table 6.1.

2 Methodology

2.1 Physics-informed neural networks

Weconsider a generic differential equation-based problem in residual form: Find u such
that

𝒜u = 0 in Ω,
ℬu = 0 on 𝜕Ω,

(6.1)

where𝒜 is a differential operator and ℬ an operator for specifying the initial or bound-
ary conditions. The solution u is defined on the domain Ω and should have sufficient
regularity to apply 𝒜 and ℬ. In order to solve Eq. (6.1), we follow [17] and employ a
collocation approach. In particular, we exploit that solving Eq. (6.1) is equivalent to solv-
ing argminℬu=0 on 𝜕Ω ∫Ω(𝒜u(x))2 dx. We discretize the solution using a neural network
û(x, θ), with parameters θ, and the integral is approximated by the sum

argmin
ℬû(x,θ)=0 on 𝜕Ω ∑xi∈Ω(𝒜û(xi, θ))2,

where the collocation points xi are sampled from Ω. Different types of neural network
architectures may be employed, and we will employ a combination of the approaches
explained in Sections 2.2 and 2.3.

The initial or boundary conditions in the second equation of Eq. (6.1) can be en-
forced via hard or soft constraints. In the approach of hard constraints, they are explic-
itly implemented in the neural network function; cf. [17]. In this paper, we employ the
approach of soft constraints instead, in which we incorporate the constraints into the
loss function:

argmin
θ

λr ∑
xi∈Ω(𝒜û(xi, θ))2 + λbc ∑xi∈𝜕Ω(ℬû(xi, θ))2 (6.2)

Here, λr and λbc weight the residual of the differential equation and the initial and
boundary conditions in the loss function, respectively. As discussed, for instance in [28],
an appropriate weighting is crucial for the convergence in optimizing Eq. (6.2) using a
gradient-based optimization method. θ denotes all the trainable parameters in the net-
work.

This approach has also been denoted as physics-informed neural networks (PINNs)
in [25].

82 � A. Heinlein et al.

2.2 Multifidelity stacking PINNs

Multifidelity PINNs use two NNs to learn the correlation between low- and high-fidelity
physics [21]. The goal is to train a linear network (with no activation function) to learn
the linear correlation between the low- and high-fidelity models, and a nonlinear net-
work to learn the nonlinear correlation. By training a linear network, the resulting
model is more expressive than just assuming that the correlation between the models
is the identity. Moreover, under the assumption that the main part of the correlation is
linear, separating the network into the linear and nonlinear parts allows for a smaller
nonlinear network.

To train amultifidelity PINN,wefirst train a standard single fidelity PINN ûSF(x, θSF).
In a second step, we then train a multifidelity network ûMF, which consists of linear
and nonlinear subnetworks that learn the correlation between the single fidelity PINN
ûSF(x, θSF) and the solution:

ûMF(x, θMF) = (1 − |α|)ûMFlinear(x, û
SF, θMF) + |α|ûMFnonlinear(x, û

SF, θMF). (6.3)

The linear network does not have activation functions to force learning a linear correla-
tion, and can be very small. α is a trainable parameter to enforce maximizing the linear
correlation.

The loss function in Eq. (6.2) is modified to include the penalty α4:

argmin
θ

λr ∑
xi∈Ω(𝒜û(xi, θ))2 + λbc ∑xi∈𝜕Ω(ℬû(xi, θ))2 + λαα4 (6.4)

In multifidelity stacking PINNs as presented in [13], multifidelity PINNs are trained
recursively, each taking the output of the previously trained stacking layer as input. In
this way, the previous layer serves as the low-fidelity model for the new stacking layer.
The difference between [13] and the current work is that [13] does not consider domain
decomposition, so each stacking layer has a singlemultifidelity PINN covering the entire
domain. The approach considered here ismore flexible, and aswewill show in Section 4,
results in smaller relative errors when trained on the same equations.

2.3 Domain decomposition-based neural network architectures

It has been observed in [22] that the high frequency components in the solution can be
learned better if a domain decomposition is introduced into the PINN approach. To scale
to larger numbers of subdomains, this approach has first been extended to two-levels
in [7] and then to an arbitrary number of levels in [8]. The general idea of the domain
decomposition-based finite basis PINNs (FBPINNs) is to decompose the computational
domain Ω into J overlapping subdomains Ωj , Ω = ⋃

J
j=1 Ωj . As before, Ω may be a space-

time domain, and in this work we will focus on domain decomposition in time. On each
subdomain, we define a space of network functions 𝒱j = {ûj(x, θj) | x ∈ Ωj , θj ∈ Θj},

Multifidelity DD NNs � 83

Figure 6.1:Multilevel overlapping domain decomposition of Ω with L = 3 levels.
where ûj(x, θj) denotes a PINN model, Θj = ℝ

kj is the space of all trainable neural net-
work parameters, and kj is the number of network parameters.

In order to represent the global solution of a given problem, we define window
functions ωj with supp(ωj) ⊂ Ωj such that {ωj}

J
j=1 form a partition of unity, that is,

∑Jj=1 ωj = 1 on Ω. Then we can define a global neural network space 𝒱 = ∑
J
j=1 ωj𝒱j , and

the global FBPINN function reads û(x, θ) = ∑Jj=1 ωjûj(x, θj). It has been observed that
this approach may significantly improve the performance of PINNs; cf. [22]. However,
similar to classical domain decomposition methods [27], the one-level approach is not
scalable to large numbers of subdomains; see [7, 8].

To improve the scalability and the performance for multiscale problems, a hierar-
chy of domain decompositions may be employed. Define L levels of domain decomposi-
tions, with the overlapping domain decomposition at level l denoted by D(l) = {Ω(l)j }J (l)j=1,
where Ω = ⋃J

(l)

j=1 Ω(l)j and J (l) is the number of subdomains at level l; cf. Figure 6.1. Even
though there is generally no restriction on the overlapping domain decompositions, we
choose J (1) = 1, so the first level corresponds to a single global subdomain, and J (l) < J (l+1)
for all l = 1, . . . , L.

Now, on each level l we define window functions ω(l)j to be a partition of unity, so

∑J
(l)

j=1 ω(l)j = 1, and supp(ω(l)j) ⊂ Ω(l)j . Similar to the one-level case, this yields the global
neural network space 𝒱 = ∑Ll=1∑J (l)j=1 ω(l)j 𝒱(l)j and the global network function defined in

terms of θ = ⋃Ll=1 θ(l) and θ(l) = ⋃J (l)j=1 θ(l)j :

û(x, θ) = 1
L

L
∑
l=1 û(l)(x, θ(l)) with û(l)(x, θ(l)) = J (l)∑

j=1ω(l)j û(l)j (x, θ(l)j). (6.5)

It has been observed in [7, 8] that due to increased communication between the sub-
domain models, the multilevel FBPINN approach may significantly improve the perfor-
mance over the one-level approach.

2.4 Stacking FBPINNs

We combine the multifidelity stacking PINNs and the FBPINNs as follows: In the first
level, we train a standard single fidelity PINN across the full domain Ω(0) = Ω. Then, for
each level l > 0, we use a FBPINN network architecture modified to consist of multifi-

84 � A. Heinlein et al.

delity networks that takes as input the network from the previous level l − 1:

û(l)(x, θ(l)) = J (l)∑
j=1ω(l)j û(l)j,MF(x, û(l−1), θ(l)j). (6.6)

We note that Eq. (6.6) differs from Eq. (6.5) by a factor of 1/L, because the output of
FBPINNs is the sum of the networks trained at all levels, while the output of stacking
FBPINNs is the sum of the networks for the final level. The networks at level l learn the
correlation between the output of the l − 1 level and the solution, and take as input the
previously learned solution û(l−1)(x, θ(l−1)):

û(l)j,MF(x, θ(l)j) = (1 − |α|)û(l)j,lin(x, û(l−1), θ(l)j) + |α|û(l)j,nonlin(x, û(l−1), θ(l)j).
3 Domain decomposition in time

In this work, we are particularly interested in cases where classical PINNs fail to learn
the temporal evolution, such as a damped pendulum and the Allen–Cahn equation. We
consider a domain Ω = X× [0, T]where X denotes the spatial domain and T ∈ ℝ. There-
fore, for the stacking FBPINN approach, we consider the domain decomposition in time:

Ω(l)j = [(j − 1)T − δT/2J (l) − 1 ,
(j − 1)T + δT/2

J (l) − 1],

where δ > 1 is the overlap ratio. For l = 0, we take Ω(0)1 = [0.5T − δT/2, 0.5T + δT/2]. The
partition of unity functions are given by ω(l)j = ω̂(l)j

∑J
(l)
j=1 ω̂
(l)
j

, where

ω̂(l)j (t) = {1 l = 0,
[1 + cos(π(t − μ(l)j)/σ(l)j)]2 l > 0,

(6.7)

μ(l)j = T(j − 1)/(J (l) − 1), and σ(l)j = (δT/2)/(J (l) − 1). For simplicity, we take J (l) = 2l in each
case. An illustration of the window functions for T = 1 and l = 2 (J (2) = 4) is given in
Figure 6.2.

Figure 6.2:Window functions ωj for l = 2 and T = 1.

Multifidelity DD NNs � 85

As set up, each network only covers a small part of the time domain. To ease train-
ing, we scale the input in each domain to be in the range [−1, 1] by using a scaled time ̂t =
t(l−1)/T−j as the input to network j. This scaling improves the robustness of the training.

In our applications, we calculate the relative ℓ2 error
‖u(x)−û(x,θ)‖2‖u(x)‖2 where u denotes

the exact solution and û denotes the output from the multifidelity FBPINN.

4 Results
4.1 Pendulum
While a relatively simple system, accurately training a PINN to predict the movement
of a pendulum for long times presents challenges [29]. The pendulummovement is gov-
erned by a system of two first-order ODEs for t ∈ [0, T],

ds1
dt
= s2, (6.8)

ds2
dt
= −

b
m
s2 −

g
L
sin(s1), (6.9)

where s1 and s2 are the position and velocity of the pendulum, respectively. We employ
the same parameters used in [29], that is, m = L = 1, b = 0.05, g = 9.81, and T = 20. We
take s1(0) = s2(0) = 1.We compare the results with those for the stacking PINN from [13],
which uses the same multifidelity architecture but only a single PINN on each level. As
shown in Figure 6.3, the stacking FBPINN is able to reach a significantly lower relative
ℓ2 error. In addition, each network in the stacking FBPINN is significantly smaller than
the networks used in the stacking PINN with the result that, at three stacking layers,
the stacking FBPINN reaches a relative ℓ2 error of 7.4 ⋅ 10

−3 with only 34 570 trainable
parameters. In comparison, the best case stacking PINN from [13] requires four stacking
levels to reach a relative ℓ2 error of 1.3 ⋅ 10

−2 with 63 018 trainable parameters.

Figure 6.3: Stacking FBPINN results for the pendulum problem: Left: Stacking FBPINN results for an il-
lustrative example of s1 (top) and s2 (bottom) as a function of time for the pendulum problem up to five
stacking FBPINN levels. Right: Pendulum relative ℓ2 training errors comparing the work in the current
paper (solid line) with the approach from [13] (dashed lines).

86 � A. Heinlein et al.

4.2 Multiscale problem
We now consider a toy model problem with a low and high frequency component, in-
spired by [22]:

ds
dx
= ω1 cos(ω1x) + ω2 cos(ω2x),

s(0) = 0,

on domain Ω = [0, 20] with ω1 = 1 and ω2 = 15. The exact solution for this problem is
s(x) = sin(ω1x) + sin(ω2x).

The results are shown in Figure 6.4. After two stacking levels, the stacking FBPINN
reaches a relative ℓ2 error of 4.2 ⋅ 10

−3, with 7 822 trainable parameters. A comparable
relative ℓ2 error of 6.1 ⋅ 10

−3 is reached after 10 stacking levels with a stacking PINNwith
11 179 trainable parameters. Also shown in Figure 6.4 (right) is the best case SF network
from [13], which has a relative ℓ2 error of 9.5 ⋅ 10

−2 with 16 833 trainable parameters.
The stacking FBPINN outperforms the SF PINN with an error more than an order of
magnitude lower, with less than half the trainable parameters. Additionally, the final
stacking FBPINN reaches a relative ℓ2 error of 8.3 ⋅ 10

−4, an order of magnitude lower
than the final stacking PINN.

Figure 6.4: Stacking FBPINN results for the multiscale problem: Left: Stacking FBPINN results for the sin-
gle fidelity level 0 and the first four stacking FBPINN levels. Right:Multiscale relative ℓ2 training errors
comparing the work in the current paper with [13].

4.3 Allen–Cahn equation
Our third example is based on the Allen–Cahn equation and is given by

st − 0.0001sxx + 5s
3 − 5s = 0, t ∈ (0, 1], x ∈ [−1, 1],

s(x, 0) = x2 cos(πx), x ∈ [−1, 1],
s(x, t) = s(−x, t), t ∈ [0, 1], x = −1, x = 1,
sx(x, t) = sx(−x, t), t ∈ [0, 1], x = −1, x = 1.

The Allen–Cahn equation presents difficulties for PINNs when attempting to learn the
full solution from t = 0 to 1 with a single PINN; see, for example, [32, 20, 26].

Multifidelity DD NNs � 87

Figure 6.5: Stacking FBPINN results for the Allen–Cahn equation. Left: Stacking FBPINN results for the
single fidelity level 0 and the first two stacking FBPINN levels. Right: Line plots of the results from the
stacking FBPINN at t = 0.25 (top) and t = 0.75 (bottom).
We solve the Allen–Cahn equation by dividing the time domain into subdomains, as
presented in Section 3. The corresponding results for the stacking FBPINN are shown in
Figure 6.5. The relative ℓ2 error for applying two levels of the stacking FBPINN is 5.9⋅10

−3.
Previously reported values for the relative error in literature include 1.68 ⋅ 10−2 for the
backward compatible PINN [20] and 2.33 ⋅ 10−2 for PINNs with adaptive resampling [32].
5 Extension to DeepONets
The method presented in Section 2 can be extended seamlessly to multifidelity stack-
ing DeepONets from [14, 13]; we denote the resulting method as finite-basis DeepONets
(FB-DONs). For the sake of brevity, we refer to [18, 14, 13] for details on the DeepONet
approach. As an example, we present results for the pendulum problem in Section 4.1
and train a model mapping given initial conditions (s1(0), s2(0)) to the corresponding
solution (s1(t), s2(t)) on the whole time interval [0, 20]. This is referred to as operator
learning since we learn amapping between the initial conditions and the solution space
instead of a single solution. One each level l, l > 0, we train 2l DeepONets with partition
of unity functions as defined in Eq. (6.7). As training data, we employ 50 000 randomly
chosen pairs (s1(0), s2(0)) ∈ [−2, 2] × [−1.2, 1.2], and the loss is given by Eq. (6.2) and the
differential equations in Eqs. (6.8) and (6.9). After training, the resulting FB-DON model
is then able to predict the solution for any initial condition in the training range, as
shown in Figure 6.6. Training parameters are given in Table 6.2.

6 Discussion
In this paper, we have introduced the stacking FBPINN and FB-DON approaches. For
the considered time-dependent problems, stacking FBPINNs yielded more accurate re-
sults than stacking PINNs alone, and in some cases, they additionally required fewer

88 � A. Heinlein et al.

Figure 6.6: Stacking FB-DON results for the pendulum system at two different sets of initial conditions.

total trainable parameters. This indicates that a domain decomposition in time can
greatly improve the performance of stacking PINNs. In contrast to prior work on stack-
ing PINNs and DeepONets, stacking FBPINNs and FB-DONs use a sum of subdomain
networks weighted by the partition of unity functions on the corresponding level. In
contrast to multilevel FBPINNS in [8], in which the subdomain networks are summed
across all levels and trained simultaneously, the architecture and training of stacking
FBPINNs and FB-DONs is sequential with respect to the levels; the idea is similar to mul-
tiplicative coupling as discussed in [7] but implemented differently using the stacking
approach. This difference allows for stacking FBPINNs and FB-DONs to consider differ-
ent equations on different levels, akin to simulated annealing, as considered in [13], or
to consider different physical models at different length scales. We leave this for future
work. The extension to stacking FB-DONs allows for use of physics-informed FB-DONs
as surrogate models in place of traditional numerical solvers. The computation of a
solution using a trained stacking FB-DONs is very efficient: it requires only one forward
pass of the networks and, therefore, the computational time compared with classical

Multifidelity DD NNs � 89

numerical solvers can be greatly reduced. One advantage of the FB-DON approach is
that it can be used in conjunction with existing methods for increasing accuracy of
physics-informed DeepONets, including long-time integration [29] and adaptive weight-
ing schemes [30, 15, 23].

7 Training parameters
Table 6.1: Training parameters for the FBPINN results in the paper. The learning rate is set using the
exponential_decay function in Jax [5] with the given learning rate and decay rate and 2 000 decay steps.
The training parameters used for the stacking PINN results are given in [13].

Section 4.1 Section 4.2 Section 4.3

Level 0 learning rate & decay rate 5 ⋅ 10−3, 0.99 10−3, 0.99 10−4, 0.99
Level 0 network width 100 32 100
Level 0 network layers 3 3 6
Level 0 iterations 200 000 200 000 200 000
Nonlinear network width 32 16 200
Nonlinear network layers 3 4 4
Linear network size [2, 4, 2] [1, 5, 1] [1, 5, 1]
MF learning rate & decay rate 5 ⋅ 10−3, 0.99 5 ⋅ 10−3, 0.95 5 ⋅ 10−3, 0.95
BC batch size 1 1 128
Residual batch size 400 400 1024
Iterations 200 000 300 000 300 000
λr , λbc , λα 1.0, 1.0, 1.0 10.0, 1.0, 1.0 10.0, 1.0, 10−5
Level 0 activation function swish swish tanh
MF activation function swish swish swish

Table 6.2: Training parameters for the FBDeepONet results in the paper. The learning rate is set using the
exponential_decay function in Jax [5] with the given learning rate and decay rate and 2 000 decay steps.

Section 5

Level 0 learning rate & decay rate 5 ⋅ 10−3, 0.9
Level 0 branch and trunk width 100
Level 0 branch and trunk layers 5
Level 0 iterations 100 000
Nonlinear branch and trunk width 100
Nonlinear branch and trunk layers 3
Linear branch and trunk width 10
Linear branch and trunk layers 1
MF learning rate & decay rate 5 ⋅ 10−3, 0.9
BC batch size 1 000
Residual batch size 10 000
Iterations 200 000
λr , λbc , λα 1.0, 1.0, 1.0
Level 0 activation function sin
MF activation function sin

90 � A. Heinlein et al.

Bibliography
[1] M. Ainsworth and J. Dong. Galerkin neural networks: a framework for approximating variational

equations with error control. SIAM Journal on Scientific Computing, 43(4):A2474–A2501, 2021.
[2] M. Ainsworth and J. Dong. Galerkin neural network approximation of singularly-perturbed elliptic

systems. Computer Methods in Applied Mechanics and Engineering, 402:115169, 2022.
[3] Z. Aldirany, R. Cottereau, M. Laforest, and S. Prudhomme. Multi-level neural networks for accurate

solutions of boundary-value problems. arXiv:2308.11503, 2023.
[4] I. Babuška and J. E. Osborn. Generalized finite element methods: their performance and their relation

to mixed methods. SIAM Journal on Numerical Analysis, 20(3):510–536, June 1983.
[5] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J.

VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of Python+NumPy
programs, 2018.

[6] S. De, M. Reynolds, M. Hassanaly, R. N. King, and A. Doostan. Bi-fidelity modeling of uncertain and
partially unknown systems using deeponets. arXiv:2204.00997, 2022.

[7] V. Dolean, A. Heinlein, S. Mishra, and B. Moseley. Finite basis physics-informed neural networks as a
Schwarz domain decomposition method. arXiv:2211.05560, November 2022.

[8] V. Dolean, A. Heinlein, S. Mishra, and B. Moseley. Multilevel domain decomposition-based
architectures for physics-informed neural networks. arXiv:2306.05486 [cs, math], June 2023.

[9] W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden. Heterogeneous multiscale methods: a review.
Communications in Computational Physics, 2(3):367–450, June 2007.

[10] W. E and B. Yu. The Deep Ritz Method: a deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics, 6(1):1–12, March 2018.

[11] A. Heinlein, A. Klawonn, M. Lanser, and J. Weber. Combining machine learning and domain
decomposition methods for the solution of partial differential equations—a review.
GAMM-Mitteilungen, 44(1):e202100001, 2021, 28 pp.

[12] T. Y. Hou and Y. Efendiev. Multiscale Finite Element Methods: Theory and Applications. Springer, New York,
NY, 2009.

[13] A. A. Howard, S. H. Murphy, S. E. Ahmed, and P. Stinis. Stacked networks improve physics-informed
training: applications to neural networks and deep operator networks. Foundations of Data Science,
7(1):134–162, March 2025.

[14] A. A. Howard, M. Perego, G. E. Karniadakis, and P. Stinis. Multifidelity deep operator networks for
data-driven and physics-informed problems. Journal of Computational Physics, 493:112462, November
2023.

[15] A. A. Howard, S. Qadeer, A.W. Engel, A. Tsou, M. Vargas, T. Chiang, and P. Stinis. The conjugate
kernel for efficient training of physics-informed deep operator networks. In ICLR 2024 Workshop on
AI4DifferentialEquations in Science, 2024.

[16] T. J. R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation,
subgrid scale models, bubbles and the origins of stabilized methods. Computer Methods in Applied
Mechanics and Engineering, 127(1):387–401, November 1995.

[17] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and partial
differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000, September 1998.
Conference Name: IEEE Transactions on Neural Networks.

[18] L. Lu, P. Jin, and G. E. Karniadakis. DeepONet: learning nonlinear operators for identifying differential
equations based on the universal approximation theorem of operators. Nature Machine Intelligence,
3(3):218–229, March 2021. arXiv:1910.03193.

[19] L. Lu, R. Pestourie, S. G. Johnson, and G. Romano. Multifidelity deep neural operators for efficient
learning of partial differential equations with application to fast inverse design of nanoscale heat
transport. Physical Review Research, 4(2):023210, 2022.

Multifidelity DD NNs � 91

[20] R. Mattey and S. Ghosh. A novel sequential method to train physics informed neural networks for
Allen Cahn and Cahn Hilliard equations. Computer Methods in Applied Mechanics and Engineering,
390:114474, 2022.

[21] X. Meng and G. E. Karniadakis. A composite neural network that learns from multi-fidelity data:
application to function approximation and inverse PDE problems. Journal of Computational Physics,
401:109020, 2020.

[22] B. Moseley, A. Markham, and T. Nissen-Meyer. Finite basis physics-informed neural networks
(FBPINNs): a scalable domain decomposition approach for solving differential equations. Advances
in Computational Mathematics, 49(4):62, July 2023.

[23] S. Qadeer, A. Engel, A. Tsou, M. Vargas, P. Stinis, and T. Chiang. Efficient kernel surrogates for neural
network-based regression. arXiv:2310.18612, 2023.

[24] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. A. Hamprecht, Y. Bengio, and A. Courville. On the
spectral bias of neural networks. arXiv:1806.08734, May 2019.

[25] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: a deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

[26] F.M. Rohrhofer, S. Posch, C. Gößnitzer, and B. C. Geiger. On the role of fixed points of dynamical
systems in training physics-informed neural networks. arXiv:2203.13648, 2022.

[27] A. Toselli and O. Widlund. Domain Decomposition Methods—Algorithms and Theory. Springer Series in
Computational Mathematics, volume 34. Springer, Berlin, 2005.

[28] S. Wang, X. Yu, and P. Perdikaris. When and why PINNs fail to train: a neural tangent kernel
perspective. Journal of Computational Physics, 449:110768, January 2022.

[29] S. Wang and P. Perdikaris. Long-time integration of parametric evolution equations with
physics-informed DeepONets. Journal of Computational Physics, 475:111855, 2023.

[30] S. Wang, H. Wang, and P. Perdikaris. Improved architectures and training algorithms for deep
operator networks. Journal of Scientific Computing, 92(2):35, 2022.

[31] Y. Wang and C.-Y. Lai. Multi-stage neural networks: function approximator of machine precision.
arXiv:2307.08934, 2023.

[32] C. L. Wight and J. Zhao. Solving Allen–Cahn and Cahn–Hilliard equations using the adaptive physics
informed neural networks. arXiv:2007.04542, 2020.

