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Einleitung.

Methodische Vorbetrachtungen und Uberblick.

In 1, § 5 haben wir die uns als Leitfaden dicnende Grund-
aufgabe der Algebra formuliert und zwei besonders wichtige
Teilaufgaben hervorgehoben. Deren erste, das Auflésungs-
problem linearer Gleichungssysteme, wurde in 1, ITI und IV
vollstdndig geldst. Der vorliegende Band 2 ist der zweiten
jener Teilaufgaben gewidmet:

Es sei K ein Korper und

@=a,+ax+- -+ a,5" (a,+0,n=1)
ein nicht zu Kgehoriges Element aus K[z]. Es sollen
Methoden zur Gewinnung aller Lésungen der alge-
braischen Gleichung

(@) =0

entwickelt werden.

Da die Gleichung f(z) == 0 dasselbe fordert wie f%) =0,

n

ist es keine Einschrinkung, wenn wir uns im folgenden auf
Gleichungen der Form

f@=aq+art-Fa 27 1427=0 (xr=1)
beschrinken. Wir nennen solche Elemente f(z) aus K[z]
Polynome (in ) in oder aus?') oder iiber K und den ein-
deutig bestimmten Index =1 ihren Grad [vgl. 1, §5, (2.)
[48]]. Tiir Losungen einer algebraischen Gleichung f(z) =10
gebrauchen wir ferner die iibliche Bezeichnung Wurzeln des
Polynoms f(x).

Die Behandlungsmethoden fiir unsere jetzige Aufgabe sind
von den in 1 zur Behandlung linearer Gleichungssysteme ver-

1) Dies ist deshalb eigentlich nicht korrekt, weil die f(r) Elemente aus
K[z] sind. Unsere Ausdrucksweise bezieht sich also auf die Koeffizienten.



6 Einleitung.

wendeten wegen der folgenden beiden eng zusammenhéingen-
den Umstédnde grundsitzlich verschieden:

1.) Es kann (im Gegensatz zu 1, IV) kein allein aus den
im Grundkérper K definierten vier elementaren Rechen-
operationen gebildetes Verfahren (kurz rationales Rechen-
verfahren) existieren, um iiber die Losbarkeit einer alge-
braischen Gleichung zu entscheiden und im Liésbarkeitsfalle
alle Losungen zu berechnen.

2.) Losbarkeit und Losungsgesamtheit einer algebraischen
Gleichung aus K sind (im Gegensatz zu 1, Satz 84 [149]) ab-
hiangig von der Wahl des Grundkérpers, d. h. davon, ob man
fiir die Losungen nur den Kérper K oder irgendeinen Er-
weiterungskorper von K in Betracht zieht, und im alge-
meinen werden algebraische Gleichungen aus K iiberhaupt
erst in geeigneten Erweiterungskorpern von K lgsbar.

Fiir 2.) mag schon hier, die spéteren allgemeinen Ein-
sichten illustrierend, das einfache Beispiel der Gleichung
2?—2==0 genannt werden, dieim Kérper derrationalen Zahlen
keine Losung, im Korper der reellen Zahlen dagegen die beiden

Losungen 4 ]/2 besitzt. Aus 2.) ergibt sich 1.); denn wiirde
ein Verfahren, wie in 1.) genannt, existieren, so wire dieses,
wie in 1, Satz 84 [149], unabhingig von der Wahl des Grund-
korpers, was 2.) widerspricht ).

Wegen 1.) darf unsere Aufgabe nicht dahin verstanden
werden, daB die Losungen einer algebraischen Gleichung im
obigen Sinne berechnet werden sollen. Was statt dessen
zu erstreben ist, zeigt 2.). Da namlich fiir abstrakte Grund-
korper (d. h. unter alleiniger Voraussetzung der in 1, §1 zu-
sammengestellten Gegebenheiten) nicht von vornherein
etwas Entsprechendes zur Verfiigung steht, wie im obigen

1) Damit soll natiirlich nicht gesagt sein, daB nicht fiir spezielle Grund-
korper, z. B. den Korper der rationalen Zahlen, wirkliche Auflosungsverfahren
existieren. Nur gehéren diese in dem Sinne nicht mehr zur Algebra, als dazu-
auier den vier elementaren Rechenoperationen noch andere, der Analysis an
gehorige Hilfsmittel herangezogen werden miissen. Vgl. auch dazu § 11 [77].
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Beispiel der aus der Elementarmathematik (Grundlagen der
Analysis) bekannte reelle Zahlkoérper, da vielmehr im allge-
meinen Falle iiber das Vorhandensein von Erweiterungs-
kirpern, die die Losung einer algebraischen Gleichung er-
moglichen, zundchst keinerlei Kenntnis besteht, kommt es
darauf an, solche Erweiterungskorper und damit die Wurzeln
algebraischer Gleichungen zu konstruieren.

Unsere Entwicklungen werden demgemif den folgenden
Gang nehmen: Nachdem wir in I und II vorbereitende Tat-
sachen iiber die die linken Seiten algebraischer Glei-
chungen bildenden Polynome aus K einerseits und die (vor-
liufig hypothetischen) Wurzeln algebraischer Glei-
chungen aus K in Erweiterungskérpern andererseits ausein-
andergesetzt haben, konstruieren wir in III die Wurzel-
korper algebraischer Gleichungen und damit deren
Wurzeln. Dadurch ist dann die obige Aufgabe vom prak-
tischen Standpunkt (analog zu 1, IV — Losungsbestimmung)
als gelost anzusehen. Vom theoretischen Standpunkt erhebt
sich dariiber hinaus (analog zu 1, III — Struktur der Lé-
sungsgesamtheit) die hier ganz besonders interessante Frage
nach der Struktur der Wurzelkdrper algebraischer
Gleichungen, insbesondere nach ihrem Aufbau aus mog-
lichst einfachen Bestandteilen. Diese im Mittelpunkt unseres
Interesses stehende Frage behandeln wir in IV durch Dar-
legung der sogenannten Galoisschen Theorie, die die
Struktur jener Korper mit der Struktur gewisser endlicher
Gruppen, ihrer Galoisgruppen, in engen Zusammen-
hang bringt. In V beantworten wir schlieBlich mittels
dieser Theorie die Frage nach der Auflosbarkeit alge-
braischer Gleichungen durch Wurzelzeichen, d. h. die
beriihmte Frage, wann die Wurzeln einer algebrai-
schen Gleichung unter Hinzunahme der (bei festem
Grundkérper nicht unbeschrédnkt und eindeutig definierten)
Operation des Wurzelziehens berechnet werden
konnen.



8 1. Die linken Seiten algebraischer Gleichungen.

I. Die linken Seiten algebraischer
Gleichungen.

Wir leiten in den §§1, 2 dieses Abschnittes im Anschluf
an die Entwicklungen von 1, I eine Reihe bedeutsamer Sitze
iiber Polynome aus K her, die mit deren Auftreten als linke
Seiten algebraischer Gleichungen zundchst nichts zu tun
haben und erst in den folgenden Abschnitten in diesem Sinne
angewendet werden. Diese auf den Integrititsbereich K[z]
der ganzen rationalen Funktionen einer Unbestimmten z iiber
cinem Grundkérper K beziiglichen Sitze sind das genaue
Analogon zu den in der elementaren Zahlentheorie behandelten
Sitzen iiber den Integrititsbereich ' der ganzen Zahlen,
die sich um den Fundamentalsatz von der eindeutigen Zer-
legbarkeit in Primzahlen gruppieren, — ebenso wie auch die
Konstruktion des Korpers K(z) der rationalen Funktionen
von 2 iiber K von K[z] aus ganz analog zu der Konstruktion
des Korpers P der rationalen Zahlen von [ aus verlduft, ndm-
lich beidemal als Quotientenkdrper. Da wir die spéter viel-
fach anzuwendende elementare Zahlentheorie hier nicht vor-
aussetzen wollen, leiten wir die genannten Sitze fiir die beiden
Fille K[z] und [ gleichzeitig, d. h. mit denselben, doppelte
Bedeutung tragenden Worten und Zeichen her. In den §§1, 2
bezeichnen demmach f, g, b, ... Elemente aus K[z] bzw. I'.
In den §§ 3, 4 dieses Abschnitts entwickeln wir dann mittels
der auf den Fall " beziiglichen Resultate der §§1,2 noch
einige fiir die Folge wichtige Begriffe und Tatsachen iiber
Gruppen, Integrititsbereiche und Korper, die bei Voraus-
setzung der elementaren Zahlentheorie schon an friiherer
Stelle (1,1 und II) einzufiigen gewesen wiren.

§ 1. Der Fundamentalsatz von der eindeutigen Zerleg-
barkeit in Primelemente in K[x] und T.
A. Teilbarkeitslehre in einem Integritidtsbereich.
Der in der Uberschrift genannte Fundamentalsatz setzt
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zu seiner genauen Formulierung die Begriffe der sog. Teil-
barkeitslehre in K[z] bzw. I" voraus. Da die gemeinsame
Eigenschaft von K[z] und I', Integrititsbereich zu sein, hin-
reicht, um diese Teilbarkeitslehre zu entwickeln, legen wir
dabei irgendeinen Integrititsbereich | zugrunde. f, g, %, ...
sollen dann Elemente aus | bezeichnen.

Definition 1. g heiBt teilbar durch f oder ein Viel-
faches von f und f ein Teiler von ¢ oder in g enthalten
(Bezeichnung f|g, Gegenteil .} ¢), wenn ein f exi-
stiert, so daB ¢ = ff ist.

Es wird natiirlich gefordert, daB f- in | existiere. Unsere Be-
zeichnungsfestsetzungen erlauben es, derartige Zusétze hier und an
ghnlichen Stellen fortzulassen. Es sei aber ausdriicklich betont, da8
darauf der Nachdruck in Def. 1 liegt. Wiirde man auch den Quo-
tientenkorper zu [ fiir die ,,Existenz* zulassen, so wire Def. 1 bis
auf die Unterscheidung von f + 0 und f = 0 trivial. DemgemaB
wird die Teilbarkeitslehre inhaltlos, wenn | mit seinem Quotienten-
korper zusammenfillt. Fir K{z] und I ist das nicht der Fall.

Aus denin 1, § 1 dargelegten Grundeigenschaften der Inte-
grititsbereiche ergeben sich ohne weiteres die folgenden Sitze
iiber Teilbarkeit, auf deren einfache Beweise wir verzichten
diirfen 1),

Satz 1. Es gelten die Teilbarkeitsrelationen

elf, f1f, {10 fiir jedes f,
0.xftir f£0.

Satz 2. Aus f|g, glh folgt 7|h; aus fi]g, fo19s
folgt fify] 91955 aus Rf|hg, h==0 folgt flg.

_ Satz 3. Aus flgy, f|g. Tolgt ]| g1gs + 9o9, Tiir be-
liebige g, g,.

Definition 2. f heit Einheit, wenn f]e.

Wir bezeichnen Einheiten im folgenden mit a, 5. Es gibt
solche, z. B. e.

1) Auch fiir eine Reihe weiterer Sitze des § 1 deuten wir die ganz elemen-
taren Beweise nur durch Hinweis auf die heranzuziehenden fritheren Sitze an.
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Satz 4. Die Einheiten von | bilden eine Unter-
gruppe (Normalteiler) der multiplikativen abel-
schen Gruppe aller Elemente == 0 des Quotienten-
kérpers zu I

Beweis: Aus a, | ¢, a, | ¢ folgt a,a, | e (Satz 2); esiste|e

(Satz 1); aus a|e folgt, daB 2 zu | gehort und 2 e ist

(Def. 1). Daraus ergibt sich die Behauptung nach 1, Satz 19,
26 [5b, 60] (vgl. auch 1, § 6, Beisp. 1 [563]).

Definition 3. Sind von 0 verschiedene f, f, nach
dem Normalteiler der Einheiten kongruent, d.h.

ist?:a, so heiBen f, und f, assoziiert. Die Rest-
2

klassen mnach diesem Normalteiler heilen die
Klassen assoziierter Elemente.

Die Klasse der zu einem Element f # 0 assoziierten Elemente
wird hiernach durch alle af gebildet, wo a alle Einheiten durch-
lauft. Fir f = 0 mag ebenfalls die Gesamtheit af, d. h. das einzige
Element 0, als die zugehérige Klasse assoziierter Elemente ange-
sehen werden. — Im Sinne von 1, §§ 7—9 erstreckt sich die Rest-
klasseneinteilung nach dem Normalteiler der Einheiten nicht nur
auf den Integrititsbereich I, sondern auch auf dessen Quotienten-
korper. Wir verfolgen sie hier aber nur im Integrititsbereich I
selbst, Wir kénnen das um so eher tun, als die einem f aus | ent-
sprechende Klasse ganz zu | gehort.

Aus Def. 1—3 folgt unmittelbar:
Satz 5. f, und f, sind dann und nur dann asso
ziiert, wenn f; | f, und £, | f, ist.

Nach Satz 2,5 ist eine Teilbarkeitsrelation f|g gleichbedeu-
tend mit jeder Relation /| ¢’, wo f’ zu f, ¢’ zu ¢ assoziiert ist. Es
geniigt daher fiir die Teilbarkeitslehre, aus jeder Klasse assoziierter
Elemente nur einen Reprisentanten zu betrachten; doch ist die
Auszeichnung eines solchen nach einem durchgéngigen Prinzip fiir
allgemeines | nicht moglich (vgl. aber Def. 7 [13]).

Nach dem Vorhergehenden besitzt jedes ¢ als sog. triviale
Teiler alle Einheiten und alle zu g assoziierten Elemente.
Um diese bequem ausschliefen zu konnen, setzen wir fest:
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Definition 4. f heiBt echter Teiler von g, wenn f|g
aber f weder Einheit noch zu g assoziiert ist.

Der zu beweisende Fundamentalsatz beruht dann auf fol-
gender Definition:

Definition 5!). p heifit Primelement, wenn es
nicht Null und keine Einheit ist und keine echten
Teiler besitzt.

Ob es solche Primelemente gibt, wird in Def. 5 nicht gesagt
und lé8t sich auch ohne Hinzunahme weiterer Voraussetzungen {iber

I nicht entscheiden. Fillt z. B. | mit seinem Quotientenkérper zu-
sammen, so gibt es keine Primelemente.

B. Der absolute Betrag in K [x] und T.

Um den (keineswegs allgemein in Integritdtsbereichen
giiltigen) Fundamentalsatz von der eindeutigen Zerlegbar-
keit in Primelemente in K[z] und I" beweisen zu kénnen,
miissen wir spezielle Eigenschaften dieser Integrititsbereiche
heranziehen, nimlich in " die Anordnung der ganzen Zahlen
nach ihrem absoluten Betrage, deren Gesetze wir hier als
bekannt voraussetzen 2), in K[2] die Anordnung der ganzen
rationalen Funktionen von z nach ihrem Grade. Die Mog-
lichkeit der weiteren gleichzeitigen Behandlung beider Falle
beruht dann auf der Tatsache, daB man die Anordnung nach
dem Grade in K[z] auch durch ein genaueres Analogon zum
absoluten Betrag in [" beschreiben kann, als es der Grad
selhst ist. Wir setzen namlich fest:

Definition 6. Unter dem absoluten Betrage || eines
Elementes f aus K[z] werde verstanden

|[fl= 0, wenn =0,

|f{|=k", wenn f vom Grade n.
Dabei sei k eine beliebige, aber ein fiir allemal
fest gewdhlte ganze Zahl > 1.

1) Vgl. auch die spiitere, zusiitzliche Def. 8 [14].

%) Wir setzen ausfiihrlicher gesagt als bekannt voraus: 1. die Relation
< in [ und deren Gesetze, 2. die Beziehungen dieser Relation zu den Rechen-
operationen, 3. die Definition des absoluten Betrages, 4. die aus 1. und 2. folgen-
den Beziehungen des absoluten Betrages zur Anordnung und den Rechen-
operationen.
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k konnte auch als irgendeine reelle Zahl > 1 angenommen
werden; wir wollen jedoch hier aus methodischen Griinden die
reellen Zahlen vermeiden,

Es gelten dann die folgenden, im Falle [” giiltigen Gesetze
fiir den absoluten Betrag unverdndert auch in K[z]:

(L) /1=, wenn f=£ 0,
@) P gl= 11+l
(3.) F-gl=111-1gl.

Beweis: (1.) ist nach Def. 6 klar, ebenso auch (2.) und
(8.) im Falle f =0 oder g=0. Ist aber f3=0, g 0, also
f(#)=ay+ -+ apz"  (a,40), [|f|=F",
g(@)= b+ -+ bmz™ (bu0), |g|=4k",
so kommen in f -1 g keine héheren Potenzen von « als aMax (n.m)

vor. Daher ist

|7 £ g < B"™ —Max (&%, k") < K"+ K" = |f| + |g].
Im Falle K[z] gilt hiernach sogar die im Falle ' nicht
allgemein richtige Relation

(2a.) [f 4 gl= Max (|f],19]).
Ferner ist
n m n m
— v . — ! V4
f(z) g(x) _y%?) a, o Fé;b,‘xﬂ __vg(,') ,Z.%oa” b, 9:0 H
" . y=0,..,n
=2 (w+£ia”b“)m p=0,.. -,m)

= agby + (b1 + a1 hp) 2+ - - -
+ (@n—1bm + 0 bm—l) gntm—1 | q, b, antm

(Opbm==10),

9| =k =k"-K"=1{]-Igl.

Neben (1.)—(3.) haben wir im folgenden noch das nach-
stehende Prinzip wiederholt anzuwenden, dessen Richtigkeit
sich aus der Tatsache ergibt, da8 alle absoluten Betréige nach
Def. 6 natiirliche Zahlen oder 0 sind:

(4.) In jeder nicht leeren Teilmenge von K[z]
bzw. [ gibt es Elemente von kleinstmoglichem
Betrage.

also
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Der absolute Betrag in K[z] bzw. [ steht nun mit den
unter A. erklirten Begriffen der Teilbarkeitslehre in diesen
Integrititsbereichen in den folgenden Beziehungen:

Satz 6. Istflg,9+0,s0ist1=F1=Z gl

Beweis: Ist g = ff, g== 0, so ist auch f== 0, f=£0, also
nach (1.)|7|=1,|f|=1. Da ferner nach (3.)|g| = /|- |7]
ist, folgt 1= |?|=%, db. 111 gl

Satz 7. fist dann und nur dann Einheit, wenn
Ifl=11ist. Im Falle K[z] sind also die Elemente
a== 0 aus K, im Falle [' die ganzen Zahlena=41
die einzigen Einheiten.

Beweis: a.) Aus f|e folgt wegen |e| =1 nach Satz 6
Ifl=1

b.) DaB die f mit |f| = 1, d. h. die im Satz genannten a
Einheiten sind, ist nach Def. 2 [9] klar (im Falle K[z]
wegen der unbeschrinkten Division in K).

Aus Satz 6, 7 ergibt sich mittels (3.):

Satz 8. Sind f; und f, assoziiert, so ist |f,| = | /.|
[st |fy]= 1|/} und f,|f,, so sind f, und f, assoziiert.

Die Nebenvoraussetzung f, | f, fiir die Umkehrung ist im Falle I’
entbehrlich, im Falle K{z] aber nicht.

Aus Satz 6—8 ergibt sich:
Satz 9. Istf|g, g0, s0istfdann und nur dann
echter Teiler von g, wenn 1 < |f| < |g| ist.

C. Formulierung des Fundamentalsatzes.,

In den speziellen Integrititsbereichen K[2] und I konnen
wir aus den Klassen assoziierter Elemente je einen speziellen
Reprasentanten durch die folgende Festsetzung hervorheben:

Definition 7. / heilt normierf, wenn erstens
f== 0 ist, und wenn zweitens

a.) im FalleK[z] der Koeffizient a, der hochsten in
{(@)=ay+ -+ - + apan (a,5=0) vorkommenden Potenz
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von & (kurz: der hochste Koeffizient von f(x)) gleich
e ist;

b.) im Falle ' f > 0 ist.

Es ist zweckmiBig, die Forderung f+ 0 in normiert auf-
zunehmen, obwohl 0 ebenfalls ein ausgezeichneter (nimlich einziger)
Reprisentant einer Klasse assoziierter Elemente ist. Im Falle K[z]
besagt also normiert dasselbe, wie die in der Einleitung ein-
gefithrte Bezeichnung Polynom, wenn man von dem einzigen
normierten Element O-ten Grades f = e absieht, das wir der Zweck-
miBigkeit halber nicht in den Begriff Polynom aufnahmen. Die
von uns befolgte Ausdrucksweise, bei der nur die normierten
Elemente aus K[z] Polynome genannt werden, ist iibrigens
nicht allgemein iiblich,

Aus Satz 7 folgt unmittelbar, daB Def. 7 wirklich das
Gewiinschte leistet:

Satz 10. In jeder von der Nullklasse verschie-
denen Klasse assoziierter Elemente existiert ein
und nur ein normierter Reprédsentant.

Ferner gilt fiir normierte Elemente:

Satz 11. Mit f und g ist fg und, falls ¢ |/, auch {;

normiert.

Beweis: Im Falle ™ ist der Satz klar. Im Falle K[x]
folgt die Behauptung aus der vorher im Beweis fiir (3.) [12]
verwendeten Multiplikationsformel, angewandt auf fg¢ und

auf %g.
Wir setzen im Anschlul an Def. 7 fiir spéter fest:
Definition 8. Ein normiertes Primelement heifit

im Falle K[z] Primfunktion oder irreduzibles Polynom,

im Falle [ Primzahl.

In §§ 1,2 gebrauchen wir der Kombination der Fille K[x]
und [ halber noch die gemeinsame Bezeichnung normiertes
Primelement.

Der zu beweisende Fundamentalsatz lautet nun fol-
gendermafen:

Satz 12. Jedes Element /== 0 aus K[z] bzw. I" be-
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sitzt eine Zerlegung

f=ap---p")
inr=0 normierte Primelemente p;,...,p, und einen
Einheitsfaktor . Diese Zerlegung ist bis auf die
Reihenfolge der Faktoren eindeutig, d.h. ¢ und
Pys - - s P, 8ind durch f eindeutig bestimmt.

Es wird nicht behauptet, daB p,,...,p, verschieden seien.
Die Eindeuntigkeitsbehauptung bezieht sich aber auch auf die Hénfig-
keit des Auftretens der verschiedenen Primfaktoren.

Der Beweis zerfillt wie die Behauptung in zwei Teile,
deren ersten, einfacheren wir unter D. durchfithren, wihrend
der zweite, tieferliegende unter F. folgt, nachdem wir unter E.
eine Reihe dazu erforderlicher, aber auch iiber diesen Zweck
hinaus sehr wichtiger Sitze hergeleitet haben werden.

D. Mdoglichkeit der Zerlegung in normierte Primelemente.

Wir beweisen zunichst den Hilfssatz:

(D,). Ist f keine Einheit, so hat f mindestens
einen normierten Primteiler.

Beweis: Da im Falle f=0 jedes normierte Element
= e, im Falle == 0 der zu f assoziierte normierte Reprisen-
tant ein von Einheiten verschiedener, normierter Teiler von /
ist, gibt es nach (4.) [12] einen von Einheiten verschiedenen
normierten Teiler p von f von kleinstmoglichem Betrage.
Dieser Teiler p ist normierter Primteiler von f. Denn nach
Konstruktion ist er normiert und von Einheiten verschieden.
Hitte ferner p einen echten Teiler, so wire dessen normierter
Reprisentant ein von Einheiten verschiedener, normierter
Teiler von f (Satz 2 [9]) von kleinerem Betrage als p
(Satz 9 [13]), was der Minimalauswahl des Betrages von p
widerspricht.

Durch (D,) ist insbesondere die Existenz von Primele-
menten nachgewiesen. Fiir den Spezialfall { = O ergibt unser Be-

1) Wir setzen fest, daB ein Produkt PPy fiir » = 0 das Element ¢ be-
deuten soll (vgl. auch die Anm. in 1, § 12 [84] zum Toeplitzschen Satz).



16 I. Die linken Seiten algebraischer Gleichungen.

weis im Falle K[z] jedes Polynom 1-ten Grades a, + z, im Falle I’
die Zahl 2 als normiertes Primelement.

Aus (D,) folgern wir nun D., d. h. den Satz:
(Dy). Jedes f==0 besitzt eine Zerlegung
f=ap, -,

in r= 0 normierte Primelemente p;,...,p, und einen
Einheitsfaktor a.

Beweis: Ist f Einheit, so ist die Behauptung klar (r = 0).
Ist f keine Einheit, so kann nach (D)

f=mh
mit einem normierten Primelement p, gesetzt werden. Ist
f, Einheit, so ist dies eine Zerlegung, wie behauptet (r = 1).
Ist £, keine Einheit, so kann nach (D,)
h="nsly also f=pipf,
mit einem normierten Primelement p, gesetzt werden. Nach
endlich vielen Schritten muB man bei diesem Vorgehen auf
eine Einheit f, stoBen. Denn da f == 0ist, gilt nach Satz 9 [13],
solange f; keine Einheit ist,
H>1h1>-> [>T,
was mit einer unendlichen Folge solcher f; wegen der Ganz-
zahligkeit der Betréige | f;| unvertriglich ist. Ist als erstes f,
Einheit, so gilt
}=ap, -

WO Py, . . ., P, NOrmierte anelemente sind und @ (= f,) Ein-
heit ist.

Damit ist (D,), also D., bewiesen.

E. Division mit Rest, grofter gemeinsamer Teiler.
Satz 13. Ist f5=0 und ¢ beliebig, so existieren
eindeutig bestimmte f und & derart, daB gilt

[h]<If im Falle K[z],
g=ff+hund {|k|<|fl und =0, d. h 0<h < |f]
im Falle I,

Beweis: a.) Es sei [ so gewihlt, daB h = g — ff unter
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allen g-— ff* einen kleinstmoglichen Betrag hat, was nach
(4.) [12] moglich ist. Ware dann |h] = |f|, so folgte

1.) im Falle K[z], wenn I, » die Grade und ¢, a, die
hochsten Koeffizienten von b, f sind, daB I = n, also

hi(=) E(;L i

n

ein Element aus K[2] wire. Es hétte dann ff, den Grad ! und
den hdchsten Koeffizienten ¢;, genau wie 4 so dal

h—ih=9—it—ih=9—1(+H)
einen niedrigeren Grad, also kleineren Betrag als h hitte.

2.) im Falle I, daB
h¥f=g—f Fi=9—f+1)

bei einem der beiden Vorzeichen einen kleineren Betrag als
hitte.

Die Existenz eines solchen f*=f-+f, bzw.=74+1
widerspricht aber in beiden Fillen der Minimalauswahl des Be-
trages von h =g —ff. Also ist |k| < |f].

Um im Falle " neben der hierdurch als méglich erwie-
senen Bedingung |h| << |/} auch noch A= 0 zu erreichen,
hat man, falls A <0, also —|f| <h <0 ist, nur

h=h+|fl=htf=g—{fF1)
zu bilden, wofiir dann 0 < b, << |f]| gilt.

b.) Aus g=ff--h,g=1{f + k', wo h und &’ den Bedin-
gungen des Satzes geniigen, folgt

fG—f)=h—h, also f|h —h.
Wire nun ' == h, so folgte nach Satz 6 |f| < | —h|. Dar-
aus ergibe sich gemiB den Bedingungen des Satzes fiir &, &'

1.) im Falle K[z] nach (2a.) [12]:

|f1= Max (&, |W']) <11,
2.) im Falle T:
ifl= W —h oder h—n)<|f|—0=]If],
Hasse, Hohere Algebra, II. 2
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also in beiden Fillen ein Wlderspruch Somit ist h = A’ und

dann wegen f== 0 auch = f'. Damit ist Satz13 bewiesen.

Da 0 den Bedingungen des Satzes 18 fiir h geniigt, ergibt sich
aus der Maoglichkeit und Eindeutigkeit der dortigen Relationen noch:

Zusatz: Ist f <+ 0 und ¢ beliebig, so ist dann und nur
dann f|g, wenn das k aus Satz 13 gleich 0 ist.

Die Bestimmung von f und % zu f + 0 und g gemiB Satz 13
nennt man Division von ¢ durch f mit Rest, f den Quotienten,
h den Rest. Das auf die dezimale (oder irgendeine andere Ziffern-)
Schreibweise der ganzen Zahlen gegriindete Verfahren zur prak-
tischen Ausfithrung der Division mit Rest im Falle I' darf als be-
kannt vorausgesetzt werden, ebenso auch das in entsprechender
Weise auf die Normaldarstellung (1, Def. 9 [38]) gegriindete Ver-
fahren hierzu im Falle K[z], das sich durch direkte Wendung des
indirekten Beweises unter a.), 1.) ergibt. Insbesondere ermog-
lichen diese Verfahren nach dem Zusatz die praktische Entscheidung,
ob eine Teilbarkeitsrelation f | g besteht.

Aus Satz13 folgern wir durch nochmalige Anwendung
einer dhnlichen SchluBweise:

Satz 14. Sind f, und f, nicht beide 0, so existiert
ein eindeutig bestimmtes, normiertes d derart,
daB gilt

(1) dlf, d]fs

2.) aus h|fy, h|f, folgt h|d.

d 148t sich in der Form

d= i1f1 + fzfz X
darstellen. Im Hinblick auf die Eigenschaften
(1), (2.) heiBt d der groBte gemeinsame Teiler von f;
und f, (Bezeichnung d = (f, f,)).

Beweis: a.) Es seien fl, f» 50 gewihlt, daB d = hf + tole
normiert ist und unter allen normierten Elementen der Form
ff¥ + fof¥ einen kleinstmoglichen Betrag hat. Das ist nach
(4.) [12] moglich; denn ist etwa f, == 0, so ist der normierte
Reprisentant a,f; zu f; ein normiertes Element der ange-
gebenen Form (ff¥ = a,, ff = 0); die betr. Menge von Be-
trigen ist also nicht leer. DaB (2.) fiir das so bestimmte d er-
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tiillt ist, ist klar (Satz 3) [9]. Wire ferner (1.) nicht erfiillt
und etwa d ¥ f;, so existierte, weil d als normiertes Element
=0 ist, ein h=f, —dd mit |h|<<|d]| (Satz13), fir das
h == 0 gélte (Zusatz). Wird dann h durch den Faktor a nor-
miert, so wire

ah = af, — add = f,(a — adf;) + fo(— ad},)
ein normiertes Element der Form f, /,* + f,£,* von kleinercm
Betrage als d, was der Minimalauswahl des Betrages von

d =y, + fof, widerspricht. Also ist d | f, und ebenso d | f,.

b.) Geniigt auch das normierte d’ den Bedingungen (1.)
und (2.), so folgt aus (1.) fiir &’ und (2.) fiir 4 (mit 4’ als &),
daB d’' | d. Ebenso folgt umgekehrt d | d’. Daraus ergibt sich
d=4d" (Satz 5,10 [10, 14]).

Das oben angefithrte Verfahren zur Division mit Rest liefert
durch wiederholte Anwendung das folgende Verfahren zur prak-
tischen Bestimmung des groBiten gemeinsamen Teilers, das unter
dem Namen Euklidischer Algorithmus bekannt ist:

Es sei etwa f, + 0. Dann werden die folgenden Divisionen mit
Rest ausgefiihrt, bis man auf einen Rest f,, ; = O stoBt:

h=hon+h 1<l
fo=19e +fas  |fal<|fs]

fr——2: fr—lgr—Z + ,r’ |fr‘<\f1_1‘
fr—1=frgr—1+f1+1’ 0= lfr+1|<lf7‘.
Wegen des dauernden Abnehmens der Betriige |f; | tritt /., , =0

nach endlich vielen Schritten wirklich ein, Dann ist der normierte
Reprisentant zu f, der grofite gemeinsame Teiler von f, f,. Denn

durch Zuriickgehen von der letzten Relation aus folgt nach Satz 3
[9] sukzessive f,.|f,_i, 7 1f,_0r--+:f, |l Fy 11y also (L), und
durch Zuriickgehen von der vorletzten Relation aus, dal f, durch
die Paare f,_,,f,_;;.-.;f1,fo in der Form des Satzes darstellbar
ist, also (2.).
Wir vermerken noch die speziellen Relationen
O, =17 (. H={ fir normiertes f,
(a,f)=e fiir jedes f.
2*
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Aus dem grundlegenden Satz 14 ergeben sich nunmehr
durch elementare Schliisse die folgenden Tatsachen, die
schrittweise zu dem erstrebten Eindeutigkeitsnachweis fithren:

Satz 16. Ist g normiert, so ist (fy, f2)9 = (g, fo9).

Beweis: Ist (f, fo) = d, (119, fog) = @', so ist einerseits
dg | 119, dg | f.g (Satz 14, (1.) fiir d; Satz 2 [9]), also dg|d’
(Satz 14, (2.) fiir d'); andererseits% g,‘l, % fo (Satz 14, (1.)
fiir d'; Satz 2), also% d (Satz14, (2.) fir d), d. h. d’ | dg

(Satz 2). Daraus folgt d’ = dg (Satz 5,10 [10, 14]).

Definition 9. f, und f, heiBen relativ prim oder teiler-
fremd, wenn (f,, f,) = e ist.

Hiernach ist speziell O zu allen und nur den Einheiten, eine Ein-
heit zu allen £ relativ prim. Ist ferner (f,, f,) = d und wird f, = dg,,
f» = dgg gesetzt, so sind g, und g, relativ prim (Satz 15).

Satz 16. Sind f und g, relativ prim und ist f| g,9.,
50 ist f] g,

Beweis: Ist g, = 0, so ist die Behauptung klar. Ist g, 5= 0
und g, der normierte Reprasentant zu g,, so folgt nach Satz 15
aus (f, g,) = e, daB (fgs, 9,95) = 7o, also nach Satz 14, (2.) und
der Voraussetzung, daB f| g,, d. h. auch f| g, ist.

Satz 17. Ist p Primelement, so ist (p, g) = ¢ mit
p A ggleichbedeutend, d. h. pist dann und nur dann
prim zu ¢, wenn p kein Teiler von g ist.

Beweis: Ist p der normierte Reprisentant zu p, so kann
{9, ¢) als normierter Teiler von p nur ¢ oder p sein (Def. 4, b
[11]). Ist nun einerseits p 4 ¢, so kann nicht (p,g)=1p
sein, weil sonst nach Satz 14, (1.) 7 | ¢, also p | ¢ folgte; daher
ist dann (p, g) = e. Ist andererseits (p, g) = e, so kann nicht
p|g sein, weil sonst nach Satz 14, (2.) p|e felgte, entgegen
Def. 5; daher ist dann p .& g¢.

Satz 18. Ist p Primelement und p|g, g, soist plg,
oder p|g,.
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Beweis: Ist p & gy, so ist p prim zu g, (Satz 17), also
wegen der Voraussetzung p|g, (Satz16).

Satz 19. Ist p Primelement und p|g, - - ¢,, so ist
plg, oder ...oder p|g,.

Beweis: Folgt durch wiederholte Anwendung von
Satz 18.

Auf dem letzten Satz beruht der nun zu erbringende Ein-
deutigkeitsnachweis.

F. Eindeutigkeit der Zerlegung in normierte Primelemente,
Es seien
f=ap---p,=0bg -
zwei Zerlegungen eines f# Oinr=0 bzw s = 0 normierte
Primelemente p,,...,p, bzw. ¢4,...,¢, und einen Ein-
heitsfaktor a bzw. b. Durch Division mit b folgt dann zu-

néchst nach Satz11 [14], daB % normiert, also = e, d. h.

a =" ist. Es ist daher

pl..-prqu...qs.
Ist = 0, so ist auch s = 0; denn sonst wire ¢, |e entgegen
Def. 5 [11]. Dann stimmen also beide Zerlegungen = a,
f= b iiberein.

Ist r > 0, so ist nach demselben SchluB auch s > 0. Dann
folgt p;)4; - - - ¢, also nach Satz 19 p,|q, oder - - - oder p, | g,.
Da die ¢; keine echten Teiler haben, ist somit das von Ein-
heiten verschiedene p, zu einem der ¢, assoziiert, also gleich
(Satz 10 [14]). Die Reihenfolge werde so angenommen, daB
p, = ¢, ist. Es folgt dann

Pat D=0y 4,
Ist r =1, so ist wie oben auch s = 1. Dann stimmen also
beide Zerlegungen f = ap,, f = bg, iiberein.

Ist r > 1, so ist auch s > 1, und die Fortsetzung der obigen
SchluBweise liefert bei passender Wahl der Reihenfolge der ¢,
sukzessive
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Po=1qy .. Dy =¢, und r=s,
letzteres, da nach dem obigen SchluB die p; bei demselben
Schritte ersehdpft sein miissen, wie die ¢,, Beide Zerlegungen
stimmen also bis auf die Reihenfolge der Faktoren iiberein.
Durch D. und F. ist nunmehr der Fundamentalsatz be-
wiesen.

G. Folgerungen aus dem Fundamentalsatz.

Durch Heranziehung der Zerlegung in Primelemente er-
halten die unter A. und F. eingefiihrten Begriffe der Teilbar-
keitslehre ein nenes Gesicht. Es gelten némlich die folgenden
Tatsachen 1):

Satz 20. Ist ¢g==0, so ist dann und nur dann
flg, wenn die normierten Primfaktoren von f
unter denen von ¢ vorkommen 2). (Def. 1 [9],
Satz 12 [14].)

Die daraus sich unmittelbar ergebenden Folgerungen fiir die
Begriffe Einheit und assoziiert brauchen nicht erst besonders
aufgefithrt zu werden.

Satz 21. Sind f, und f, von 0 verschieden, so
ist ihr gréBter gemeinsamer Teiler das Produkt
der gemeinsamen normierten Primfaktoren von
fi und f,. (Satz 12, 14, 20.)

Satz 22. Von 0 verschiedene f; und f, sind dann
und nur dann relativ prim, wenn sie keinen ge-
meinsamen Primfaktor besitzen. (Def. 9 [20],
Satz 21.)

Aus Satz 22 ergibt sich ferner ohne weiteres die folgende
Verallgemeinerung von Satz 18 [20] in der Richtung von
Satz 16 [20]:

Satz 23. Ist f prim zu ¢, und g,, so auch zu g, 9,

1) Siehe die Anm. vor Satz 1 [9]). Die heranzuziehenden fritheren Defi-
nitionen und Sitze sind in Klammern angemerkt.,

) Diese und die folgenden Aussagen sind mit Beriicksichtigung der Héiufig-

keit des Auftretens der verschiedenen Primfaktoren gemeint (vgl. d. Bem. bei
Satz 12 [15]).
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H. Abhingigkeit vom Grundkérper.
Es ist fiir uns wichtig festzustellen, wie die im Vorher-
gehenden entwickelten Begriffe und Tatsachen fiir den Fall
K[z] beeinfludt werden, wenn an Stelle von K[x] der Inte-

grititsbereich K_[x] iiber einem Erweiterungskérper K von K
zugrunde gelegt wird. In dieser Hinsicht gilt folgendes:
Satz 24. Werden die vorkommenden Elemente

aus K[z] als solche des Integrititsbereiches K[z]

iiber einem Erweiterungskérper K von K ange-
sehen, so bleiben die Relationen ,flg,f 4+ ¢, kb ist
der Rest bei der Division von ¢ durch f, (f, o) = 4
erhalten, dagegen nicht notwendig die Relation
»p ist Primfunktion®.

Beweis: a.) Die Bestimmung von % aus f und g und die
Bestimmung von 4 aus f; und £, kann nach den Ausfiihrungen
hinter Satz 13 [18] und Satz 14 [19] durch Rechenver-
fahren ausgefiihrt werden, die in der Anwendung der vier
elementaren Rechenoperationen auf die zu K gehérigen
Koeffizienten der vorkommenden Elemente bestehen. Durch

Auffassung dieser Koeffizienten als Elemente aus K &dndern
sich jene Verfahren, also auch deren Ergebnisse 2 und 4
nicht. Auch die Alternative A =0, h==0 bleibt unbeein-
fluit, was nach Satz 13, Zusatz [18] die Invarianz der Alter-
native f|g, f & g im Falle f 5= 0 ergibt. Fiir f = 0 ist deren
Invarianz nach Satz 1 [9] trivial.

b.) Schon das in der Einleitung genannte Beispiel zeigt,
daB die Primfunktion 2?—2 aus P[«]!) bei Erweiterung
von P zum Kérper P der reellen Zahlen die Zerlegung
(z—V/2) (x4 V/2) in echte Teiler bekommt.

Wegen b.) kann analog wie in der Einleitung bei 1.) prinzipiell
kein rationales Rechenverfahren zur Entscheidung dariiber existie-

1) DaB z* — 2 In P[z] Primfunktion ist, kommt auf die Irrationalitit

von VE hinaus, und diese kann leicht aus Satz 12 [14] fiir den Fall [ gefolgert
werden.
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ren, ob ein vorgelegtes Element aus K[z] Primfunktion ist, und eben-
sowenig ein solches zur Herstellung der Primfaktorzerlegung eines
vorgelegten f aus K[z]. Hierzu ist man vielmehr in jedem kon-
kreten Falle auf Probierverfahren angewiesen.

Wenn wir, wie im folgenden héufig, neben dem Grund-
korper K Erweiterungskorper K von K zu betrachten haben,
miissen wir bei Verwendung der Bezeichnungen Prim-
funktion, irreduzibel (Def. 8 [14]) angeben, ob sie in
bezug auf K[z] oder K[x] gemeint sind. Wir tun dies durch
die Zusitze in K bzw. in K (vgl. die erste Anm. i. d. Einl. [5]).

Aus dem Fundamentalsatz (angewandt in K[z]) ergibt
sich noch ohne weiteres die im folgenden vielfach benutzte
Tatsache:

Satz 25. Ist K ein Erweiterungskérper von K,
so entsteht die Primfaktorzerlegung eines [ aus
K[z] in K[2] aus der in K[z], wenn man die Prim-
faktoren von f in K[z] in ihre Primfaktoren in
K[z] zerlegt.

§ 2. Restklassenringe in K[x] und T.

In 1, § 2 haben wir den allgemeinen Begriff der Kon-
gruenzrelation in einem Bereich eingefithrt. Die Resultate
des § 1 setzen uns in Stand, alle in den Integritétsbereichen
K[z} und T" moglichen Kongruenzrelationen in ganz ent-
sprechendem Sinne zu iibersehen, wie es durch 1, Satz 34,
3b [65, 66] fiir die Kongruenzrelationen in Gruppen geschah.
Wir erhalten diese Ubersicht aus dem folgenden Satz:

Satz 26. Zu einer Kongruenzrelation = in K[z]
bzw. ' existiert ein bis auf assoziierte eindeutig
bestimmtes Element f derart, daB

(1.) hy="h, dann und nur dann, wenn f|h; —bh,.
Umgekehrt entsteht so fiir jedes f eine Kon-
gruenzrelation in K[z] bzw. I.
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Beweis: a.) Jede Kongruenzrelation = entspringt gemil
(1.) aus einem f. Es sei ndmlich M die Menge aller Elemente
g=0. Nach 1, § 2, («.), (8.), (y.), (1.), (2.) [15, 21] ist dann
hy=hy, mit by —hy,=10, d. h. mit dem Enthaltensein von
hy — hy in M gleichbedeutend. Entweder besteht nun M nur
aus dem Elemente 0. Dann ist &, = h, mit h; = h, gleich-
bedeutend, unsere Kongruenzrelation also die Gleichheit und
die Behauptung des Satzes mit f= 0 richtig (Satz 1 [9]).
Oder aber M enthdlt von 0 verschiedene Elemente. Dann
gibt es nach § 1, (4.) [12] unter den von Null verschiedenen
Elementen von M ein f von kleinstmiglichem Betrage. Ist
dann ¢ irgendein Element aus M und wird nach Satz 13 [16]

g=1F +hIh|<lf]

gesetzt, so gehort auch s =g —ff zu M, weil nach der De-
finition der Kongruenzrelation in 1, § 2 aus f=0 auch
ff=0 und dann aus g= 0 auch h =g —ff=0 folgt. Es
mub also wegen der Minimalbestimmung des Betrages von f
gelten k=0, d. h. f|g. Da nun umgekehrt aus f= 0 auch
fiir jedes Vielfache g = ff von f folgt g==0, besteht somit
M aus allen und nur den Vielfachen von f, ist also g= 0 mit
flg und daher nach dem schon Gesagten h,==h, mit
{ | hy — hy gleichbedeutend.

b.) Die Relation (1.) ist fiir jedes feste f eine Kongruenz-
relation. Denn die Bedingungen 1, § 2, («.), (8.), (y.) [15]
sind erfiillt, weil erstens 7|0 (Satz 1 [9]), zweitens aus
flhy—hy folgt f|h,—h, (Satz 3 [9]) und drittens aus
flhy—hy, f| hy— by folgt f| hy —hg (Satz 3); und die Be-
dingungen 1, § 2, (1.), (2) [21] sind erfiillt, weil aus
flhy—ho, [ | gy —g, erstens folgt f|(hy + gy) — (he + go)
(Satz 3) und zweitens zunichst folgt 7| kyg, —hogy, f oty —Rags
(Satz 3) und daraus wie eben f | kg, — hofp.

¢.) f ist bis auf assoziierte (unter denen man es natiirlich
beliebig wahlen kann, ohne die Kongruenzrelation (1.) zu
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andern) eindeutig durch die Kongruenzrelation bestimmt.
Es sei nimlich die Kongruenzrelation h,= h, sowohl mit

flhy—h, als auch mit f|h, —h, gleichbedeutend. Aus
flf—0,f|f—0 folgt dann f==0,f=0, also wegen der
gemachten Annahme auch f|f—O0,f{f—0, wonach f}

und { assoziiert sind (Satz 5 [10]).

Auf Grund von Satz 26 definieren wir:

Definition 10. Das zu einer Kongruenzrelation
= in K[z] bzw. I’ gem3B Satz 26 gehorige, bis auf
assoziierte eindeutig bestimmte Element f heifit
ihr Modul. Man schreibt dann ausfiihrlicher

hy=hy mod. 1) fiir hy=h,, d. h. fitr f|h, — h,,
und nennt die zugehérigen Klassen die Restklassen
mod. f, den durch sie gebildeten Ring?) den Rest-
klassenring mod. f.

Falls f & 0, werde der Eindeutigkeit halber f als normiert an-
genommen. — Wir bezeichnen den Restklassenring mod. f im Falle
K[x] mit K[z, mod. f(z)], im Falle I' mit [, ferner schreiben wir
gelegentlich {A} fiir die durch das Element i bestimmte Restklasse
nach dem jewells betrachteten Modul.

Wenn auch das zum Restklassenring fiihrende Rechnen
mit den Restklassen (1, Satz 8 [22]) sich nicht auf irgend-
welche speziellen Reprasentanten zu stiitzen braucht, so ist
es doch fiir unsere spéiteren Anwendungen und auch zur Ge-
winnung eines Uberblicks itber die Restklassen wichtig, ein
méglichst einfaches vollstdndiges Représentantensystem (1,
§ 2 [17]) fiir die Restklassen mod. f zu besitzen. Ein solches
wird in folgendem Satz genannt:

Satz 27. Ist f=0, so bildet jedes Element von
mK[z] wird iibrigens durch diese Hinzufiigung von ,,mod. f(x)*
eine Verwechselung mit der Gleichheit in K[z] bei der Schreibweise mit Argu-
ment z (1, nach Satz 12 [42]) ausgeschlossen.

2) Wir reden hier, etwas allgemeiner als in 1, Satz 8 [22], auch in dem dort
ausgeschlossenen Falle, daB alle Elemente einander kongruent, also f wegen

e= 0 mod. / Einheit ist, von einem Ring. Dieser enthilt dann nur ein einziges
Element, erfiillt also nicht mehr die in 1, §1, (a.) [7] gestelite Forderung.
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K[z] bzw. [ fiir sich eine Restklasse. Ist f==0,
so wird ein vollstindiges Repridsentantensystem
der Restklassen mod. f gebildet durch die Ele-
mente h mit der Eigenschaft

Il < |f| im Falle K{z],

0= h<fim Falle T.

Beweis: a.) Fiir f = 0 ist A, == h, mod. 0 mit 0 | b, — h,,
d. h. mit k, = k, gleichbedeutend.

b.) Fiir f== 0 ist wegen der Existenztatsache von Satz 13
[16] jedes Element einem der genannten mod. f kongruent,
und wegen der Eindeutigkeitstatsache auch nur einem. Die
genannten Elemente reprisentieren also alle Restklassen
mod. f, jede einmal.

Ausfiihrlich geschrieben lautet das vollstindige Repra-
sentantensystem mod. { fiir f 3= 0

im Falle K[z]: ¢, + ¢; 2+ - -+ + ¢4_1 271, wenn f vom
Grade » > 0, wobei ¢g, ¢y, . . ., €1 alle Systeme von n Ele-
menten aus K durchliuft; 0, wenn f vom Grade 0 (f = e);

im Falle I': 0,1,...,f—1; hier ist also die Anzahl der
Restklassen mod. f endlich, némlich f.

Aus dem Sachverhalt von Satz 27 motiviert sich die Be-
zeichnung Restklassen, insofern diese je durch alle Elemente
gebildet werden, die bei der Division durch f ein und den-
selben Rest ergeben?).

Besonders wichtig ist fiir uns die Feststellung, fiir welche
{ der Restklassenring mod. f ein Integrititsbereich oder sogar
ein Korper ist. Dariiber gibt der folgende Satz Auskunft:

Satz 28. Der Restklassenring mod. f ist dann
und nur dann Integritidtsbereich, wenn =10 oder
f Primelement ist. Ist f Primelement, so ist er
sogar Korper.

1) Auch iiber die speziellen Integrititsbereiche K[z] und [ hinaus lassen
sich die Restklassen nach Kongruenzrelationen in allgemeinen Integritits-
bereichen in eine #hnliche Beziehung zur Division setzen (vgl. 1, Anm. zu Def.6
[211), wodurch die allgemeine Bezeichnung Restklassen gerechtfertigt wird.
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Beweis: a.) Ist f=0, so fallt nach Satz 27 der Rest-
klassenring mit dem Integrititsbereich K[z] bzw. I' zu-
sammen. Es sei ferner f = p Primelement. Ist dann g,¢,=0
mod. p, d. h. p|g;¢, so ist nach Satz 18 [20] p|g, oder
P|gs d.h. ;=0 mod. p oder =0 mod. p. Wenn also
das Produkt zweier Restklassen {g,} {g,} = O ist, ist min-
destens einer der Faktoren {g,} oder {g,} =0, d. h. es gilt
das Analogon zu 1, Satz 4 [12] im Restklassenrmg mod. p.
DaB auch das Analogon zu 1, Satz 3 [11] gilt, ist klar, weil {e}
das Einselement des Restklassenrings ist. Also ist dieser zu-
nichst Integritdtsbereich. Er ist aber sogar Korper. Denn ist
g =0 mod. p, d. h. p ¢, also p prim zu ¢ (Satz 17 [20]),

so kann nach Satz 14 [18] ph* + gg* —e, also bei vor-

gegebenem A auch ph+ g9 = h gesetzt werden. Die letztere
Relation besagt aber, daB gg =% mod. p ist, d.h. daB

{9} {g} = {h} oder {g} = % ist. Hiernach ist also die Division

durch von Null verschiedene Restklassen mod. p unbeschrinkt
ausfithrbar [1, §1, (7.) [10]], so daB ein Korper vorliegt.

b.) Ist f== 0 und kein Primelement, so ist entweder f
Einheit und es gibt dann nur eine einzige Restklasse, so daB
also kein Integrititsbereich vorliegt [1, §1, (a.) [7]]. Oder
aber es besteht eine Zerlegung f = ¢, ¢, in echte Teiler g,, gs.
Die Relation ¢;9, =0 mod. f, d. h. {g,} {g,} = O besagt
dann, daB das Produkt zweier von O verschiedener Rest-
klassen mod. f gleich O ist, so daB wiederum kein Integritits-
bereich vorliegt.

Wir bezeichnen im folgenden den Restklassenkérper nach einer
Primfunktion p(z) mit K(z, mod. p(z)), den Restklassenkérper
nach einer Primzahl p mit P,?)

Der Restklassenkorper P, ist nach Satz 27 ein endlicher
Kiérper?) von p Elementen. *Wir beweisen iiber ihn noch den fol-

1) Dlese nach den Festsetzungen nach Def. 10 [26] an sich entbehrlichen,
neuen Bezeichnungen sind des besseren Einklangs halber mit der in 1, Def. 9
[38], 10 [39], Satz 6 [13] eingeschlagenen Bezeichnungsweise gewihlt.

%) Fiir p = 2 ist Py der in 1, § 1, Beisp. 4 [14] genannte und in 1 ver-
schiedentlich als Beispiel herangezogene Korper.
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genden, spiter anzuwendenden Satz:

Satz 29, Fiirjedesa aus Pp gilt a? = q, fiir jedes a = 0
also g l=e.

Beweis: Fiir ¢ = 0 ist das klar. Seia + O und seien 0, @y, ...,
a,,_, die p verschiedenen Elemente aus P,. Wegen der Eindeutig-

keit der Division durch a in Pp sind dann die p Elemente a0 = 0,
Oy e o ey OBy voneinander verschieden, also wieder die séimtlichen

Elemente von Pp inirgendeiner Reihenfolge, und daher aa,,...,aa,_,
mit @y, ..., a, ; bis auf die Reihenfolge identisch. Daraus folgt
durch Produktbildung

ap—lal PP p—1 =gy .a,p_1 .
Da aber a, -+ +a, ; =+ 0 ist, ergibt sich a?—1— ¢ ap = a, wie be-
hauptet.

Wahrend im vollen Restklassenring mod. f nach Satz 28
die Division dann und nur dann unbeschrinkt und eindeutig
ist, wenn f ein Primelement ist, liBt sich in jedem Falle eine
Teilmenge dieses Restklassenrings angeben, innerhalb deren
dies der Fall ist. Zu dieser Teilmenge fiihrt der folgende Satz
und die anschlieBende Definition:

Satz 30. Alle Elemente einer Restklasse mod. f
haben mit f ein- und denselben gréBten gemein-
samen Teiler, der somit Teiler dieser Restklasse
genannt werden kann.

Beweis: Ist g,= g, mod. f, d. h. g, — g, = {1, 50 ist nach

Satz 3 [9], 14 [18] (g1 /)| (92 /) und (g, 1) | (9, 1), also
@1 1) = (@2, 1)-

Definition 11. Die Restklassen mod. f vom Teiler
¢ heiBen die primen Restklassen mod f.

Diese stellen also die Restklasseneinteilung mod. f innerhalb
der Menge aller zu f primen Elemente (Def. 9 [20]) dar.

Die obige Behauptung wird nun durch folgenden Satz
bestétigt:

Satz 31. Die primen Restklassen mod. f bilden eine
abelsche Gruppe B, beziiglich der Multiplikation?).

1) Fiir f = 0 vgl. librigens Satz 4 [10).
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Beweis: Da §3; Teilmenge des Restklassenrings mod. f
ist, geniigt es zu zeigen, dal die Multiplikation nicht aus P,
herausfithrt und da8 die Division in ; eindeutig und
ebenfalls unbeschrénkt ist. Das erstere folgt unmittelbar aus
Satz 23 [22], das letztere durch ganz entsprechende Schliisse,
wie im Beweis zu Satz 28 unter a.), jetzt mittels Satz 16 [20]
anstelle von Satz 18 [20].

Satz 31 ist vor allem im Falle I von Bedeutung. Die Gruppe
By ist dann endlich, ihre Ordnung bezeichnet man mit ¢(f)
(Eulersche Funktion). Es ist ¢(0)= 21), ferner nach Satz 17
[20], 27 [26] @(p)=p—1 fiir Primzahlen p. Die mittels der

Sitze von § 1, E. unschwer zu beweisende allgemeine Formel

¢(f)=/g<1—%), >0,

wo p die verschiedenen, in f aufgehenden Primzahlen durchliuft,
brauchen wir im folgenden nicht, ebenso auch nicht die Satz 29
verallgemeinernde, ganz entsprechend zu beweisende Relation

a®' = 1 mod. f
fiir jedes zu f prime a aus I, den sog. kleinen Fermatschen
Satz?). Wir filhren diese Tatsachen hier nur an, um unsere auf
den Fall T beziiglichen Entwicklungen, die ein wichtiges Kapitel
der elementaren Zahlentheorie bilden, abzurunden.

§ 3. Zyklische Gruppen.

Wir machen in diesem Paragraphen eine fiir spiter
wichtige Anwendung der auf den Fall " beziiglichen Re-
sultate der §§ 1, 2 auf die Gruppentheorie.

Definition 12. Eine Gruppe J heifit zyklisch,
wenn sie aus den ganzen Potenzen eines ihrer
Elemente 4 besteht. 8 heifit dann auch durch A
erzeugt und A ein primitives Element von 3.

Fiir die ganzen Potenzen von A gelten nach ihrer Er-
klarung (1 [51]) die Rechenregeln

(1) AmAn:Am+n’ (Am)n= Amn.

}) Vgl. Anm. 1 [29] sowle Satz 7 [13].

t) Von Fermat selbst nur fiir f = p angegeben (Satz 29), in dieser all-
gemeinen Form erst von Euler.
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Daraus folgt zundchst (1, Def. 13 [50]):

Satz 32. Jede zyklische Gruppe ist abelsch.

Aus (1.) folgern wir nun weiter den folgenden, grund-
legenden Satz iiber zyklische Gruppen:

Satz 33. Es sei 8 eine durch 4 erzeugte zykli-
sche Gruppe. Dann existiert eine eindeutig be-
stimmte ganzeZahl f=0 derart, dal 8 vermoge der
Zuordnung

@) A" — {m}
zur additiven Gruppe R; der Restklassen mod. f1)
isomorph ist.

Beweis: a.) Durch die Festsetzung

(8.) my= m, dann und nur dann, wenn A™ = 4™,
wird eine Kongruenzrelation in I definiert.

Denn 1, § 2, (&), (8.), (y.) [15] sind erfiillt, weil die
Gleichheit in 3 ihnen geniigt. Weiter gelten auch 1, §2, (1.),
(2.) [21]; ist nimlich m = m,, n,= n,, also A™ = A™,
A™ = A™, so folgt nach (1.)

Am,+n1: AmlAm: Am,An, - Ama+n-
Amml - (Aml)n1 _ (Am,,)n1 _ (Anl)m, - (An,)m, _ Am,n,’
also my + ny= my + Ny, MyNy == MyN,.

Ist f der Modul der Kongruenzrelation (3.), so gilt also

(4.) A™ = A™ dann und nur dann, wenn m, = m, mod. f.
Die Zuordnung (2.) zwischen 8 und R, ist nach (4.)
eineindeutig. Sie ist ferner auch isomorph, weil nach (1.)
der Multiplikation der Potenzen A™ die Addition der Expo-
nenten m, also auch ihrer Restklassen {m} entspricht. So-
mit ist 8 = R; vermige (2.).

b.) Fiir verschiedene /= 0 unterscheiden sich die zuge-
horigen R, durch die Anzahl ihrer Elemente (Satz 27 [26]),
sind also nicht isomorph. Somit ist f durch § eindeutig
bestimmt.

1) Vel 1, {6, Beisplel 1 [63].
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Nach Satz 33 lassen sich die méglichen Typen zyklischer
Gruppen den nicht-negativen ganzen Zahlen f=0,1,2,... ein-
eindeutig zuordnen, und alle diese Typen existieren wirklich, da
sie ja durch die Ry représentiert werden. Ist 8 eine durch A er-
zeugte zyklische Gruppe vom Typus %y, so sind die verschiedenen
Elemente von 8 nach Satz 27 [26] gegeben

a.) fiir f=0 durch die samtlichen ganzen Potenzen

W A5 A7 A=, 4%, A7,
dann ist also 3 von unendlicher Ordnung

b.) fiir f >0 etwa durch die f Potenzen A"=E, Al, Y Ll
an die sich bei beiderseitizer Fortsetzung dasselbe System von f
Elementen in gleicher Reihenfolge wiederholt anreiht!); dann ist
also 8 endlich von der Ordnung f.

Um alle Untergruppen einer zyklischen Gruppe zu be-
stimmen, vermerken wir zunichst die nachstehende, nach 1,
Satz 19, 25 [bD, b9] ohne weiteres klare Tatsache:

Satz 34. Ist A ein Element aus einer Gruppe &,
so bilden die ganzen Potenzen von 4 eine zyklische
Untergruppe %A von @&, die Periode von A, deren
Ordnung auch die Ordnung von A heiBt. Ist &
endlich von der Ordnung =, so ist auch 4 von
endlicher Ordnung m und m|n.

Falls A von endlicher Ordnung m ist, 1Bt sich m nach Satz 33
auch dadurch charakterisieren, daf

= F mit k=0 mod. m, d.h. mit m|k
gleichbedeutend ist, oder auch als kleinster der positiven
Exponenten k, fiir die 4* = E ist. Wir beweisen zur spiteren
Anwendung noch:

Satz 36. Sind A,, 4, vertauschbare Elemente aus @&
von den endlichen Ordnungen my, m, und ist (m,, my) =1,
so hat 4,4, die Ordnung m,m,.

Beweis: Soll (4,4,)* = E sein, so folgt durch Potenzieren
mit m, bzw. m,, unter Beriicksichtizung der Voraussetzung
A A, = A A,

AMF=E, A7*=E,
also m, |m2k mzlmlk Wegen (my, m.‘,) — 1 muB also my |k, my |k

1) Daher dje Bezeichnung zyklisch, Als Bild des Falles a.) ist dabel ein zu
einer Geraden ausgearteter Kreis zu denken.
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sein (Satz 16 [20]). Daraus folgt mym, |k (Satz 22, 20 [22]). Da
umgekehrt

(A Ag)™™ = (AP™ (AF™ = E
ist, ist also (4,4,)* = E dann und nur dann, wenn m;m,| %, d. h.
m,m, ist die Ordnung von A,4,.
Durch Anwendung von Satz 34 auf eine zyklische Gruppe
& = 3 erhalten wir leicht alle Untergruppen von 3:

Satz 36. Ist 8 eine durch A erzeugte zyklische
Gruppe von der endlichen Ordnung # (von unend-
licher Ordnung?)), so entspricht jedem positiven
Teiler § von # (jedem positiven §) ein Normalteiler

W; von der Ordnung m = Lud (von unendlicher Ord-

nung), nimlich die Periode von 4% Deren Faktor-
gruppe 8/%; ist wieder zyklisch, von der Ordnung j.
Auf diese Weise entstehen alle (von der identischen
verschiedenen) Untergruppen von 8. Diese, sowie
ihre Faktorgruppen, sind also insbesondere simt-
lich wieder zyklisch.

Beweis: a.) Nach Satz 34 sind die Perioden 9(; der ge-
nannten A’ Untergruppen von den angegebenen Ordnungen,
und nach 1, Satz 26 [60] natiirlich Normalteiler von 3.

b.) Fiir die Kongruenz nach ; gilt nach ihrer Erklirung
(1, Def. 16 [56]) und nach Def. 10 [26]

A™ = A™(%;) dann und nur dann, wenn m, = m, mod. 7.
Die Restklassen nach 91; kénnen also durch A= E, Al,. .o A -1
reprisentiert werden. Hiernach ist 8/%; zyklisch von der
Ordnung 4, nimlich durch die Restklasse von A erzeugt.

c.) Ist §' irgendeine Untergruppe (also Normalteiler) von
8, so liefert analog zu (3.) [31] die Festsetzung

my= m, dann und nur dann, wenn A™= A™(Z'),

1) Das auf dlesen — welterhin nicht bendtigten — Fall Beziigliche ist in
Klammern beigefiigt.

Hasse, Héhere Algebra. II. 3
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eine Kongruenzrelation in I". Ist § deren Modul, so ist 4™
dann und nur dann in 8’, wenn m==0 mod. j (1, Satz 35
[66]), d. h. §{m ist; 8" besteht also aus allen und nur den

ganzen Potenzen von A’, d.h. ist die Periode A; von A,

Ist B endlich von der Ordnung #, so ist j|n, weil A" =E
zu 3’ gehort; ist 8 unendlich, so entspricht j =0 die iden-
tische Untergruppe, positiven § von der identischen ver-
schiedene Untergruppen.

Der Satz 34 ermoglicht auch die Bestimmung aller primitiven
Elemente einer zyklischen Gruppe:

Satz 87, Ist 8 eine durch A4 erzeugte zyklische

Gruppe vom Typus Ry, so entsprechen die primitiven
Elemente von 8 bei der Zuordnung (2.) den primen
Restklassen mod. f, d.h. es ist dann und nur dann 4™
primitiv, wenn m prim zu f ist.

Beweis: 4™ ist dann und nur dann primitiv, wenn seine
Periode gleich § ist, und das ist dann und nur dann der Fall, wenn

sie A enthilt, d.h. wenn ein m existiert, so da A™™ = 4, also
mii=1 mod.f ist. Hierzu ist aber nach Satz 3, 14 [9, 18]
notwendig und nach Satz 31 [29] hinreichend, dal m prim zu f ist.

Fiir =0 (also unendliches 8) sind hiernach 4%, 4™ die
einzigen primitiven Elemente, fiir f > 0 (also endliches 8 der
Ordnung f) gibt es unter den f Elementen ¢(f) primitive {30].
Speziell sind, wenn f= p Primzahl ist, alle @ (p)=p—1 Ele-
mente + E primitiv,

§ 4. Primintegrititshereiche, Primkorper,
Charakteristik.

Wir leiten in diesem Paragraphen eine auf die Resultate
von §§1,2 fiir den Fall " gestiitzte, grundlegende Unter-
scheidung der Integritdtsbereiche und Korper her. Dazu
bezeichne durchweg | irgendeinen Integrititsbereich, K dessen
Quotientenkorper. Da sich jeder Kérper K als Quotienten-
korper eines Integritatsbereiches (nidmlich wieder K) auf-
fassen 1afit, bedeutet das keinerlei Einschrinkung beziiglich
der in Betracht gezogenen Korper K.
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Wir betrachten die ganzen Vielfachen me des Einselemen-
tes ¢ von I, fiir die nach ihrer Erklarung (1, am Schluf von
§ 1 [13]) die Rechenregeln gelten:

(1.) mye + mge = (my + my)e, (mye)(mye) = (mymy)e.
Die me sind die ganzen ,,Potenzen® von ¢, d. h. die Periode
von e in der durch die Elemente von | gebildeten additiven
abelschen Gruppe, und in diesem Sinne sind die Formeln
(1.) nichts anderes als die Formeln (1.) des § 3 [30], aller-
dings mit einer kleinen Abweichung in der zweiten Formel.
In Analogie zu dem dortigen Satz 34 [32] (aber unter Beriick-
sichtigung der in 1 neben der als Gruppenverkniipfung ge-
deuteten Addition iiberdies vorhandenen zweiten Ver-
kniipfung Multiplikation) ergibt sich aus (1.) nach 1, Satz 6
[19]:

Satz 38. Die ganzen Vielfachen des Einsele-
mentes von | bilden einen Teilintegritatsbereich I,
von l. Dessen Quotientenkérper ist ein Teil-
kérper K, von K.

Da e und somit auch alle me in jedem Teilintegritéts-
bereich von | und die Quotienten der me in jedem Teilkérper
von K enthalten sind, gilt:

Satz 39. |, ist der engste Teilintegrititsbereich
(Durchschnitt aller solchen) von 1. K; ist der
engste Teilkorper (Durchschnitt aller solchen)
von K

Die in Satz 39 ausgesprochene Eigenschaft von I, bzw.
K, rechtfertigt die Definition:

Definition 13. |, heiit der Primintegrititsbereich
von I, K, der Primkorper von K.

Die angekiindigte Unterscheidung der Integrititsbereiche |
und der Korper K bezicht sich nun auf den Typus ibrer Prim-
integritatsbereiche 1y bzw. Primkérper K, Wenn auch nach
(1.) die Rechenoperationen mit den me aus Iy isomorph
zu den entsprechenden Rechenoperationen mit den m aus I’

3*
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verlaufen, braucht deshalb doch nicht I, vom Typus " zu
sein; denn, wie das Beispiel der P, lehrt, ist die Znordnung
me «— m nicht notwendig eineindeutig, d. h. Gleichheit
und Unterschiedenheit in I, und in " entsprechen sich
bei dieser Zuordnung nicht notwendig. Fiir die moglichen
Typen von I, gilt vielmehr ganz Entsprechendes, wei wir
in § 3 (Satz 33 [31]) fiir die Typen zyklischer Gruppen fest-
gestellt haben:

Satz 40. Zu | existiert eine eindeutig bestimmte
ganze Zahl =0, so daB I, vermdge der Zuordnung
zum Restklassenring [, isomorph ist.

Beweis: Aus der Auffassung von I; als Periode von e
in [ resultiert nach § 3, (3.) [31], daB die Relation

(3.) my=m, dann und nur dann, wenn m,e=myeo
eine Kongruenzrelation in M ist. Ist f deren Modul, also

(4.) mye =mye dann und nur dann, wenn m, =m, mod. {,
so ist nach (4.) die Zuordnung (2.) zwischen l, und [ ein-
eindeutig. Wie im Bew. zu Satz 33 [31] ist sie ferner nach (1.)
isomorph, hier auBer fiir die Addition (die der dortigen Grup-
penverkniipfung entspricht) auch fiir die in I, und [T er-
Klirte Multiplikation.

Auf Grund von Satz 40 definieren wir:

Definition 14. Die ganze Zahl f=0 aus Satz 40,
d.h. der Modul der Kongruenzrelation (3.) heifit
die Charakteristik von | und K.

Da nun das zu [7; isomorphe I, Integritétsbereich ist,
ergibt sich aus Satz 28 [27]:

Satz 41. Die Charakteristik von | und K ist
entweder 0 oder eine Primzahl p. Ist sie 0, so ist
lyx Ky =P; ist sie p, so ist ly=K,=P,.

Durch Satz 41 motiviert sich die Bezeichnung Charakteristik
von | und K, insofern diese den Typus des Primintegritéts-

bereiches I, bzw. Primkérpers K, charakterisiert. Daf alle
pach Satz 41 moglichen Charakteristiken wirklich vorkommen,
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zeigen die Bereiche T, P, Py, die ihre eigenen Primbereiche ) sind.
Nach dem Verfahren von 1, § 3, d) [29] kann man aus jedem Be-
reich | oder K einen isomorphen herleiten, der als Primbereich I
oder P bzw. ein Pp (d. h. die ganzen oder rationalen Zahlen bzw,
die Restklassen nach einer Primzahl p) selbst enthidlt. Wir reden
daher im folgenden kurz von den Primbereichen I, P, Pp.

Man sieht ferner ohne weiteres folgende Tatsachen ein
(vgl. schon Satz 39):

Satz 42. Alle Erweiterungs- und Teilbereiche
eines Bereiches haben dieselbe Charakteristik.

Aus dem Gesetz (4.) fiir die ganzen Vielfachen von e ergibt

sich vermége der Umformung

My @ — Mo = (My — My) @ = (Mg —My) €+ @ = (Me—mye):a
leicht ein entsprechendes Gesetz flir die ganzen Vielfachen eines
a% 0:

Satz 43, Ist a ein Element eines Bereiches der
Charakteristik £, so ist
m,a = mya dann und, falls @ 0, auch nur dann, wenn

m, = m, (fiir f=0)
m,=my, mod. p (fir f=1p) "
Insbesondere ist also
ma = 0 dann und, falls ¢ + 0, auch nur dann, wenn
m=0 (fiir f=0)
m=0 mod. p (fir f=1p) "

Infolge des in diesem Satz zum Ausdruck kommenden ab-
weichenden Verhaltens der Bereiche mit einer Charakteristik p
gegeniiber denen mit der Charakteristik 0 (z. B. allen Zahlbereichen)
sind nicht alle aus der ,,Zahlenalgebra‘* geldufigen SchluBweisen in
unserer abstrakten , Bereichalgebra‘* anwendbar, wie wir das ja
in 1 mehrfach hervorhoben [Beweise zu Satz 12, d); Satz 18, d);
Satz 70 [41, 44, 129]].

Auch die folgende, spiter anzuwendende Tatsache zeigt eine
Abweichung der Bereiche mit einer Charakteristik p gegeniiber
den in der Zahlenalgebra vorliegenden Verhiltnissen:

Satz 44. In Bereichen der Charakteristik p darf
eine Summe gliedweise mit p potenziert werden:

n 4 n
= P
I (kgl ak) ké; ak

1) Bereich steht hier und in den folgenden Ausfiihrungen fiir Inte-
gritatsbereich oder Kdrper.
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Beweis: Es geniigt, den Satz fiir » = 2 zu beweisen, da er
dann durch Induktion aligemein folgt. Nach dem (aus den Ele-
menten vorausgesetzten) binomischen Satz ist nun

p—1 y
(@ + @)’ = af + Zi‘ (7:)“{“2— + a5,
ve
w0 f die Kombinationsanzahl von p Elementen zur v-ten Klasse

bezeichnet, fiir die die Formel
(p)= p! _p—=1---(p—(r=-1)
» vi(p— »)! 1-2+--9
gilt (vgl.1, Bew, zu Satz 66 [123]). Dafiir 1 <»<p—1 das Produkt
1-2++.pzuyp prim ist (Satz 23 [22]) und wegen der Ganzzahlig-

keit der Anzahl f in dem Produkt p - [(p—1) - -+ (p— (»—1))]
aufgeht, muB es nach Satz 16 [20] in dem zweiten Faktor [...]
dieses Produktes aufgehen, so daB <p ) =0mod. pist. Aus Satz43
folgt daher ’

(a; + ax)P = af +af .

Es sei iibrigens bemerkt, daB eine entsprechende Regel auch
fir die Subtraktion gilt; denn ans (a; + a,)f — o} = af folgt ja
wegen der Unbeschriinktheit der Subtraktion allgemein b} — b3
= (b — ).

I1. Die Wurzeln algebraischer
Gleichungen.

Wir leiten in diesem Abschnitt eine Reihe von Sétzen iiber
Wurzeln « von Polynomen f (z) aus K in Erweiterungskérpern
A von K her, ohne dabei auf die erst in III zu behandelnde
Existenzirage der A und « bei gegebenem K und f(z) ein-
zugehen. Diese Sitze sind also lediglich als Folgerungen aus
der Voraussetzung anzusehen, daf ein Polynom aus K in
einem Erweiterungskorper A von K eine oder mehrere Wurzeln
hat.

Zur Vereinfachung der Ausdrucksweise treffen wir folgende
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Bezeichnungsfestsetzungen fiir Abschnitt II-IV.

GroBe griechische Buchstaben, auBer den bereits vergebenen
M (Menge), B (Bereich), | (Integrititsbereich), I' (Integritits-
bereich der ganzen Zahlen), bedeuten stets Kérper, ohne daB
dies immer ausdriicklich gesagt wird, und zwar K den Grund-
kérper, A irgendeinen Erweiterungskorper (kurz Erweiterung)
von K, weitere Buchstaben Erweiterungen von K mit speziellen,
wie bei P (Kérper der rationalen Zahlen) durch die Bezeichnung
schon angedeuteten Eigenschaften, die wir aber der Deutlichkeit
halber doch immer ausfiihrlich nennen werden. Fir das Ent-
haltensein und Enthalten bei Korpern (spater auch bei Gruppen)
verwenden wir sinngemiB die Zeichen <, =, <, >. Ist KEKZA,
so nennen wir K einen Kérper zwischen K und A.

Elemente aus dem Grundkérper K bezeichnen wir mit 4, b, ...,
solche aus Erweiterungen A von K mit o, 8, 9,... (vgl. 1, erste
Anm. zu §1[9]), ebenso Elemente aus K [z] mit f (), g(z), h(z),...,
solche aus A[z] mit ¢(z), w(z), x(),...1). Wir diirfen dann
erliuternde Zusitze iiber die Kérper, denen vorkommende Elemente
angehéren sollen, oft fortlassen.

Ebenso lassen wir auch die Zusitze ,,in K** bei ,,irreduzibel*
und ,,Primfaktorzerlegung®, sowie entsprechende Zusitze bei
einigen im weiteren Verlaufe einzufithrenden Begriffen, die sich
auf einen bestimmten Grundkoérper beziehen, gelegentlich fort,
wenn nur ein in der gerade vorliegenden Betrachtung fester
Grundkérper K in Betracht kommt. Definitionen, auf die diese
Festsetzung Anwendung finden soll, werden durch * gekennzeichnet.

§ b. Wurzeln und Linearfaktoren.

1.) Der in § 1 fiir K[2] bewiesene Fundamentalsatz er-
moglicht zunichst die Herstellung eines Zusammenhangs
zwischen den Wurzeln eines Polynoms aus K in einer LEr-
weiterung A von K und denen seiner Primfaktoren in K.
Nach 1, Satz 4 [12] und dem Einsetzungsprinzip gilt ndmlich:

Satz 45. Ist

@) =py(@) - - pr(a)?)

ein in seine Primfaktoren zerlegtes Polynom aus

1) Vorkommende gebrochene rationale Funktionen, die wir in I 8o bee
zeichneten, werden als Quotienten ganzer rationaler Funktionen dargestellt.
%) Nach der Definition von Polynom i. d. Einl,, sowle nach Def. 8 {14]
und Satz 11[14] ist dabel der in Satz 12 [14] auftretende Einheitsfaktor
a - e.
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K, so ist jede Wurzel von f(z) in A auch Wurzel
von mindestens einem der p;(z) und umgekehrt
jede Wuarzel eines der p;(z) in A auch Wurzel von
1(2).

Man beherrseht somit die Wurzeln von f(z), wenn man die der
p;(x) beherrscht, und kénnte sich demnach auf die Untersuchung

der Wurzeln irreduzibler Polynome beschrinken. Da sich diese

- Beschrankung aber fiir die in III, IV auseinanderzusetzende Theorie
als iiberfliissig erweist, wollen wir sie nicht einfiihren. Das erscheint
auch in Hinsicht auf das Nichtvorhandensein eines rationalen
Rechenverfahrens zur Herstellung der Primfaktorzerlegung er-
wiinscht.

2.) Wir beweisen ferner einige Sitze iiber den Zusammen-
hang der Wurzeln eines Polynoms aus K mit dessen Prim-
faktoren 1-ten Grades (sog. Linearfaktorem) in einer Er-
weiterung A von K.

Satz 46, Ist x Wurzel von f(z) in A, so ist f(z)
durch den Linearfaktor z —« teilbar, d.h. es be-
steht in A eine Zerlegung

() = (s—&) p(z).
Umgekehrt folgt aus einer solechen Zerlegung, dal
o Wurzel von f(x) ist.

Beweis: a.) Nach Satz 13 [16] kann

1(2) = (s—a) p(e) + (&) mit |p(z)|<|z— |
gesetzt werden. Da |z —o [ =k ist, mub |p(z)| =k'=1
sein, so da y(x)=p ein Element aus A ist. Fir z =«
folgt dann wegen f(«) = 0 auch f = 0, d. h. die behauptete
Zerlegung.

b.) Die Umkehrung ist klar.

Satz 47. Sind «,, . .., &, verschiedene Wurzeln
von f(z) in A, so besteht in A eine Zerlegung

@) = (@—0q) -+ (5 —0) 9(a).
Umgekehrt folgt aus einer solchen Zerlegung, daB
Ogy o sy 0 Wurzeln von f(z) sind.

Beweis: a.) Die Primfunktionen z-—oy, ..., 0—a,

sind nach Voraussetzung verschieden, und jede kommt nach
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Satz 46 in der Primfaktorzerlegung von f(z) im Korper A
vor. Wegen der Eindeutigkeit dieser Zerlegung muf also auch
ihr Produkt in f(z) enthalten sein, d.h. eine Zerlegung der
behaupteten Art bestehen.

b.) Die Umkehrung ist klar.
Aus Satz 47 ergibt sich durch Vergleichung der beider-
seitigen Grade unmittelbar die wichtige Tatsache:

Satz 48. Ein Polynom n-ten Grades aus K hat
in keiner Erweiterung A von K mehr als # ver-
schiedene Wurzeln.

, Aus Satz 48 148t sich der folgende, spiter anzuwendende Satz
folgern:

Satz 49, Besteht K aus unendlich vielen Elementen
und sind ¢, (2y,..., %p), ... ¢ {2y, ..., T,) VOneinander ver-
schiedene Elemente aus K{z,,...,x,], so gibt es in jeder
unendlichen Teilmenge M von K ZElementsysteme
@y,..., 8, derart, daB die Elemente g (a;,...,a,),...,
gr(a@y,...,a,) aus K ebenfalls voneinander verschieden sind.

Beweis: Durch Betrachtung des Differenzenprodukts

7
g9 =_IT (g9; — g;) reduziert sich die Behauptung ohne weiteres auf
i k=1

i<k
jede der beiden folgenden, gleichbedeutenden:

(a.) Ist g(xy, ..., @,) == 0, so gibt esay, ..., a, aus M, so daB
g(@y, ... a,) F 0 ist.

(b.) Ist g(ay, ..., a,)=0 fir alle a,,...,a, aus M, so ist
(o a) =09, o _—

Diese beweisen wir durch vollstindige Induktion: Fir n=1
ist (a.) eine Folge aus Satz 48; ist namlich g(z) == 0, so ist ent-
weder g(z)=1"b + 0 (Einheit) und also g(a) = b + O fiir alle a
aus M, oder g(z) ist bis auf einen von Null verschiedenen Faktor
aus K ein Polynom und dann g(a) = O fiir nur endlich viele a aus
K, so daB nach den Voraussetzungen iiber K und M Elemente a
in M existieren, fiir die g(a) #+ O ist. Sei nun (a.) und somit (b.)
fiir n = » — 1 schon bewiesen. Dann betrachten wir die Polynome

1) Hierdurch wird die in 1, Bew. zu Satz 12, d) {41] ausgesprochene Be-
hauptung [vgl. dazu 1, Bew. zu Satz 13, d) [44]] bestitigt. Man hat dazu unter
K den Quotientenkorper des dortigen Integritidtsbereichs | und unter M das
dortige | zu verstehen.
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glz,)=g(2;,..., 3,) tber K[z),...,x,_;],

7*(z,)=g(ay,...,a, 4, x,) iber K,
von denen die letzteren durch Einsetzung von Systemen a,,...,a,_,
aus M fiir Tyyes T, alus dem ersteren entstehen. Ist nun
glay, ...,a,) = Ofiirallea,, . . ., a, aus M, so ist nach (b.) (n=1) zu-
nichst jedes g* (z,) = 0. Folglich sind nach (b.) (n = v —1) die
Koeffizienten von g(z,), d. h. g(z,) selbst =0, was ¢(z;, ..., £,)=0
bedeutet. Also ist (b.) dann auch fiir » = », und daher allgemein
richtig.

Priziser als Satz 47, 48, insofern nicht mehr die Ver-
schiedenheit der Wurzeln vorausgesetzt wird, ist der folgende
Satz:

Satz 50. Zerfillt f(z) in A in Linearfaktoren:

, )= (&—o) -+ (5 —oum),
so sind oy, ..., 0, Wurzeln von f(z). Weitere Wur-
zeln von f(z) existieren dann weder in A noch in

irgendeiner Erweiterung A von A.

Beweis: a.) Der erste Teil des Satzes ist klar (Satz 47
[40h). _

b.) Ist « Wurzel von f(z) (in A oder einem A), so folgt
aus flo) =0, daB (x —oy) - (06 —op) =0 ist, so dafl o
einer der Wurzeln o; gleich sein muf} (1, Satz 4 [12]).

‘Wir verabreden fiir die Folge, daB bei der Voraussetzung
von Satz 50 unter den Wurzeln von f(z) in A stets die den
Linearfaktoren von f(z) entsprechende volle Reithexy, . . ., n
verstanden wird, ungeachtet ob darunter gleiche vorkommen
oder nicht.

Durch die Sitze 46, 47, 50 ist der Weg fiir die in III auszu~
fithrende Konstruktion der Wurzeln eines Polynoms f(xz) aus K
vorgezeichnet. Wir werden K schrittweise so zu erweitern haben,
daB von f(x) bei jedem Schritt mindestens ein Linearfaktor ab-
gespalten wird. Ist auf diese Weise eine Erweiterung A gefunden,
in der f(z) vollstindig in Linearfaktoren zerfallt, so diirfen wir
mit dem Erweiterungsproze8 haltmachen, da eine Fortsetzung
dann nach Satz 50 keine nenen Wurzeln mehr liefern kann.

3.) Wir beweisen schlieBlich einige Tatsachen iiber die
Wurzeln irreduzibler Polynome.
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Aus Satz 46 [40] und dem Begriff der Irreduzibilitét
folgt zundchst unmittelbar:

Satz 51. Ein irreduzibles Polynom aus K hat in
K dann und nur dann eine Wurzel, wenn es vom
Grade 1 ist.

Hierdurch wird der in der Einleitung hervorgehobene Umstand
2.) in Evidenz gesetzt, daB man i. a. den Grundkérper erweitern
muB, um zu Wurzeln eines Polynoms zu gelangen. Man muf}
allerdings die hier nicht vollstindig zu erdrternde Tatsache hin-
zunehmen, daf der Grundkérper i.a. irreduzible Polynome von
hoherem als dem 1-ten Grade enthilt. (Spezielle Sitze in dieser
Richtung siehe in § 23.)

Satz 52. Zwei relativ prime Polynome, ins-
besondere also zwei verschiedene irreduzible Poly-
nome aus K haben in keiner Erweiterung von K
cine gemeinsame Wurzel.

Beweis: Ist & eine gemeinsame Wurzel von f,(z) und
fo(2) in A, so ist £ —o nach Satz 46 [40] ein gemeinsamer
Teiler von f,(z) und f,(z) in A. Nach Satz 24 [23] ist dann
also (f4(e), f(a)) +e.

Aus Satz 52 ergibt sich der folgende sog. Fundamental-
satz iiber irreduzible Polynome:

Satz 53. Hat das in K irreduzible f(z) mit
irgendeinem h(z) aus K in ciner Erweiterung von
K eine gemeinsame Wurzel, so ist f(z)]h(z).

Beweis: Nach Satz 17 [20] wére sonst f(z) prim zu
h(z), was nach Satz 52 der Voraussetzung widerspricht.

In diesem Satz braucht k(z) nicht ein Polynom, also von 0
und Einheiten verschieden und normiert zu sein. Insbesondere
wird der Satz fiir h(z)= 0 trivial, fiir 2(2) = a inhaltlos.

Auf Satz 53 wird sich unsere in III auszufiihrende Xon-
struktion der Wurzeln von f(z) vornehmlich stiitzen.

§ 6. Mehrfache Wurzeln, Ableitung.

Definition 15. Eine Wurzel « von f(x) in A heiit
v-fach, wenn in A (und somit in jeder Erweiterung
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von A) eine Zerlegung
(@)= (z—a) p(z) mit @(x)=0
besteht; mehrfach, wenn » >1 ist.

Die Bezeichnung »-fach rechtfertigt sich durch die Tatsache:

Satz 54, Ist « eine »-fache Wurzel von f(z) in A,
so sind genau » Wurzeln von f(z) in A (und in jeder
Erweiterung von A) gleich o,

Beweis: Nach Def. 15 enthilt dann f(z) den Primfaktor
 — o mindestens »-mal, wegen @(x) & O aber nach Satz 46 [40]
nicht ofter.

Die Vielfachheit einer Wurzel von /() steht in Zusammen-
hang mit der aus der Analysis bekannten Ableitung f(x)
von f(z). Natiirlich konnen wir die Ableitung hier, fiir unsere
abstrakten Grundkérper nicht auf die in der Analysis iibliche
Weise durch einen GrenzprozeB definieren. Wir geben daher
die folgende, formale Definition:

Definition 16. Unter der Ableitung von
f@&y=a+az+ - +a2” Eké; a, k1)

verstehen wir

f(@)=a,+ 2ap2 4 - - - + na, 271 Ekgl kay o¥—1

Ekgo (k -+ l)ak+1 zF.

Fiir diesen formal mit der entsprechenden Differentiations-
regel der Analysis iibereinstimmenden Prozef} der Ableitungs-
bildung gelten wie dort die Formeln

(1) (H(z) £ 9(z)) = [ (2) £ g'(2),
@) (@) g(z))y ={(2)g(z) + {(z) g’ (2),

insbesondere also
(af(2)) = of (2),

(f(z)"y = nf(2)" " ' (2).

Bewels: Ist

1) Vgl. 1, Apm, 3 zu Satz 11 [32].



6. Mehrfache Wurzeln, Ableitung. 45

=) _—ké; a2*,  g(z) :ké(') by %,
also

f(z) Eké; kay a¥—1 Eké; b+ 1) age 2P,

g'(:c) Ek%:l kbk gkl Eké;) (k + 1) bk+1 zk )
so folgt nach 1, §4, (2.), (3.) [33] (vgl. auch 1, SchluB von
§1 [13])

(1) + 9@ =( 2 @+t a*) = 3 bor + 1) a1
=3 kapat=1 5 Kby o1 = ['(2) +¢'(2),
(@) g(a)) E(k (2,00 #) =2k 2 ab)o

E=1" v+u=k

=3 2 (v—l—l)a,,_,_lb)ac"—i— 2( ik(ﬂﬁ)%bﬁl)zk
—f(w) g(w)+/(w)g(w)

Ferner gilt, sozusagen als Ersatz fiir die fehlende Grenz-
relation:
Satz 5. Wird fiir ein &
/ 93) (o
pla) =D~ 12)
—
gesetzt, so ist
po)=1(®).

Beweis: Da « Wurzel von f(z) — f(x) ist, ist ¢(x) nach
Satz 46 [40] wirklich eine ganze rationale Funktion. Aus
f(@)= () + (z — &) p(x)

folgt daher nach (1.), (2.)

(@)= @)+ (z —&) ¢'(2),
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also
(o) = p(a).

Aus Satz 55 ergibt sich nun der folgende Zusammenhang
zwischen der Mehrfachheit einer Wurzel o« von f(z) und dem
Ableitungswert {'(«):

Satz 56. Eine Wurzelx von f(z) ist dann und nur
dann mehrfach, wenn f(x)=0 ist.

Beweis: Ist « Wurzel von f(2), so hat in der nach
Satz 46 [40] bestehenden Zerlegung

1(5)= (s—a) g(a)
@(z) dieselbe Bedeutung wie in Satz 55. Nun ist nach Def. 15
[43] die Mehrfachheit von « mit ¢(«) = 0, also nach Satz 55
mit f'(«) = 0 gleichbedeutend.

Der hierin liegende Zusammenhang fiihrt zu einer wich-
tigen Folgerung iiber die Vielfachheit der Wurzeln eines irre-
duziblen Polynoms. Diese Folgerung beruht auf dem Ana-
logon zu dem Satz der Analysis, daB aus f(z)=0 folgt
f(z)==a,.  Wegen des Auftretens der ganzen Vielfachen
kay der a, als Koeffizienten von f'(z) findet aber hier eine Ab-
weichung gegeniiber der Analysis statt:

Satz 57. Hat Kdie Charakteristik 0,50 haben alle
und nur die Einheiten f(z)= a, aus K{z] die Ablei-
tung f'(z)= 0. Hat K die Charakteristik p, so haben
alle und nur die Elemente von der Form

G) @)= 3 a, o, also fz)=/o(e?)

aus K[z] die Ableitung f'(z)=0.
Beweis: a.) DaB fiir die genannten f(z) durchweg
f(x)=0 ist, ist nach Satz 43 [37] und Def 16 [44] Kklar.

b.) Ist f(z) = ké‘oakx" und ist f'(z) = 2 kakx"‘l— 0,

also kap, =0 (k=1,2,....), so folgt nach Satz 43 im Falle
der Charakteristik O
a=0 (k=1,2....),
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d. h. f(z)= @y, im Falle der Charakteristik p dagegen nur
ar =0 fir ¥ == 0 mod. p,
so daB f(z) von der Form (3.) ist.

Die in Satz 57 liegende Abweichung fiir den Fall der Charak-
teristik p bedingt nun, daf die angekiindigte Folgerung iiber die
Vielfachheit der Wurzeln eines irreduziblen Polynoms im Fall der
Charakteristik p auf solche irreduziblen Polynome zu beschrinken
ist, die nicht von der Form (3.) sind. Steinitz!) nennt solche
irreduziblen Polynome von erster Art, die von der Form (3.)
von zweiter Art.

Dem Vorgang v. d. Waerdens folgend, wollen wir die in
der nachstehenden Definition gegebene Bezeichnung ge-
brauchen:

Definition 17. Ein irreduzibles Polynom f(z) aus K
heijt separabel, wenn seine Ableitung f(z) == 0 ist,
also, falls K die Charakteristik O hat, stets; falls K
die Charakteristik p hat, dann und nur dann, wenn
es nicht von der Form (3.) in Satz 57 ist.

Andernfalls heiBt f(z) inseparabel.

Die Bezeichnung separabel spielt auf die folgende Tat-
sache, die bereits angekiindigte Folgerung aus Satz 56, an:

Satz 58. Ist ein irreduzibles Polynom f(z) sepa-
rabel, so hat f(z) nur einfache Wurzeln.

Beweis: Wire o eine mehrfache Wurzel von f(z), so
wire f'(oc) = 0 (Satz 56) und daher f(z) | f'(x) (Satz 53 [43]).
Wegen der vorausgesetzten Separabilitit von f(x) ist nun
f'(x) == 0 (Def. 17). {'(x) kommt also ein Grad zu, und dieser
ist kleiner als der von f(x) (Def. 16 [44]). Das steht aber im
Widerspruch zu f(z) | f'(z) (Satz 6 [13]). Also ist die An-
nahme, f(z) habe eine mehrfache Wurzel, unzutreffend.

1) Wir meinen bei Nennung des Namens Steinitz hier und im folgenden
stets dessen in 1, Lit, Verz. I zitierte Arbeit, deren Abschnitte I und II bis auf
das die Erweiterungen zweiter Art Betreffende in unseren Abschnitten 1, I und
%, I—IV verarbeitet sind, ja geradezu deren Inhalt ausmachen. In diese
grundlegende Originalarbeit zur Korpertheorie sollte jeder Algebraiker ein-
mal hineingesehen haben.
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Satz 58 laft iibrigens folgende Umkehrung zu:

Satz 59. Hat ein irreduzibles Polynom f(x) eine
nur einfache Wurzel «, so ist f(z) separabel.

Beweis: Es ist dann f'(x)==0 (Satz 56), also gewil
f(z) == 0, und daher f(x) separabel (Def.17). ’

Wir definieren ferner noch im Anschlufl an Def, 17:

*Zusatz zu Definition 171). Ein beliebiges Polynom
aus K heiBt separabel in K, wenn seine Primfaktoren
in K separabel sind, sonst inseparabel in K.

Im Falle der Charakteristik O ist also jedes Polynom separabel.
Fiir den Fall der Charakteristik p sei ansdriicklich bemerkt, dafl die
Entscheidung iiber die Separabilitit beliebiger Polynome nicht etwa,
wie gemdB Def. 17 fiir irreduzible Polynome, einfach durch Bilden
der Ableitung getroffen werden kann. Es kann sehr wohl f/(z)=0
auch fiir separables f(x) sein (z. B. wenn f(2) = f,(z)? mit sepa-~
rablem irreduziblem f,(z) ist), und f’(z) == 0 fiir inseparables
f(z) (z.B. wenn f(z)= zf,(x) mit inseparablem irreduziblem
fo(z) ist). Auch der in Satz 58, 59 gegebene Zusammenhang mit
der Wurzelvielfachheit, der die Bezeichnung separabel recht-
fertigte, tibertrigt sich nicht auf beliebige Polynome. Dennoch ist
die im Zusatz zu Def. 17 gegebene Ausdehnung dieser Bezeichnung
auf beliebige Polynome fiir die spiteren Zwecke niitzlich.

Uber ein Verfahren zur Entscheidung iiber die Separa-
bilitat beliebiger Polynome, das nicht die Zerlegung in Prim-
faktoren erfordert (was nach dem im Anschlufl an Satz 24
[23] Gesagten erwiinscht sein muB), sei des knappen Raumes
halber auf Steinitz verwiesen. Hier sei nur die folgende fiir
unsere Zwecke ausreichende Tatsache vermerkt, die sich
gemil Def, 17, Zusatz unmittelbar aus Satz 59 ergibt:

Zusatz zu Satz 9. Zerfillt ein beliebiges Poly-
nom f(z) aus K in einer Erweiterung von K in ver-
schiedene Linearfaktoren, d.h. sind die Wurzeln
Gigy e o oy Oy VO

. (5)= @—0) - (6 —ats) |
voneinander verschieden, so ist f(z) separabel (in K
und jeder Erweiterung von K).

1) Uber die Bedeutung von * vgl. die Einl. zu IT [39].
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Von Bedeutung sind diejenigen Kérper, in denen jedes Polynom
separabel ist. Sie heilen vollkommene Koérper. Wir wollen
unter Benutzung teilweise erst spiter zu gewinnender Resultate
ganz kurz einige Angaben iiber vollkommene Kérper machen.

Zunichst ist jeder Korper der Charakteristik O vollkommen, wie
wir den obigen Betrachtungen unmittelbar entnehmen kénnen. — Soll
ferner ein Korper K der Primzahlcharakteristik p vollkommen sein,
so muB insbesondere jedes Polynom xP — a aus K separabel sein.
Dann ist die Gleichung 2P = a in K lsbar. Denn aus ihrer Unlos-
barkeit in K folgte nach dem spiteren Satz 123,b.) [137] die
Irreduzibilitit des Polynoms #” — a in K und daher nach Def. 17
seine Inseparabilitit. Die Losung von 2P L a in K ist iiberdies

eindeutig. Aus af = a,af = a folgt ja 0= af —al = (a, —a,)”
(Satz 44 [37]), also a; —a,=0,a; = a,. Wir bezeichnen diese
?

eindeutige Lésung von a? = a mit J/a.

Sei umgekehrt in dem Korper K der Primzahlcharakteristik p
die Gleichung zP . a fiir jedes @ aus K losbar. Wire dann das
irreduzible Polynom f(x) aus K inseparabel, so wire f(z) nach
Def. 17 von der Form

f(z)= 2 AyI¥P = (VW>
und Satz 44 [37] lieferte

1(2)= zvm) :

im Widerspruch zur ITrreduzibilitit von f(z). — Wir haben dem-
nach gefunden:
Ein Korper K der Primzahlcharakteristik p ist dann

P
und nur dann vollkommen, wenn mit a stets auch }a
in K enthalten ist.

Hiernach und nach Satz 29 [29] sind die Primkorper Pp voll-
kommene Kérper. — DafB nicht jeder Kérper vollkommen ist,
d.h. daB es sogenannte unvollkommene Kérper gibt, zeigt
das Beispiel Pp(x); denn dieser Korper hat die Charakteristik p,
und das Element z besitzt keine p-te Wurzel in ihm. Wire nimlich

(g%)” =z, dh (/(2)P=x(g(z))P (wobei natiirlich f(z),
g(x) == 0 sein miiBten), und wiren n, m die Grade von f(z), g(z),
so folgte nach § 1, B., (3.) [12] pn =1+ pm, d.h. 0=1 mod.p,
was nicht der Fall ist.

Hasse, Hohere Algebra. II. 4
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III. Die Korper der Wurzeln
algebraischer Gleichungen,

Wir fiihren in diesem Abschnitt die Konstruktion der
Wurzeln eines Polynoms f(x) aus K nach dem bei Satz 50
[42] gegebenen Schema aus, indem wir zunichst eine Er-
weiterung ¥ (Stammkorper) herstellen, in der sich von
f(z) ein Linearfaktor abspaltet (§ 8), und von da aus schritt-
weise zu einer Erweiterung W (Wurzelkdrper) aufsteigen,
in der f(z) vollstindig in Linearfaktoren zerfillt (§ 10). Da-
neben entwickeln wir, um unsere Untersuchungen in IV iiber
die Struktur dieser Wurzelkorper vorzubereiten, eine allge-
meine Theorie der Erweiterungen eines Korpers, bei
der deren Entspringen aus bestimmten Polynomen keine Rolle
spielt (§§7,9). Zum Abschluff (§ 11) fiigen wir eine nur von
methodischen und historischen Gesichtspunkten aus inter-
essierende Digression iiber den sog. Fundamentalsatz der
Algebra an.

§ 7. Allgemeine Theorie der Erweiterungen 1. Grund-
legende Begriffe und Tatsachen.

In 1, §4 haben wir die speziellen Erweiterungsbereiche
H#y, ..., z,] und K(z,, .. ., 2,) eines Grundbereiches | bzw.
K konstruiert und untersucht. Fiir die jetzt zu gebende Ver-
tiefung und Ausdehnung dieser Entwicklungen beschriinken
wir uns der Kiirze halber auf den Fall eines Grundkérpers K,
der im folgenden allein zur Anwendung kommen wird.

A. Adjunktion, einfache und endliche Erweiterungen.

Definition 18. Es sei A ein Erweiterungskdrper
von Kund M eine Teilmenge von A. Dann heiBt der
Integritdtsbereich aller ganzen rationalen Funk-
tionen iiber Kvon je endlich vielen Elementen aus
M der durch Adjunktion von M zu K entstehende Teil-
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integrititsbereich von A (Bezeichnung K[M]), und der
Korper aller rationalen Funktionen iiber K von je
endlich vielen Elementen aus M der darch Adjunk-
tion von M zu K entstehende Teilkorper von A (Bezeich-
nung K(M)).

Da K[M] wirklich ein Teilintegritatsbereich, K(M)
ein Teilkdrper von A ist, folgt aus 1, Satz 6 [19] und den
Eigenschaften der ganzen rationalen bzw. rationalen Funk-
tionen iiber K. Da ferner unter den ganzen rationalen Funk-
tionen iiber K speziell die Elemente aus K vorkommen, sind
K[M] und K(M) Erweiterungsbereiche von K. Es gilt somit

K= K[M]= KM)= A.
Unter Verwendung des in 1, Satz 7 [20] eingefiihrten Be-
griffs Durchschnitt kann man (mit Steinitz) K{M] und
K(M) auch als Durchschnitt aller Integritatsbereiche
bzw. Korper zwischen K und A erkldren, die die
Teilmenge M von A enthalten.

Wenn auch der Korper A in Def. 18 nur die Rolle eines Hilfs-
korpers spielt, dessen Ersetzung durch irgendeine andere, M
enthaltende Erweiterung A von K keine Anderung von K[M] und
K(M) bewirkt, der also auf die Ergebnisse der Adjunktion
keinerlei EinfluB hat, so ist doch sein Vorhandensein fiir den Proze8
der Adjunktion unbedingt erforderlich. Wir betonen hinsichtlich
des leicht miBzuverstehenden Wortes Adjunktion ausdriicklich,
daB die Adjunktion einer Menge M zu K auf die beiden in Def. 18
erklirten Weisen nur dann einen Sinn hat, wenn sie innerhalb einer
Erweiterung A von K, also sozusagen von oben her, vor sich
geht, wenn man also weil, daB man die Elemente von M unterein-
ander und mit den Elementen von K nach den Kérpergesetzen
durch die vier elementaren Rechenoperationen miteinander ver-
kniipfen kann., Eine Adjunktion von unten her, d.h. ohne
Kenntnis einer M enthaltenden Erweiterung A von K ist auf alle
Fille unzuldssig. Denn unter alleiniger Voraussetzung der in 1, §1
zusammengesteliten Korperaxiome itber K hat man nicht das
mindeste Recht, ohne weiteres die Existenz einer Menge M von
Elementen auierhalb K anzunehmen, die man mit den Elementen
von K zusammen den vier elementaren Rechenoperationen unter-
werfen kann. Man kann also z B. nicht durch die Definition

4*
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der Adjunktion die in 1, § 4 gefiihrten Existenzbeweise fiir die
Bereiche K[z, ..., z,] und K(ay,...,z,) iber K umgehen, die ja
(trivialerweise) durch Adjunktion von z,,...,z, zu K auf die
beiden Arten der Def. 18 entstehen, eben weil hierbei der in Def. 18
vorkommende 1icht entbelrliche Koérper A mit K(zy, ..., z,)
(oder einem noch weiteren Koérper) zu identifizieren ist. Ent-
sprechendes gilt auch fiir den in 1, § 3 gefiihrten Existenzbeweis
des Quotientenkérpers K, der durch Adjunktion aller Quotienten
aus Elementen des Integritdtsbereiches | entsteht, wobei K die
Rolle von A hat?), sowie fiir die in den folgenden §§8,10 zu erbrin-
genden Existenzbeweise der Stammkérper und Wurzelkorper.

Uber die Abhéiingigkeit der Adjunktion vom Grundkérper K
stellt man ohne weiteres folgende Tatsachen fest, die wir der
Kiirze halber nur fiir den spéter allein gebrauchten Fall der
Korperadjunktion K(M) aussprechen:

Satz 60. Dann und nur dann, wenn M Teilmenge
von K ist, ist K(M)=K

Satz 61. Ist A= K= Kund A= K(M), soist auch
N = K(M).

Satz 62. Ist A=K=Kund A=K(M), K=K(M),
soist A= K(M, M), wo (M, M) die Vereinigungsmenge
von M und M ist.

Nach Satz 62 ist die sukzessive Adjunktion von erst M
und dann M gleichbedeutend mit der simultanen Adjunk-
tion von M, M. Unter Verwendung des in 1, Def. 5 [20] ein-
gefiihrten Begriffs Kompositum ist iibrigens K(M, M) das
Kompositum von K(M) und K(M), nidmlich der engste
K(M) und K(M) enthaltende Teilkorper von A.

Wir definieren nunmehr speziell, wieder unter Beschrén-
kung auf die Kérperadjunktion:

*Definition 19. Eine Erweiterung A von K heibBt
einfach bzw. endlich iiber K, wenn sie durch Adjunk-
tion eines bzw. endlich vieler ihrer Elemente zu K

1) vgl. die ,,Vorbemerkungen zum Existenzbeweis” in I, §§3, 4 [27, 34].
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hergeleitet werden kann, wenn sie also aus den
rationalen Funktionen iiber K eines Elements o
bzw. endlich vieler Elemente o,,...,00,1) besteht.
Jedes solche FElement « bzw. Elementsystem
%y, . oz aus A\ fiir das A= K(o)bzw. A =K(ey, . . ., %)
ist, heiBt dann ein primitives Element bzw. primi-
tives Elementsystem von A bzgl. K

Speziell ist also der Kérper K(z) der rationalen Funktionen
iiber K von einer Unbestimmten z einfach iiber K und der Kérper
K(y, . . ., &,) der rationalen Funktionen iiber K von #» Unbestimm-
ten z,, ..., z, endlich iiber K. Natiirlich besagt Def. 19 nicht etwa,
daB jede einfache bzw. endliche Erweiterung von dieser Art ist;
denn &« bzw. &y, .. ., o, brauchen keine Unbestimmten zu sein. Da
uns gerade dieser letztere Fall in der Folge ausschlieBlich beschif-
tigen wird, gehen wir nachher unter B. auf das Gegenteil zu Un-
bestimmte genauer ein.

Wir fiigen noch folgende Bemerkungen an, die die in Def. 18
eingefithrte Adjunktion, sowie die in Def. 19 eingefiihrte Ein-
fachheit und Endlichkeit mit der bereits in 1, Def. 7, Zusatz [24]
eingefiihrten relativen Isomorphie in Beziehung setzen:

Sind die durch Adjunktion entstehenden Erweiterungen
A =K(M) und A" = K(M’) isomorph bzgl. K und sind bei
einem Isomorphismus bzgl. K zwischen ihnen die Mengen
M und M’ einander zugeordnet, so sind durch Angabe der

Zuordnungen
a,fB,... ausM)
1. > —f, ...
(L) & oy feor (oc’,ﬁ',... aus M’

die Zuordnungen fiir alle iibrigen Elemente von A und A’
zwangslédufig bestimmt, ndmlich gemdB den Bedingungen fiir
einen Isomorphismus bzgl. K (vgl. 1, Satz9 und Zusatz,
Def. 7 und Zusatz [23, 24], sowie die angeschlossenen Be-
merkungen) zu

1) Die in dieser Formulierung gegeniiber Def. 18 vorliegende Abweichung
ist nur scheinbar, da die rationalen Funktionen iiber K jedes Teilsystems von

&+« &y unter denen von «,,..., &, vorkommen.
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Mo, By y) ML B, Y) '
Zur Beschreibung des Isomorphismus (2.) geniigt es daher
vollstindig, die Zuordnungen (1.) anzugeben, wovon wir im
folgenden hiufig Gebrauch machen werden. Zur Vereinfachung
der Ausdrucksweise dabei definieren wir:

Definition 20. Sind A= K(M) und A" = K(M’) iso-
morph bzgl. K und sind bei einem Isomorphismus
bzgl. Kzwischen ihnen die Mengen M und M’ gemi 8
(1.) einander zugeordnet, so heifit der volle Iso-
morphismus (2.) durech die Zuordnungen (1.) erzeugt,
und A und A’ heiBen auf Grund der Zuordnungen (1.)
isomorph bzgl K.

Sind insbesondere A und A’ einfache bzw. endliche, bzgl. K
isomorphe Erweiterungen von K, so 1Bt sich ein Isomorphismus
bzgl. K zwischen ihnen durch eine einzige bzw. endlich viele Zu-
ordnungen

& <>’ DIW. o) «>0fy 000y Oy <> 0]
zweier primitiver Elemente o; o’ bzw. zweier primitiver Element-
systeme oy, . . ., 005 &gy .. ., 00f von A und A’ erzeugen. Natiirlich
braucht aber dann nicht fiir beliebige primitive &; und o} durch
o <>of ein Isomorphismus bzgl. K zwischen A und A’ erzeugt

zu werden, sondern nur, wenn die «f zu den «; geeignet bestimmt
werden.

B. (Separable) algebraische Elemente, (separable) alge-
braische Erweiterungen ).

*Definition 21. Ein Element & einer Erweiterung
A von K heiBt (separabel) algebraisch iiber K, wenn es
Wurzel eines (separablen) Polynoms aus K ist;
ist es nicht algebraisch iiber K, so heiBt es
transzendent iiber K.

Nach 1, § 4 (vgl. insbesondere die dortige Erlinterung zu Def. 9
[38]) besagt transzendent iber K dasselbe wie Unbestimmte
iiibir_Kr,_soﬁdaB algebraisch iber K das Gegenteil zn Un-

1) Wenn im folgenden separabel in Klammern beigefiigt ist, soll der Text

sowohl durchweg ohne diesen als auch durchweg mit diesem Zusatz gelesen
werden.
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bestimmte iiber K ist. — Algebraische Elemente (vorliufig
allerdings hypothetische) haben uns schon in IT beschiftigt.

Satz 63. Ist x (separabel) algebraisch iiber K, so
existiert ein und nur ein irreduzibles Polynom
f() in K, daso zur Wurzel hat (und dieses ist sepa-
rabel).

Beweis: a.) Nach Def. 21 ist « Wurzel cines (separablen)
Polynoms f(z) aus K, nach Satz 45 [39] also mindestens
eines der (separablen — Def. 17, Zusatz [48]) irreduziblen
Faktoren von f(z) in K.

b.) Nach Satz 52 [43] kann & nicht Wurzel zweier ver-
schiedener irreduzibler Polynome aus K sein.

Definition 22. Das Polynom f(z) aus Satz 63 heiBit
das zu a gehorige irreduzible Polynom aus K, sein
Grad » auch der Grad von ¢ iiber K (Bezeichnung:
7= [« :K]).

Aus Satz bl [43] ergibt sich ohne weiteres:

Satz 64. Dann und nur dann, wenn ¢ Element
aus K ist, ist [x :K]=1.

Ferner gilt:

Satz 65. Ist A== K= Kund das Element« aus A
(separabel) algebraisch iiber K, so ist &« auch (sepa-
rabel) algebraisch iiber K und das zugehdrige irre-
duzible Polynom aus K Teiler des zugehdrigen irre-
duziblen Polynoms aus K, also speziell

[ : K]= [ : K]

Beweis: Die Behauptungen ohne ,,separabel® ergeben
sich ohne weiteres aus Satz 53 [43]. Ist zudem & separabel
iiber K, so ist es nach Satz 63, 58 [47] nur einfache Wurzel
des zugehorigen irreduziblen Polynoms in K, also erst recht
desjenigen in K, und daher nach Satz 59 [48], Def. 21 sepa-
rabel auch iiber K.
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*Definition 23. Eine Erweiterung A von K heifit
(separabel) algebraisch iiber K, wenn jedes ihrer Ele-
mente (separabel) algebraisch iiber K ist; ist sie
nicht algebraisch iiber K, so heiBt sie transzenpent
iiber K.

Die einfache Erweiterung K(z) ist transzendent iiber K, weil
nach obigem die Unbestimmte z transzendent iiber K ist. Ent-
sprechendes gilt fiir die endliche Erweiterung K(z,, . . ., z,). Alge-

braische Erweiterungen werden wir im folgenden ausfiihrlich
kennenlernen.

Uber die Abhingigkeit der Def. 23 von den Kérpern K und A
haben wir, analog zu Satz 61 [52], 65, nach Satz 65 unmittelbar:

Satz 66. Ist A= K= Kund A iiber K (separabel)

algebraisch, so ist auch A iiber K und natiirlich K
iiber K (separabel) algebraisch.

Die Umkehrung (analog zu Satz 62 [52]) konnen wir erst spiter
(Satz 86 [72], Satz 92 [83]) beweisen, nachdem wir sie fiir die
anschlieBend unter C. definierte, spezielle Klasse algebraischer Er-
weiterungen bewiesen (Satz 71 [69]) und diese genauer kennen
gelernt haben werden (Satz 84 [72], Satz 91 [83]).

C. Erweiterungen endlichen Grades.
Wir setzen zunéchst in Analogie zu den in 1, Def. 23, 24
[69] eingefiihrten Begriffen fest:
*Definition 24. 1.) n Elemente oy, ..., 0, einer Er-
weiterung A von K heifen linear abhiingig bzgl. K,
wenn eine lineare homogene Relation

n
ké;. ap X — 0
mit Koeffizienten a; aus K besteht, die nicht samt-
lich 0 sind, andernfalls linear unabhiingig bzgl. K.
2.) Ein Element o aus A heiBt linear abhiingig von

Gy« 0y bzgl. K, wenn es eine lineare homogene
Darstellung

n
= 2 apx
o= ek
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mit Koeffizienten a; aus K besitzt, andernfalls
linear unabhiingig von oy, . .., o, bzgl. K.

Unter Hinweis auf die Beweise in 1, § 10 stellen wir fest,
daB sich die dortigen Satze 38, 39, 41, 42 [70, 71] sinngem&B
auf die in Def. 24 erklirten Begriffe iibertragen, wenn man fiir
die dortigen Linearformen (Vektoren) in K Elemente einer
Erweiterung A von K setzt.

Nunmehr definieren wir die uns interessierende, spezielle
Klasse algebraischer Erweiterungen folgendermaBen:

*Definition 25. Eine Erweiterung A von K heift
von endlichem Grade iiber K, wenn ein endliches
Maximalsystem bzgl. K linear unabhéingiger Ele-
mente von A existiert. Jedes solche Maximal-
system o, ...,0, heiBt eine Basis von A bzgl. K und
die eindeutig bestimmte Anzahl n der Grad von A
iiber K (Bezeichnung: # = [A : K]).

Die Bezeichnung Basis soll ausdriicken, daB dann jedes
Element « aus A von oy, ... ,x, linear abhiingig ist, also eine
Basisdarstellung

. & =@a 0 + "+ Apiin
mit Koeffizienten a,, ..., a, aus K besitzt. Nach 1, Satz 41 [71]
ist diese Basisdarstellung eindeutig. Umgekehrt folgt nach
diesem Satz aus der Eindeutigkeit der Basisdarstellung durch
Gyy + o +y Gy, deren lineare Unabhingigkeit und aus der Moglichkeit
fiir jedes o« deren Maximaleigenschaft. Daher gilt:

Zusatz zu Definition 25. Die Forderung von Def. 25
148t sich auch dahin aussprechen, daf alle Elemente
von A eine eindeutige Basisdarstellung durch endlich
viele solche besitzen sollen. ~

Der folgende Satz zeigt, was aus Def. 25 zunéchst nicht er-
sichtlich ist, daB die Erweiterungen endlichen Grades eine
spezielle Klasse algebraischer Erweiterungen sind und noch
etwas mehr:

Satz 67. Ist A von endlichem Grade iiber K, so
ist A algebraisch iiber K. Genauer:

Ist [A :K]=mn, so ist jedes Element o aus A alge-
braisch iiber K von einem Grade [« : K] < .
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Beweis: Dann sind die n + 1 Elemente o® = ¢, o! =,
a?, ..., o® linear abhingig (Def. 25). Es besteht also eine
Relation

ag+ a4 -+ -+ gt =0
mit Koeffizienten a; aus K, die nicht sémtlich 0 sind (Def. 24).
Diese besagt, da o Wurzel eines Polynoms f(z) aus K von
hochstens n-tem Grade ist. Da dann das zu « gehdrige irredu-

zible Polynom j(x) aus K als Teiler von f(z) ebenfalls héch-
stens den Grad = hat, ist o algebraisch iiber K von einem
Grade = n (Def. 21, 22 [54, 55]).

Eine der Einschrinkungen, die den algebraischen Erweite-
rungen A von K durch die Forderung, von endlichem Grade iiber K
zu sein, auferlegt wird, besteht hiernach darin, da8 es in A keine
Elemente beliebig hohen Grades iiber K gibt. Diese Einschrinkung
ist aber zur Endlichkeit des Grades von A im allgemeinen nicht
hinreichend ) (vgl. jedoch den spiteren Satz 91, Zusatz [83]).
DaB es iberhaupt algebraische Erweiterungen gibt, die nicht
von endlichem Grade sind, zeigt der Kérper aller algebraischen
Zahlen iiber P, in dem ja Elemente beliebig hohen Grades vor-
kommen (siehe dazu den spiteren Satz 123 [137]).

Wir beweisen ferner:

Satz 68. Ist A von endlichem Grade iiber K, so
ist A endlich iiber K.

Beweis: Ist «y, . . ., &y, €ine Basis von A, so gehért ver-
moge der Basisdarstellung jedes Element aus A zu dem Inte-
grititsbereich K[o, ..., &,]. Da nun andererseits

K= Klog o oo o] S Klogy o ooy i) < A
ist, folgt A= Kloq,...,0n} = K(oy, ... &), also die End-
lichkeit von A iiber K.

In den weiteren Sitzen stellen wir fest, wie die in Def. 25
erklirten Begriffe von den Kérpern K und A abhingen:

Satz 69. Dann und nur dann, wenn A=K ist,
ist [A:K]=1

Beweis: a.) Ist A =K, so ist das allein aus e bestehende

1) Gegenbeispiele ergeben sich aus Steinitz, 1. ¢. (1, Lit.-Verz. I).
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System Basis von A bzgl. K, weil ja dann jedes ¢ aus A dje
eindeutige Basisdarstellung @ = a - e besitzt. Also ist dann
[A:K]=1

b.) Ist [A:K]=1, so ist nach Satz 67 [ox : K] 1 also
=1 fiir jedes o aus A, also nach Satz 64 [55] jedes « aus
A Flement von K, d.h. A=K

Satz 70. Ist A= K=K und A iiber K von end-
lichem Grade, so ist auch Aiiber Kund K iiber K
von endlichem Grade, und es gilt [A: K] = [A:K],
[K:K]= [A:K]

Beweis: Ist [A:K]=n, so sind mehr als n Elemente
von A linear abhéingig bzgl. K, also a fortiori bzgl. K, und mehr
als n Elemente von K als solche von A linear abhingig bzgl. K.
Daher existiert beidemal ein endliches Maximalsystem von
hiochstens » linear unabhingigen Elementen.

Von besonderer Wichtigkeit fiir die Folge ist die nach-
stehende Umkehrung von Satz 70, die gleichzeitig die dortigen
Gradrelationen prizisiert:

Satz 71. Ist A= K=K und A itber Ksowie K iiber
K von endlichem Grade, so ist auch A iiber K von
endlichem Grade und [A :K]= [A:K]- [K:K].

Beweis: Ist [A:K]=m und «,,...,x, eine Basis
von A bzgl. K, ferner [K:K]=j und &,, ..., &; eine Basis
von K bzgl. K, so zeigen wir, daB die mj Elemente
oo (t=1,...,mk=1,...,j) eine Basis von A bzgl
K bilden.

a.) Da jedes o aus A eine Darstellung

m —
o= 2 a
mit @; aus K hat und diese a; aus K ihrerseits Darstellungen

ﬁi = kZ'laik'EZk ('i = 1, ey m)
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mit a; aus K haben, so hat jedes & aus A eine Darstellung
m j
& = 2 2 Aix O &_k

Somit ist jedes oc aus A von den oc; 0o, linear abhingig bzel. K.
b.) Aus
2; k).? a,koczock =0
1=
folgt zundchst wegen der linearen Unabhingigkeit der o; bzgl.

K, daB

i -
k%‘laik(kaO (7;’-:1,..., m)
ist, und daraus wegen der linearen Unabhingigkeit der «;
bzgl. K, da
ar=0(G=1,....m k=1,...,9)
ist. Somit sind die ;o linear unabhingig bzgl. K.

Aus a.) und b.) folgt, dal die mj Elemente «; &; ein Maxi-
malsystem bzgl. K linear unabhingiger Elemente von A
bilden, was die Behauptung ergibt.

Speziell gilt nach Satz 71 unter Beriicksichtigung von
Satz 69:

Satz 72. Sind Aund Avon endlichem Grade iiber
K und ist A< A, so ist dann und nur dann A= A,
wenn [A:K]j= [A:K] ist.

D. Konjugierte Erweiterungen, konjugierte Elemente.

Wie in 1, bei Def. 7, Zusatz [24] ausgefithrt wurde, sind
zwar bzgl. K isomorphe Erweiterungen A, und A, von K aus
nicht zu unterscheiden, doch kann eine solche Unterscheidung
von einer sie enthaltenden Erweiterung A aus notwendig
werden. Wir definieren in dieser Hinsicht die folgende Aqui-
valenzrelation:

*Definition 26. Zwei bzgl. Kisomorphe Korper A,
und A, zwischen K und A heiBen auch konjugiert
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bzgl. K. Bei einem Isomorphismus bzgl. K zugeord-
nete Elemente &, und «, heiBen dann ebenfalls kon-
jugiert bzgl. K.

Analog wie in Def. 18 [50] spielt auch hier A nur die Rolle
eines Hiliskorpers, der zwar die Relation A, und A, konju-
giert ermdglicht, aber ohne sie zu beeinflussen durch irgendeine

A, und A, enthaltende Erweiterung A von K ersetzt werden kann,
Ist ohne Bezugnahme auf einen solchen Hilfskérper A von bzgl. K
konjugierten Korpern Ay, A, die Rede, so soll damit insbesondere
stets gesagt sein, daf iiberhaupt eine Erwelterung A existiert, die
sowohl A, als anch A, enthilt. Als Beispiel wirklich verschledener,
konjugierter Erweiterungen von K seien etwa die » in K(z,, .. ., 2,)
enthaltenen Korper K(z),..., K(z,) genannt, in denen z.B.
g(z)  g(z)
h(z,)" """ h(zy)

Fiir konjugierte, iiber K algebraische Elemente gilt nach
den Ausfilhrungen zu 1, Def. 7, Zusatz [24] ersichtlich die
folgende Tatsache:

Satz 78. Ist o« ein iiber K algebraisches Element
einer Erweiterung A von K und f(z) das zugehdorige
irreduzible Polynom aus K, so sind alle zux kon-
jugierten Elemente aus A ebenfalls Wurzeln von

f(2).

Ty, e - - Ty, allgemein konjugierte Elemente sind.

§ 8. Stammkérper.

Wir fiihren in diesem Paragraphen den ersten Schritt zur
Konstruktion der Wurzeln eines Polynoms f(z) aus K aus,
indem wir durch tatsdchliche Konstruktion die Existenz einer
spez1ellen Erweiterung von K beweisen, in der sich von f(x)
ein Linearfaktor abspaltet. Uberdies werden wir eine Uber-
gicht iiber alle solechen Erweiterungen erhalten. Methodisch
werden unsere Entwicklungen ganz analog zu den in 1, §4
gefiithrten Existenz- und Eindeutigkeitsbeweisen sein!), nur
daB wir hier die Hauptarbeit schon im voraus geleistet haben,

1) Der Existenz- und Eindeutigkeitsbeweis fir K(z) in 1, § 4 ist in der Tat
nichts anderes als der fiir f(z)= 0 gefiihrte Beweis dleses Paragraphen.



62 III. Die Kérper der Wurzeln algebraischer Gleichungen.

indem wir in §2 den Restklassenkérper K(z, mod. f(z)) fiir
ein irreduzibles Polynom f(z) konstruierten. Darauf stiitzt
sich namlich unser jetziger Existenzbeweis.
Nach Satz 456 [39] diirfen wir ohne Einschrinkung f(x)
als irreduzibel voraussetzen. Unser Hauptsatz lautet dann:
Satz 74. Es seif(x)ein irreduzibles Polynom vom
Grade n aus K. Dann existiert eine Erweiterung Z
von K mit den Eigenschaften:
(L) (%) hat in Z eine Wurzel &, also eine Zer-
legung f(2)= (z —«) ¢(z).
(IL) 2 ist einfach iiber K und & primitives Ele-
ment von X, d. h. es ist 3 = K(x).
(IIL) £ ist algebraisch von endlichem Grade

iber K; es ist ndmlich a9 al,..., 4" eine
Basis von 2, also [£:K]=#x. Hiernach ist
auch T = K[«].

Ist Z*irgendeine (L), (IL) geniigende Erweiterung
von Kunda* die in (L), (IL) vorliegende Wurzel von
f(z), so ist 2* zu X auf Grund der Zuordnung o* «->«
isomorph bzgl. K (und hat daher auch die Eigen-
schaft (II.)). Der Erweiterungstypus von Kist also
durch (I.), (IL) eindeutig bestimmt.

a.) Existenzbeweis.

Der Restklassenkorper K(z, mod. f(2)) enthilt in Gestalt
der speziellen, durch Elemente a aus K gelieferten Restklassen
{a} einen Teilbereich K’, der vermoge der Zuordnung

S {a} «~a
ein zu K isomorpher Korper ist.

Da nidmlich, weil das Polynom f(z) keine Einheit ist, a=1b
mod. f(z) mit @ = b gleichbedeutend ist, ist (1.) eine eineindeutige
Zuordnung zwischen K’ und K, die nach der Definition des Rechnens
mit Restklassen auch die Isomorphiebedingungen erfiillt.

Analog wie in 1, Bew. zu Satz 10, d) [29] und 11, d) {85]
kénnen wir daher, indem wir die Elemente des Teilkorpers K’
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durch die ihnen nach (1.) zugeordneten von K unter Beibe-
haltung aller Verkniipfungsbeziehungen ersetzen, einen zu
K(=, mod. f(«)) isomorphen Korper X bilden, der K selbst als
Teilkorper enthilt. Dieser Kérper Z hat dann, wie wir jetat
zeigen werden, die Eigenschaften (I.)—(IIL).
(L) Betrachten wir die Normaldarstellung
f)y=a2"+a 2"+ - -+ a,
als Relation zwischen den Elementen /(z), z, a,,.. ., a4, aus
K[z], so besagt sie nach 1, Satz 8 [22] das Bestehen der ent-
gprechenden Relation
(@) = {a)" + {a) (& + -+ (o)
zwischen den zugehorigen Restklassen mod. f(z), also Kle-
menten aus K(z, mod. {(z)). Da nun f(z)= 0mod. {(z),
also {f(z)} die Null von K(z, mod. f(z)) ist, gilt in
K (z, mod. j(z))
(&) 4 {a} {&)" "+ -+ {a,} = 0.
Fiihren wir dann in dieser Relation den Ubergang (1.) von
K (2, mod. f(z)) zu X aus und geben dabei dem nicht zu K’
gehorigen, also beizubehaltenden Element {z} die neue Be-
zeichnung «, so folgt in 2 die Relation
o4 a4 -4 a,=0, d h. f(x)=0.
Es ist also das Element & = {«} aus X~ Wurzel von f(z).

Es kam uns bei diesem Beweis, durch den die vorher nicht
vorhandene Wurzel o« geschaffen wird, auf groftmogliche
begriffliche Schirfe an. Kiirzer, aber weniger prizis, liele sich
unser Gedankengang so aussprechen: Weil die Restklasse 2 mod. f()
der Relation f(z) = 0 mod. f(z) geniigt, ist sie Wurzel von f(z) in
K(z, mod. f(x))?1).

(I1.) Sei § ein nicht zu K gehériges Element von 2, das
somit nach Konstruktion von X eine Restklasse mod. f(z) ist.
Ist A(z) irgendein Element aus dieser Restklasse, also
B = {h(z)}, so folgt durch Zuriickgehen auf die Normaldar-

1) Man wende gegen den obigen Bewels nicht ein, da8 er ,,trivial* sei und
,,gar nichts Neues** liefere. Denn dann muf man denselben Einwand auch gegen

die Konstruktion der ganzen Zahlen aus den natiirlichen und der rationalen aus
den ganzen erheben.
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stellung
3 %
h(z) :ké(‘) o T

in K[z], und die daraus folgende Relation

(@)} = 2 (e} ()
in K(z, mod. f(z)), das Bestehen der Relation
p=f{ha)}=2 a{z)’ = 2 cxok = h(o)

in 2. Falls § zu K gehort, gilt natiirlich Entsprechendes (mit
einem h(z) vom Grade 0). Hiernach erschopft schon der in
2 enthaltene Teilintegritatsbereich K{x], umsomehr also der
ebenfalls in X enthaltene Teilkérper K(x) alle Elemente § von
Z (Def. 19 [562]), d. h. es ist = = K[a] = K(&).

(IIL.) Durch Benutzung des reduzierten Restsystems von
Satz 27 [26] folgt aus dem Beweis fiir (IL.), daB man in den
Darstellungen 8 = h(x) die h(z) eindeutig in der Form

Cg+ @+ -+ epyant
annehmen darf, da8 also alle § aus 2 eindeutig linear- homogen
durch &% al,...,a%~1 mit Koeffizienten aus K darstellbar
sind. Somit ist &9 &3, .. .,a% 1 eine Basis von Z (Def. 25,
Zusatz [b67]) und daher [Z:K]=n.

b.) Eindeutigkeitsbeweis.

Es sei 2* eine (L), (I1.) geniigende Erweiterung von K
und o* die in (L), (IL) vorliegende Wurzel von f(z). Wir
zeigen dann zunichst, daB der in Z* enthaltene Teilintegritits-
bereich K[o*] zu K (z, mod. f(z)) auf Grund der Zuordnung

@) B {h(x)}, wenn §* — h(w¥),
isomorph ist. Es sind namlich erfiillt: 1, §2, (4.), (¢".) [17]
nach Def. 19 [62]; 1, §2, (e.), (¢'.) [17], weil aus §F = 5%,
also By(o*) = hy(x*) nach Satz 53 [43] wegen f(o*)=0
folgt f(x) | hy(2) — Ro(z), d. h. Ry(z)= hy(x) mod. f(z), also
{hy(x)} = {hy(2)}, und weil diese SchluBweise auch in um-



8. Stammkorper. 65

gekehrter Richtung ausfiihrbar ist; 1, §2, (3.), (4.) [23] nach
den Rechenregeln fiir Restklassen.

Somit ist, da K (z, mod. f(z)) ein Korper ist, auch der Inte-
grititsbereich K[a*] ein Korper und daher mit seinem Quo-
tientenkérper K (o*) = Z* identisch. Es stellt also (2.) einen
Isomorphismus zwischen Z* und K (2, mod. f(z)) dar. Da
nun nach a.) (oder wegen der Anwendbarkeit des eben Ge-
zeigten auf X fiir 2*) die Zuordnung

3) B+ (h(z)}, wemn §=h(x),
ein Isomorphismus zwischen X und K (z, mod. f(z)) ist, ist
>* zu 2 isomorph bzgl. K auf Grund der durch Kombination
von (2.) und (3.) entstehenden Zuordnung

B* s B, wenn B* = h(w¥), f = h(a),
bei der in der Tat die Elemente von K je sich selbst zuge-
ordnet sind, und die durch die im Satz genannte Zuordnung
o¥ <> erzeugt wird.

Damit ist Satz 74 bewiesen. Wie wir spéter sehen werden,
kann eine Erweiterung von K verschiedene Kérper  mit den
Ligenschaften (L), (IL) von Satz 74 enthalten. Daher defi-
nieren wir hier, abweichend gegeniiber der den bestimmten
Artikel verwendenden Formulierung der Def.8—10 in 1
[31, 38, 89]:

*Definition 27. Jede Erweiterung 2 von Kmit den
Eigenschaften (L), (IL) und daher auch (IIL) von
Satz 74 heiBt ein Stammkorper fiir f(z) iiber K.

Aus Satz 74 ergibt sich dann:

Satz 75. Hat das irreduzible Polynom f(z) aus K
in einer Erweiterung A von K eine Wurzel «, so ent-
hilt A einen Stammkéorper fiir f(z), ndmlich K(x).

Beweis: K(x) hat die Eigenschaften (I.), (IL.) von
Satz 74.

Hiernach iibersehen wir die Gesamtheit aller Erweiterungen
von K, in denen ein irreduzibles f(z) aus K eine Wurzel hat,
jedenfalls soweit nur der Erweiterungstypus in Frage kommt:

Hasse, Hohere Algebra. II. b
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Abgesehen von bzgl. K isomorphen sind es ndmlich alle und
nur die Erweiterungen eines Stammkérpers fiir f(z). Die
Stammkorper selbst repriisentieren also den engsten der-
artigen Erweiterungstypus.

§ 9. Allgemeine Theorie der Erweiterungen 2. Einfache
und endliche algebraische Erweiterungen.

Wir leiten in diesem Paragraphen mittels der Ergebnisse
des § 8 einige wichtige Beziehungen zwischen den in § 7 ein-
gefiihrten allgemeinen Begriffen her.

A. Einfache algebraische Erweiterungen,

Im erstenTeil des Satzes 74 [62] wurde festgestellt, daf die
Stammkérper iiber K einfach und algebraisch von endlichem
Grade sind. Umgekehrt ergibt sich nun aus dem zweiten Teil
dieses Satzes unmittelbar:

Satz 6. Ist A einfach iiber K und ist ein pri-
mitives Element o« von A algebraisch vom Grade »
iiber K, so ist A =K(x) Stammkirper fiir das zu «
gehorige irreduzible Polynom =-ten Grades f(z)
aus K. Es ist also dann A algebraisch von end-
lichem Grade, namlich vom Grade = iiber K.

Insbesondere gilt hiernach folgende Relation zwischen den
beiden in Def. 22 [55] und Def. 25 [57] unabhingig von-
einander erklirten Graden:

Satz 77. Der Grad eines algebraischen Elements
o iiber K ist gleich dem Grad des zugehérigen
Stammkoérpers K(o) iiber K:

[ : K] = [K(x): K]

Die Aussage von Satz 76 laBt sich dahingehend ver-
schirfen, daB auch die Separabilitit einbezogen wird. Dazu
leiten wir zundchst das folgende Kriterium fiir die Se-
parabilitdt her:

Satz 78. Ist K von der Charakteristik p, so ist
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ein iiber K algebraisches Element « dann und nur
dann separabel iiber K, wenn K(a?) = K(x) ist.

Beweis: a.) Es sei « separabel. Ist dann

fy=2*~+a2" 14 -4 a,
das zu o gehorige, nach Satz 63 [b5] separable, irreduzible
Polynom, so ist

h@)=d"+aa"" -t
das zu «® gehorige irreduzible Polynom.

Erstens ist ndmlich nach Satz 44 [37] f,(a?) = f(x)? = 0.
Zweitens ist fy(z) irreduzibel; denn aus k(z)]f,(x) folgt
h(zP)lf(2P) = f(z)? (Satz 44), wegen der Irreduzibilitit von
f(z) also h(zP)= f(z)" mit 0<r=p, durch beiderseitige
Ableitungsbildung weiter 0= rf'(z) (Satz 57 [46]), und
daraus 7 =0 oder p — weil f'(x)==0 ist (Def. 17 [47]) —
also h(zP)= f(z)° = ¢ oder h(2?)= f(2)* = f,(2?), und somit
h(z)= e oder h(z)= f,(z).

Hiernach ist

[6: K]=n=[ar: K],
also nach Satz 77
[K(x): K] = [K(a?): K],
und daher nach Satz 72 [60]
K(ax) = K(o?).

b.) Es sei o inseparabel. Dann ist das zu o« gehorige irre-
duzible Polynom inseparabel (Satz 63 [55]), also von der
Gestalt f(z)= fy(xP) (Def. 17 [47]). Hierbei ist f,(z) das
zu «P gehorige irreduzible Polynom.

Denn erstens ist fo(«?) = f(o) = 0. Zweitens ist fo(x) irre-
duzibel, weil aus h(z)| fo(z) folgt Rh(2P)|fy(2P)= f(x) und
/(z) irreduzibel vorausgesetzt ist.

Hiernach ist

[oc: K] = p[a?: K] > [« : K],
also nach Satz 77
[K(x): K] > [K(«?): K],
5*
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und somit nach Satz 72 [60]
K(x) > K(o?).

Wenn K(«) = K(aP) ist, mul daher & separabel sein.

Wir beweisen nunmehr die angekiindigte Verschirfung
von Satz 76:

Satz 79. Ist K von der Charakteristik p, und
wird in Satz 76 « separabel iiber K vorausgesetzt,
so ist auch A= K(x) separabel iiber K.

Beweis: GemidB Def. 23 [56] ist zu zeigen, daB jedes
Element 8 aus K(o) separabel ist. Nach dem Kriterium von
Satz 78 kann das gezeigt werden, indem aus der nach der
Voraussetzung richtigen Relation K(a?)= K(x) die ent-
sprechende Relation K(87) = K(B) gefolgert wird.

Sei dazu
[K(o): K(B)] =m,  [K(B):K]=7,
[K(x): K(B")] = [K(&®): K()]=m’,  [K(6"):K]=7
gesetzt. Dann ist nach Satz 71 [59]
mj=m'y
und nach Satz 70 [59]
mg ml’ jl

lIA

j.
Ist nun
@)= o+ 0q 2" 4 - -+ o
das zu o gehorige irreduzible Polynom in K(8) (vgl. Satz 77),
dessen Koeffizienten gemaB Satz 74, (II1.) [62] und Satz 76
in der Form

j=1 .
’xk=i§0 axf (*=0,...,m—1)

darstellbar sind, so folgt ans der Relation ¢(x)=0 durch
Potenzieren mit p nach Satz 44 [37], daB «? Wurzel des
Polynoms

pi(z)=a" +ojam1 4 -t o,
vom Grade m mit den Koeffizienten

j—1 A
0‘/2=,_2(/; axf” (k=0,...,m—1)
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aus K(B?) ist. Das zu «” gehorige irreduzible Polynom in

K(B?) ist dann nach Satz 53 [43) ein Teiler von ¢,(z). Dar-
aus folgt fiir seinen Grad (vgl. Satz 77)
m<m.
Nach den obigen Relationen ergibt sich damit
m' = m, also j' =7,
d. h. nach Satz 72 [60] in der Tat K(B?) = K(B).

Nach Satz 76 sind fiir eine einfache Erweiterung A von K
nur die beiden folgenden Falle moglich: Entweder liegen die
Verhéltnisse von Satz 76 vor. Oder aber jedes primitive
Element x von A, also auch A selbst, ist transzendent iiber K;
dann hat jedes solche o« den Charakter einer Unbestimmten
tiber K (siehe bei Def. 21 [54]), und A = K(«) ist vom Er-
weiterungstypus des Korpers K(z) der rationalen Funktionen
einer Unbestimmten « iiber K?1). Satz 76 besagt hiernach
(siehe auch Satz 79):

Satz 80. Die Begriffe Stammkdrper fiir ein (sepa-
rables) irreduzibles Polynom und einfache (separable)
algebraische Erweiterung decken sich (ebenso auch
die Begriffe Korper der rationalen Funktionen einer
Unbestimmten und einfache transzendente Erweiterung).

Hinsichtlich der Separabilitdt gilt genauer, daB
jedes irreduzible Polynom, fiir das eine einfache
separable algebraische Erweiterung Stammkérper
ist, separabel ist.

Diese Begriffe sind also nur methodisch unterschieden, insofern
bei Stammkorpern an die Entstehung aus einem bestimmten

1) Die einfachen Erweiterungen sind das genaue Analogon zu den (von der
identischen verschiedenen) zyklischen Gruppen (siehe Def. 12 [30] und Def. 19
[52]). Die hier resultierende Unterscheidung der einfachen Erweiterungen in
algebraische, die dann == K (z, mod. j(z)) mit /(z) == 0, ¢ und von endlichem
Grade (Grad von f(z)) sind, und transzendente, die dann ~ K(z, mod. /(x))
mit f(z) = 0 und von unendlichem Grade sind, entspricht der im Anschi. an
Satz 33 [32] getroffenen Unterscheidung der (von der identischen verschie
denen) zyklischen Gruppen in solche, die =< E}?f mit 4= 0,1 und dann von end-

licher Ordnung (Betrag von f) sind, und solche, die == 2Rf mit f = 0 und dann
von unendlicher Ordnung sind.
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irreduziblen Polynom f(x) gedacht ist, wihrend einfache alge-
braische Erweiterung frei von einer derartigen Bezugnahme
auf ein bestimmtes f(z), d. h. auf ein bestimmtes primitives Element
oc ist. Diese letztere, allgemeinere Auffassung ist deswegen niitzlich,
weil sie es als naturgemiB erscheinen liBt, neben dem speziellen
f(x) und dessen Wurzel &, durch die ein Stammk®érper erzeugt wird,
auch andere seiner Elemente auf ihre Eigenschaft als primitive
Elemente zu untersuchen, was anschlieBend geschieht.

Ist A eine einfache algebraische Erweiterung von K und n
ihr Grad, so ist jedes Element 8 aus A algebraisch iiber K,
und zwar nach Satz 67 [67] von einem Grade < n. Da
nun nach Satz 77 [f: K] = [K(B): K] ist, erhalten wir unter
Anwendung von Satz 71 [69] und Satz 72 [60] genauer:

Satz 81. Ist A eine einfache algebraische Er-
weiterung vom Grade n iiber K und f ein Element

aus A vom Grade § iiber K, so ist j|n und m— o

der Grad von A iiber K(B).

Insbesondere ist f dann und nur dann primi-
tives Element von A, wenn es vom Grade n iiber
K ist.

Wir heben noch die aus Satz 74, (IL) und (IIL) [62]
folgende bemerkenswerte Tatsache hervor:

Satz 82. Fiir ein algebraisches Element « iiber
K gilt K[a] = K(x).

Dieser gegeniiber transzendenten Elementen abweichende Um-
stand, der natiirlich fiir das Rechnen mit einem algebraischen
Element sehr willkommen ist, geht vermdge der in § 8 geleisteten
Zuriickfithrung von K () anf den Restklassenkorper K (z, mod. f(z))
fiir das o zugehérige f(z) letzten Endes auf den Satz 28 [27] zuriick,
dessen Beweis, verbunden mit der Zuriickfiilhrung des § 8, auch
die praktische Handhabung jenes Umstandes beim Rechnen mit
einem algebraischen Element lehrt (Beseitigung aller vorkommen-
den, nicht zu K gehorigen Nennerl).

B. Endliche algebraische Erweiterungen.
Wir beweisen zundchst in Analogie zu Satz 76 [66]:
Satz 83. Ist A endlich iiber K und ist ein pri-
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mitives Elementsystem &, ..., von A algebraisch
iiber K, so ist A=K(xy,...,&,) algebraisch von
endlichem Grade iiber K.

Beweis: Die von K zu A fithrende simultane Adjunktion
von o,,...,o kann durch die sukzessiven Adjunktionen
K= ANy Noloy) = Ny, N(og)=Ngy .o, Npa(og) =N = A
ersetzt werden (Satz 62 [52]). Dabei ist fir 1 =1,...,r
o; algebraisch iber A;_; (Satz 65 [65]), also /\; von end-
lichem Grade iiber A;_; (Satz 76 [66]), also A von end-
lichem Grade iiber K (Satz 71 [69]) und dann auch alge-
braisch iiber K (Satz 67 [67]).

Eine zu Satz 79 [68] analoge Verschirfung von Satz 83
durch Einbeziehung der Separabilitit kann erst spiter
(Satz 90 [80]) bewiesen werden.

Fiir endliche Erweiterungen A = K(x,, . .., ,) sind auBler den
beiden Extremen: «,...,«, algebraisch iber K und o, ..., 0,
transzendent iiber K, die den beiden einzigen Méglichkeiten bei den
einfachen Erweiterungen entsprechen, natiirlich noch weitere
Maglichkeiten vorhanden, da nimlich die o; teils algebraisch, teils
transzendent {iber K sind. Nur der erstgenannte, in Satz 83 vor-
liegende Fall interessiert uns hier, weil allein in ihm A algebraisci
iiber K sein kann und es nach Satz 83 auch ist; diesem Fall wenden
wir uns des weiteren zu.

Nachdem wir in Satz 83 festgestellt haben, wann eine end-
liche Erweiterung algebraisch ist, untersuchen wir jetzt um-
gekehrt, wann eine algebraische Erweiterung endlich ist.
Wihrend nun aus den algebraischen Erweiterungen durch die
Forderung der Einfachheit nach Satz 80 [69] die spe-
zielle Klasse derjenigen herausgehoben wird, die von end-
lichem Grade sind und in denen eine Basis der besonderen
Form a2, ...,a% 1 (also aus den ersten % Potenzen eines
einzigen Elements ) existiert, wird aus den algebraischen
Erweiterungen durch die Forderung der Endlichkeit genau
die Klasse aller Erweiterungen endlichen Grades heraus-
gehoben. Aus den Resultaten von Satz 67, 68 [b7, 58]
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einerseits und Satz 83 andererseits ergibt sich ndmlich un-
mittelbar:

Satz 84. Die Begriffe endliche algebraische Erwei-
terung und Erweiterung endlichen Grades decken sich.

Durch sukzessive Anwendung von Satz 82 auf die im
Beweis von Satz 83 auftretende Kette einfacher algebraischer
Erweiterungen erhalten wir ferner die folgende Verallgemeine-
rung des erstgenannten Satzes:

Satz 85. Fiir endlich viele iiber K algebraische
Elemente «,, ..., einer Erweiterung von K gilt
Kloegs « - eyoir) = Koty « « oy 0p).

Satz 83 erlaubt iibrigens in Verbindung mit Satz 71 [59]
noch, die nach Satz 66 [56] angekiindigte Umkehrung dieses
Satzes zu beweisen 1):

Satz 86. Ist A= K=K und Aiiber K, K ither K
algebraisch, so ist auch A iiber K algebraisch.

Beweis: Sei o ein Element aus A und
px)=a"+ a1+ .- 4« das zugehdrige irreduzible
Polynom aus K. Es ist dann einerseits o« algebraisch iiber

Koy« o s 0rr), also K(og,...,00,a) von endlichem Grade
iiber K(ovy, - . .,04) (Satz 76 [66]), andererseits sind oy, . . ., 0%y
algebraisch iiber K, also ist K(xy,...,) von endlichem

Grade iiber K (Satz 83). Somit ist auch K(x,, . . ., &) von
endlichem Grade iiber K (Satz 71 [569]), also o alge-
braisch iiber K (Satz 67 [67]). Daher ist auch A algebraisch
iiber K (Def. 23 [56]).

§ 10. Wurzelkorper.

Wir konstruieren in diesem Paragraphen die Wurzeln
eines Polynoms f(z) aus K, indem wir durch wiederholte An-
wendung der Stammkérperkonstruktion des § 8 die Existenz
einer speziellen Erweiterung von K beweisen, in der f(x) voll-

1) Ohpe Einbeziehung der Separabijlitit. — Dies kann erst spiter (Satz 92
[83]) geschehen.
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stindig in Linearfaktoren zerfillt. Uberdies werden wir cine
Ubersicht iiber alle derartigen Erweiterungen erhalten.

Unser zu Satz 74 [62] analoger Hauptsatz lautet:

Satz 87. Es sei f(z) ein Polynom aus K. Dann
existiert eine Erweiterung W von K mit den
Kigenschaften:

(I.) f(z) zerfallt in W in Linearfaktoren:
(@)= (2 —0y) - - - (& —04).
(IL) W ist endlich iber K und o...,« ein
primitives Elementsystem, d. h. es ist
W = Koy, - - oy ).
(IIL) W ist also algebraisch von endlichem
Grade iiber K, und auch W =K]x,, ..., o]

Ist W* irgendeine (I.), (IL) (und dann auch
(IIL.)) geniigende Erweiterung von K und sind
of, .. of die Wurzeln von f(z) in W*, so ist W*
zu W bei geeigneter Reihenfolge der «f,...,aF auf
Grund der Zuordnungen

XF <00, oo OF <0y
isomorph bzgl. K. Der Erweiterungstypus von W
ist also durch (I.), (IL) eindeutig bestimmt.

a.) Existenzbeweis.

Wir kommen in folgenden r Schritten zum Ziel, deren
schematische Andeutung geniigen mag:

1.) {(z) = py(x) f(x), p,(x) Primfaktor in K, X, Stamm-
korper zu p,(z) iiber K,o; Wurzel von p,(z) in Z,, also
f(@)= (z—oq) gy(2) in 2y, 2, = K(O‘l)-.

2.) @1(2) = my(2) @y(®), 7y(x) Primfaktor in 3, 2,
Stammkorper zu 7,(z) iiber 2, o, Wurzel von my(z) in Z,,
also @,(2)= (z— o) @y(2) in z2"22 = 2y(o%s),

[(#)= (2 —0q) (2 —0) po(@) in 2, 2, = Koy, 0v,) -
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Die durch diese r Schritte erreichte Erweiterung %, =W
hat die behaupteten Eigenschaften.

b.) Eindeutigkeitsbeweis.

Es sei W* eine (1.), (11.) geniigende Erweiterung von K,
und es seien of,...,af die Wurzeln von f(z) in W*, Wir
zeigen dann in den folgenden r Schritten, daB eine Kette
von Korpern zwischen K und W*:

KSSI<SF<-- < S<W+
existiert, die je zu den entsprechenden Korpern der Kette
aus a.) bei geeigneter Reihenfolge der «f, ..., o auf Grund
der Zuordnungen des Satzes isomorph bzgl. K sind.

1.) Derin K gelegene Primfaktor p,(x) von f(z) ist nach Satz
25 [24] ein Produkt aus gewissen der Primfaktoren £ —a«f, ...,
 —of von f(z) in W*. Es hat also p,() eins deraf, .. ., o
zur Wurzel, und wir diirfen deren Reihenfolge so annehmen,
dabB o Wurzel von p () ist. Nach Satz 74, 756 [62, 65]
enthilt dann W* den Stammkérper 2 = K(x¥) fiir py(z)
itber K, und dieser ist auf Grund der Zuordnung «% « o,
zu 2, isomorph bzgl. K.

2.) In Z¥ gilt eine Zerlegung f(z)= (z — %) ¢¥(z). Da

sich die Koeffizienten von ¢} (z)=

aus «f und

z—of
denen von f(z) in derselben rationalen Weise berechnen {vgl.
die Bemerkung nach Satz13 [18]), wie die von ,(z)= g%
- M

aus o, und denen von f(z), so sind die Koeffizienten von
@¥(z) und ¢,(z) einander bei dem Isomorphismus af <,
zwischen 2§ und X, zugeordnet. Nach den Ausfithrungen
zu 1, Def. 7, Zusatz [24] ist also das dem Primfaktor 7,(z)
von ¢,(z) bei diesem Isomorphismus zugeordnete Polynom
7} () ein Primfaktor von ¢f(z) in 23, der dann ein Produkt
aus gewissen der Primfaktoren z—oaf,...,2—aF von
¥(x) in W* ist. Es hat also n¥(z) eins der of, . . ., 0k zur
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Wurzel, und wir diirfen deren Reihenfolge so annehmen, da8
o¥ Wurzel von a¥(z) ist. Dann enthdlt W* den Stamm-
kirper 2* = Z¥(o¥) = K(oF, o) fiir nf(z) tiber ZF, und
dieser ist nach den Ausfithrungen zu 1, Def. 7, Zusatz zum
Stammkorper Z, fiir 71,(x) iiber 2, auf Grund der Zuordnung
o <0y verbunden mit dem Isomorphismus of «—
zwischen den Teilkdrpern ¥ und Z, isomorph bzgl. K.

r.) ... W* enthilt den Korper 2F = K(xf,...,o¥),
und dieser ist zu 2, = K(xy,...,&,) auf Grund der Zu-
ordnungen o <o, . . ., 0¥ <> o, isomorph bzgl. K.

Da nach (IL) ¥ = W*, 2, =W ist, ergibt der Schritt
r.) die Behauptung.

Damit ist Satz 87 bewiesen. In Analogie zu Def. 27 [65]
definieren wir hier, zunichst ebenfalls mit dem unbestimm-
ten Artikel:

*Definition 28. Jede Erweiterung W von K mit
den Eigenschaften (I.), (IL.) und daher auch (IIL)
von Satz 87 heilt ein Wurzelkorper fiir f(z) iiber K.

Aus Satz 87 ergibt sich dann, analog zu Satz 75 [65]:

Satz 88. Zerfallt das Polynom f(z) aus K in
einer Erweiterung A von K in Linearfaktoren:
fz)=(x—oy) -+ (z—o,), so enthilt A einen Wur-
zelkérper fir f(z), ndmlich K(xy, ..., 0).

Beweis: K(e,..., ) hat die Eigenschaften (1), (IL)
von Satz 87.

Hiernach iibersehen wir die Gesamtheit aller Erweiterun-
gen von K, in denen ein Polynom f(z) aus K in Linearfaktoren
zerfillt, jedenfalls soweit nur der Erweiterungstypus in Frage
kommt: Abgesehen von bzgl. K isomorphen sind es namlich
alle und nur die Erweiterungen eines Wurzelkorpers fiir f(x).
Die Wurzelkorper selbst reprisentieren also den engsten
derartigen Erweiterungstypus.

Wihrend nun in der Def. 27 [65] der Stammkdrper fiir
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ein irreduzibles f(z) eine Formulierung mit bestimmtem
Artikel deshalb nicht angéngig ist, weil ein Wurzelkorper
W = K(oq, - - ., &) fiir f(z) nach Satz 75 [65] die n Stamm-
korper 2, = K(), . - ., 24 = K(x,) enthélt, die nach unseren
spateren Ausfiihrungen sehr wohl verschieden sein konnen,
haben wir fiir Wurzelkorper nach Satz 50 [42]:

Satz 89, Unter der Voraussetzung von Satz 88
enthdlt A auBer dem Wurzelkorper K(o,,...,o,) fiir
f(z) keinen weiteren solchen.

Da also hiernach in keiner Erweiterung von K zwei ver-
schiedene Wurzelkorper fiir /(z) vorkommen kénnen, diirfen
wir (wie beim Quotientenkérper —vgl. 1, Satz 10, Zusatz [30])
schlechthin von dem Wurzelkorper zu f(z) reden, und somit
auch von den Wurzeln von f(z) ohne ausdriickliche Nennung
einer sie enthaltenden Erweiterung. Geht man dabei, wie es
im folgenden ofter geschehen wird, von einer Wurzel & von
(%), also von einem Stammkérper 2 = K(x) eines der Prim-
faktoren p(x) von f(x) aus, so darf, wie aus dem Beweis zu
Satz 87, a.) 1.) ohne weiteres zu entnehmen ist, der Wurzel-
korper W = K(xy, . . ., o) von f(z) so angenommen werden,
daB er x, also ¥ = K(x) enthalt.

Wir sehen damit prinzipiell ab von der Natur der Wurzeln,
auf die wir fiir den Spezialfall eines Grundkérpers aus Zahlen in
der Digression des folgenden § 11 nur aus historischen Griinden
eingehen, haben vielmehr nur die Struktur (den Erweiterungs-
typus) des aus ihnen entspringenden Wurzelkdrpers im Auge, deren
Untersuchung die weiteren Abschnitte gewidmet sind.

Durch die Konstruktionen in §§ 8, 10 ist das Auflésungs-
problem algebraischer Gleichungen, wie es in der Einleitung
formuliert und erldutert wurde, vollstindig gelost. Iiir unsere
weiteren Betrachtungen sind demnach die Wurzeln eines
Polynoms nicht mehr als Unbekannte, d. h. zu bestim-
mende Elemente, sondern als durch die Konstruktionen
in §§8, 10 gegebene, vollig bestimmte Elemente an-
zusehen.
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§ 11. Der sog. Fundamentalsatz der Algebra.

Wie schon im Anschlufl an Def. 18 {51] hervorgehoben wurde,
kann man die Existenzbeweise der §§ 8, 10 nicht dadurch um-
gehen, dal man eine Wurzel « bzw. die Wurzeln «,,...,«, von
f(z) ,,von unten her* zum Grundkérper K adjungiert. Nur wenn
man vorher auf irgendeine Weise in den Besitz einer Erweiterung
von K gelangt ist, in der f(z) einen Linearfaktor hat bzw. in Lineax-
faktoren zerfillt, kann man diesen einfacheren Weg einschlagen.
Das geschieht nun in der bisherigen Literatur meist auf Grund des
sog. Fundamentalsatzes der Algebra. Dieser besagt nimlich,
daB im Kérper der komplexen Zahlen jedes Polynom aus einem
Zahlkorper in Linearfaktoren zerfallt, insbesondere also auch jedes
Polynom aus dem engstmoglichen Zahlkorper P. Hiernach wird
durch die einmalige Konstruktion des komplexen Zahlkorpers
und Nachweis dieser Tatsache iiber ihn die Existenz der Wurzeln
aller algebraischen Gleichungen mit Zahlkoeffizienten bewiesen.

Dieser zuerst von GauB bewiesene Satz gehort nun aber nicht
mehr in die Algebra im heutigen Sinne —, selbst wenn man unter
diese wie am Schlufl von 1, Einl. alles das einbegreift, was aus den
Korperaxiomen (d.h. den allgemeinen Rechengesetzen der
rationalen Zahlen) oder einem Teil von ihnen (Ring, Integritits-
bereich, Gruppe) gefolgert werden kann, also nicht nur lediglich
den speziellen Sitzekomplex iiber die Auflésung von Gleichungen. —
Jener Satz bedarf nimlich zum Beweise Hilfsmittel aus der Analysis
(Grenzwert, Stetigkeit), mogen diese, wie in manchen der duBerst
zahlreichen Beweise, auch auf ein noch so kleines Mafl zuriick-
gedringt sein1). Auch reicht die Tragweite des sog. Fundamental-
satzes der Algebra nicht iiber die speziellen Zahlkorper hinaus, was
ihm ebenfalls von unserem in 1, Einleitung formulierten Stand-
punkt aus seine fundamentale Rolle fiir die Algebra nimmt (vgl.
den zweiten und dritten Absatz von 1, Einl.) 2). Wir durften daher
mit Recht den GauBschen sog. Fundamentalsatz der Algebra aus

1) Wie einfach der Beweis unter voller Ausnutzung analytischer (kom-
plex-funktionentheoretischer) Hilfsmittel wird, und wie naturgemif sich der
Satz in dle komplexe Funktionentheorie einreiht, kann man nachlesen bei
XK. Knopp, Funktionentheorie I, 9. Aufl, 1957, § 28, Satz 3, S.115 und
§ 35, S. 141 (8lg. Goschen 668).

2) Allerdings haben E. Artin und O. Schreier [Algebraische Konstruk-
tion reeller Kérper, Abh. a. d. Math., Sem. d. Univ. Hamburg 5 (1926)] das Feld
der Algebra dadurch erweitert, daB sie auch die allgemeinen Anordnungs-
gesetze der rationalen Zahlen in den Kreis algebraischer (axiomatischer) Be-
trachtungen gezogen haben. Der sog. Fundamentalsatz der Algebra als spe-
zieller Satz iiber den komplexen Zahlkorper ordnet sich dann einem entsprechen-
den Satz iiber eine allgemeine Klasse von Koérpern unter und erhilt in diesem
neuen, erweiterten Gewande erneut Biirgerrecht in der modernen Algebra.
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unserer Darstellung verweisen und dafiir den von Kronecker
ersonnenen und von Steinitz ausgebauten Existenzbeweis der
§§ 8, 10 fiir die Wurzeln algebraischer Gleichungen aufnehmen,
der auf ganz abstrakter und damit viel weiter tragender Grund-
lage steht.

Steinitz hat {ibrigens, und das ist wohl sein Hauptverdienst
auf algebraischem Gebiete, bewiesen, daB analog, wie zu den Zahl-
korpern der komplexe Zahlkorper, so auch zu jedem Grundkérper
K Erweiterungen A existieren, in denen gleichzeitig alle Polynome
aus K in Linearfaktoren zerfallen und daf§ der engstmogliche solche
Korper A, ebenso wie unsere Stammkoérper und Wurzelkérper, bis
auf Isomorphismen bzgl. K durch K eindeutig bestimmt ist, nimlich
als Korper aller algebraischen Elemente iiber K. Dieser
Korper A hat tiberdies die Eigenschaft, daB keine echten algebra-
ischen Erweiterungen von A existieren, daB also auch jedes Polynom
aus A in A in Linearfaktoren zerfillt. Steinitz nennt ihn daher
algebraisch abgeschlossen. Im Spezialfall des Grundkérpers
P ist A der Kérper aller algebraischen Zahlen. Da sich der Steinitz-
sche Existenzbeweis fiir A auf die speziellen Existenzbeweise der
§§ 8, 10 stiitzen mub, kann man diese nicht etwa, ausgehend von
der Existenz von A, umgehen.

Um MiBverstindnissen anldBlich der bei Satz 89 einge-
fiilhrten Redeweise mit bestimmtem Artikel zu begegnen, sei
hier noch ausdriicklich auf folgendes hingewiesen: Unsere Existenz-
beweise in §§ 8—10 liefern fiir den Spezialfall, daB K ein Zahlkérper
ist, keineswegs die Existenz der Wurzeln eines Polynoms aus K
und ihrer rationalen Funktionen iiber K als komplexe Zahlen,
sondern lediglich als abstrakte Rechenelemente. Inwieweit
man diese Elemente dann Zahlen nennen kann, kommt auf den
nicht universell feststehenden Umfang des Begriffs Zahl an. Um
sie aber dem Begriff komplexe Zahl unterordnen zu kénnen,
wire iiber unsere Existenzbeweise hinaus erst zu zeigen, daf sie
in der Form a + b7 darstellbar sind, wo ¢ eine Wurzel des Polynoms
22 + 1 ist und @, b Elemente eines solchen Kdérpers sind, der zu
einem Teilkérper des reellen Zahlkorpers isomorph ist. Ein solcher
Nachweis wiirde allgemein auf den Beweis des sog. Fundamental-
satzes der Algebra (bzw. dessen a. S. 77, Anm. 2 erwihnter Ver-
allgemeinerung) hinauslaufen. Nur fir den speziellen Fall des
Polynoms 2 + 1 selbst, in einem Kérper K aus reellen Zahlen,
liegt er unmittelbar auf der Hand: Ist 7 eine Wurzel dieses in K
irreduziblen Polynoms in einem Stammkérper X iiber K (der iibri-
gens dann gleichzeitiz Wurzelkérper mit der Zerlegung
22+ 1= (x—1)(z + 1) ist), so haben nach Satz 74 [62] die
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Elemente von X eindeutige Darstellungen a + bi mit Zahlen a, b
aus K, und das Rechnen mit diesen Elementen verliuft wegen der
Gleichung i = — 1 isomorph zum bekannten Rechnen mit den
komplexen Zahlen. Cauchy, der Begriinder der konkreten kom-
plexen Funktionentheorie, ist der erste gewesen, der vom reellen
Zahlkérper K ausgehend diesen abstrakten Weg zur Einfihrung
des ,,imaginiren** ¢ gegangen ist 1), und der somit den Grundstein
gelegt hat zu dem durch Kronecker und Steinitz auf breitere
Grundlage gestellten und bis in die neueste Zeit in stetem Wachs-
tum begriffenen Bau der abstrakten Algebra.

IV. Die Struktur der Wurzelkorper

algebraischer Gleichungen.

Wir leiten in diesem Abschnitt zunéchst (§§ 12, 13) einige
mit den bisherigen Mitteln zugingliche Eigenschaften der
Wurzelkorper her, fiihren sodann (§§ 14—16) als neues Hilfs-
mittel gewisse, durch die Erweiterungen endlichen Grades
bestimmte, endliche Gruppen, ihre Galoisgruppen ein, und
entwickeln sehlieBlich (§§17,18) auf dieser Grundlage die
Galoissehe Theorie, durch die man dann die Struktur der
Wurzelkorper vollstindig beherrscht, wie es in der Einleitung
als Hauptziel dieses Bandes hingestellt wurde.

Dabei haben wir uns durchweg auf separable Polynome
und Erweiterungen zu beschrinken. Kiir inseparable
Polynome und Erweiterungen erfahrt die im folgenden zu ent-
wickelnde Theorie, wie Steinitz gezeigt hat, wesentliche Ab-
weichungen, auf die wir hier des knappen Raumes halber
nicht eingehen kénnen.

§ 12. Einfachheit und Separabilitit der Wurzelkorper

separabler Polynome, allgemeiner der endlichen alge-

braischen Erweiterungen mit separablem primitivem
Elementsystem.

Die in der Uberschrift dieses Paragraphen genannte, fiir
1) Cauchy fiihrte die komplexen Zahlen nach dem Schema des Existenz-
beweises in § 8, also als Restklassen mod. z% + 1, speziell ¢ als die Rest-
klasse # mod. z* + 1 ein. (Exerc. d’anal. et de phys. math. 4 (1847), S. 87.)
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die Folge grundlegende Eigenschaft der Wurzelkdrper sepa-
rabler Polynome kommt allgemein den endlichen algebraischen
Erweiterungen mit separablem primitivem Elementsystem zu,
zu denen ja die Wurzelkérper separabler Polynome gehdren
(Satz 87 [73]).

Im Beweis miissen wir uns aus methodischen Griinden auf
Grundkérper K mit unendlich vielen Elementen be-
schrinken, Diese Einschrinkung kann man indes auf anderem
Wege als in Wahrheit iiberfliissig erkennen (siehe Schluf von
§ 20 [134ff.]). Daher diirfen wir den folgenden Satz, sowie alle
weiteren auf ihn gestiitzten, ohne sie formulieren.

Der zu beweisende Satz, den man nach seinem Entdecker
den Abelschen Satz nennt, lautet:

Satz 90. Jede endliche algebraische Erweiterung
AvonKmit separablem primitivem Elementsystem,
insbesondere also der Wurzelkérper jedes sepa-
rablen Polynoms f(z) aus K ist einfach algebraisch
und separabel iiber K, also Stammkérper fiir ein
separables irreduzibles Polynom g¢(z) aus K.

Beweis?'): Es sei A=K(oyg,-.-,0), WO 0y,..., 0%
separabel algebraisch iiber K sind. Fiir r = 1 ist dann nichts
mehr zu beweisen (Satz 76,79 [66, 68]).

a.) r=2.

Seien f,(z), f,(x) die zu &, &, gehorigen, nach der Voraus-
setzung und Satz 63 [6H] separablen, irreduziblen Poly-
nome aus K, ferner W der Wurzelkérper fiir das Polynom
fi(2)fs(x) aus K und

hie)= I (r—o), fole) = I (c— o)

1 2
die Zerlegungen von f,(z) und f,(x) in W in Linearfaktoren.
Es ist dann «, eines der oy, o, eines der oy, Yerner sind

') Dieser Beweis wurde bisher fast immer unter Anwendung des Satzes
von den symmetrischen Funktionen (sieche den spiteren Satz 131 [153])
gefiihrt. Der Grundgedanke des im Text gegebenen, ohne jenen Satz aus-
kommenden Beweises wurde aber schon von Galois zu dem entsprechenden
Zwecke verwandt.
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die «1,, und die xg,, je untereinander verschieden (Satz 68
47)).
[ Daher sind die nn, linearen Funktionen
ﬁvlvg(z) = Ky, + &2y,

aus W[z] simtlich voneinander verschieden, weil ja zwei von
ihnen sich entweder im Koeffizienten der Unbestimmten & oder
im von & freien Koeffizienten unterscheiden. Wenn also, wie
wir hier voraussetzen, K unendlich viele Elemente be-
sitzt, so existiert nach Satz 49[41] (angewandt auf W fiir K,
K fiir M) ein Element @ 40 in K, so daB die n,n, Elemente

19v,v, = ﬁvlv,(a) = K1y, + axg,,
simtlich voneinander verschieden sind.

Es sei nun
P =0 4+ ax,

das dem System (xy,,, &2,,) = (0¢, %) entsprechende Element
unter den &,,. Dann bilden wir das Polynom ¢(z) gemiB1!)

(—a)r ¢
= H (9 — oy, - az)) = H (o -+ ax,) — (o5, +- 02))

=1 v,=

—I[ (¢ —az) —op,) =1 (F— az).

Die erstere Darstellung 1aBt erkennen, daB @(z) zwar
die Wurzel &, hat — entsprechend dem Linearfaktor
& — (o, + ax) —, dagegen keine der von &, verschiedenen
Wurzeln «s,, von fy(x) zur Wurzel hat; denn sonst folgte ja
die Gleichheit von #=x, {-ax, mit einem 9, ,, = 001, 4 acxs,,,
WO (&1, 02,,) F (0, 00, entgegen unserer Konstruktion der
Pp,2). Die letztere Darstellung lehrt, daB ¢(z) ein Poly-
nom aus K(#) ist.

1) Der vorgesetzte Faktor (— a)™ bewirkt, daB ¢(z)ein Polyno m wird,
d.h. den hichsten Koeffizienten e bekommt,

?) Wie man sich leicht iiberzeugt, wird fir diesen SchluB und damit fiir den
ganzen Beweis die Separabilitit von «, nicht benstigt. Ein Analogon zu Satz 90
gilt daher auch, wenn nur alle bis auf eins der primitiven Elemente separabel

sind. Indessen werden wir von diesem (fiir die Theorie der inseparablen Er-
weiterungen wesentlichen) Umstand keinen Gebauch zu machen haben.

Hasse, Hohere Algebra. II. 6
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Wegen dieser beiden Eigenschaften von @(z) ist der
grofte gemeinsame Teiler (¢(x), fo(%)) einerseits gleich dem
einzigen gemeinsamen Linearfaktor # —a«, (Satz 21 [22]),
andererseits ein Polynom in K(#) (Satz 24, 14 [23, 18]). Da-
her gehért o, zu K(#), somit auch oe; = 9 — aor,, d. h, es ist
A =Ko, 00) < K(#). Da umgekehrt & =oy 4 an, zu
A = K(oy;, ) gehort, ergibt sich also, daB A = K(oy, )
= K(#) einfach algebraisch iiber K ist.

Um zu zeigen, daB A = K(&#) auch separabel iiber K ist,
geniigt es nach Satz 78,79 [66, 68], im Falle der Charakte-
ristik p aus den nach der Voraussetzung richtigen Relationen

o in K(of), o in K(&f)
die entsprechende Relation

¢ in K(9%)

zu folgern. Nun ergibt die Potenzierung mit p der Darstel-
lungen von ¢, und o, als Elemente aus K[$] nach Satz 44 [37]

«F in K(@7), of in K(57).
Daraus ergibt sich zusammen mit den beiden obigen Rela-
tionen weiter

oy in K(#%), o in K(97)
und somit in der Tat auch

# (=g + ao,) in K(H7).

Damit sind die Behauptungen des Satzes fiir r =2 be-
wiesen.

b.) r>2.

Dann folgen die Behauptungen durch vollstindige In-
duktion. Seien sie schon bis r —1 bewiesen, so ist also
K(etys o v oy0tr—1) = K(%,_1) mit einem geeigneten iiher K
separablen algebraischen x, ;. Nach Satz 62 [52] ist dann
N=K(oy, .. .,0p_1,04) = K(0ty_1, ), und somit nach dem
Beweise a.) A einfach algebraisch und separabel iiber K, d. h.
die Behauptung ist auch fiir r richtig.

Das aus diesem Beweise leicht zu entnehmende weitere Resultat,
daB man ein primitives Element & von A = K(oy, ..., &) speziell
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unter den linearen Komposita a,o; + -+ + + a,o, eines primitiven
Elementsystems «,, . . ., o, vorfindet, ist fiir die Konstruktion eines
solchen ¢ in konkreten Fillen niitzlich.

Da nach Def. 19 [62] eine ecinfaclie algebraische Erweite-
rung a fortiori endlich algebraisch ist, besagt Satz 90 in Ver-
bindung mit Satz 80 [69] und 84 [72] insbesondere:

Satz 91. Die Begriffe separable Erweiterung end-
lichen Grades, endliche separable algebraische Er-
weiterung, einfache separable algebraische Erweiterung,
Stammkorper fiir ein separables irreduzibles Polynom
decken sich.

Hinsichtlich des letzteren gilt genauer, dab
jedes irreduzible Polynom, fiir das eine solche Iir-
weiterung Stammkdorper ist, separabel ist.

Wir fiigen diesem Satz im Anschluff an die Bemerkung nach
Satz 67 [68] noch an:

Zusatz, Mit den Begriffen von Satz 91 deckt sich
auch noch der Begriff separable algebraische Erweiterung
mit beschrinkten Elementgraden, und zwar ist dann der
fiir eine solche Erweiterung A von K vorhandene ,,Maxi-
malgrad“ eines Elements von A iiber K gleich dem
Grade von A iiber K.

Beweis: Sei & ein Element aus A vom Maximalgrade. Wére &
nicht primitives Element von A und dementsprechend § ein nicht
rational durch & darstellbares Element von A, so wire

K= K(#) < K(#, f) = A
(Satz 60 [562]), und da K(&, f) = K(¥') gesetzt werden kann
(Satz 90), {9 : K] < [¢: K] (Satz 72, 77 [60, 66]) entgegen der
Maximalbestimmung des Grades von #. Also ist & primitives Ele-
ment von A und daher A = K(&) cinfach algebraisch iiber K, sowie
[A:K]=[d:K]

Jetzt kann auch die fiir den Fall der Charakteristik p noch aus-
stehende Verschirfung von Satz 86 [72] durch Einbeziehung der
Separabilitit erfolgen:

Satz 92, Ist A= K= K und A iber K, K iiber K sepa-
rabel algebraisch, so ist auch A iiber K separabel alge-
braisch.

Beweis: Sei o ein Element aus A und f(x) das zugehorige
(gemiB Satz 86 [72] vorhandene) irreduzible Polynom aus K.

6*
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Es sei dann s der groSte Exponent, fiir den noch f(x) = fo(x?°) mit
einem Polynom fy(z) aus K ist. fo(z) ist dabei wegen der Irreduzi-
bilitdt von f(x) irreduzibel und wegen der Maximaleigenschaft von
s separabel.

Da nach Voraussetzung &, a?, . . ., a?*! separabel iiber K sind,
ist nun nach Satz 78 [6¢] _
K(x) = K@P) =+ - = K(a?®).
Hiernach (siehe auch Satz 82 {70]) besitzt « eine Darstellung
& = (p((xps) = h(a_psv le, .oy 0‘1‘)1
wo @(z) ein Polynom in z iber K ist, das sich auch als ganze
rationale Funktion h(#,,,...,«,) iber K von z und den zu K

gehorigen Koeffizienten o; von ¢ auffassen 1iBt. Da aber die «;

nach Voraussetzung und «?® als Wurzel von fy(z) iiber K separabel
sind, ergibt Satz 90, da auch « iiber K separabel ist. Daher ist A
separabel iiber K (Def. 23 [£6]).

§ 13. Normalitit der Wurzelkérper und ihrer primitiven
Elemente. Galoissche Resolventen.

1.) Eine weitere wichtige Eigenschaft der Wurzelkérper (be-
liebiger Polynome) ist die in der folgenden Definition genannte:

*Pefinition 29. Eine Erweiterung N von K heilit
normal (oder galoissch) iiber K, wenn jede zu Nbzgl. K
konjugierte Erweiterung N* mit Nidentischist, d. h.
(vgl. Def. 26 [60]) wenn aus A= N=K A=N+*=K
und N*isomorph zu N bzgl. K stets folgt N* = N.

In teilweiser Analogie zu Satz 66, 70 [56,59] haben wir hier:

Satz 93. Ist N=KZ= K und N normal iiber K, so
ist N normal auch iiber K.

Beweis: Jede mit N bzgl. K konjugierte Erweiterung
N* von K ist gemil Def, 26 [60] auch eine mit N bzgl. K
konjugierte Erweiterung von K.

Es braucht aber weder, wie in Satz 66,70 [66, 59], dann
auch K iiber K, noch umgekehrt, wie in Satz 71, 86 [59, 72], mit

N iiber K und K iiber K auch N iiber K normal zu sein. Beispiele
dafiir kann man mittels des in § 17 zu beweisenden Fundamental-



13. Normalitit der Wurzelkérper und ihrer primitiven Elemente. 85

satzes bilden, der gleichzeitiz den tieferen Grund fiir diese Tat-
sachen erkennen laBt.

Wir beweisen nun:

Satz 94. Der Wurzelkérper W eines Polynoms
f(z) ist normal iiber K.

Beweis: Es sei ()= (z—o) - (2—0ax,) und
W = K(ey, . - .y o). Diese beiden Relationen fiir o, .. ., %,
bleiben nach Def. 26 [60] und den Ausfithrungen zu 1, Def. 7,
Zusatz [24] beim Ubergang zu einem mit W bzgl. K konju-
gierten Korper W* fiir die zu ihnen konjugierten Elemente
ocf, . .., o erhalten. W¥* ist also ebenfalls Wurzelkorper zu
f(x) und somit nach Satz 89 [76] mit W identisch, d.h. W
ist normal iiber K.

2.) Um die Bedeutung der Normalitat fiir eine einfache
algebraische Erweiterung A néher kennenzulernen, miissen
wir uns zunichst in jedem Falle einen Uberblick iiber die
simtlichen konjugierten zu A verschaffen, sei A normal oder
nicht. Wir erreichen dies dadurch, daB wir A als Stamm-
korper eines irreduziblen Polynoms f(x) darstellen (Satz 76
[66]) und dann als Teilkérper des Wurzelkdrpers W von f(z)
studieren (siehe das im Anschluf an Satz 89 Gesagte [76]).
In dieser Hinsicht haben wir nach Satz 74, 75 {62, 65] und
gemdl Def. 26 [60] (vgl. auch das schon vor Satz 89 [76]
Gesagte) unmittelbar:

Satz 95. Es sei f(z) ein irreduzibles Polynom in
K,o eine Wurzel von f(z), A = K(«x) der zugehorige
Stammkorper und 8 = h(x)irgendein Element aus A.
Sind dannoeg,...,o die Wurzeln von f(z), so enthilt
der (x, also A=K(x) enthaltende) Wurzelkorper
W = K(eoys .. .,0) von f(z) die r Stammkorper

N =K(oy), .-, Np = K(o) .
Diese sind zu A =K(s) konjugiert, und zwar wird
in ihnen durch

By = h(o)s - - -, Br = R(ary)
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je ein System zu f=h(x) konjugierter Elemente
repriasentiert,

In den Bezeichnungen dieses Satzes ist &« irgendeine der
Wurzeln «;, A der entsprechende der Kérper A; und f§ das ent-
sprechende der Elemente §;. Wir treffen aber hier und bei ahn-
lichen Betrachtungen im folgenden (siehe auch schon im Beweis zu
Satz 90 [80]) keine feste Verabredung dariiber, welches der «;
gleich  sein soll, weil dadurch eine im Hinblick auf die Nichtunter-
scheidbarkeit der o;, Ag, B; von K aus (1, bei Def. 7, Zusatz [24])
ganz unberechtigte Unsymmetrie geschaffen wiirde ).

Nach Satz 95 sind speziell die or; sémtlich konjugiert zu «.
Umgekehrt folgt aus Satz 73 [61]:

Satz 96. Es liege der Sachverhalt von Satz 95
vor. Dann sind die Wurzeln,,...,&, die einzigen
konjugierten zu o« innerhalb W oder irgendeiner
Erweiterung von W,

Die konjugierten zu einem algebraischen Ele-
ment sind also mit den Wurzeln des zugehérigen
irreduziblen Polynoms identisch.

Wir sagen daher im folgenden auch kiirzer die konjugierten
zu o fiir ,,die Wurzeln des zu o gehorigen irreduziblen Polynoms*.

Fiir die A; gilt Entsprechendes; denn ein zu A konju-
gierter Korper (innerhalb irgendeiner Erweiterung von W)
ist nach einer analogen SchluBweise, wie im Beweis zu Satz 94,
ebenfalls Stammkérper fiir f(z), entsteht also durch Adjunk-
tion einer Wurzel von f(z), d. h. eines &; (Satz 50 [42]):

Satz 97. Es liege der Sachverhalt von Satz 95
vor. Dann sind die Korper A,,..., A, die einzigen
konjugierten zu A innerhalb W oder irgendeiner
Erweiterung von W.

Beziiglich der f; kénnen wir das Entsprechende vorlaufig des-
halb noch nicht aussprechen, weil ja in W oder in Erweiterungen

von W aufler den A; noch andere Erweiterungen von K enthalten
sein und diese dann das Vorhandensein von den f; verschiedener

1) In der Literatur findet man vielfach die Verabredung « = «,.
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zu B konjugierter Elemente bewirken konnten (siehe dazu Def. 26
[60]). Wir kommen darauf nachher (Satz 103 [91]) zuriick.

3.) Auf Grund der in 2.) festgestellten Tatsachen konnen
wir nunmehr der Bedeutung der Normalitit fiir einfache
algebraische Erweiterungen und damit insbesondere auch
der Bedeutung des Zusammentreffens von Einfachheit und
Normalitit fiir die Wurzelkérper separabler Polynome, nach-
gehen. Es ist zweckmaBig, der Def. 29 die folgende, auf sie ge-
stiitzte Definition zur Seite zu stellen:

*Definition 30. Ein Element ¢ heit normal (oder
galoissch) tiber K, wenn der Kérper K() normal iiber
K ist. '

Ein iiber K normales Element ist von selbst auch algebraisch
iiber K, da fiir ein iiber K transzendentes Element 2 nach der Be-
merkung hinter Def. 26 [60] von K(z) verschiedene konjugierte
existieren.

Durch Kombination von Def. 19 [52] und Def. 30 ergibt
sich dann ohne weiteres:

Satz 98. Es sei N eine einfache algebraische Er-
weiterung von K. Ist N normal iiber K, so ist jedes
primitive Element von N normal iber K. Ist um-
gekehrt ein primitives Element von Nnormal iiber
K, so ist N normal iiber K.

Dieser Satz ist vom bisherigen Standpunkt natiirlich
tautologisch mit Def. 29, 30, sagt also vorliufig nichts Neues
aus. Wir kionnen ihm aber unter Beibehaltung seines Wort-
lautes dadurch einen neuen, mehr besagenden Inhalt geben,
daB wir den Begriff Normalelement auf eine andere Weise
charakterisieren. Das geschieht, auf Grund der in 2.) fest-
gestellten Tatsachen, in dem folgenden Satz:

Satz99. Es seien ¢ ein algebraisches Element iiber
K, ¢(z) das zu ¥ gehorige irreduzible Polynom aus
K und 9,,..., %, seine Wurzeln — die konjugierten
zu . Ist & normal iiber K, so gilt:

(L) K@) =K%, ..., 9%), d.h. der Wurzelkérper
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von g(x) fallt mit einem Stammkdrper von
¢(z) zusammen.

(IL) K(®¥) =":--=K(#,), d.h. die den konju-
gierten zu ¥ entsprechenden konjugierten
Stammkorper von ¢(z) fallen zusammen.

(I1L) 9y =¢:,(),..., P = gu(¥#), d. h. die konju-

gierten zu 19 gehdren zu K(&).

Umgekehrt folgt aus (L) oder (IL.) oder (IIL.), daB
# normal iiber K ist.

Beweis: a.) Ist & normal iiber K, so folgt nach Def. 29,
30 und Satz 95 zunidchst (II.), und daraus (L) nach Satz 60
[52], sowie (III.) nach Def. 18 [50] und Satz 82 [70].

b.) Aus (II1.) oder (1.) folgt zundchst K(%;) =< K(#) und
daraus (II.) nach Satz 72 [60]. Es geniigt also zu zeigen, daf
aus (I1.) die Normalitat von ¢ folgt. Das ist aber nach Satz 97
und Def. 29, 30 der Fall.

Satz 99 besagt insbesondere, daB mit ¢ auch alle seine
konjugierten ; normal bzw. nicht normal iiber K sind. Da-
her ist es sinnvoll, festzusetzen:

Zusatz zu Definition 30. Ein Polynom g¢(z) aus K
heiBt normal (oder galoissch) iiber K, wenn es erstens
irreduzibel ist, und wenn zweitens eine seiner
Wurzeln & normal iiber K ist.

Satz 99 148t wegen seiner schon geschilderten Bedeutung fiir
die Aussagen in Satz 98 erkennen, welche Einschrinkung die Forde-
rung der Normalitit fiir eine einfache algebraische Erweiterung N
von K bedeutet: Jedes primitive Element # von N muf den Be-
dingungen (I.)—(III.) geniigen; umgekehrt reicht schon eine dieser
Bedingungen fiir nur ein primitives Element & zur Normalitit von
N hin.

Die Form (I.) jener Einschrinkung zeigt, daB in Umkehrung
zu Satz 90, 94 [80, 85] auch jede einfache (separable) normale Er-
weiterung von K Wurzelkorper fiir ein (separables) Polynom aus K
ist. Im Falle der Separabilitit ist genauer jedes Polynom, fiir das
eine solche Erweiterung Wurzelkorper ist, separabel; denn gemaf

Satz 63 [55] und Def. 17, Zusatz [48] kann ein separables Ele-
ment nur von separablen Polynomen Wurzel sein.
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Die Form (I1.) weist eine bemerkenswerte Analogie zu den ent-
sprechend benannten Begriffen der Gruppentheorie auf (1, §9, ins-
besondere Satz 31 [64]). Der in §17 zu beweisende Fundamental-
satz wird diese formale Analogie als Ausflull eines sachlichen
Zusammenhangs erkennen lassen.

Die Form (IIL.) ist am greifbarsten und wird in konkreten
Fallen zweckmiaBig zur Feststellung der Normalitdt benutzt.

Nach dem iiber (I.) Gesagten giltin Analogie zu Satz 91 [83]:

Satz 100. Die Begriffe Wurzelkdrper eines separablen
Polynoms f(x), separable normale Erweiterung endlichen
Grades, endliche separable normale Erweiterung, ein-
fache separable normale Erweiterung, Stammkérper fiir
ein separables normales Polynom q(x) decken sich.

Genauer ist jedes Polynom f(x), fiir das eine
solche Erweiterung Wurzelkérper ist, und jedes
normale Polynom ¢(z), fiir das sie Stammkorper ist,
separabel.

Diese Begriffe sind also nur methodisch voneinander unter-
schieden. (Vgl. das in dieser Hinsicht bei Satz 80 Gesagte [69].)

Um bei der in den folgenden Paragraphen auseinanderzu-
setzenden Galoisschen Theorie, die sich mit der genaueren
Struktur der in Satz 100 charakterisierten Frweiterungen befaft,
auch dem Wortlaute nach weder auf ein bestimmtes Polynom noch
auf ein bestimmtes primitives Element oder primitives Element-
system Wert zu legen, entwickeln wir diese als Theorie der sepa-
rablen normalen Erweiterungen endlichen Grades und
schalten nur vorldufig ein, wie sich die darzulegenden Verhéiltnisse
gestalten, wenn man das Entspringen einer solchen Erweiterung
als Wurzelkorper eines bestimmten Polynoms oder als Stamm-
korper eines bestimmten normalen Polynoms hervorhebt.

4.) Zur Vorbereitung der letzteren Untersuchungen
fassen wir die im vorigen und in diesem Paragraphen erhal-
tenen Resultate iiber die Struktur des Wurzelkorpers eines
separablen Polynoms (Satz 90, 94, 98, 99) in folgendem Satz
zusammen und geben anschlieBend eine in dieser Hinsicht
grundlegende Definition:

Satz 101. Es seien f(z) ein separables Polynom
aus K und «,,...,0, seine Wurzeln. Dann existiert
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in seinem Wurzelkdérper W = K(ey, . ..,o,) ein pri-
mitives Element
D = hocgs -« oy 00),
so daf also W =K(#) ist und demgemil Darstel-
lungen
oy =k, (9), . o o0 = En(D)
bestehen. Jedes solche & ist normal iiber K, d. h. ist
¢(x) das zugehorige irreduzible Polynom aus Kund
sind &,..., %, seine Wurzeln — die konjugierten
zu & —, so bestehen Darstellungen
. ’01 = 91(19), DR ﬁn = gn(ﬁ)

*Definition 31. Jedes gemidB Satz 101 zu f(z) be-
stimmte Normalpolynom ¢(z) (gelegentlich auch
ein zugehdriges ) heiBit eine Galoissche Resolvente
fiir f(x) bzgl. K.

Die Bezeichnung Resolvente entstammt der dlteren Literatur
und soll zum Ausdruck bringen, daf die Gleichung f(z)--0 als
geldst anzusehen ist, wenn die Resolvente g(x) *© O geldost ist.
Denn nach Satz 101 ergeben sich ja die Wurzeln von f(z) durch
rationale Rechnung aus einer Wurzel von g(z). Die dabei zugrunde
liegende Vorstellung eines Auflésungsprozesses fir die Glei-
chung f(z) =- 0 kénnen und wollen wir uns aber hier nicht zu eigen
machen. Denn erstens ist — abgesehen von dem Spezialfall, wo ¢(z)
den Grad 1 hat, wo also f(z) in K in Linearfaktoren zerfillt — die
Gleichung f(z) =0 entweder ebensowenig lésbar wie die Glei-
chung ¢(z) -0 (n#mlich durch kein rationales Rechenver-
fahren) oder ebensogut 16sbar (nimlich durch die Konstruk-
tionen in §§8, 10), und zweitens kann aus entsprechenden Griin-
den, wie den in der Einleitung fiir 1.) angefiithrten, prinzipiell kein
rationales Rechenverfahren existieren, um die Koeffizienten einer
Galoisschen Resolvente ¢(2z) aus denen von f(x) zu bestimmen. Fiir
uns hat vielmehr die Galoissche Resolvente eine lediglich theore-
tische Bedeutung, indem ihre Wurzel 4 den Wurzelkorper
K(ogy .+« .yx,) in die ,einfache'* Gestalt K($) zu setzen gestattet.

Aus Satz 99, (1.) ergibt sich noch ohne weiteres:

Satz 102, Dann und nur dann, wenn f(x) ein Normal-
polynom ist, ist es Galoissche Resolvente fiir sich
selbst.

Aus diesem Grunde nennt man, wie in Def. 29, 30 [84, 87]gesagt,
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die normalen Polynome gelegentlich auch galoissche Polynome und
dementsprechend die normalen Erweiterungen, die ja, sofern sie
einfach sind, Stammkérper galoisscher Polynome sind, auch
galoissche Erweiterungen. Dabei wird das Wort galoissch klein
geschrieben, weil es anders als in Def. 31 nicht mehr auf Galois
hinweist, sondern nur noch ein mit normal gleichbedeutendes
Eigenschaftswort ist (ahnlich wie abelsch in 1, Def. 13 [50]).

5.) Wir kommen jetzt auf die auf S. 87 zuriickgestellte
Frage nach den samtlichen konjugierten zu § = h(x) zuriick.
Analog zu Satz 96, 97 [86] beweisen wir, allerdings nur fiir
separables {(z):

Satz 103. Es liege der Sachverhalt von Satz 95
[85] vor, und es sei iiberdies f(x) separabel. Dann
sind die Elemente f3,,...,5, die einzigen zu § kon-
jugierten innerhalb W oder innerhalb irgendeiner
Erweiterung von W.

Beweis: Sei §* ein zu § konjugiertes Element (in einer
Erweiterung von W). Nach Satz 73 [61] ist dann §* Wurzel
desselben irreduziblen Polynoms in K wie 5. Nach Satz 74,
75 [62, 65] ist daher der zugehorige Stammkérper K(5*)
auf Grund der Zuordnung f <- f* zum Stammkorper K(5)
isomorph bzgl. K.

Gemd Satz 101 sei nun W = K(#). Ferner seien ¢(z)
und @(z) die zu ¢ gehorigen irreduziblen Polynome in K und
K(8). Dann ist @(x)]q(x) (Satz 53 [43]); und W = K(8)
= K(B, &) ist Stammkérper zu @(z) iiber K(8) (Satz 75 [65]).

Durch den genannten Isomorphismus bzgl. K geht ¢(z) in
sich iiber, wihrend aus @(x) ein Polynom ¢*(x) mit den fol-
genden Eigenschaften entsteht: ¢*(x) ist irreduzibel in
K(B*); es ist ¢*(z) | g(z) (also sind die Wurzeln von ¢*(x)
unter denen von ¢(z) enthalten, d.h. gewisse der konju-
gierten zu 9); ist 9* eine Wurzel von ¢*(x), so ist (vgl
Satz 101, 99) W = K(*) = K(*, 9*) Stammkérper zu
@*(z) iiber K(5*).

Nach den Ausfiihrungen zu 1, Def. 7, Zusatz [24] erzeugen



92 1V. Die Struktur der Wurzelkérper algebraischer Gleichungen.

daher (analog wie im Beweis zu Satz 87 unter b.) [74]) die
Zuordnungen f «— (%, & < 9* einen Isomorphismus bzgl.
K von W zu sich selbst (einen sogen. Automorphismus
bzgl. K von W — siehe des niheren den folgenden § 14); oder,
anders gesagt, bei dem durch & <« 9* erzeugten Isomorphis-
mus von W = K(#) = K(9#*) zu sich selbst ist § <~ *. Bei
diesem Isomorphismus ist nun dem (gemaB Satz 101 darge-
stellten) Element o = k(#) das Element «* = k(9*) zu-
geordnet, das nach Satz 96 [86] eins der o; sein muB. Das
dem Element § zugeordnete Element 8* hat dann wegen der
Darstellung B = h(x) die durch jenen Isomorphismus ent-
stehende Darstellung B* = h(x*), ist also in der Tat eins der
= h{x
b Aug Satz 103 folgt mit Hinsicht auf Satz 96 [86] und Satz b8
[47], daB die verschiedenen unter den 8; die Wurzeln des zu 8
gehorigen irreduziblen Polynoms g(z), d. h. die konjugierten
zu B im dort eingefiihrten Sinne sind. Héufig findet man als die
konjugierten zu g auch die simtlichen g; bezeichnet; i. a.

sind das die Wurzeln von g(z), jede eine gewisse Anzahl von Malen
gesetzt. Niheres dariiber werden wir in Satz113[111] kennenlernen.

§ 14. Die Automorphismengruppe eines Erweiterungs-
bereichs.

Wir bereiten in diesem Paragraphen die im folgenden zu
machende Anwendung der Gruppentheorie auf die Struktur-
untersuchung der normalen Erweiterungen endlichen Grades
vor, indem wir die in Frage kommenden Gruppen einfiihren.
Um zu den Elementen dieser Gruppen zu gelangen, erinnern
wir daran, wie wir in 1, § 2 aus dem fiir Mengen definierten
Begriff eineindeutige Zuordnung durch Hinzunahme der
beiden auf die Verkniipfungen beziiglichen Forderungen (3.),
(4.) [23] den auf Bereiche beziiglichen Begriff Isomorphis-
mus bildeten. Ganz analog schaffen wir jetzt aus demin 1,§16
fiir Mengen definierten Begriff Permutation den entsprechen-
den auf Bereiche beziiglichen Begriff Automorphismus?):

1) Der Begriff Automorphismus 148t sich ebenso wie Isomorphismus
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Definition 32. Eine Permutation eines Bereiches
B, d.h. also eine eineindeutige Zuordnung mit be-
stimmter Zuordnungsrichtung von B zu sich selbst
(Bezeichnung —) heifit ein Automorphismus von B,
wenn sie auBerdem zu den in B definierten Ver-
kniipfungen in den Beziehungen steht:

(1.) aus a—a’, b=V folgt at+db—a 40,

(2.) aus a—a’, b—>0" folgt ab—a'?,

d.h. wenn sie den Isomorphiebedingungen [1, §2,
(3.), (4.) [23]] geniigt.

Hiernach iibertragen sich die an 1, Def. 36 [104] gekniipften
Bemerkungen iiber Permutationen sinngemd8 auf Automor-
phismen.

In anderer Gegeniiberstellung wie oben verhalten sich
auch die beiden Mengenbegriffe eineindeutige Zuordnung,
Permutation zueinander wie die beiden Bereich-Begrifle
Isomorphismus, Automorphismus, d.h. Automor-
phismus von B bedeutet soviel wie Isomorphismus von
B zu sich selbst mit bestimmter Zuordnungsrich-
tung.

]%aher iibertragen sich auch die an 1, Def. 7 [24] gekniipften
Bemerkungen iiber Isomorphismen sinngema8 auf Automorphismen.

Aus 1, Satz 56, 57 [105] ergibt sich nun mittels 1, Satz 19
[55] ohne weiteres:

Satz 104. Die Automorphismen eines BereichesB
bilden eine Gruppe, wenn unter dem Produkt
zweier Automorphismen von B ihr Produkt als Per-
mutationen, d. h. der durch ihre Nacheinanderaus-
fithrung entstehende Automorphismus von B ver-
standen wird. Der Typus dieser Gruppe ist durch
den Typus des Bereiches B eindeutig bestimmt.

Wir bezeichnen mit a , das durch Anwendung des Automorphis-
mus 4 aus dem Elemente a entstehende Element. (1.) und (2.)

(1, Def.17 [56]) auch fiir Gruppen einfiihren; doch brauchen wir das hier
nicht.
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konnen dann auch in die Form gesetzt werden:

1) (@+b),=a,+0b,, (2) (ab)y=a,b,.

Nach der Erklirung des Automorphismenprodukts gilt ferner
(ag)p=a4p-

Geht a durch alle Automorphismen aus einer Automorphismen-

menge I in ein- und dasselbe Element iiber, so bezeichnen wir

dieses sinngemiB mit agy.

Nach Satz 104 besitzt jeder Bereich mindestens den iden-
tischen Automorphismus a—a. DaB weitere Automorphismen
nicht notwendig vorhanden zu sein brauchen, zeigt das Beispiel der
Primbereiche T, P, Pp. Da nimlich, wie fiir Isomorphismen, auch
fiir jeden Automorphismus eines Integrititsbereiches 0— 0, e—e
gilt (vgl. das in 1 bei Def. 7 {24] Gesagte), so sind fiir die genannten
Bereiche nach (1.), (2.) alle iibrigen Uberginge zawangsliufig zu
a— a festgelegt. Beispiele fiir Bereiche (Korper) mit von der Eins-
gruppe verschiedenen Automorphismengruppen werden wir im
folgenden ausfiihrlich kennenlernen.

Ebenso wie wir fiir das Studium der Erweiterungsbereiche
B eines Bereiches B, den schirferen Begriff Isomorphismus
von B bzgl. By brauchten, haben wir auch hier den schirferen
Begriff Automorphismus von B bzgl. B, heranzuziehen:

Zusatz zu Definition 32, Ist B ein Erweiterungs-
bereich von By, so heiffen diejenigen Automorphis-
men von B, bei denen jedes Element von Byin sich
iibergeht, die Automorphismen von B bzgl. B,.

Automorphismus von B bzgl. B, bedeutet also
soviel wie Isomorphismus vonB zu sich selbst bzgl.
B, mit bestimmter Zuordnungsrichtung.

Daher iibertragen sich die an 1, Def. 7, Zusatz [24] gekniipften
Bemerkungen iiber relative Isomorphismen sinngemif auf relative
Automorphismen. Ist ferner, entsprechend zu den Ausfithrungen
vor Def. 20 [53], A = K(M) und fiihrt ein Automorphismus 4 von
A bzgl. K die Menge M in M iiber, so daB also auch A = K (M")
ist, so wird, wie dort, 4 schon durch Angabe der von M zu M’ fiih-
renden Substitutionen

, , %,B,... aus M
x—o’y f—f ""(oc’,ﬂ’,... aus M’)
vollstindig beschrieben. Analog zu Def. 20 [64] definieren wir in
dieser Hinsicht wieder:
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Definition 33, TEin Automorphismus bzgl K von
A= K(M) heiBt durch die bei ihm stattfindenden
Substitutionen der Elemente aus M erzeugt.

Insbesondere kann dabei M = M-’ sein; dann stellen jene Sub-
stitutionen eine Permutation von M dar, und 4 wird durch diese
Permutation von M erzeugt.

Mittels 1, Satz 19 [65] folgt schlieBlich aus Satz 104 ohne
weiteres:

Zusatz zu Satz 104. Die Automorphismen von B
bzgl. B, bilden eine Untergruppe der Gruppe aller
Automorphismen von B. Der Typus dieser Unter-
gruppe ist durch den Erweiterungstypus von B
eindeutig bestimmt.

Nach dem oben Bemerkten ist diese Untergruppe die volle Auto-
morphismengruppe von B, wenn B ein Integrititsbereich (Korper)
und B, sein Primintegrititsbereich (Primkorper) ist, dagegen die
Einsgruppe, wenn B mit B, zusammenfsllt.

§ 15. Die Galoisgruppe einer separablen normalen Er-
weiterung endlichen Grades.

Wir wenden jetzt die Begriffe des § 14, insbesondere den
Zusatz zu Satz 104, auf eine normale Erweiterung N endlichen
Grades von K an, die dann (wenn separabel) nach Satz100 [89]
auch einfach algebraisch iiber K ist. Zu Ehren von Galois,
der die weitgehende Bedeutung der Automorphismengruppe
fiir diesen Fall zuerst erkannte '), hat man die folgende Be-
zeichnung eingefiihrt:

*Definition 34. Die Gruppe & der Automorphis-
men bzgl. K einer normalen Erweiterung N endlichen
Grades von K heifit die Galoisgruppe von N bzgl. K.

Ist speziell & abelsch oder zyklisch, so heilt

1) Allerdings nicht in der hier gegebenen abstrakten Gestalt, sondern in
der konkreten Darstellung von § 16. — E. Galois fiel am 30. Mai 1832 im Alter
von 20 Jahren im Duell. Am Vorabend seines Todes schrieb er einen langen
Brief an einen Freund, in dem er (u. a.) dem der Pariser Akademie bereits ein-
gereichten ersten Entwurf seiner Theorie der algebraischen Gleichungen weitere
wichtige Resultate anreihte. Der Brief ist in seinen Werken abgedruckt.
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Diese Galoisgruppe iibersehen wir im Falle eines sepa-
rablen N auf Grund des folgenden Satzes vollstindig:

Satz 105. Es seien N eine separable normale Er-
weiterung vom Gradeniiber K, ¢ ein primitives Ele-
ment von Nund &,. .., 3, seine konjugierten. Dann
ist die Galoisgruppe & von N endlich von der Ord-
nung 7, und ihre » Automorphismen werden durch
die # Substitutionen ¥-—&; (¢=1,...,n) erzeugt,
fiithren also jedes Element 8 = h(#) aus N in die »
konjugierten B; = k(%) iiber.

Beweis: a.) Da ein Automorphismus bzgl. K von N nach
Def. 32, Zusatz [94] auch als Isomorphismus bzgl. K von N
zu sich selbst (mit bestimmter Zuordnungsrichtung) ange-
sehen werden kann, fiihrt er nach Def. 26 [60] jedes Element
aus N in ein konjugiertes iiber, speziell also ¢ in ein &;
(Satz 96 [86]) und dann die § = h(#)in f; = h(J;). Es gibt
somit hochstens die im Satz angegebenen n Moglichkeiten fiir
einen Automorphismus bzgl. K von N.

b.) Umgekehrt fiihrt jede dieser n Moglichkeiten nach
Satz 95 [85] zu einem Isomorphismus bzgl. K von N = K (&)
zu einem seiner # konjugierten Stammkorper K(#;), nach
Satz 99, (11.) [88] also von N zu sich selbst, und liefert daher
nach Def. 32, Zusatz einen Automorphismus bzgl. K von N.

Aus a.) und b.) ergeben sich die Behauptungen des Satzes,
wenn man noch hinzunimmt, daB wegen der Separabilitit
von N die # konjugierten 9y, ..., 9, zu &, als die Wurzeln
des zu & gehorigen irreduziblen Polynoms, untereinander ver-
schieden sind (Satz 58 [47]), also auch die durch die % Sub-
stitutionen & ¢; erzeugten » Automorphismen.

Um die Nacheinanderausfiithrung der durch die Substitutionen
$— &; erzeugten Automorphismen, d. h das Rechnen in der Galois-
gruppe & zu iibersehen, ist es zweckmiBig, die Elemente von ®
durch Ubergang zu einer isomorphen Gruppe in eine besser greifbare
Gestalt zu setzen, als es die bisherigen Automorphismen sind, oder,
wie man in der Gruppentheorie sagt, eine geeignete Darstellung
von ® zu geben. Das geschieht durch den folgenden Satz:
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Satz 106. Es mdégen die Voraussetzungen und Be-
zeichnungen von Satz 105 gelten; ferner sei
Q5= (2 — )+ (& — 8,)
das zu & gehorige, irreduzible Polynom aus K und ge-
mifB Satz 99, (IIL.) [88] )
1.) &; = g;(9), i=1,...,n)
Dann wird in der Menge $§ der durch die g,(x) reprisen-

tierten Restklassen mod. ¢(z) durch die Festsetzung

2) {9} x {g;} = {9}, wenn {g,(g,(2))} = {g,(=)}
eine unbeschrinkte und eindeutige Verkniipfung er-
klirt, die zu & vermége der Zuordnungen

3) (8 > 9 <> {g;()} (t=1,...,n)
isomorph ist.

Beweis: Es sei zunichst an die eineindeutige Znordnung (3.)
(8.65) zwischen den Elementen aus N und den Restklassen
mod. ¢(x) erinnert.

a.) Da g,(g,(®)) aus g,(#) durch & — (), also aus §; durch
& — ¥ entsteht, ist es nach Satz 105 ebenfalls ein ¢; und daher dann
%:(0(#)) = g,(9), {g;(9x(2))} = {g,(*)}. Somit wird durch (2.)
eine Verkniipfung in ¢ unbeschrinkt und eindeutig erklart.

b.) Da die #; wegen der Separabilitit von K verschieden sind,
sind auch die {g;} verschieden. Somit ist (3.) eine eineindeutige
Zuordnung zwischen @ und .

¢.) Da durch Nacheinanderausfithrung der durch ¢ — &; und
# — 9, erzeugten Automorphismen erst & in &; = g,(¢#) und dann
dies weiter in g,(#,) = g,(g,(8)) = ¢,(#) = &, iibergeht, also zu-
sammengenommen der durch & — §; erzeugte Automorphismus
resultiert, entspricht bei der Zuordnung (3.) der Multiplikation
in & die durch (2.) definierte Verkniipfung in §§. Somit ist bei (3.)
auch die Isomorphiebedingung (1, Satz 23 [56]) erfiills.

Aus a.), b.), c.) folgen die Behauptungen.

Die in Satz 106 angegebene Darstellung der Galois-
gruppe ® als Substitutionsgruppe % ganzer rationaler
Funktionen mod. ¢(x) ist bei gegebenem g(z) (fiir die Anwen-
dung auf den Wurzelkérper eines separablen Polynoms f(x) also
bei gegebener Galoisscher Resolvente dieses Polynoms) und ge-
gebenen Darstellungen (1.) der praktischen Rechnung ohne weiteres
zuginglich. Man reduziert dazu zweckmiBig die g,(z) anf ihren ein-
deutig bestimmten Rest mod. ¢(x) von niedrigerem als dem n-ten
Grade (Satz 13, 27 [16, 26]; siehe insbesondere die Bemerkung

Hasse, Hohere Algebra. II. 7
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hinter Satz 13) und bekommt dann ein vollstindiges Bild der Ver-
kniipfungen innerhalb § (also auch derer innerhalb &), wenn man
dasselbe fiir alle g;(g,(z)) tut. In der bisherigen Literatur wird

meist diese Darstellung § von & fiir die Definition der Galoisgruppe
verwendet. Das hat aber den Nachteil, daBl man sich dabei auf ein
bestimmtes primitives Element ¢ bezieht. Man hat dann also
nachzuweisen, daB fir alle primitiven Elemente &, d/,...iso-
morphe Gruppen &, ¥/, .. . resultieren. Unsere nur von den Kor-
pern N und K abhingige Definition hat den Vorteil, diesen Um-
stand dadurch von vornherein in Evidenz zu setzen, daf sie einen
Schritt tiefer eindringt, ndmlich alle Gruppen §,%”,...als Dar-
stellungen ein- und derselben Gruppe &, der Automorphismen-
gruppe von N bzgl. K, erscheinen laBt.

§ 16. Die Galoisgruppe eines separablen Polynoms.

Wenn man die Methoden des § 15 anwenden will, um zu einer
konkreten Darstellung der Galoisgruppe & des Wurzelkorpers W
eines separablen Polynoms f(x) aus K zu gelangen, so braucht man
dazu die Kenntnis einer Galoisschen Resolvente ¢(z) fiir f(x), auf
die man dann die Sitze 105, 106 anwenden kann. Da nach Satz 102
[90] f(x) selbst i. a. keine Galoissche Resolvente fiir sich selbst
ist, und da man ferner nach dem bei Def. 31 [90] Bemerkten eine
solche nicht durch ein rationales Rechenverfahren aus f(z) her-
leiten kann, ist es also von Interesse, eine konkrete Darstellung
von & anzugeben, die sich nicht aunf eine Galoissche Resolvente
g(x) fiir f(x), sondern lediglich auf f(x) und seine Wurzeln stiitzt.

Wir definieren zunéchst:

*Definition 35. Unter der Galoisgruppe eines Polynoms
f(z)aus Kversteht man die Galoisgruppe & seines Wurzel-
korpers W iiber K.

Ist speziell & abelsch oder zyklisch, so heiBt (wie W
nach Def. 34 [95]) auch f(x) abelsch oder zyklisch iiber K.

Wir beweisen nun den folgenden Satz, der die gewiinschte Dar-
stellung der Galoisgruppe von W, oder, wie wir jetzt sagen konnen,
der Galoisgruppe eines separablen Polynoms f(z) gibt:

Satz 107, Die Galoisgruppe ® eines separablen Poly-
noms f(z) aus K ist isomorph zur Gruppe B der durch
die Automorphismen aus & gelieferten Permutationen
der verschiedenen unter den Wurzelnay,..., a, von f(z).
Diese Permutationen lassen sich auch dadurch charak-
terisieren, daB bei ihrer Anwendung jede bestehende
ganzrationale Beziehung
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flogoonyop)=10
zwischen den Wurzeln von f(z) richtig bleibt.
Beweis: 1.) Wir zeigen zuniachst, daB sich @ iiberhaupt als
Permutationsgruppe P der verschiedenen «,...,«_ unter den

Wurzeln o, ..., o, darstellen laBt.

a.) Bei einem Automorphismus 4 bzgl. K des Wurzelkérpers W
von f(z) geht nach Satz 105 [96] jede der Wurzeln von f(z) in ein
konjugiertes Element, also nach Satz 73 [61] wieder in eine Wurzel
von f(x) iiber. Da A als eineindeutige Zuordnung verschiedene Ele-
mente in verschiedene {iberfiihrt, erfahren somit die verschiedenen
g5+« - 00z durch A eine eindeutig bestimmte Permutation P.

b.) DaW=K(e,, ..., )= Kl . .., ) ist, wird 4 durch P
erzeugt (Def. 33 [95]), und es entsprechen daher verschiedenen A
auch verschiedene P. Somit ist die Zuordnung zwischen der Galois-
gruppe & von W und der Menge P der durch ihre Automorphismen
bewirkten Permutationen P der «,,..., &7 eineindeutig.

¢.) Da fiir Automorphismen wie fiir Permutationen die Multi-
plikation als Nacheinanderausfithrung erklart ist, ist bei dieser Zu-
ordnung auch die Isomorphiebedingung (1, Satz 23 [56]) erfiillt.

Nach a.), b.), ¢.) ist B eine zu @ isomorphe Permutations-
gruppe.

2.) Wir zeigen jetzt, daB8 die Permutationen aus  durch die im
Satz genannte Eigenschaft charakterisiert sind.

a.) DaB jede bestehende Relation f(x4,...,a,) =0 bei An-
wendung der Permutationen aus B richtig bleibt, ist klar. Denn
die Anwendung einer solchen kommt nach 1.) der Anwendung des
durch sie erzeugten Automorphismus aus & gleich, und hierbei ist
dies ja nach Def. 32, Zusatz [94] und den Ausfihrungen zu 1, Def. 7,
Zusatz [24] der Fall.

b.) Es sei gemiB Satz 101 [83] & ein primitives Element von W,
g(x)=(z— 9,) - -- (x— 8,) die zugehorige Galoissche Resol-
vente fiir f(z) und

oy =k,(%) (»=1,..,1),
= R0ty « v 0y Gir).
Die Galoisgruppe & von W besteht dann nach Satz 105 [96] aus
den durch die Substitutionen #— &; (& = 1,.. ., n) erzeugten Auto-

1

) Coyue O N\ . .
morphismen. Istnun oz%’ ’ o )eme Permutation der« , . . ., &7,
P et ’L-,‘

bei der jede bestehende Relation f(x,, . .., «,) = O richtig bleibt,

und werden durch (le, % ) die durch sie bewirkten Uber-
ocil, .oy ocir
7*
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ginge fiir die volle Reihe «y, .. ., «, bezeichnet, so gehen die spe-
ziellen Relationen
o, =k, (h(oy, - ., ) (r=1,..,7),
g(Mexy, - .,oc,)) =0
bei ihrer Anwendung in die Relationen
o, = Fy(hlocigs - -,0‘1',)) (r=1,...,7),
g(Mogy .- x4,)) =0
iiber, die somit ebenfalls richtig sind. Wegen der letzteren ist also
Alociys o o oci7) = $; eins der konjugierten zu &, so daBl wegen der
ersteren Relationen o = k(3 aus o, = k,(8) durch den Anto-

Oy ey OF
morphismus & — &; entsteht. Die Permutation (0‘ 1 0">

T e e le[;-
entspringt daher wirklich gemiB 1.) aus einem Automorphismus
aus & und gehdrt mithin zu P.

Damit ist Satz 107 bewiesen. Er leistet iibrigens vom prak-
tischen Standpunkt aus nicht ebensoviel, wie der auf die Kenntnis
einer Galoisschen Resolvente von f(xz) gestiitzte Satz106 [97]. Denn
die Entscheidung dariiber, welche Permutationen die Eigenschaft
von Satz 107 haben, kann ohne Kenntnis einer Galoisschen Resol-
vente von f(z) i. a. nicht in endlich vielen Schritten getroffen werden.
Wir vermerken als Folge aus Satz 107 noch:

Satz 108, Istf(x)ein separables Polynom vom Grade
raus Kund 7 die Anzahl der verschiedenen unter seinen
Wurzeln, so ist der Grad n seines Wurzelkdrpers Wiiber
K ein Teiler von 7! (also erst recht vonrl).

Beweis: n ist nach Satz 105 [96] gleichzeitig die Ordnung der
Galoisgruppe & von W. Da nun nach Satz 107 die zu @& isomorphe
Permutationsgruppe ¥ Untergruppe der symmetrischen Gruppe &;
von 7 Elementen ist, ist nach 1, Satz 25, 58 [59, 107] n | 71.

§ 17. Der Fundamentalsatz der Galoisschen Theorie.

Der groBe Nutzen, den die Betrachtung der Galoisgruppe
@ einer separablen normalen Erweiterung N endlichen Grades
von K bietet, besteht darin, da man mit ihrer Hilfe einen
genauen Einblick in die Struktur des Erweiterungstypus von
N erhilt. Sie ermdoglicht es ndmlich, die von K zu N fiihrenden
Bausteine, d. h. die zwischen K und N liegenden Korper, in
ihren gegenseitigen Beziehungen vollstindig zu iibersehen,
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wenn man nur die Struktur von &, insbesondere die simt-
lichen Untergruppen von @& in ihren gegenseitigen Bezie-
hungen kennt. Da @ eine endliche Gruppe ist, ist das letztere
eine, wenigstens in jedem konkreten Fall, in endlich vielen
Schritten zu bewiltigende Aufgabe.

1.) Wir beweisen den folgenden Fundamentalsatz der
Galoisschen Theorie:

Satz 109. Es sei N eine separable normale Er-
weiterung vom Grade n iiber K und & ihre Galois-
gruppe von der Ordnungn. Dann besteht eine ein-
eindeutige Zuordnung zwischen den sdmtlichen in
N enthaltenen Erweiterungskérpern A von K und
den simtlichen (€ enthaltenden?!)) Untergruppen
9 von O, die durch jede der beiden folgenden, fiir
einander zugeordnete Aund 9 geltenden Tatsachen
(Ia), (Ib) vollstindig festgelegt wird:

(Ia)  besteht aus allen und nur den Automor-
phismen aus &, die jedes Element aus A in-
variant lassen.

(Taa) § ist also die Galoisgruppe von N bzgl A,
und daher ist die Ordnung m von  (der Index
von € in §) gleich dem Grade von N iiber A
und der Index § von  in ® gleich dem Grade
von A iiber K.

(Ib) A besteht aus allen und nur den Elementen
aus N, die bei jedem Automorphismus aus §
invariant bleiben.

Fiir diese eineindeutige Zuordnung gilt iiber-
dies, wenn gleich indizierte A und $ einander zu-
geordnet sind:

(IT) Ist A Erweiterungskdrper von A’ vom Grade k
iiber A’, so ist § Untergruppe von § vom In-
dex k in ' und umgekehrt.

1) € bezeichnet, wie in I, die identische Untergruppe (Einsgruppe). Beziiglich
dieses an sich liberflilssigen Zusatzes vgl. die angeschlossenen Bemerkungen.
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(IT1) Sind A, A konjugierte Erweiterungskorper

von K, so sind 9, 5 konjugierte Untergruppen
von & und umgekehrt. Genauer: Entsteht A
aus A durch den Automorphismus S, so ent-

steht § aus § durch Transformation mit dem
Element § und umgekehrt.

(IV) Ist A Normalkdrper iiber K, so ist § Normal-

V)

teiler von @ und umgekehrt.

Im Falle (IV)ist (neben dem in (Iaa) Gesagten)
die Faktorgruppe &/ isomorph zur Galois-
gruppe von A bzgl K, indem die Ausiibung
aller Automorphismen einer Restklasse von
® nach  auf die Elemente aus A immer ein-
und denselben Automorphismus von A bzgl. K
liefert.

Wegen der Eineindeutigkeit der durch (Ia) oder
(Ib) charakterisierten Zuordnung ist insbhesondere
die Anzahl der Kérper A zwischen Kund N endlich.

Bemerkungen: Zum besseren Verstindnis dieses Satzes und
seines Beweises werde die eineindeutige Zuordnung (Ia), (Ib) durch
die nachstehende Fig. 1 veranschaulicht, in der auf gleicher Héhe

N

K

stehende Korper und Gruppen einan-
der zugeordnet sein sollen. Speziell
sind nach (Ia) K und &, nach (Ib)
N und € einander zugeordnet!), und
es entspricht daher immer dem ,,bzgl.
nK* das ,,in &‘ und dem ,,in N* das
,»bzgl. €, wie wir es in der Formu-
lierung des Satzes mdglichst deutlich
zum Ausdruck zu bringen versuchten.
Nach (II) entspricht ferner dem ,,Auf-
steigen‘* von K zu N das ,,Absteigen‘
von & zu € und den relativen Graden

Fig. 1, )

1) Es ist also nicht, wie man zuniichst meinen mdchte, N seiner Galois-
gruppe & zugeordnet. Vielmehr ist § die Galoisgruppe von N bzgl. des
® zugeordneten K, ebenso wie § die Galoisgruppe von N bzgl. des
$ zugeordneten A ist.
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n,m, j, k der Korper die relativen Indizes n,m, j, & der entspre-
chenden Gruppen, wobei zweckmifig auch die Ordnungen der
Gruppen als Indizes (von € in ihnen) aufgefaBt werden. Durch
(I11) und (IV) rechtfertigt sich, wie in der Bem. zu Satz 99, (II.)
[89] angekiindigt, die gleiche Wahl der Benennungen normal
und konjugiert in Korper- und Gruppentheorie (vgl. jetzt auch
die Bem. bei Satz 93 [84]). In (III)—(V) kann (analog zu (II))
das spezielle zugeordnete Paar K, ® durch irgendein zugeordnetes
Paar A, §’ ersetzt werden 1), wie sich durch Anwendung des ganzen
Satzes auf A’ als Grundkorper und (gemi8 (Iaa)) $’ als Galois-
gruppe von N bzgl. A’ ohne Weiteres ergibt (vgl. dazu auch Satz 66,
70 [56, 59]). Dann erscheint (Iaa) als Spezialfall von (V), indem
in (V) ® und $ durch $ und € und demgemiB K und A durch A
und N ersetzt werden konnen. In der Tat ist ja /€ = 9.

Teilbeweis (I).

Um zu zeigen, daB durch (Ia), (Ib) ein und dieselbe ein-
eindeutige Zuordnung zwischen allen A und allen  ge-
liefert wird, geniigt es, folgendes festzustellen:

(1a) jedem A istgemaB (Ia) eindeutig einHzugeord-
net (Bezeichnung A—9),

(1b) jedem Hist gemiB (Ib)eindeuntigein Azugeord-
net (Bezeichnung H— A),

(%2a) aus A—9 folgt H— A,

(2b) aus H— A folgt A— 9.

Denn dann ist fiir die nach (2a), (2b) dasselbe besagenden

eindeutigen Zuordnungen (1a), (1b) das Erfiilltsein von 1,

§2, (4.), (e.) [17] durch (1a), von 1, §2, (¢".), (¢.) [17]

durch (1b) garantiert.

(1a) Das ist klar, weil nach 1, Satz19 [55] und der Defini-
tion des Automorphismenprodukts (Satz104 [93]) die
Menge § derjenigen Automorphismen aus @, die jedes Ele-
ment aus A invariant lassen, eine Untergruppe von & ist.

Dabei ist, wie in (Iaa) festgestellt, © die Galoisgruppe von

1) Fig. 1 entspricht einem solchen Fall, wo dies auch fiir (IIT) moglich ist,

indem A, A konjuglert sogar bzgl. A’ und §, § konjugiert sogar bzgl. £ ange-
nommen sind.
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N bzgl. A (Def.34 [95]) und daher die Ordnung von $
gleich dem Grade von N iiber A (Satz 105 [96]) und der In-
dex von $ in & gleich dem Grade von A iiber K (Satz 71 [59]
und 1, Satz 25 [59]).

(1b) Das ist klar, weil nach 1, Satz 6 [19] und den Be-
dingungen fiir Automorphismen bzgl. K [Def. 32, (1.), (2.)
{93] und Zusatz [94]] dic Menge A derjenigen Elemente
aus N, die bei allen Automorphismen aus $ invariant bleiben,
ein K enthaltender Teilkérper von N ist.

(%2a) Sei A— 9 gemifl (1a). Dann bilden wir — A ge-
méb (1b) und A— 9 gemil (la). Es gehoren dann die

{Elemente aus A\ }
Automorphismen aus
(Ia) bei § invariant sind
(Ib) die Elemente von A invariant lassen
nach {g:a;} zu der Gesamtheit { /—\ } aller solchen

L <
{Flemente aus N } d b es 1st{/\ A

weil sie nach {

Automorphismen aus & G < @} Aus der
ersteren dieser Relationen folgt [N : A]= [N : /H (Satz 70
[59]), aus der letzteren dagegen [N : AJ= [N : A], weil ,

© nach (Iaa) die Galoisgruppen von N bzgl. A, /1 sind, deren
Ordnungen nach Satz 105 [96] gleich den Graden von N

iiber A, A sind. Somit ergibt sich [N : A]= [N : A], d. h.
A=A (Satz72 [60]) und nach Wahl von A daher §— A
gemil (1b), wie in (2a) behauptet.

(2b) Sei §— A gemiiB (1b). Dann bilden wir A—§ ge-
maB (1a).

Einerseits folgt dann wie eben § < ©. Daraus ergibt sich
fiir die Ordnungen m, m von §, §

m=m.
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Andererseits bilden wir mittels eines primitiven Elements 9

von N das Polynom
"p(x)E (x— ﬁAl) et (.’E— ﬁAm)’

wo 4,, ..., Ap die Automorphismen aus $ sind. Seine Koef-
fizienten sind symmetrische ganze rationale Funktionen der
Wurzeln ﬁA”(lu =1,...,,m). Bei Anwendung eines Auto-
morphismus 4 aus § gehen die 94, in die (94,)4 = z?A”A
itber, erfahren also nur eine Permutation (1, Satz 16 [52]).
Die Koeffizienten von y(z) sind daher bei allen Automorphis-
men 4 aus  invariant und gehoéren somit gemiB (Ib) zu A.
w(x) ist also ein Polynom in A; es hat & = J5 als Wurzel,
und sein Grad ist gleich der Ordnung m von $. Daraus folgt

IN:A]J=[K@) : Al = [A@) : Al=[9 : A]=m
(Satz 61,77 [62, 66], Def. 22 [55], Satz 63 [43]). Nach
(TIaa) und Satz 105 [96] folgt aber aus A— 9, daB [N : A]
= m ist. Somit ergibt sich

m<m.
Zusammengenommen folgt also m=m, d. h. =9,

und nach Wahl von § daher A - gemiB (1a), wiein (2b)
behauptet.

Aus M= [N: A]l= [K(#): A] = m f{folgt iibrigens in Hin-
blick auf Satz 77 [66] und Def. 22 [55] noch, da8 y(z) das zu &
gehorige irreduzible Polynom in A ist.

Wir bezeichnen nunmehr die eindeutigen Zuordnungen
(1a), (1b), die nach (2a), (2b) in ein und dieselbe einein-
deutige Zuordnung zwischen allen A und allen $ zusammen-
fallen, durch A <« $.

Teilbeweis (II).

a.) Ist A>9, N9 und A=/, so lassen nach
(Ta) die Automorphismen aus § speziell die Elemente des
Teilkorpers A’ von A invariant, gehoren also nach (Ia) zu der
Gesamtheit © aller solchen Automorphismen aus ®. Somit

ist dann H = §'.
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b) Ist Ae>9, NV «= " und < §’, so bleiben nach
(Ib) die Elemente aus A’ speziell bei den Automorphismen
aus der Untergruppe  von £’ invariant, gehéren also nach
(Ib) zu der Gesamtheit A aller solchen Elemente aus N. So-
mit ist dann A= A’

DaB beidemal der Grad von A iiber A’ gleich dem Index
von  in ' ist, ergibt sich unmittelbar aus (Iaa), wenn man
dort A, §’ statt K, ® setazt.

Teilbeweis (III).
Dazu bemerken wir zunichst, daf ein Korper A zwischen
K und N durch einen Automorphismus S von N bzgl. K in
einen zu ihm bzgl. K isomorphen, also konjugierten Kérper
Ag zwischen K und N iibergeht, wie sich ohne weiteres aus
Def. 32, Zusatz [94] und Def. 26 [60] ergibt.
Ist nun A <=9, Ay« 9, und B ein Element aus A, f

das zugeordnete aus A, so folgt aus Bg =B, dall

(8 )s—lbs - ﬁss—lss = ﬁ@s = ‘Bs’
also B¢ bei der zu kon]uglerten Untergruppe . H8von®
invariant 1st Somit ist §* DS = 94 Da A gwegen SS— =K

durch §~ wieder in A iibergeht, folgt ebenso 898~ 1< 9,

oder auch 9 =< S'9 8. Somit ist D= 598, d.h
Ag— S $8. Um den Beweis von (III) zu vollenden, haben
wir also in Hinsicht auf die Eineindeutigkeit unserer Zuord-
nung nur noch festzustellen, da durch S 13"9 S bzw. Agalle

konjugierten zu § in & bzw. A in N reprisentiert werden,
wenn S die Gruppe ® durchliuft.
a.) Fiir § ist das nach 1, Def. 21 [62] unmittelbar klar.
b.) Fiir A ergibt es sich so: Wird A = K(f) gesetzt, so
ist Ag=K(B,). Durchlauft nun S die Gruppe ®, so
durchlduft 8 alle konjugierten zu § (Satz105 [96]), also

Ag alle konjugierten zu A (Satz 97 [86]).



17. Der Fundamentalsatz der Galoissechen Theorie. 107

Teilbeweis (IV).

Da nach (IIT) und wegen der Eineindeutigkeit unserer Zu-
ordnung das Zusammenfallen der konjugierten zu A und das
Zusammenfallen der konjugierten zu § fiir ein zugeordnetes
Paar N\ «— 9 sich gegenseitig bedingen, ergibt sich (IV) un-
mittelbar aus Satz 99, (I1.) [88] einerseits und 1, Satz 31
[64] andererseits.

Teilbeweis (V).

Es sei A <~ und gemaB (IV) A Normalkérper iiber K,
$ Normalteiler von @. Jeder Automorphismus S aus & be-
wirkt dann wegen Ag = A (vgl. Teilbeweis (II1)) einen Auto-
morphismus P bzgl. K von A, und da jedes Element von A
bei § invariant ist, wird so durch alle Automorphismen einer
Restklasse S ein und derselbe Automorphismus P von A
bewirkt. Umgekehrt entspringt jeder Automorphismus P
bzgl. K von A auf diese Weise aus einen Automorphismus §
aus @; denn ist 8 ein primitives Element von A, so ist nach
Satz 105 [96] B, eines der konjugierten zu §, und es existiert

daher, wiederum nach Satz 105, ein Automorphismus § aus &,
der 8in 8, iiberfithrt und somit fiir die Elemente aus A = K(8)

den Automorphismus P bewirkt. Hiernach sind den séimt-
lichen Restklassen von @& nach $, d.h. den Elementen der
Faktorgruppe &/9, eindeutig die sdmtlichen Elemente der
Galoisgruppe von A bzgl. K zugeordnet. Diese Zuordnung ist
dann auch eineindeutig, weil die Ordnung von &/9, d. h. der
Index von $ nach (Iaa) gleich dem Grad von A, nach Satz 105
also gleich der Ordnung der Galoisgruppe von A ist. SchlieB-
lich erfiillt die betrachtete Zuordnung nach der Erklirung der
Restklassenmultiplikation (1, Satz 22 [66]) auch die Iso-
morphiebedingung (1, Satz 23 [56]). Somit ist die Galois-
gruppe von A bzgl. K zur Faktorgruppe ®/$ isomorph und
entsteht aus ihr auf die in (V) angegebene Weise.

Damit ist der Fundamentalsatz vollstindig bewiesen.
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Beachten wir, daB sich bei der in ihm angegebenen einein-
deutigen Zuordnung nach (II) alle Enthaltensein-Relationen
und daher auch auf solche beziigliche Maximal- und Minimal-
eigenschaften in umgekehrter Folge entsprechen, so erhalten
wir die folgenden weiteren Eigenschaften jener Zuordnung:
Satz 110. Ist im Sinne von Satz 109
Al <> Opeen Ar 9,
und bezeichnet [---] den Durchschnitt, {---} das
Kompositum fiir Kiirper und Gruppen?), so gilt

Ay ]+ {@15'- ) 'Sz)r}

AT AW e 5 WA I I
Insbesondere gilt also nach der bei Satz 62 [b62] ge-

machten Bemerkung:
Zusatz. Sind ey, ...,o. Elemente aus N und ist im
Sinne von Satz 109
K1) <= 1 - - - Klox,) <~ Oy,

Koy, - - 06) <> [D1 - D]

2.) Die Anwendung des Fundamentalsatzes aunf die
Strukturuntersuchung der Erweiterung N von K ist nach dem
eingangs Bemerkten so zu denken, da man aus der als be-
kannt anzusehenden?) Struktur der Galoisgruppe & von N
bzgl. K Schliisse iiber die Struktur von N iiber K zieht. Um
so den zu untersuchenden Schritt von K nach N durch
Einfiigung einer Zwischenkérperkette

KA <A< - <A=N
in eine Folge einfacherer Schritte zu zerlegen, hat man
ausgehend von einer Untergruppenkette
B=9>H>->9,=¢,
die A; als die zugeordneten Zwischenkérper zu den Unter-
gruppen ; zu bestimmen. Das sukzessive Vordringen von

so gilt

1) Vgl. hierzu 1, Satz 7 [20], Def. 5 [20], Satz 21 [55], Def. 15 {56], ins-
besondere die im Anschl. an Def. 5 gegebene Charakterisierung von Durch-
schnitt und Kompositum.

?) Vgl. Satz 106 [97]), jedoch auch die Bem. vor Def. 35 [98] und nach
Satz 107 [100].
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K nach N ist dann, wenn man die Zwischenstufen A; je als
neue Grundkorper ansieht, mit einer sukzessiven Reduktion
der Galoisgruppe & von N bzgl. K auf die Untergruppen $,
verbunden, die ja nach (Iaa) die Galoisgruppen von N bzgl.
der A; sind. Der volle Schritt von K nach N ist zuriickgelegt,
wenn & vollstindig, d.h. auf € reduziert ist. Wahlt man ins-
besondere die §, so, dafl 9, , Normalteiler von , ist, so ist

nach (IV) A;,.; Normalkorper iiber /\;, und die diesem
Schritt entsprechende Galoisgruppe ist ,/9, ., ;.

Um eine Reduktion der Galoisgruppe & von N auf eine
Untergruppe $ im angegebenen Sinne zu leisten, hat man den
$ zugeordneten Teilkorper A von N zu bestimmen. Dies
wird zwar durch die Zuordnungsvorschrift (Ib) geleistet, aber
dadurch allein beherrscht man den Koérper A nicht in dem
MaBe, wie etwa durch Angabe eines primitiven Elements j
von A. Triir ein solches fiihren wir die folgende Definition ein:

Definition 36. Ist im Sinne von Satz109 A<«-9
und ist A =K(8), d. h. ist 8 ein primitives Element
des § zugeordneten A, so heiBt 8 ein zu § gehoriges
Element aus N.

Auf die Bestimmung eines solchen B aus einem primitiven
Element & von N gehen wir hier nicht ein (siehe dariiber 3, § 17,
Aufg. 4). Wir leiten nur nachstehend eine Reihe von Tatsachen
her, die in dieser Hinsicht von theoretischer Bedeutung sind.

Weil natiirlich auch umgekehrt jedes Element 8 aus N zu
einer gewissen Untergruppe $ von ®& gehért, nimlich der gemiB
K(B) = A« (eindeutig) bestimmten, so stellen diese Tat-
sachen ilberdies eine Erweiterung und gruppentheoretische Ver-
tiefung der frither gemachten Aussagen iiber die konjugierten eines
algebraischen Elements (Satz 95, 96, 103 [85, 86, 91]) dar.

Satz 111. Unter den Voraussetzungen von Satz
109 sei B ein zur Untergruppe  von ® gehoriges
Element aus N, und j der Index von § sowie

® =9+ + 95
die vordere Zerlegung von & nach . Bei Anwen-
dung der Automorphismen § aus @ entsteht dann
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immer durch alle Automorphismen aus einer Rest-
klasse S ein und dasselbe konjugierte ‘Bss zu f,

und die den j Restklassen 5 ,..., 9S; entsprechen-
den konjugierten ‘Bbs""’/g.bs- sind voneinander
1 i

verschieden; oder, wie man kurz sagt, das Element
f ist bei © invariant und bei & j-wertig.
Insbesondere ist also
1) g(z)= (x—ﬂ.@sl) o (x—ﬂﬁs,‘)
das zu f gehérige irreduzible Polynom in K.
Beweis: Da gemif Def. 36 die Elemente von A = K(g)
bei den Automorphismen aus §) invariant bleiben, gilt speziell
By = B und daher fo = B fiir jedes § aus ©. Die g stellen
nun sémtliche konjugierte zu f dar (Satz 103, 105 [91, 96]).
Weil ferner nach Satz 109 A = K(8), also § den Grad § hat,
gibt es im ganzen genau § verschiedene konjugierte zu §
(Satz 96, b8 [86, 47]). Da aber nach dem bereits Gezeigten
unter den ¢ hochstens die j Elemente ﬂ@S’(v =1,...,9)

voneinander verschieden sind, konnen unter diesen keine
gleichen mehr vorkommen, was die Behauptung ergibt.

Satz 111 1aBt sich auch umkehren:

Satz 112. Unter den Voraussetzungen von Satz
109 sei 8 ein bei der Untergruppe $ von & vom
Index j invariantes, bei ® j-wertiges Element aus
N. Dann ist B ein zu $ gehoriges Element.

Beweis: Ist K(8) = A« §’, d. h. § ein zu §’ gehoriges
Element, so ist nach (Ja) zunéchst $ < §’, weil die Elemente
aus A = K(§) nach der Voraussetzung sicherlich bei $ in-
variant sind. Ferner ist nach Satz 111 § bei & §'-wertig, wo
7 den Index von 9’ bezeichnet. Gemil der Voraussetzung
ist also §' =4, d. h. §" = 9, und somit § ein zu $ gehoriges
Element, wie behauptet.

Bemerkenswert sind die beiden Grenzfille von Satz 111,
112:
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Zusatz. Unter den Voraussetzungen von Satz
109 ist ein Element f aus N dann und nur dann ein
primitives Element von N, wenn es bei & n-wertig
ist, und dann und nur dann ein Element von K,
wenn es bei & 1l-wertig (invariant) ist?).

Die in Satz 111 ausgesprochenen Resultate lassen sich
(nach Satz 94 [85]) auf den in Satz 95 [85] zugrunde gelegten
Sachverhalt anwenden, wenn wieder (wie schon in Satz 103
[91]) das irreduzible Polynom f(2), dessen Stammkérper
A =K(x) und Wurzelkorper W = K{x, .. .,0,) studiert
werden, als zudem separabel vorausgesetzt wird. Wir be-
weisen in dieser Hinsicht, in Erginzung zu Satz 95 und
Satz 103:

Satz 113. Es liege der Sachverhalt von Satz 9
[85] vor, und es sei iiberdies f(x) separabel. Ist

dann
[K(x): K@B)l=k, [K(B):K]l=1,

kj=[K(x):K]=r,

so zerfallen die zu f konjugierten Elemente
Bis-. B, in § verschiedene Serien von je k ein-
ander gleichen.

Insbesondere ist also
, @)= (@—py) - (@—B,)
ein Polynom in K, das mit dem zu g gehorigen irre-
duziblen Polynom g(z) in K in der Beziehung steht

9()=g(2)".

Beweis: Wir wenden auf &, und damit auf § = k(x), alle
Automorphismen der Galoisgruppe & von W an. Es sei
(auBer den bereits im Satz eingefiihrten Gradbezeichnungen

also

1) Diese Tatsachen ergeben sich am einfachsten direkt aus dem im Funda-
mentalsatz festgestellten Zusammenfallen der Zuordnungen (Ia) und (Ib),
wenn man zum Ausdruck bringt, daB K und & nicht nur (wie schon in den dort
angeschlossenen Bemerkungen hervorgehoben, trivialerweise) gemidf (Ia),
sondern auch gemiB (Ib) zugeordret sind, und ebenso N und ¢ nicht nur gemis
(Ib), sondern auch gemaB (Ia).
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in der Kérperreihe W = K(x) = K(f) = K)
I=[W:K(&)], m=[W:K(@B)], #n=[W:K],
also
lk=m, mj=mn.

Nach Satz 111 entsteht nun einerseits aus & durch Anwendung
von & l-mal die Reihe der 7 verschiedenen zu o« konjugierten
Ops - - - 0 (Satz 58 [47]) und daher aus 3 ebenfalls I-mal die
Reihe der konjugierten i, ..., 5,; andererseits entsteht aber
aus f durch ® nach Satz 111 m-mal die Reihe der j ver-
schiedenen zu § konjugierten. Daher muB die (1-mal gesetzte)

Reihe B4, . . ., B, gerade k = ?-mal diese verschiedenen kon-

jugierten reprisentieren, wie behauptet.

Analog dem Zusatz zu Satz 111, 112 folgt aus Satz 113
noch:

Zusatz. Es liege der Sachverhalt von Satz 95 [85]
vor, und es sei iiberdies f(z) separabel. Dann ist
ein Element 8 aus A dann und nur dann ein primi-
tives Element von A, wenn die konjugierten
B ... B, alle voneinander verschieden sind, und
dann und nur dann ein Element von K, wenn diese
konjugierten alle einander gleich sind.

Im AnschluB an Satz 111 stellen wir ferner fest:

Satz 114, Es sei im Sinne von Satz 109 [101)
N<>9. Es sel ferner & ein zu € gehoériges und g
ein zu § gehdriges Element aus N, also N = K(#)
und A=K(8). Es seien schlieBlich 4,,..., 4, die
Elemente von  und 5;,...,9S; die vorderen Rest-
klassen von & nach . Dann gehdren die j konju-
gierten Elemente 'B@Sv je zu den j konjugierten

Untergruppen S,_ISQS,,.
Ferner ist

) p(@)= (2 —Ba) - (8 — Dup)
zu ¥ gehdrige irreduzible Polynom aus A. Das
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zu @ gehorige irreduzible Polynom ¢(x) aus K be-
sitzt die Zerlegung

(3) q(x)E %SI(T) o Wgsj(x) )
wo
(4) ppe(d)=(0—D, ) (6B, )
v=1,...,9).
Dabei sind die Faktoren y)my(w) die zu p(x) konju-
gierten, also ebenfalls irreduziblen Polynome in
den konjugierten Korpern

ASQSV: K(‘Bbsu) zu A.

Ist insbesondere $ Normalteiler von &, also A
Normalkdrper iiber K, so stellt demnach (3.) die
Zerlegung von ¢(z) in seine irreduziblen Faktoren
(4) im Korper A dar. Diese sind also dann simt-
lich von gleichem Grade und setzen sich der Zer-
legung von & nach $ entsprechend aus den Linear-
faktoren von ¢(z) zusammen.

Beweis: Die Behauptung iiber die f o folgt aus (ILI).

Die Behauptung iiber y(z) wurde bereits im Teilbeweis (I)
za Satz 109 unter (2b) gezeigt. Durch Anwendung der Auto-
morphismen S, auf Ay = A, yg(@)= p(x) folgt schlicBlich,
daB die zpwv(x) Polynome aus den /\bs” sind.

Ist N der Wurzelkirper eines separablen Polynoms f(z) aus
K, also g(z) eine Galoissche Resolvente fiir f(x), so hat man in der
ilteren Literatur fiir die in Satz 111, 114 geschilderten Verhiltnisse
folgende Ausdrucksweise (zu der aber Entsprechendes wie zu
Def. 31 [90] zu sagen ist):

Die Galoisgruppe & des Polynoms f(z) aus K wird durch
Adjunktion einer zur Untergruppe $ (Index j, Ordnung m) ge-
hérigen Irrationalitit f aus N, d.h. bei Zugrundelegung von
A= K(B) als Grundkorper, auf § reduziert. Diese Adjunktion
wird ermdglicht durch Lésung der Resolvente j-ten Grades (1.)
und bewirkt eine Zerfillung (3.) der Galoisschen Resolvente ¢(z) in
irreduzible Faktoren m-ten Grades (4.), die den j konjugierten

Hasse, Hoéhere Algebra. II. 8
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Korpern zu A = K(B) angehéren. Nach der Adjunktion von g
bleibt zur Bestimmung einer Wurzel & der Galoisschen Resolvente
g(z) noch die Resolvente m-ten Grades (2.), die Galoissche Resol-
vente von f(x) bzgl. A, zu lésen, die sich als der dem Korper A
entsprechende unter den Faktoren (4.) von ¢(x) ergibt. Ist ins-
besondere $ Normalteiler von @, so ist A = K(f) Normalkérper
iiber K und die Resolvente (1.) Galoissche Resolvente fiir sich selbst
mit der Galoisgruppe /9.

Die kon]uglerten Bos, zu B sind zu den konjugierten Unter-

gruppen S, .‘QS von § gehorige Irrationalititen aus N. Die gleich-
zeitige Ad]unktlon aller konjugierten fgs,, d. h. aller Wurzeln
der Hilisgleichung (1.) reduziert somit nach "Satz 110, Zusatz [108]

die Galoisgruppe ® auf den Durchschnitt [S7 19S5, . . S,‘l.i)S ]
aller zu § konjugierten Untergruppen, d. h. nach 1, Satz 33 [65]
auf einen Normalteiler von &, wie es nach Satz 94 [85] und
Satz 109, (IV) [102] auch sein muf.

3.) Es sei schlieBlich bemerkt, dal man den Fundamental-
satz auch zur Strukturuntersuchung einer beliebigen (nicht
notwendig normalen) separablen Erweiterung A endlichen
Grades von K verwenden kann. Denn ist A = K(x) und sind
G1s - « - O, die konjugierten zu i, so ist A Teilkorper des Nor-
malkérpers N = K(ey, - . . ., &) iiber K. Ist dann & dessen
Galoisgruppe, $ die A zugeordnete Untergruppe, so stehen
die Gruppen zwischen & und $ in eineindeutiger Zuordnung
mit den Eigenschaften von Satz 109 [101] zu den Koérpern

zwischen K und A. Der Beweis von Satz 113 [111] ist ein
Beispiel fiir diese Behandlungsweise.

A, Loewy') hat des weiteren sogar gezeigt, dafl man den
ganzen Gedankengang der Galoisschen Theorie von vornherein
fiir eine beliebige endliche separable algebraische Erweiterung
A =K(oy, ..., &) (W0 also ay,. ..o, nicht notwendig die Wurzeln
eines Polynoms sind), nicht nur fiir eine normale, durchfithren
kann. An Stelle der Antomorphismen und Permutationen
treten dann Isomorphismen und sog. Transmutationen (ein-
eindeutige Zuordnungen mit bestimmter Zuordnungsrichtung der

1) Neue elementare Begriindung und Erweiterung der Galois-
schen Theorie, Sitzungsber. d. Heidelb. Ak. d. Wiss., Math.-Nat.-Wiss. K1.
1925,
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o1+ + O, 20 einem System je konjugierter Bpp e e Opy s vgl. den

Beweis von Satz 90 [80]), die nicht mehr eine Gruppe, sondern
ein sog. Gruppoid bilden. Auf diese Weise gelangte Loewy
iibrigens ebenfalls zu einer von dem Satz von den symmetrischen
Funktionen unabhiingigen Begriindung der Galoisschen Theorie
(vgl. die erste Anm. zum Beweis von Satz 90).

§ 18. Abhingigkeit vom Grundkorper.

Durch den Fundamentalsatz der Galoisschen Theorie und
die daran gekniipften Ausfithrungen wird die Frage beant-
wortet, wie die Struktur einer separablen normalen Erweite-
rung N von endlichem Grade eines Grundkérpers K beein-
flut wird, wenn man von K zu einer in N enthaltenen
Erweiterung A von K als Grundkérper iibergeht. Wir wenden
uns jetzt noch der Frage zu, wie sich die Verhéltnisse gestalten,
wenn man den Grundkorper K durch eine beliebige Erweite-
rung K von K ersetzt. Diese Frage entspringt, wie die Be-
trachtungen am SchluB von § 17, aus dem Bestreben, eine
vorgelegte Erweiterung N der angegebenen Art von K aus
in moglichst einfachen Schritten zu erreichen oder — und
darin liegt die Verallgemeinerung gegeniiber § 17 — auch nur
einzufangen. Man hat dabel vornehmlich im Auge, diesen
Schritten irgendeine allgemeine Einfachheitsbedingung auf-
zuerlegen, die mit dem vorgegebenen N nichts zu tun hat,
z. B., wie wir es in V durchfithren werden, die Bedingung,

n
durch Adjunktion von Wurzeln}/a im speziellen Sinne des
Wortes zustande zu kommen.
1.) Ist N der Wurzelkérper W eines Polynoms
f(x)= (x—o;)- - (—o) aus K, so hat man bei Uber-
gang zu einer Erweiterung K von K als Grundkirper auch
den Wurzelkérper W = K(ay, . - ., &) von f(z) iiber K durch
den erweiterten Wurzelkérper W = K(ay,...,%,) von
f(«) iiber K zu ersetzen, und nach Satz 60 [52] ist dann und
8#



116 IV. Die Struktur der Wurzelkérper algebraischer Gleichungen.

nur dann W =W, wenn K < W ist, wenn also der Fall des
vorigen Paragraphen vorliegt. Da nach Satz 100 [89] jede
Erweiterung N von K der angegebenen Art als Wurzelkdrper
W eines Polynoms f(z) aus K darstellbar ist, 1aBt sich auf diese
Weise erklaren, was unter der Betrachtung von N iiber

einer Erweiterung K von K als Grundkérper zu
verstehen ist, ndmlich der Ubergang zu der Erweiterung

N =W von K. Diese Erklirung scheint zuniichst abhiingig
von der Wahl des Polynoms f(z) zu sein. Wir beweisen jedoch:
Satz 118. Ist N eine separable normale Erweite-

rung endlichen Grades von K und K eine beliebige
Erweiterung von K, so legen die Wurzelkérper

iiber K aller Polynome aus K, fiir die N der Wur-
zelkorper iiber K ist, simtlich ein und dieselbe

separable normale Erweiterung N endlichen Gra-

des von K fest.
Beweis: Es seien

(@)= (s—09) - (2= v,
)= (s—a?) - (6 —ok
zwei Polynome aus K, fiir die N der Wurzelkérper iiber K ist,
und N, N* die Wurzelkérper fiir f(x), f¥(=) iiber K. Da dann
N* =K(o¥,...,0%) Z Ko, .. ,ok) =N =Kl 00)
ist, enthilt N* einerscits K, andererseits 0y - - -, Oy als0 auch
Koy -+ o) =N, d.h. es ist N*=N. Ebenso folgt
N= N* Somit ist N = N*.

Die demnach von der Wahl des Polynoms f(z) unab-
héngige Erweiterung N von K ist natiirlich separabel und
normal von endlichem Grade iiber K (Satz 100 [89]).

Die Erweiterung N von K aus Satz 115 ist durch die Eigen-

schaft, Wurzelkdrper iiber K fiir alle Polynome aus K zu sein,
fiir die N Wurzelkdrper iiber K ist, in demselben Sinne ein-
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deutig ') bestimmt, wie der Wurzelkérper eines Polynoms
gemi Satz 87, 89 [73, 76], d.h. irgend zwei solche Er-
weiterungen von K sind bzgl. K isomorph, und keine Er-

weiterung von K enthilt zwei verschiedene solche Erweite-
rungen. Wir kénnen daher definieren:

Definition 37. Die durch K,N,K eindeutig be-
stimmte Erweiterung N von K aus Satz 115 heifit

die Erweiterung N von K betrachtet iiber K als Grund-
korper.

Es ist fiir uns wichtig, diese Erweiterung N noch auf eine
andere Weise zu charakterisieren:
Satz 116. Ist unter den Voraussetzungen von

Satz 115 N die Erweiterung N von K betrachtet
iiber K als Grundkérper, so gilt:
1.) N enthdlt N,

2.) kein Korper zwischen K und N auBer N
selbst enthdlt N.

N ist durch 1.),2.) eindeutig bestimmt.
Beweis: a.) DaB 1.), 2.) fiir N gelten, folgt unmittelbar

aus der zur Definition benutzten Eigenschaft von N sowie
aus der Minimaleigenschaft der Wurzelkérper (Satz 88 [75]).

b.) Es habe die Erweiterung N* von K die Eigenschaften

1.), 2)). Dann enthilt N* nach 1.) die Wurzeln «, . . ., &,
jedes Polynoms f(z) aus K, fiir das N der Wurzelkérper iiber

K ist, also auch den Kérper N aus Satz 115. Es ist dann also
N ein | Korper zwischen K und N*, der N enthilt, und daher
N = N*, weil 2.) fiir N* vorausgesetzt ist.

1) Diese Eindeutigkeit ist wesentlich beingt durch die Normalitit von N.

Fiir beliebige Erweiterungen endlichen Grades A = K(ay, .. ., op)y WO &y, .. 4 4
nicht notwendig die Wurzeln eines Polynoms aus K sind, wiirde sich bei Be-
trachtung iiber K die Unterscheidung der konjugierten zu A = K (ay, ..., )

notwendig machen.
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Die Eigenschaften 1.), 2.) besagen, daB N der engste N
und K enthaltende Teilkorper von N, also das Kompositum
{N, K} ist.

Da hierbei N selbst als der zum Zustandekommen des Kom-

positums {N, K} = N erforderliche, N und K gemeinsam ent-
haltende Hilfskérper (Korper K von 1, Def. 5 [20]) anzusehen ist,

kann N nicht von vornherein als das Kompositum {N, K} de-
finiert werden. Vielmehr wird die Darstellung von N als Kom-
positum {N, K} erst durch die gemiB Satz 115 ausgefithrte Kon-
struktion von N erméglicht, und die bestimmte Ausdrucksweise
,»das Kompositum {N, K}** erst durch die in Satz 115 bewiesene
eindeutige Bestimmtheit von N allein durch N und K. Wir geben

diesem logischen Verhiltnis, daf die Korper N und K vor der
gemil Satz 115 vollzogenen Komposition voneinander ,,frei*,
d. h. nicht in einer gemeinsamen Erweiterung enthalten sind, im
Anschlufl an Def. 37 wie folgt Ausdruck:

Zusatz zu Definition 37. Die im Sinne von Satz
115 und Def. 37 verstandene Erweiterung N von K,

betrachtet iiber K als Grundkérper, heit auch das

freie Kompositum von N und K (Bezeichnung
{N.Kp).

Zum besseren Verstindnis sei noch angefiigt, daB man das
freie Kompositum von vornherein als das gewohnliche Kompositum
von N und K definieren kann, wenn man von der durch Steinitz
bewiesenen Existenz und Eindeutigkeit des Kérpers A aller alge-
braischen Elemente iiber K (siche § 11) Gebrauch macht. Denn

dann kann dieser Korper A, der auch den Korper A aller alge-
braischen Elemente iiber K, also insbesondere den Kdrper N enthalt,

als Hilfskérper fiir die Komposition von N und K zugrunde gelegt
werden !).

1) Dasselbe geht dann auch fiir eine beliebige algebraische Erweiterung A
von K, und sogar eindeutig, da die ,,von unten her*, d. h. bei freier Komposition
durch ein Satz 115 verallgemeinerndes Verfahren, nicht zu unterscheidenden

konjugierten zu A = {A, K} ,,von oben her*, d.b. innerhalb A von vornherein
unterschieden sind.
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Die in Satz 116 erhaltene Charakterisierung der Erweite-
rung N von K betrachtet iiber K als freies Kompositum
{N, IZ} ist fiir uns deshalb wichtig, weil sie zeigt, daB der
in Satz 115 und Def. 37 eingehende Grundkérper K in Wahr-
heit nur die Rolle eines Hilfskorpers spielt. Da nimlich in
Satz 116, 1.), 2.) von K gar nicht die Rede ist, gilt:

Satz 117. Ist N eine separable normale Erweite-
rung endlichen Grades von K, K eine Erweiterung
von K und N die Erweiterung N von K betrachtet
iiber K, so ist N auch die Erweiterung N von K*
betrachtet iiber K, wenn K* irgendeinen gemein-
samen Teilkérper von N und K bezeichnet, iber
dem N separabel und normal von endlichem Grade
ist.

Insbesondere kann also auch der weiteste gemein-
same Teilkérper von N und K, d. h. der Durchschnitt [N, K]
als Grundkoérper angesehen werden, fiir den ja die erforder-
lichen Bedingungen erfiillt sind (Satz 70, 92, 93 [59, 83, 84]).
Um weiterhin mit den Bezeichnungen von § 17 in Einklang
zu kommen, schreiben wir jetzt A statt K, so daB N = {N, A}
ist, setzen A= [N, A] und veranschaulichen N
die in Betracht zu ziehenden Korper und
ihre Beziehungen zueinander, in sinngeméBer
Ausdehnung der in Fig 1 zu Satz 109 [102]
verwendeten zeichnerischen Veranschau-
lichung, durch die nebenstehende Fig. 2.
Nach Satz 117 hat dann N die Eigenschaft
von Satz 115 auch fiir A als Grundkérper,
Ferner gilt wegen der Symmetrie des Kom.
positums {N, A} in N und A : K

Satz 118. Sind N und A separable Fig. 2.

>
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normale Erweiterungen endlichen Grades von K,
so ist das freie Kompositum N={N, A} sowohl
die Erweiterung N von K betrachtet iiber A als
auch die Erweiterung A von K betrachtet iiber N.
Es ist dann also N sowohl iiber A als auch iiber
N separabel und normal von endlichem Grade.

2.) Wir beweisen nunmehr den folgenden Hauptsatz, der
unsere eingangs gestellte Frage vollstindig beantwortet:

Satz 119. Es sei N eine separable normale Er-
weiterung endlichen Grades von K und & die
Galoisgruppe von N bzgl. K. Ferner sei A irgend-
eine Erweiterung von K und

N={N,A}, A=[N,A].

SchlieBlich sei § die dem Kérper A zwischen K
und N zugeordnete Untergruppe von .

(I) Dann ist die Galoisgruppe  von N bzgl. A
isomorph zur Galoisgruppe $ von N bzgl. A. Es
lassen sich nédmlich die Automorphismen aus $
und § erzeugen:

a.) Durch ein und dieselben Substitutionen
irgendeines primitiven Elements & von N bzgl A
(also speziell eines solchen von N bzgl. K).

b.) Durch ein und dieselben Permutationen der
Wurzeln «y,...,«a, irgendeines Polynoms ¢(z) aus A,

fiir das N der Wurzelkérper iiber A ist (also speziell eines
solchen aus K, fiir das N der Wurzelkorper iiber K ist).

Insbesondere ist hiernach (Fig. 3)

3 [N:A]l=[N:A],
und wenn A von e_lzdlichem_Grade iiber A ist, auch
[N:NJ]= [A:A].

(II) Ordnet man die Kérper A* zwischen A und
N und die Kérper A* zwisechen A und N auf Grund
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des unter (I) beschriebenen Isomorphismus zwi-
schen  und $ und gemiB Satz 109 [101] einander
zu, so ist das eine eineindeutige Zuordnung zwi-
schen den A* und A*, bei der die Relationen ,ent-

l " ’/YT‘?
N N i
|

o, 74X
. -
A M
K Kt
Fig. 3. Fig. 4.

halten, konjugiert, normal“, soweit sie sich auf
einander zugeordnete Korper und Grundkérper der
angegebenen Art beziehen, einander entsprechen.
Bei dieser Zuordnung ist iiberdies (Fig. 4)

N =[N, A*], N= {N, A*},

A= [N A], N ={N% AL

(III) Ist speziell A normal iiber K, so ist auch A

normal iiber K (aber nicht notwendig umgekehrt).

Teilbeweis (I).
a.)!). Es sei & ein primitives Element von N bzgl. A und
y(z) bzw. p(z) das zugehérige irreduzible Polynom aus A

bzw. A. Dann ist zundchst p(z) ein Teiler von y(z) (Satz 53

1) Man vergegenwirtige sich zu diesem Beweis_, daB die Elemente von N zu N

gehoren (Satz 116, 1 [117]), also mit denen von A in rechnerische Beziehungen
gesetzt werden konnen. Ohne das Vorhandensein einer gemeinsamen Erweite-

rung von N und A wiire das unzulissig. Es konnte dann z. B. das Polynom V(z)
nicht wie im Text deflniert werden.



122 IV. Die Struktur der Wurzelkorper algebraischer Gleichungen.

[43]). Da ferner ¢(x) in N in Linearfaktoren zerfillt (Satz 93
[84]; 98 [87]; 99, (IIL) [88]), ist (x) ein Produkt aus
gewissen dieser Linearfaktoren, also auch Polynom in N.
Somit gehért (x) sogar zum Durchschnitt A = [N, Al
Wegen der Irreduzibilitit von (z) ist also y(z)= yp(x).

Aus N = {N, A} = {A(9), A} = A(®) folgt ferner,
daf & auch primitives Element von N bzgl. A ist.

Hieraus und aus der zuvor bewiesenen Tatsachep(z) = y(z)
ergibt sich die Behauptung (I) a.) nach Satz 105 [96].

b.) Ist N der Wurzelkérper von p(x)= (x—o;) -+ - (x — )

iiber A, also N der Wurzelkérper von () iiber A (Satz 115, 117),
so werden nach Satz 107 [98] die Automorphismen der Galois-

gruppe § baw. § erzeugt durch diejenigen Permutationen der ver-

schiedenen unter den o, ..., &,, bei deren Anwendung jede be-
stehende ganz-rationale Beziehung y(oy,...,o,)=0 bzw.
7(0%q, « + +y 00y) = O mit Koeffizienten aus A bzw. A in eine ebenfalls

richtige iibergeht. Die Gruppen P bzw. P dieser Permutationen,
die zu § bzw. § isomorph sind, sind wegen der durch a.) bewiesenen

Isomorphie von $ und § auch zueinander isomorph, haben also
insbesondere die gleiche, endliche Ordnung. Da nun die Permu-

tationen aus 8 die genannte, auf den Korper A beziigliche Eigen-
schaft a fortiori fiir den Teilkérper A haben, weil die Relationen
x(o3, .« o,) =0 unter den Relationen (o, ... %,)=0 vor-

kommen, ist f < P und somit nach obigem B = P, wie unter
(I) b.) behauptet.

Die unter (I) genannten Gradrelationen ergeben sich ohne
weiteres aus Satz 109, (Iaa) [101], bzw. doppelter Anwendung von
Satz 71 [59] gemidl Fig. 3.

Teilbeweis (II).
Der erste Teil der Behauptung (II) ist nach (I) und Satz

109 [101] klar. Sei ferner A*, A* ein demgemi$ zugeordnetes
Korperpaar. Wir schlieen dann unter Ausnutzung der elemen-
taren Eigenschaften von Durchschnitt und Kompositum so:

Erstens ist A*= [N, A*]. Sind nimlich $* H* die
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A*, \* zugeordneten Untergruppen von §,$ und & ein pri-
mitives Element von N bzgl. A, also nach dem Beweis fiir

(I) a.) auch von N bzgl. A\, so besteht A* bzw. A* nach unserer
Zuordnungsvorschrift in (IT) und nach Satz 109, (Ib) [101]

aus allen rationalen Funktionen iiber A bzw. A von &, die bei
§* bzw. H* invariant sind. Nach (I) a.) ist daher A* < A*,
und somit auch A* << [N, A*]. Da umgekehrt die Elemente
des Durchschnitts [N, A*] als solche von N rationale Funk-

tionen von ¢ iiber A sind und als solche von A* bei §* in-
variant sind, sind sie nach (I) a.) bei $* invariant, d. h. es ist

auch [N, A*] < A*. Zusammengenommen ergibt sich also
A* = [N, A*], wie behauptet.

Zweitens folgt N = {N, A*} trivialerweise aus
N={N,A*}={N,A}=N.

Drittens folgt A = [A*, A] trivialerweise aus
AZ [A5A1< [N,Al=A.

Viertens ist A* = {A*, A}. Aus der zuvor bewiesenen
Relation A* < A* folgt némlich jedenfalls A* = {A*, A}.
Wiire nun A* > {A*, A}, so ergibe die Ausfithrung der im
ersten Teil von (II) festgestellten eineindeutigen Zuordnung

mittels des unter ,erstens** bereits als giiltig erwiesenen
Durchschnittsmechanismus auch

A* = [N, A*] > [N, {A%, A}],
wihrend doch trivialerweise A* <X [N, {A*, A}] ist.

Durch die letzteren Nachweise rechtfertigt sich die Art, wie
in Fig.4 die Querverbindung zwischen A* und A* gezogen ist.

Teilbeweis (III).

Ist neben N auch A normal iiber K, so sind die konjugierten
bzgl. K zu einem primitiven Element des Durchschnitts
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= [N, A] nach Satz 98 [87]; 99, (IIL) [88]; 103 [91]
sowohl in N als auch in A, also auch im Durchsehnitt A ent-
halten. Nach denselben Sitzen ist daher dann A normal iiber
K. Damit ist Satz 119 bewiesen.

3.) Das in Satz 119 unter (I) ausgesprochene Resultat
besagt im AnschluB an die Ausfiihrungen in § 17, 2.) [108],
daB die Galoisgruppe & von N bzgl. K durch Ubergang zu

einer beliebigen Erwelterung A von K als Grundkérper
ebenso reduziert wird, wie durch Ubergang zu dem Durch-

schnitt A = [N, A], d. h. dem in N enthaltenen Teil A
von A.

Da hiernach die Adjunktion von nicht in N enthaltenen Ele-
menten zu K den Aufbau von N nicht weiter fordert als die Adjunk-
tion von geeigneten in N enthaltenen Elementen zu K, nennt man
nach Kronecker die ersteren (soweit iiber K algebraisch) akzes-
sorische Irrationalititen, die letzteren natiirliche Irra-
tionalitdten fiir die Erweiterung N von K. DaB man trotz der in
Satz 119, (I) erhaltenen Ergebnisse bei gewissen Untersuchungen
akzessorische Irrationalititen heranziehen muB, liegt daran, daB
sehr wohl die Adjunktion einer akzessorischen Irrationalitit einer
vorgeschriebenen Einfachheitsbedingung geniigen kann, wihrend
dies fiir die Adjunktion einer gemif Satz 119, (I) dquivalenten
natiirlichen Irrationalitit nicht der Fall ist.

Das in Satz 119, (II) ausgesprochene Resultat besagt, daf
der nach Ubergang zu A als Grundkérper zum Einfangen von
N noch zu machende Schritt von A nach N [vgl. Satz 116,
2.)] dem Schritt von A nach N in jeder fiir uns in Frage
kommenden Hinsicht dquivalent ist, und da8 iiberdies dabei
jedes im Sinne von Satz 119, (II) einander zugeordnete
Korperpaar A* und A* die Rollen von A und A iibernehmen
kann.

Legt man nun in Verallgemeinerung der Ausfithrungen in
§ 17, 2.) [108] eine beheblge Erwelterungskette

1) K=A<AN <A< ---< A/,
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zugrunde, so entspricht dem eine Kette

@) K=NA=A=A=---=A=N
von Korpern zwischen K und N, deren Zustandekommen
wir durch die nachstehende Fig. 5 veranschaulichen.

N ’/_\(76) N7‘/_\7

KAgA, Fig. 5.

Nach der sukzessiven Konstruktion ist dabei

3) N={Niei, A}, AP =[N, A,
und es sind die Korper 7\§i_1), 7\§i_2), . K?), N; die
A im Sinne von Satz 119, (IT) zugeordneten Teilkorper
von Ni—ly Ni_g, .. .,—Nl, N.

Aus Satz 119, (III) folgt, daB dabei AL " iiber A;_y,
also nach Satz 119, (IT) auch A; iiber A;—; normal ist, wenn

/_\,- iiber /_\i_l normal ist (aber nicht notwendig umgekehrt).
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Durch sukzessive Anwendung von Satz 119, (II) unter
Beriicksichtigung der Minimaleigenschaft des Kompositums
(1, hinter Def. 5 [21] oder 2, Satz 116, 2.)) und der Maximal-
eigenschaft des Durchschnitts (1, hinter Def. 5) ergibt sich
ferner leicht, dal in jedem Parallelogramm unserer schema-
tischen Figur (mag es eine ,,Grundmasche sein oder aus
mehreren ,,Grundmaschen® zusammengesetzt) der Korper
links unten der Durchschnitt und der Korper rechts oben das
Kompositum der beiden Korper links oben und rechts unten
ist. Insbesondere bestehen also neben den rekursiven Dar-
stellungen (3.) auch die alle Zwischenschritte iiberschlagenden
Darstellungen

4.) Ni={N,As},  Ai=[N,AJ,
aus denen nach Satz 119, (I) folgt, daB das sukzessive Auf-
steigen zu den Grundkérpern der Kette (1.) mit einer sukzessi-
ven Reduktion der Galoisgruppe & von N bzgl. K auf die der
Kette (2.) nach dem Fundamentalsatz zugeordnete Unter-
gruppenkette

(6.) B=9=HD=9=--=95=C
verbunden ist. Nach (4.) und den Eigenschaften von Kompo-
situm und Durchschnitt ist dann und nur dann, wenn einmal

A, = N und damit A, = N, ist, d. h. wenn gemil (5.) die
Galoisgruppe & auf $, = € reduziert ist, A,= N, d.h. N,
wie es als Ziel vorschwebte, durch die Kette (1.) eingefangen.

V. Auflosbarkeit algebraischer
Gleichungen durch Wurzelzeichen.
Die in IV entwickelte Theorie verdankt ihre Entstehung

und bildet demgem&f die Grundlage fiir die Behandlung der
schon zu Beginn von § 18 erwihnten, beriilhmten Frage,
unter welchen Bedingungen eine algebraische
Gleichung durch Wurzelzeichen auflésbar ist.
Deren Beantwortung fiir Grundkdrper der Charakteristik 0
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ist der vorliegende, letzte Abschnitt gewidmet. Wir prézi-
sieren dazu zundchst die Frage durch die Definition der
Auflosbarkeit durch Wurzelzeichen (§ 19), ent-
wickeln sodann als notwendige Hilfsmittel die Theorie der
Kreisteilungskorper (§ 20) sowie der reinen und der
zyklischen Erweiterungen von Primzahlgrad (§ 21)
und leiten darauf durch Anwendung der in IV behandelten
Galoisschen Theorie ein gruppentheoretisches Kriterium
fiir die Auflésbarkeit durch Wurzelzeichen her
(§ 22). SchlieBlich skizzieren wir noch den durch die Galois-
sche Theorie gelieferten Beweis fiir die auf anderem Wege
zuerst von Abel gefundene Nichtauflésbarkeit durch
Wurzelzeichen der allgemeinen algebraischen Glei-
‘chung héheren als vierten Grades (§ 23).

In § 20 fiigen wir einen kurzen Abri der Theorie der end-
lichen Korper an und beseitigen dabei insbesondere die in
dieser Hinsicht im Beweis von Satz 90 [80] noch gebliebene
Unvollstandigkeit.

§ 19. Definition der Auflésharkeit durch Wurzelzeichen,

Wir geben in diesem Paragraphen eine exakte Formu-
lierung dafiir, was unter der Ausdrucksweise durch Wurzel-
zeichen aufldsbar zu verstehen ist. Der aus den Elementen

n
gelaufige Begriff [/a, wo a ein Element eines Korpers K und
n eine patiirliche Zahl ist, wird dort bekanntlich als Lisung

der Gleichung a® —a ==0 erkldrt. Wegen der hierbei i. a.
n

vorliegenden Mehrdeutigkeit wollen wir die Bezeichnung }/a
nicht verwenden, operieren vielmehr an Stelle des Wurzel-
zeichens mit der zugehérigen Gleichung:

Definition 38. Ein Polynom der Form 2" —a heiBt
rein.

Damit die zu Eingang dieses Abschnitts gestellte Frage nicht
trivial wird, hat man natiirlich neben der in ihr genannten Operation
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des Wurzelziehens auch die, von diesem Standpunkte aus unter-
geordneten, vier elementaren Rechenoperationen mit in den Kreis
der zuldssigen Operationen aufzunehmen?!). Mit einer Wurzel o
eines reinen Polynoms gelten dann also auch alle ihre rationalen
Funktionen uber dem Grundkérper K, d.h. alle Elemente von
K(o) als bekannt. Der Sinn unserer Frage geht aber noch weiter:
Es wire unsystematisch, wenn man der Operation des Wurzel-
ziehens nach einem solchen Schritt Halt gebieten wollte. Viel-
mehr ist es verniinftig, weiter auch die Wurzeln reiner, dem so
erreichten Kdrper K(«) angehoriger Polynome als bekannt anzu-
schen usf. Unsere Frage kommt dann also darauf hinaus, unter
welchen Bedingungen man die Wurzeln, d. h. den Wurzelkérper
eines Polynoms /(x) aus K oder allgemeiner irgendeine Erweiterung
A von K durch von K ausgehende sukzessive 2) Adjunktion von
Wurzeln reiner Polynome erreichen oder einfangen kann. Hieraus
ergibt sich leicht eine Reduktion beziiglich der in Betracht zu
ziehenden Wurzelzeichen: Ist ndmlich 2" — a ein reines Polynom

aus K von zusammengesetztem Grade n = n,n, und « eine seiner

Wurzeln, so ist o™ = o, eine Wurzel des reinen Polynoms z™ — a

aus K und weiter o eine Wurzel des reinen Polynoms 2™ — «, aus
K(e;). Somit kann man sich auf die sukzessive Adjunktion von
Wurzeln reiner Polynome von Primzahlgrad beschranken. Je nach
Geschmack kann nun hierbei noch die Einschrinkung hinzugefiigt
werden, daB diese Polynome in dem jeweils erreichten Korper
irreduzibel sein sollen oder nicht. Da die irreduziblen Polynome
die einfachsten Bausteine fiir die Konstruktion algebraischer Er-
weiterungen sind, erscheint es theoretisch richtiger, diese Be-
schrankung aufzunehmen 3). Wir definieren demgemiB:

*Definition 39. Eine Erweiterung A von K heilit
rein iiber K, wenn sie durch Adjunktion einer
Wurzel eines irreduziblen reinen Polynoms aus K
herleitbar ist.

1) Sonst wiren eben nur die reinen Gleichungen durch Wurzelzeichen auf-
losbar.

2) Nicht nur durchsimultane. Das besagt hier (ande:s als bei Satz 62 [52])
mehr, denn & kann sehr wohl Wurzel eines reinen Polynoms aus einer Erweite-

rung K von K sein, ohne doch Wurzel ¢ines reinen Polynoms aus K zu sein.

3) Tatsdchlich ist die in Satz 127 [144] gegebene Antwort auf unsere Frage (fiir
Grundkorper der Charakteristik 0) von dieser Beschrinkung unabhingig, wie sich
aus den spiteren Sitzen 123,126 [137. 141] leicht ergibt. Gerade in Hinsicht
auf Satz 126 erscheint es mir aber richtiger, die Irreduzibilitit zu fordern, da
die ,,grobere* Fragestellung an der algebraisch interessanten ,,feineren'* Struktur
der Kreisteilungskérper ganz vorbeisieht.
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*Definition 40. Eine Erweiterung endlichen Grades
A von K heiBt durch Wurzelzeichen auflosbar iiber K,
wenn eine Erweiterungskette

K=A <A< <A mit A=A
existiert, in der A; rein und von Primzahlgrad
iiber A;_; ist.

Ein Polynom f(x) aus K heifit durch Wurzelzeichen
auflosbar iber K, wenn sein Wurzelkorper iiber K es ist.

§ 20. Kreisteilungskorper. Endliche Korper.

Um die Frage nach der Auflosbarkeit durch Wurzelzeichen
behandeln zu kénnen, haben wir die Theorie des speziellen reinen
Polynoms 2" — e vorauszuschicken, dessen Wurzeln im Falle
des rationalen Grundkérpers P, wenn man sie gemiB dem sog.
Fundamentalsatz der Algebra als komplexe Zahlen darstellt,
die Teilung der Peripherie des Einheitskreises in = gleiche
Teile leisten. In Hinsicht auf unsere Anwendungen wollen wir
uns hier nicht auf diesen Spezialfall P beschrinken, sondern
allgemeinere Grundkérper K zulassen, nennen aber in An-
lehnung an jenen Spezialfall auch allgemein 2™ — e =0 die
Kreisteilungsgleichung und ihren Wurzelkorper T, den
Kreisteilungskorper fiir # iiber K. Uber die Wurzeln der
Kreisteilungsgleichung fiir » iiber K, die sog. n-ten Einheits-
wurzeln iiber K, beweisen wir dann zunichst den folgenden
Satz:

Satz 120. Es sei K ein Kérper, dessen Charakte-
ristik 0 oder eine nicht in n aufgehende Primzahl
ist. Dann bilden die n-ten Einheitswurzeln iiber K
beziiglich der Multiplikation eine zyklische Gruppe
8 der Ordnung n. Es existieren also # verschiedene
n-te Einheitswurzeln iiber K, die sich als die Po-
tenzen

Co =, Cly reey Cn—l

Hasse, Hohere Algebra. II. 9
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einer unter ihnen, einer sog. primitiven n-ten Ein-
heitswurzel {, darstellen lassen.

Beweis: Esseien(;, . . ., £, die Wurzeln von fn(a:)z " —e.
Dann ist die Ableitung

LE)=niTH0  @=1,...,m),
weil natiirlich {;== 0, also nach dér Voraussetzung iiber die
Charakteristik von K dann auch nZ} " == 0ist (Satz 43 [37]).
Nach Satz 56 [46] sind also die n Wurzeln £; voneinander
verschieden. Da ferner aus {7 =e,; = ¢ folgt ((2,)" =e¢,
bilden die # verschiedenen n-ten Einheitswurzeln eine abel-
sche Gruppe 8 der Ordnung = (1, Satz 20 [55] angewandt
auf die multiplikative Gruppe der Elemente == 0 des Kreis-
teilungskérpers T,).

Nach Satz 34 [32] hat dann jedes Element {; von 3 einen
bestimmten Teiler m; von » als Ordnung. Es sei nun ¢ ein
Element aus 8 von mdoglichst hoher Ordnung m. Wir haben
zu zeigen, daf m = n ist, woraus ja folgt, dal die n Potenzen
%%, ..., verschieden sind und somit die Gruppe § er-
schopfen. Sei dazu p eine beliebige Primzahl und werde (gemi8
Satz 12, 22 [14, 22])

m= pﬂmr m; = Puimi mit ("T’L, p) =1, (mi’ p) =1
gesetzt. Dann haben offenbar C:”i, £*"die Ordnungen p'*, 7,

also nach Satz 35 [32] C:"iC * die Ordnung p”%. Wegen der
Maximalauswahl von m ist somit p*im < p“m, d. h. u, < p.
Es enthilt also m; jede Primzahl p hiochstens in der Potenz,
in der p in m vorkommt, d.h. es ist m; | m (Satz 20 [22])
und somit C;” = e. Die n verschiedenen n-ten Einheitswurzeln

{; sind also simtlich Wurzeln des Polynoms m-ten Grades

™ —e. Daraus folgt m = n (Satz 48 [41]), was mit m|n

zusammen m = # und damit unsere Behauptung ergibt.
Nach Satz 37 [34] (vgl. auch das zn Satz 31 [30] Ge-
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sagte) haben wir noch ohne weiteres:

Zusatz. Ist { eine primitive n-te Einheitswurzel
iiber K, so sind alle und nur die Potenzen {7, die
den @(n) primen Restklassen m mod. n entsprechen,
ebenfalls primitiv.

Hierauf beruht die in folgendem Satz enthaltene Be-
stimmung der Galoisgruppe des Kreisteilungskérpers T,:

Satz 121. Ist K ein Kérper wie in Satz 120 und ¢
eine primitive n-te Einheitswurzel iiber K, so ist

das Polynom
n—1
(m, n)=1
dessen Wurzeln die ¢(n) verschiedenen primitiven
Einheitswurzeln sind, ein Polynom in K. Tst
i) = I @ —")
der zu { gehorige irreduzible (nach Satz 59 [48]
separable, nach Satz 99, (IIT) [88] normale) Faktor
von g,(x), so reprisentieren die m eine Untergruppe
B, der primen Restklassengruppe P, mod. n. Die
Galoisgruppe ®, des (separablen, normalen) Kreis-
teilungskorpers T, ist dann zu dieser Gruppe %P,
isomorph auf Grund der Zuordnung des durch
{—~¢™ erzeugten Automorphismus von T, zu der
Restklasse m mod. n.

Insbesondere ist also T, abelsch (Def. 34 [95])
und ferner der Grad von T, iiber K ein Teiler von
@(n) (Satz 105 [96]).

Beweis: a.) Da nach Satz 107 [98] ein Automorphismus
von T, bzgl. K einerseits die n verschiedenen Wurzeln {; von
2® — e nur untercinander vertauscht, andererseits deren
Potenzdarstellungen ¢; = " invariant 148t, geht ¢ durch ihn

wieder in eine primitive n-te Einheitswurzel iiber, so daB auch
9*
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die @(n) verschiedenen primitiven n-ten Einheitswurzeln
durch ihn nur untereinander vertausecht werden. Hiernach
sind die Koeffizienten von g,(z) bei allen Automorphismen
von T, bzgl. K invariant und gehoren somit zu K (Satz 112,
Zusatz [111]).

b.) Da Tn=K(’,....5" ") = K(¢), also eine primitive
n-te Einheitswurzel iiber K gleichzeitig auch primitives Ele-
ment von T, bzgl. K ist, konnen (Satz 105 [96]) die Auto-
morphismen von T, bzgl. K durch die ihnen entsprechenden
Substitutionen von ¢ beschriebenw erden. Hat also g,(x) die
Bedeutung aus dem Satze, so wird die Galoisgruppe &, von T,
bzgl. K durch die Substitutionen £—{™ dargestellt, und ihre

Elemente sind hierdnrch der Menge S8, der durch die 7 repri-
sentierten primen Restklassen mod. »n eineindeutig zu-

geordnet. Da nun{— £ und £ — ™ nacheinander ausgefithrt
C— (™)™ = "™ ergeben, kommt bei dieser Zuordnung die
Multiplikationin @, auf die Multiplikation der Restklassen in‘j3,,

hinaus. Daher ist diese Zuordnung isomorph und B, eine zu
&,, isomorphe Untergruppe von Ra.

Bei der Untersuchung der Auflosbarkeit durch Wurzel-
zeichen spielen gemilB Def. 40 [129] die Einheitswurzeln von
Primzahlordnung » = p eine besondere Rolle. Wir beweisen
fiir diesen Fall in Erweiterung des Satzes 121:

Satz 122. Es sei p eine Primzahl und K ein Kor-
per mit von p verschiedener Charakteristik. Dann
ist der Kreisteilungskorper T, zyklisch iiber K von
einem in p —1 aufgehenden Grade.

Beweis: Nach Satz 121 ist der Grad von T, iiber K ein
Teiler von ¢(p) und die Galoisgruppe ®, von T, bzgl. K
isomorph zu einer Untergruppe P, der primen Restklassen-
gruppe ‘B,. Nun bilden die Restklassen mod. p nach Satz 28
[27] sogar einen Korper, den Primkérper P, (Def. 13 [35],
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Satz 41 [36]). Die ¢(p) Elemente von ‘B, sind dann die
p—1 von Null verschiedenen Elemente von P, (Satz 17 [20])
und sind als solche Wurzeln der Kreisteilungsgleichung
gP—1—¢==0 (Satz 29 [29]), also die sémtlichen (p —1)-ten
Einheitswurzeln itber P,. Nach Satz 120 [129] bilden sie
somit beziiglich der Multiplikation eine zyklische Gruppe.
Daher ist $3,, nach Satz 36 [33] also auch die Untergruppe

Ry, d. 1. ®, zyklisch und also T, zyklisch iiber K (Def. 34 [95])
von einem in p — 1 aufgehenden Grade.

Trivialerweise folgt iibrigens aus Satz 44 [37]:

Zusatz. Hat K die Charakteristik p, so ist

o’ —e= (z—e)?, also ¢ die einzige p-te Einheitswurzel
iiber K, und Tp= K.

Es ist bemerkenswert, wie die abstrakte Korpertheorie,
durch die ohne weitere Schwierigkeiten mogliche Ausdehnung
des in der Zahlentheorie gewdhnlich nur fiir den Grundkérper
P bewiesenen Satzes 120 [129] auch auf P,, auf einfachste
Weise zu dem Schluf fiihrt, daB die prime Restklassengruppe
Bp zyklisch ist, oder, wie man in der Zahlentheorie sagt, daf
eine primitive Wurzel mod. p existiert, nimlich eine solche
ganze Zahl 7, daB fiir jedes zu p prime ganze m eine Potenz-
darstellung

besteht.

Wir fiigen noch eine Bemerkung fiber den Spezialfall des Kreis-
teilungskorpers Tp liber dem rationalen Grundkorper P an. Mit
zahlentheoretischen Hilfsmitteln (Eisenstein-Schénemann-
scher Satz, siehe 3, § 20, Aufg. 6) zeigt man, daf das Polynom

P
gp(x) = 2_113 1P 2. 4 24+1
aus Satz 121 in P irreduzibel ist, also Tp den Grad ¢(p)=p—1

itber P hat. Ist nun p — 1 = 2" (» = 0) eine Potenz von 2, so
kann nach Satz 109 [101] T, von P aus durch sukzessive Adjunktion
quadratischer Irrationalititen erreicht werden, weil dann die nach

Satz 122 zyklische Galoisgruppe @p von Tp bzgl. P die Ordnung 2*
hat und folglich nach Satz 36 [33] eine Untergruppenkette

G =9>H>--->9,=¢

m=rtmod. p (u=0,...,p—2)
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derart besitzt, daB §; Untergruppe vom Index 2 von £, _; ist. Kann

umgekehrt T, von P aus durch sukzessive Adjunktion quadra-
tischer Irrationalititen erreicht (oder auch nur eingefangen) werden,
so enthilt die Gruppe ® nach den Ausfithrungen in §17, 2.) [108]
und §18, 3.) [124] eine Untergruppenkette der eben beschriebenen
Art!), und somit ist dann ihre Ordnung p — 1 eine Potenz von 2.
Daraus ergibt sich das beriihmte

Resultat von GauB., Das reguldire p-Eck fiir eine
Primzahl p ist dann und nur dann mit Zirkel und
Lineal konstruierbar, wenn p eine Primzahl von der
Form 2° + 1 ist.

Man weiB bis heute nicht, ob die mit p = 2, 3, 5, 17, 257, 65537
beginnende Folge der Primzahlen dieser Form abbricht oder nicht.
(Siehe hierzu auch 3, § 20, Aufg.14.15.)

Auf analoge Weise werden wir aus Satz 122 im néichsten Para-
graphen als das hauptsdchlichste Ziel der Digression dieses Para-
graphen die Auflosbarkeit von Tp durch Wurzelzeichen iiber be-
stimmten Grundkérpern K folgern.

Auf Grund von Satz 120 [129] kann jetst mit Leichtigkeit
gegeben werden:

Kurzer Abrifl der Theorie der endlichen Korper.

A. Wir haben bereits endliche Korper, d. h. solche aus nur
endlich vielen Elementen, kennengelernt, nimlich fiir jede Prim-
zahl p den Primkorper Pp (Restklassenkorper mod. p) aus genan
p Elementen (§ 4).

Sei jetzt E ein beliebiger endlicher Korper. Dann ist auch der
in E enthaltene Primkérper endlich, also nicht zum rationalen
Zahlkorper isomorph. Daher gilt (Satz 41 [36]):

(I) Die Charakteristik von E ist eine Primzahl p.

Nach dem im Anschluf an Satz 41 Gesagten kann dann E
als Erweiterung des Primkérpers Pp angesehen werden. Trivialer-
weise ist dabei E von endlichem Grade iiber Pp (Def. 25 [57]).
Aus der eindeutigen Darstellung o« = a,, + + - + + @y, der Ele-
mente « aus E durch eine Basis &y, ..., 0, von E bzgl. Pp mit
Koeffizienten a,, ..., a,, aus Pp folgt dann:

(II) Ist [E:Py]=m, so hat E genau p™ Elemente.

Wir verallgemeinern jetzt die fiir den Primkérper Pp selbst im
Beweis zu Satz 122 angewandte SchluBweise auf E. Die multi-
plikative Gruppe der von Null verschiedenen Elemente von E
(1, §6, Beisp. 1 [53]) hat nach (II) die Ordnung p™ — 1. Diese

1) Fiir den allgemeinen Fall des Einfangens siehe den ausfiihrlichen
Beweis zu dem spiteren Satz 127, Teil a), Anm. 1 [145].
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p™ — 1 von Null verschiedenen Elemente geniigen daher der Glei-
chung 2P™ 1 _ e~ 0 (Satz 34 [32]), sind also die simtlichen
(p™ — 1)-ten Einheitswurzeln iiber Pp, und daher ist die aus ihnen
gebildete Gruppe zyklisch (Satz 120):

(III) Ist [E:Pp]l=m, so ist E der Kreisteilungs-
kérper Tym_; iber P,

Die von Null verschiedenen Elemente von E sind
die Wurzeln der Gleichung 2?1 _ ¢ 0, die simtlichen
Elemente von E also die Wurzeln der Gleichung
" —z 2 0.

In E existiert ein primitives Element ¢ derart, daBl
die p™—1 von Null verschiedenen Elemente von E
als die Potenzen

g®=e, o,...0r"2
darstellbar sind.

Umgekehrt gilt:

(IV) Fiir beliebiges m ist der Kreisteilungskérper
Tpm_1 iiber Pp ein endlicher Kérper mit [Tpm_lsz] =m.

Denn T,m_, ist als Erweiterung endlichen Grades des endlichen
Korpers Pp (Satz 83 [70]) selbst ein endlicher Kérper (Def. 25,
Zusatz [57]). Dieser hat genau p™ Elemente; seine Elemente
werden nimlich bereits durch Null und die p™ — 1 Wurzeln von
zP™—1_¢, d.h. durch die p™ Wurzeln von 2" —z erschopft; denn
diese p™ Wurzeln bilden bereits einen Kérper, weil aus o™ = «,

BP™ = B nicht nur (wie im Beweis zu Satz 120) folgt (xB)"" = of

pm
und (falls g + 0) (%) =§, sondern nach Satz 44 [37] auch

(x+ BP™ =+ B. Nach (II) folgt daher plT?"—1:Fpl— ym
d.h. in der Tat [Tym_4: Pp]=m.

Da durch die Elementanzahl p™ die Charakteristik p und der
Grad m eindeutig bestimmt sind, gilt nach (III) und (IV):

(V) Fir jede Elementanzahl der Form p™ gibt es
genau einen endlichen Korpertypus, namlich den
Kreisteilungskérper Tpm_1 iiber Pp-

Ferner gilt:

(VI) Die Teilkdérper von Tpm—1 sind alle und nur die
Kérper Ty, ; mit u|m, und es ist dabei

m
[Tpm_s: Tpual =~
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Denn einerseits ist, wenn T’,,l_1 < Tp,,.__1 ist, nach Satz71[569)

m
o= {Tpu g Pl [ Tpm_y: Pyl=m, und [Tpm_4:Tpu_q]= "

Andererseits ist, wenn u |m ist und dementsprechend m = uu’
gesetzt wird,

P l= 1= (1) (T 1),
also p#—1|p™—1, und daher Tp#_1 = Tpm—p da dann die
(p* — 1)-ten Einheitswurzeln unter den (p™ — 1)-ten vorkommen.

Durch (V) und (VI) ist eine vollstindige Ubersicht iiber alle
endlichen Kdrpertypen und ihre gegenseitigen Beziehungen ge-
wonnen.

B. Sei jetzt E= T m_, ein endlicher Grundkdrper und H eine
endliche Erweiterung von E. Trivialerweise ist dann zundchst H
von endlichem Grade » iiber E (Def. 25 {57]) und daher wieder
ein endlicher Kérper (Def. 25, Zusatz [57]), der nach (VI) die
Form H = Tpmn_y hat. Ist dann g ein primitives Element von H
im Sinne von (III), so ist g erst recht primitives Element im Sinne
von Def. 19 [562] von H bzgl. jedes Teilkorpers. Also:

(VII) H ist einfach iiber E.

Hiermit ist die im Beweis von Satz 90 [80] zuriickgebliebene
Unvollstindigkeit beseitigt.

Da die Charakteristik p von H in der Ordnungszahl p™" —1
der Einheitswurzeln, die H bilden, nicht aufgeht, gilt ferner nach
dem in Satz 121 [131] Bemerkten:

(VIII) H ist separabel iiber E.

SchlieBlich gilt nach Satz 94 [85]:

(IX) H ist normal iiber E.

Daher sind die Sitze der Galoisschen Theorie auf die Er-
weiterung H von E anwendbar. Wenn auch eine Ubersicht iiber
die Korper zwischen H und E durch (VI) bereits ohne Verwendung
der Galoisschen Theorie gewonnen ist — es sind alle und nur die

Tpm,,_.1 mit ¥ |n —, so interessiert doch theoretisch die Fest-
stellung:

(X) H ist zyklisch iiber E.
Die Galoisgruppe von H bzgl. E besteht nédmlich
aus den Potenzen des Automorphismus

Aia—oP™ fiir jedes o aus H,
mit A" =E, d.h. aus den » Automorphismen
Ao —»aP™ fiir jedes « aus H (»=0,1,...,n—1).
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Nach Satz 44 [37] [siehe auch schon die Schlufiweise im
Beweis zu (IV)] sind das nimlich in der Tat Automorphismen von

H, bei denen jedes Element von E als Wurzel von ™ — g in-
variant bleibt, also Automorphismen von H bzgl. E. Diese n
Automorphismen von H bzgl. E sind ferner voneinander ver-
schieden, weil fiir ein primitives Element ¢ von H (im Sinne von
(IIT)) die simtlichen Potenzen ¢* (t=1,..., p™* —1), also ins-

besondere die » Potenzen g”"w (»v=20,1,...,2—1) voneinander
verschieden sind. Also sind es alle n= [H: E] Automorphismen
der Galoisgruppe von H bzgl. E (Satz 105 [96]).

§ 21. Reine und zyklische Erweiterungen von Prim-
zahlgrad.

Zur Behandlung der Frage nach der Auflgsbarkeit durch
Wurzelzeichen haben wir den speziellen Entwicklungen des
vorigen Paragraphen noch die Theorie der irreduziblen reinen
Polynome von Primzahlgrad an die Seite zu stellen, auf die
sich ja die Def. 40 [129] der Aufldsbarkeit durch Wurzelzeichen
stiitzt. Wir beweisen zuniichst den folgenden Satz iiber die
Irreduzibilitit eines reinen Polynoms von Primzahlgrad:

Satz 123. Es sei p eine Primzahl und 2?2 —a ein
reines Polynom mit a=0 aus K. Dann enthglt der
Wurzelkorper W dieses Polynoms den Kreistei-
lungskérper T, iiber K, und es sind nur die folgen-
den beiden Falle méglich:

a.) #» —a hat eine Wurzel in K, d. h. ¢ ist eine
p-te Potenz in K. Dann ist 22 —a reduzibel in K
und W=T,.

b.} 22 —a hat keine Wurzel in K, d.h. a ist keine
p-te Potenz in K. Dann ist 2? —a irreduzibel in K
und sogar in T,, und iiberdies normal iiber T,,
also W rein vom Grade p iiber T,.

Beweis: Es seien «y, . . ., «p die Wurzeln von 2? — ¢ und
o eine von ihnen. Aus o = a folgt dann, weil a == 0, also
auch o == 0 ist,
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(w)” & —aof z—a, z—0p
—_— __eE g PERENY

oP & &

]

Nach dem Einsetzungsprinzip (1, Satz 12 [40], angewandt
auf | [#'] mit | =W/[z] und die Einsetzung 2’ = ox) darf
hierin oz fiir # gesetzt werden, so daB

p— (z—%) (x__‘:f‘z’)

resultiert. Die Quotienten 2 ¢ind also die p-ten Einheits-
o

&

wurzeln iiber K, d. h. esist W =T, Ist ferner( eine primitive
p-te Einheitswurzel (Satz 120 [129]; — falls K die Charakte-
ristik p hat, { = e [Satz 122, Zusatz)]), so gilt bei geeigneter
Reihenfolge )
i =Co0 (t=1,...,D0).
a.) Liegt nun & in K, so liegen hiernach die «; in T, d. h.
es ist W= T, und somit nach obigem W = T,.
b.) Liegt aber keins der o in K, und wire dann
ho)y=a 4 +a (<r=p—1)
ein irreduzibler Faktor von 2 — a in K, so hitte 4 a, als Pro-
dukt von gewissen » Faktoren o; eine Darstellung
+ ag ="
Wird nach Satz 14, 17 [18, 20] »»' =1 + kp gesetzt, so
folgte wegen o = a
(j: ao)v’ _ Cuv’“ ak , ’
so daB wegen a=£0 die Wurzel o, — ™ o = Lia:ol
doch in K lige. Also ist dann 2 — a irreduzibel in K und
somit K(or) vom Grade p iiber K. Wird nun in den gemachten
Schliissen A(x) als irreduzibler Faktor von 2P — a in T, ange-
nommen, so folgte, dal « und somit K(x) in T, enthalten
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wire. T, hétte also ein Multiplum von p zum Grade iiber K,
wihrend doch nach Satz 121 [131] dieser Grad ein Teiler von
p—1ist. Somit ist dann 2 — @ auch in T, irreduzibel und
nach Satz 99, (IIL.) [88]) iiberdies normal iiber T,, also nach
Satz 99, (1) W = T,(«x) und daher rein vom Grade p iiber
T, (Def. 39 [128]).

Fiir die Frage nach der Auflésbarkeit durch Wurzelzeichen
hat uns naturgemaB der Fall b.) des Satzes 123 besonders zu
interessieren. Wenn K die Charakteristik p hat, ist dann
2? —aeininseparablesirreduzibles Polynom (Def. 17 [47]).
Seine einzige Wurzel « ist p-fach. Im Sinne unserer durch-
gingigen Beschrinkung auf separable Erweiterungen schlieSen
wir diese Moglichkeit im folgenden aus, indem wir bei der Be-
trachtung reiner Erweiterungen vom Primzahlgrad p die
Charakteristik von K als von p verschieden voraussetzen.
Dann ist 22 — a (und allgemeiner jedes irreduzible Polynom
aus K vom Grade p) a fortiori separabel (Def. 17).

Ferner ist 4? — a im Falle b.) i. a. nicht iiber K, wohl aber
iiber T, normal, so da es fiir die beabsichtigte Anwendung
zweckmiBig erscheint, vor der Adjunktion einer Wurzel eines
reinen Polynoms 2P — a vom Primzahlgrad p jeweils erst eine
primitive p-te Einheitswurzel { zu K zu adjungieren, also
zunichst zu dem erweiterten Grundkérper K=K({)=T
iiberzugehen, der mit dem Kérper T, = {T,, K} (Def. 37,
Zusatz [118]) der p-ten Einheitswurzeln iiber K zusammen-
fallt.

In dieser Hinsicht ist der nachstehende, aus Satz 123 ohne
weiteres folgende Satz fiir uns von Interesse (in dem K so-

zusagen mit dem eben genannten K zu identifizieren ist):

Satz 124. Ist p eine Primzahl und K ein Kirper
mit von p verschiedener Charakteristik, der die
p-ten Einheitswurzeln iiber K enthalt, so ist jede
reine Erweiterung p-ten Grades A von K normal
(separabel und zyklisch) iber K.
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DaB A als separable normale Erweiterung vom Primzahlgrade
p zyklisch iber K ist, ist trivial. Denn seine Galoisgruppe
bzgl. K hat nach Satz 105 [96] die Primzahlordnung p und muB
daher nach Satz 34 [32] mit der Periode jedes ihrer von E ver-
schiedenen Elemente zusammenfallen.

In Umkehrung zu Satz 124 beweisen wir nun den fiir
unsere Anwendung grundlegenden Satz:

Satz 126. Ist p eine Primzahl und K ein Korper
mit von p verschiedener Charakteristik, der die
p-ten Einheitswurzeln iiber K enthiilt, so ist jede
normale Erweiterung p-ten Grades A von K
(a fortiori separabel, zyklisch und) rein iiber K

Beweis: Es sei 4 ein primitives Element der zyklischen
Galoisgruppe von A bzgl. K, & ein primitives Element von
A bzgl. K und { eine primitive p-te Einheitswurzel iiber K
Dann bilden wir die sog. Lagrangesche Resolvente von 9:

=g+l b+ LTy
Wenn dies Element « aus A von Null verschieden ist, schlicBen
wir folgendermaBen:
Durch Anwendung von A auf « entsteht wegen A" = E,
{? = e und der Invarianz des Elements ¢ aus K bei 4
a, =0, +0 0+ +T VY,
=@+ L0, Ty ) =0,

also durch wiederholte Anwendung von 4

xar=ol’.
Hiernach sind die infolge der Annahme « == 0 voneinander
verschiedenen Elemente v, af, . . ., a7 " die konjugierten zu

o bzgl. K, d.h. es ist
g(@)= (¢ —a) (z —al) - (—al")

das zu « gehorige irreduzible Polynom aus K, und « ist ein
primitives Element von A (Satz 111, 112 [109, 110] nebst
Zusatz). Aus

o’ —e=(z—e)(a—L)  (e—L")
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folgt nun wie im Beweis zu Satz 123

g(z)= 2? —oP,
und somit ist

g(z)= 2P —a
mit ¢ = o? in K, also « Wurzel des irreduziblen reinen Poly-
noms 2P — a aus K. Daher ist dann in der Tat A = K(x) rein
iiber K (Def. 39 [128]).

Wir zeigen nun, daB man durch passende Wahl der primitiven
p-ten Einheitswurzel { erreichen kann, daf o # 0 ist. Wire

nimlich fiir jede der p — 1 primitiven p-ten Einheitswurzeln £*
(v=1,...,p—1) die zugehtrige Lagrangesche Resolvente
x, = 0, so bestinde das Glelchunvssystem

Z(Cv)_"ﬁy 0 (»=1,..,p—1).

Multipliziert man dessen »-te Gleichung mit ¢** und summiert
iber », so folgte na,ch Vertauschung der Summationsfolge

z:) 2 é-t'(# —#)>0A,, =0.
Da nun .

p.—] , . 7
S eu—pw__ J—e fir w4’ ==y mod. p
él(c y= pe—e fir u'=p mod. p
ist, weil im ersteren Falle £* ™ primitive p-te Einheitswurzel, also
P_
Wurzel von % ~~e—e =Pl 4 oP~2 L ... 4 z + e ist, wihrend

im letzteren Falle (p — 1)-mal der Summand e steht, so resul-
tierten anf diese Weise d11e Relationen

”2 Bgu=pdgw (W=01,..,p—1).
Da K nicht die Charaktenstlk p hat, wiren also alle & 4, einander
gleich, was fiir ein primitives Element ¢ von A nach Satz 112,
Zusatz [111)] nicht der Fall ist.

Wir wenden zum SchluB noch die vorstehenden Resultate
an, um die Auflésbarkeit durch Wurzelzeichen von T, iiber
bestimmten Grundkérpern K zu beweisen:

Satz 126. Es sei p eine Primzahl und K ein
Kérper, dessen Charakteristik 0 oder eine Prim-
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zahl >p ist. Dann ist der Kreisteilungskérper T,
durch Wurzelzeichen auflésbar iiber K, und iiber-
dies existiert sogar eine Korperkette

K=N<A<--<A mit A,=T,,
in der A; nicht nur (gem&B Def. 40 [129]) rein von

Primzahlgrad, sondern auch normal iiber A;_; ist.

Beweis: Wir wenden vollstindige Induktion an und
setzen dazu die Behauptungen fiir alle Primzahlen < p (und
alle dabei nach der Formulierung des Satzes zuldssigen Grund-
korper) als bereits bewiesen voraus. Es sei nun d der nach
Satz 122 [132] in p — 1 aufgehende Grad von T, iiber K und
d=1p, - p, die Zerlegung von d in (nicht notwendig ver-
schiedene) Primzahlen p,. Weil nach Voraussetzung die
Charakteristik von K, wenn == 0, auch groBer als jede dieser
Primzahlen ist, existiert dann nach der Induktionsannahme
zunichst eine Korperkette

K= /\</\1 </\, mit /\_T,,l,
in der A; rein und normal von Primzahlgrad iiber Ai_y ist,
ferner (jetzt von 7\-,l statt K als Grundkorper ausgehend) eine
Korperkette
My <A1 < <A, mit A=T,, Ty,
in der K, _+i rein und normal von Primzahlgrad iiber Krl.*_i_]
ist, usf., zusammengenommen also eine Korperkette

K=A <A< </\ mit /\,ZT,,,.. I P

in der durchweg A\; rein und normal von Primzahlgrad iiber
/\1__1 ist. Es sei nun T der Kreisteilungskorper fiir p iiber
A, und 4 sein nach Satz 119 [120] in @ aufgehender Grad

iiber A, r» Dann existiert nach ganz entsprechenden Schliissen
wie beim Resultat von Gauss [133/34] (Satz 36, 109, 122 [33,

1) Der Krelsteilungskdrper Tp’ fiir p, ber K’: enthilt natiirlich den Kreis-
teilungskorper Tp. fiir p, iiber K.
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101, 132]) eine Korperkette

_ /\,,</\,,+1<--~</\,:T£,
in der A,,4;normal von Primzahlgrad itber A, ;3 ist. Die
sukzessiven Grade in dieser letzten Kette sind als Teiler

von d gewisse der Primzahlen p,. Da nun in den A,,,; nach
Konstruktion die p,-ten Einheitswurzeln enthalten sind, ist
nach dem — wegen der Voraussetzung iiber die Charakte-
ristik von K — (vgl. auch Satz 42 [37]) anwendbaren
Satz 126 A, 4; rein iiber A, ;3. Die volle Kette
K=A < < N=T,
hat somit, wenn man noch bedenkt, da8 T, = T, ist, alle fiir
die Behauptungen des Satzes erforderlichen Eigenschaften.
Da fiir die kleinste Primzahl p = 2 die Behauptungen
wegen T, = K trivialerweise zutreffen, ist hiermit der Satz
durch vollstindige Induktion bewiesen.

§ 22. Kriterinm fiir die Auflosbarkeit durch Wurzel-
zeichen.

Um das in diesem Paragraphen herzuleitende Kriterium

fiir die Auflosbarbeit durch Wurzelzeichen bequem aus-

sprechen zu konnen, stellen wir die folgende Definition voran:

*Definition 41. Eine separable normale Erweite-
rung N von endlichem Grade eines Kérpers K heifit
metazyklisch iiber K, wenn eine Zwischenkérper-
Kette

K=Aj<Aj<--- <A, =N
derart existiert, dal /A; normal von Primzahlgrad
fiber A;_; ist, oder — was nach dem Fundamental-
satz der Galoisschen Theorie dasselbe besagt —,
wenn die Galoisgruppe & von N bzgl. K eine
Untergruppenkette

@=5§0>S§1>"'>®r=@
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derart enthdlt, dal $; Normalteiler von Primzahl-
index von ;3 ist.

Ein separables Polynom f(z) aus K heiBt meta-
zyklisch iiber K, wenn sein Wurzelkdrper metazyklisch
iiber K ist.

Der Ausdruck metazyklisch riihrt daher, dafl dann die
einzelnen Schritte A; iiber A;_; bzw. §,; /9, zyklisch sind. Man

nennt iibrigens Gruppen & von der in Def. 41 angegebenen Art
ebenfalls metazyklisch.,

‘Wir beweisen nun das folgende Kriterium fiir die Auflos-
barkeit durch Wurzelzeichen normaler Erweiterungen end-
lichen Grades, wobei wir uns wegen der im vorigen Para-
graphen fiir Primzahlcharakteristiken zutage getretenen Kom-
plikationen auf Grundkérper der Charakteristik O beschriinken,
so daf also insbesondere die Voraussetzung der Separabilitét
trivialerweise stets erfiillt ist:

Satz 127, Eine normale Erweiterung N von end-
lichem Grade liber einem Korper K der Charakte-
ristik 0 ist dann und nur dann durch Wurzelzeichen
auflésbar, wenn sie metazyklisch ist.

Ein Polynom f(z) aus K ist also dann und nur dann
durch Wurzelzeichen auflésbar, wenn es metazyklisch
ist.

Beweis: a.) Es sei N durch Wurzelzeichen auflésbar iiber
K. GemiB Def. 40 [129] existiert dann eine Korperkette

K=MN<A < - <A mit 7 =N,
in der A{ rein vom Primzahlgrade p; iiber Ai_; ist. Nach
Satz 126 existiert (dhnlich wie im Beweise jenes Satzes) eine
Korperkette

K_z N <A<+ < A mit As_z_Tpl,...,Ipr,
in der A; (rein und) normal von Primzahlgrad iiber A;_; ist.
Es sei nun &; eine Folge von Elementen aus den A} derart, da
&; Wurzel eines reinen irreduziblen Polynoms z* — a; aus

Ay, also N = /—\2_1(04,-) und A, = K(eyy « - «pxp) ist. Ent-
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weder ist 2P — ¢, auch irreduzibel in As; dann ist sein Wurzel-
kirper A,41 iiber A, nach Satz 123 [137] und wegen Tp, < A,
(rem und) normal vom Primzahlgrade p, iiber A, und zudem
Aer1 = Ay(oy). Oder es ist 2P+ — a, reduzibel in A,; dann ist
nach demselben Satze Agpq = A, und zudem A, 41 = Ag(oy)-
Ebenso schlieBt man, da der Wurzelkérper /—\-3+2 von zPs — a,
iiber /\,,+1 entweder (rein und) normal vom Prlmzahlgrade Py
{iber /\,+1 oder = /\s+1 und beidemal zudem A3+2 = /\s+1(0¢2)
ist, usf. So ergibt sich bei Fortgehen bis zu /\s+, bei nur
einmaliger Zihlung mehrfach hintereinander auftretender
Kérper eine Korperkette
Ke=Ag <A<+ <A; mit A;ZN
(letzteres wegen As= A\ (le, o 07) ZK (o, 03 ) =N 2 N),
in der durchweg /; (rein und) normal von Primzahlgrad iiber
Ki_l ist. Dieser Kette entspricht nach den Ausfithrungen in
§ 18, 3.) (vgl. Fig. 5 [125]) eine Zwischenkorperkette
= 0§A1§"‘§A;=N,
in der A; normal iiber A;_; ist, und zwar von Primzahlgrad,

falls nicht A; = A;_; ist (und somit A; ausgelassen werden
kann); denn der Grad [A;: /A;—] ist als Teiler des Primzahl-
grades [A;: Ai_1] entweder 1 oder eben diese Primzahl?)
GemilB Def. 41 ist dann N metazyklisch iiber K.

b.) Es sei N metazyklisch iiber K. GemB Def. 41 existiert
dann eine Zwischenkorperkette

K=A <A < <A, =N,

in der A; normal vom Primzahlgrad p; iiber A;_; ist. Wie
unter a.) existiert eine Korperkette

K=A <A < <A, mn;/\>T,,,...,T,,r,

') Derselbe SchluB wurde iibrigens — ohne daB es ausdriicklich hervor-
gehoben wurde — schon in dem Beweise des Resultats von Gauf in § 20 [134)
fiir die dort auftretenden Primzahlgrade 2 gemacht.

Hasse, Hohere Algebra. II. 10
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in der A; rein (und normal) von Primzahlgrad iiber A;_ ist.
Es sei nun 9; eine Folge von Elementen aus den A; derart, daB
©#; Wurzel eines normalen Polynoms g,(x) vom Primzahlgrad
p; aus Nig, also Ay = Ai_1(8;)) und N= A, =K(&,, ..., 8,)
ist. Entweder ist g,(z) irreduzibel und somit auch normal in
A,; dann ist sein Wurzelkirper Ks_*_l = /_\3(191) iiber 7\, wegen
T,, <A, nach Satz 125 [140] rein (und normal) vom Prim-
zahlgrad py iber A, Oder es ist g,(v) reduzibel in A,; dann
ist Agp1=Ay(¥)=A,, weil dann [A3+1 As] einerseits
< p; (= wegen der Normalitit von g,(z) in /Ay und sogar
< wegen der Reduzibilitit in A,), andererseits ein Teiler von
py (nach Satz 119 [120], angewandt auf K= Ao, N= A,
A =Ny N=1~Ng1), also [Ayg1:A]=1 ist. Ebenso
schlieBt man, daB der Wurzelkérper /\s+2 = é,+1(192) von
g,(x) iiber A,y entweder rein (und normal) vom Primzahl-
grad p, iiber Ks+1 oder = A1 ist, usf. So ergibt sich durch
Fortgehen bis zu A, bei nur einmaliger Zahlung mehrfach
hintereinander auftretender Korper eine Korperkette
K= A0<A <---<N; mit A;=N

(letzteres wegen Ay = A (191, w3 =K@y, ?,)=N),
in der durchweg A; rein (und normal) von Primzahlgrad iiber
/_\i—l ist. Gem&B Def. 40[129] ist dann N durch Wurzelzeichen
auflosbar iber K.

Wie aus jedem der beiden Teilbeweise ersichtlich ist, gilt auch
allgemein eine entsprechende Verschirfung, wie sie schon in dem
speziellen Satz 126 [141] erhalten wurde:

Zusatz. Ist unter den Voraussetzungen von Satz
127 N durch Wurzelzeichen auflésbar iiber K, so
existiert sogar eine Korperkette _

_K=A< A <o <Ay mit A2 N,
in der A; nicht nur (gem&8 Def. 40) rein von Primzahl-
grad, sondern auch normal iber Ai—1 ist.
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Durch Satz 127 in Verbindung mit dem schon in Def. 41 Ge-
sagten wird unsere zu Beginn dieses Abschnitts gestellte Frage
entschieden, unter welchen Bedingungen eine algebraische Gleichung
(x) ==0 in einem Grundkérper K der Charakteristik 0 durch
Wurzelzeichen aufldsbar ist'), wann also ihre Wurzeln durch
Rechenausdriicke darstellbar sind, die mittels der vier elementaren
Rechenoperationen und der Operation des Wurzelziehens gebildet
sind. Stellt man die etwas andere Frage, wann eine Wurzel eines
irreduziblen Polynoms f(z) aus K auf diese Weise darstellbar ist,
so kommt das auf die Frage nach der Auflasbarkeit durch Wurzel-
zeichen einer beliebigen Erweiterung A endlichen Grades von K
hinaus, die umgekehrt auch nicht allgemeiner ist, weil jede solche
Erweiterung A als Stammkdrper eines irreduziblen Polynoms f(z)
aufgefalt werden kann. Wir fiihren in dieser Hinsicht an, dal die
Bedingungen hierfiir genau dieselben sind, wie fiir die oben be-
handelte Frage, daB némlich eine beliebige Erweiterung
endlichen Grades A von K dann und nur dann durch
Wurzelzeichen auflésbar ist, wenn dies fir die zu-
gehérige normale Erweiterung N (den Wurzelkérper
irgendeines irreduziblen Polynoms f(z), fiir das A Stammkérper
ist) der Fall ist. DaB mit N auch A durch Wurzelzeichen auf-
losbar ist, ist klar. Umgekehrt zeigt man durch Ubergang von
einer Korperkette geméll Def. 41 fiir A zu deren konjugierten, dafl
mit A auch alle konjugierten Erweiterungen durch Wurzelzeichen
auflosbar sind, woraus sich dann leicht die Auflésbarkeit durch
Wurzelzeichen von N ergibt.

Beispiele durch Wurzelzeichen auflosbarer algebraiseher
Gleichungen iiber Grundkérpern der Charakteristik O,

1.) Alle Gleichungen zweiten, dritten, vierten
Grades.

Deren Galoisgruppen sind namlich isomorph zu Untergruppen
der symmetrischen Gruppen &,, S;, &, (Satz 107 [98]). Die
letzteren erweisen sich aber (samt ihren sémtlichen Untergruppen)
leicht als metazyklisch.

2.) Alle zyklischen und allgemeiner abelschen Glei-
chungen, speziell also nach Satz 121 [131] die allgemeine
Kreisteilungsgleichung 2 —1=0.

Nach Satz 36 [33] ist namlich jede endliche zyklische Gruppe
metazyklisch. Auf die allgemeine Theorie der endlichen abelschen

1) Genau genommen liegt ibrigens keine Entscheldung der Frage
sondern nur eine Zuriickfithrung auf die Aufstellung und Untersuchung der
Galoisgruppe vor.

16%
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Gruppen, aus der insbesondere leicht folgt, daf diese Gruppen
samtlich metazyklisch sind, kénnen wir hier nicht niher eingehen 1).

§ 23. Existenz nicht durch Wurzelzeichen auflosbarer
algebraischer Gleichungen.

Die Existenz nicht durch Wurzelzeichen auflésbarer Glei-
chungen wurde durch Abel entdeckt, der zuerst die Unmog-
lichkeit bewies, die allgemeine Gleichung héheren
als vierten Grades durch Wurzelzeichen aufzu-
losen. Wir wollen in diesem letzten Paragraphen einen
modernen Beweis dieses Abelschen Satzes skizzieren.

Zundchst definieren wir:

Definition 42. Ist K,=K(z,..., #,) der Kérper
der rationalen Funktionen von n Unbestimmten
T -« &, liber K, so heit das Polynom

) [o(#)= &+ 32 - - - - 1,
iiber K, das allgemeine Polynom n-ten Grades iiber K.

Dieses allgemeine Polynom #-ten Grades iiber K ist als
eine ,unbestimmte” Zusammenfassung aller speziellen
Polynome n-ten Grades iiber K anzusehen, die ja aus ihm
durch Einsetzung irgendwelcher Elementsysteme
Ay .-, aus K fiir die Unbestimmten z,..., 2,
iiber K gewonnen werden konnen.

Wir betrachten nun die Zerlegung in Linearfaktoren
Q) @)y=ar 4 zpar 14 G = (s — &) - (8—&)
des allgemeinen Polynoms #-ten Grades iiber K in seinem
Wurzelkérper W, = Ku(&,, .. ., &). Denkt man sich die »
Linearfaktoren rechts ausmultipliziert, so miissen nach 1,
Satz 11 [32] die Kocffizienten gleich hoher Potenzen von z
links und rechts iibereinstimmen. So erhalt man das Formel-
system 2)

1) Wir verweisen deswegen anf 3, § 3 Aufg. 9—20 und beziiglich welterer
Sitze iiber metazyklische Gruppen auf das Buch von Speiser (1, Lit.-Verz. 16).
%) Wir bezeichnen hier, abweichend von der Festsetzung in 1, 8. 42 die
Gleichheit in K, = K(a:l,..., Z,) und in der algebraischen Erweiterung

Wy, = Kn(é,,. .., &) nur mit =, um = der Gleichheit bei Hinzunahme weiterer
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(3.) =58+ + & ba
o= (—1)" & &n

oder zusammengefaBt
= (—1y X & ---& (v=1,...,n),
[T

wo die Summe rechts iiber alle (n) Kombinationen »-ter Ord-
»

nung (1, §16 [108]) der Ziffern1, . . . , nzuerstreckenist. Nach
diesen Formeln ist speziell

4y Wy=Ky(&n,.. . &) =K@y -y @y Epy e -0y En)

oo En)e

Neben der bisherigen von (1.) iiber (2.) zu (3.) und (4.)
fithrenden Auffassungsweise kann man auch umgekehrt von
(4.), d.h. dem Korper W, = K(&,,...,&,;) der rationalen
Funktionen von n jetzt als Unbestimmte vorausgesetzten
&,..., & iber K ausgehen, dann z,,..., 2, durch die
Formeln (3.) als Elemente dieses Korpers W, und f,(z) durch
die Formel (2.) als Polynom in dem Teilkdrper
Ko =Kz, . . ., 2) von W, = K(&,, ..., &,) definieren, wo-
bei dann W,, wieder der Wurzelkdrper zu f,(2) iiber K, ist
und die Darstellungen (4.) besitzt. Allerdings steht bei dieser
letzteren Auffassungsweise die Frage oflen, ob das so ge-
bildete Polynom f,(z) das allgemeine Polynom #-ten Grades
iiber K ist. Da die genannte zweite Auffassungsweise fiir die
beabsichtigte Anwendung handlicher ist, ist es fiir uns von
Bedeutung, diese Frage in bejahendem Sinne zu beantworten:

Satz 128. Ist W, =K(&, ..., &,) der Korper der
rationalen Funktionen von % Unbestimmten
£ &y iiber K, so haben die durch die Formeln
(3.) definierten Elemente z, ..., 2, aus W,, ebenfalls

Unbestimmten (etwa z in (1.) und (2.) sowie 51, -+« T, Im Bewelse des folgenden
Satzes 128) vorzubehalten.
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den Charakter von n Unbestimmten itber K1), d. h.
der TeilkorperK, = K(zy,..., 2,) von Wy = K(&,,..., &)
ist ebenfalls vom Erweiterungstypus des Kdérpers
der rationalen Funktionen von # Unbestimmten
iiber K. Insbesondere ist dann also das durch (2.)
definierte Polynom/,(z)iiber K, das allgemeine Poly-
nom n-ten Grades iiber K.

Beweis: Es ist zu zeigen, daB die Normaldarstellungen
(1, Def.9 [38]) der Elemente des Integrititsbereiches

K[z ..., 2z] durch @,..., z, eindeutig sind, und dazu
geniigt es nachzuweisen, daB auvs einer Relation

(5.) 9@y, %) =0, )
wo ¢(y, . . ., Z) eine ganze rationale Funktion von » Unbe-
stimmten ,, .. ., &, ilber K ist, die Relation

(6.) G(Zyy oo By)=0

folgt. Diesen Nachweis fithren wir durch doppelte voll-
standige Indulktion 2), erstens nach der Anzahl n der Unbe-
stimmten, zweitens nach dem Grade », von ¢ in ,.

Fiir n = 1ist 2, = — &, also die Behauptung ersichtlich
auf Grund des vorausgesetzten Unbestimmtencharakters von
&, richtig. Sei sie schon bis # — 1 bewiesen. Dann sei

’n

1) g@,...z)= kéfowﬁ 9, (@, ...z, )
die (aus der Normaldarstellung durch Zusammenfassung fol-
gende) Darstellung von ¢ als ganze rationale Funktion von
z, liber K[z, ..., 2,—1], also speziell

B) 9@y -y Tn1, 0)=go(Zy - - -y Tn1).
Setzt man nun in (5.) £, =0, so entsteht nach dem Ein-
setzungsprinzip (1, Satz 12 [40]), das wegen des Unbe-
stimmtencharakters von £, anwendbar ist, die Relation
9.) gzt .. . Tp—,0)=0,
1) Vgl. 1, Def. 9 {38] nebst anschlieBender Erlduterung.

%) Den Gedanken, In diesem Beweise doppelte vollstindige Induktion
anzuwenden, verdanke ich einer brieflichen Mitteilung von Ph. Furtwingler.
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WO Z3,..., Th_1 BUS Tyye.. %y durch die Einsetzung
E,=0 in (3.) hervorgehen; setzt man dann in (8.)
(Zyy e v vy Tu—a) = (@1, « « +» Tn—1), S0 folgt aus (9.) nach dem
Einsetzungsprinzip weiter die Relation

(10.) 9o(Z1y e« oy Zp3) = 0.
Da nun ), ..., 2, , nach ihrer Erklarung fiir &,..., ¢, |
die entsprechende Bedeutung haben, wie z,,..., z, fiir
&... &, so ergibt sich aus (10.) nach der gemachten
ersten Induktionsannahme die Relation

gO(El’ ooy En—l)_:—: 0,
also nach (7.) weiter die Relation
Yn—1

(L) ¢@,,...5)=7, & &g, Fp--oF,_,)

" k=0
= B g(@y, . - - Tn),
wo g()(z,, . .., T,) wieder eine ganze rationale Funktion von
Zyy ..., T, iiber K ist, die (falls »,>0) in z, den Grad
v, — 1 hat.

Ist nun der Grad v, =0, so ist ¢gM)(z,, .. ., Z,)= 0 und
also die Behauptung (6.) nach (11.) richtig. Sei sie (fiir das
betrachtete feste n) schon bis zum Grade v, — 1 bewiesen,
so ist, weil aus (11.) durch die Einsetzung (..., %,)=
(24, ..., 2,) die Relation

9@y, « - o Tn) = Tpg (@, « ., Tn)

und aus dieser nach (5.) und wegen x, 5= 0 weiter die Relation

9Oz, ., T) = 0
folgt, nach dieser zweiten Induktionsannahme

gV(Ey, . . ., Tp) =0,
woraus die Behauptung (6.) nach (11.) folgt. Hiermit ist die
Behauptung des Satzes durch doppelte vollstandige Induk-
tion bewiesen.

Aus Satz 128 1iBt sich iibrigens auch leicht die umgekehrte
Tatsache folgern, daB die ausgehend von Unbestimmten z,, .. ., =,
durch (2.) definierten Elemente Er ey den Charakter von

Unbestimmten iiber K haben. Wir brauchen das jedoch hier nicht.
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Wir beweisen nunmehr:

Satz 129. Das allgemeine Polynom n-ten Grades
iiber K ist separabel und seine Galoisgruppe bzgl
K, ist zur symmetrischen Gruppe &, isemorph.

Beweis: Gem4B Satz 128 denken wir uns das allgemeine
Polynom n-ten Grades f, (z) iilber K nach der vor Satz 128 be-
sprochenen zweiten Auffassungsweise, d. h. vom Wurzelkorper
W, =K, ..., &) ausgehend durch die Formeln (3.),
(2.) gebildet. DaB zunichst f, (x) separabel ist, folgt dann
ohne weiteres aus der Verschiedenheit seiner als # Unbe-
stimmte iiber K gewahlten Wurzeln &, . . ., &, (Satz 59, Zu-

1... '
satz [48]). Es sei ferner ( n irgendeine Permutation
%

cet
aus ©,. Nach 1, Satz 10, 11 [26, 32] ist dann K (£, . . ., &)
zuK(&,, . . ., &,) auf Grund der Zuordnungen

51*—’5’51, ‘e -,En"—’gin
isomorph bzgl. K. Da aber die Formeln (3.) symmetrisch in
&1, ..., &, sind, entsprechen bei dieser Zuordnung die Elemente
Zyy .+« . &, und somit alle Elemente von K, =K(zy, .. ., z,)
sich selbst, so dafl die genannte Isomorphie sogar bzgl. K,

gilt. Da
Wn = K(En T En) = K(Eil, [ Ein)

ist, erzeugt also jede Permutation aus &, einen Auto-
morphismus von W, bzgl. K, und wird daher umgekehrt
durch einen solchen Automorphismus im Sinne von Satz
107 [98] geliefert. Aus diesem Satz ergibt sich daher mit
Riicksicht auf die bereits hervorgehobene Verschiedenheit
der Wurzeln &, .. ., &,, daBl die Galoisgruppe von W, d.h.
die von f,(x) bzgl. K, zur symmetrischen Gruppe &, iso-
morph ist.
Aus Satz 129 ergibt sich ibrigens speziell:

Satz 180. Das allgemeine Polynom n-ten Grades
iiber K ist irreduzibel in K,.

Beweis: Ist f,(z) das zu einer Wurzel £ von f,(z) gehorige
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irreduzible Polynom in Kp, so ist einerseits f2(2) | f2(x) (Satz 63
[43]), andererseits f,(&;) = O fiir jede Wurzel , von f,(z) (Satz 73
1617, 129), also wegen der Verschiedenheit der Wurzeln &; auch

fa(@)|fn(x) (Satz 47 [40]). Beides zusammen ergibt f,(z)=f.(2),
wie behauptet.

Wir verweilen noch einen Augenblick bei den Formeln (3.), wieder
unter der vor Satz 128 [149] besprochenen zweiten Auffassungs-
weise. Man nennt dann die Elenente z,,.. ., 2, aus K(&,..., &,)
die symmetrischen Grundfunktionen der Unbestimmten
&1y s oo &y Allgemein nennt man ferner eine rationale Funktion
tiber K der Unbestimmten &,,...,&, symmetrischin &,..., E,,,
wenn sie bei allen Permutationen der n Elemente £,,...,&,
sich iibergeht. Durch Anwendung der Sitze 107, 112 [98, 110]
nebst Zusatz ergibt sich dann aus Satz 129 unmittelbar:

Satz 131, Eine rationale Funktion iber K der Un-
bestimmten &,...,&, [d.h. ein Element aus K(&,..., &,)]
ist dann und nur dann symmetrisch, wenn sie rationale
Funktion iiber K der symmetrischen Grundfunktionen
Tyyeo oy VOO &, ..., &, 18t [d.h. ein Element aus dem
Teilkorper K(zy, ..., z,) von K(&,...,&,) ist].

Die tiefer liegende Aussage dieses Satzes, namlich die durch
nnur dann‘‘ ausgedriickte, die also aussagt, dafl jede symmetrische
rationale Funktion iiber K von §&,.. ., &, eine rationale Funktion
iiber K von z;, . . ., &, ist, ist eine Teilanssage des unter dem Namen
Satz von den symmetrischen Funktionen bekannten Theorems,
das bisher fast immer der Galoisschen Theorie zugrunde gelegt wurde
(vgl. die erste Anm. zum Bew. von Satz 90 [80]). Dieses Theorem
geht insofern noch iiber die Aussage von Satz 131 hinaus, als es
weiterhin behauptet:

1.) Jede ganze rationale symmetrische Funktion iiber K von
&, - .. &y ist eine ganze rationale Funktion von zy,..., ;.

2.) Das letztere gilt auch noch, wenn an Stelle des Korpers K
ein Integritdatsbereich 1 steht.

Diese weiteren Aussagen kénnen aber nicht, wie Satz 131, aus
der Galoisschen Theorie gefolgert werden ).

Wir kehren nunmehr zu der eigentlichen Aufgabe dieses
Paragraphen zuriick, die wir jetzt auf Grund von Satz 129 in

1) Auf einen — mir von Ph. Furtwingler mitgeteilten — Beweis der Aus-
sagen 1), 2.), der ganz analog, wie der Beweig von Satz 128, mit doppelter voll-
stindiger Induktion gefiihrt wird, kann hier nicht eingegangen werden: siehe
3, § 23, Aufg. 3.
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Angriff nehmen kénnen. Da die symmetrische Gruppe &, fiir
n > 1 stets den Normalteiler 90, vom Index 2 hat (1, Satz 63
[113]), ergibt sich eine Reduktion des Wurzelkorpers
W, = Ku(&, ..., &) vom Grade n! iiber K, auf einen

Korper vom Grade %l iiber einem aus K, durch Adjunktion

einer Quadratwurzel entstehenden Korper V,,:

Satz 132. Der Wurzelkdorper W, =K, (&, - - -, &n)
des allgemeinen Polynoms n-ten Grades (n>1)
iiber Kbesitzt einen Teilkérper V, vom Grade2iiber
K,. Dieser wird, falls K nicht die Charakteristik 2
hat, durch Adjunktion des Elementes

1 & £ q—l‘

1 &y &
zu K, gewonnen, das Wurzel eines reinen Poly-
noms 22 —d vom zweiten Grade aus K, ist?).

Beweis: DaB V, = K,(5) der %, zugeordnete Korper
zwischen K, und W, ist, folgt gemiB Satz 112, 129 [110, 152]
daraus, daB J bei den geraden Permutationen von &, .. ., &,
invariant ist, bei den ungeraden dagegen sein Vorzeichen
dndert (1, Satz 656 [116]), und daB d==0 (siehe 3, Teil 1,
§ 19, Aufg. 4), also nach der Annahme iiber die Charakteristik
0 &= — 0 ist. Hiernach ist ferner 62 = d bei allen Permuta-
tionen von &, ..., &, invariant, also Element aus K,, (Satz112,

Zusatz [111]).

Das Element d = 62, das natiirlich sogar zu K[&, ..., &]
gehort, also eine ganze rationale Funktion iiber K der Wurzeln
&)+ oo &p ist, heiBit die Diskriminante von In(x).

Nun beweist man in der Gruppentheorie, da fiir n==4
die alternierende Gruppe %, keinen echten Normal-
teiler besitzt?), und daB 9, der einzige Normal-

1) Hinsichtlich des Falles, daB K die Charakteristik 2 hat, siehe 3, § 23,
20

2. 20.
) Spelser, 1. c. (1, Lit.-Verz. 16), Satz 94. Siehe auch 3, § 23, Aufg. 13, 14,
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teiler von &, ist?). Da’: 5 fur 7= 4 keine Primzahl ist,

kann also fiir n > 4 keine Untergruppenkette von &, der in
Def. 41 [143] genannten Art existieren, so daB dann &, nicht
metazyklisch ist. Nach Satz 127 [144] ergibt sich so das

Resultat von Abel. Das allgemeine Polynom
n-ten Grades iiber einem Korper K der Charakteri-
stik 0 ist fiir » > 4 nicht durch Wurz:lzeichen auf-
lésbar.

Durch diesen Satz ist die Existenz nicht durch Wurzel-
zeichen auflosbarer Gleichungen zunichst nur fiir die beson-
deren Grundkorper K, von Def. 42 [148] sichergestellt. Eine
weitere Frage ist dann, ob es in einem gegebenen Grund-
korper K spezielle, d.h. in K selbst gelegene nicht durch
Wurzelzeichen auflésbare Gleichungen jeden Gra-
des n >4 gibt. Diese Frage beantwortet sich fiir den
Spezialfall des rationalen Grundkorpers P bejahend durch den

Irredunzibilititssatz von Hilbert?). Istg(z; 2y,..., 2,)
eine ganze rationale Funktion der Unbestimmten
T; %y ..., 2y, Uber P, die ein in P,=P(z,..., z,)
irreduzibles Polynom von z ist, so gibt es unendlich
viele Elementsysteme a,...,a, aus P, so da8
g(z; ay, ..., a,) in P irreduzibel ist. '

Aus diesem Satz ergibt sich die Losung der zuvor aufge-
worfenen Frage fiir den Grundkérper P folgendermaBen:
Sind §&,...,&, die Wurzeln des allgemeinen Polynoms
n-ten Grades f,(z) = o™ + z 2" 1+ - - - + x, iiber P, so ist
nach Satz 112, Zusatz [111] und Satz 129 [152]

d=cé + +65
primitives Element des Wurzelkorpers =P, - .. &n)
1) Das folgt dann aus dem sog. Jordanschen Satz (Speiser, ebenda

Satz 27) in Verbindung mjt der evidenten Nichtexistenz von Normalteilern von
€,, der Ordnung 2. B8iehe auch 3, §23, Autg. 16.

) D. Hilbert, Uber die Irreduzibilitit ganzer rationaler Funktionen mit
ganzzahligen Koeffizienten, Journ. f. d. reine u. angew. Math. 110, 1892.
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bzgl. P, = P(x,,.. ., £,), wenn die Koeffizienten ¢, aus P,
so gewihlt werden, dafl alle Permutationen (:) der &, ver-

schiedene konjugierte

=i, + -+ ki,
ergeben. Wir denken uns die ¢, in dieser Weise gewihlt, und
zwar, was nach Satz 49 [41] moglich ist, sogar als Elemente
aus dem Integrititsbereich I, = P[z,,..., 2,]. Dann ist

n!
glz; 2y .. - a:,,)EiI__I1 (. — %)

eine Galoissche Resolvente von W, bzgl. P, und geniigt den
Voraussetzungen des Hilbertschen Irreduzibilititssatzes. Es
gibt also unendlich viele Elementsysteme ay,...,a, aus P
derart, daB g(x; a,, .. ., a,) irreduzibel in P ist. Die Wurzel-
korper W iiber P der diesen Systemen g, ..., @; entsprechen-
den speziellen f(x) haben dann, weil es in ihnen je ein Element
© des Grades n! gibt, den hichstmoglichen Grad n! iiber P
(Satz 108 [100]) und somit eine zu &, selbst isomorphe
Galoisgruppe (Satz 107 [98]). Nach den Ausfithrungen
dieses Paragraphen sind also diese f(z) fiir » > 4 nicht durch
Wurzelzeichen auflsbar. Wir haben daher:

Korollar. Es gibt in P fiir jeden Grad » unend-
lich viele algebraische Gleichungen, deren Galois-
gruppe zu &, isomorph ist (sog. Gleichungen ohne
Affekt), insbesondere also fiir jeden Grad » >4
unendlich viele nicht durch Wurzelzeichen auflds-
bare algebraische Gleichungen.

Ob dies Resultat auch fiir allgemeine Grundkérper K, so-
wie fiir irgendwelche Untergruppen von &, als vorgeschriebene
Galoisgruppen gilt, ist bis heute, abgesehen von einfachen
Fillen, unentschieden.
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W. M. Kranefeldt. Mit einer Einfuhrung von C.G. jung. 3. Aui-
lage. 152 Sesten. 1956. (1034)
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GEISTESWISSENSCHAFTEN

Allgemelne Psychologie von Th, Erismann t. 4 Band
: Grundprobleme. 3. Auflage. 146 Seiten. 1965 (831)
: Grundarten des psychischen Geschehens. 2., neubear-
beitete Auflage. 248 Seiten. 1959. (832/832a)
I1I: E)g]pcnmentelle Psychologie und ihre Grundlagen.
eil. 2., neubearbeitete Auflage, 112 Seiten, 7 Abbildungen.
1962, (833)
IV: Experimentelle Psychologie und ihre Grundlagen.
2, Teil, 2., neubearbeitete Auflage, 199 Seiten, 20 Abbildungen.
1962. (834/834a)

Soziologie. Geschichte und Hauptprobleme von L. von Wiese. 7. Auflage.
176 Seiten, 1964. (101)

Ideengeschichte der sozialen Bewegung des 19, und 20. Jh. von W. Hof-
mann. 243 Seiten. 1962, (1205/1205a)

Sozialpsychologie von P. R. Hofstdtter, 2. Auflage. 191 Seiten, 18 Ab-
bildungen. 1964. (104/104a)

Psychologie des Berufs- und Wirtschaftslebens von W. Moede 1.
190 Seiten, 48 Abbildungen. 1958. (851/851 a)

Industrie- und Betriebssoziologie von R. Dahrendorf. 3. Auflage. 142 Sei-
ten, 3 Figuren. 1965. (103)

Wirtschaftssoziologie von F. Fiirstenberg. 122 Seiten. 1961. (1193)

Einfiihrung in die Sozialethik von H.-D, Wendland. 144 S. 1963. (1203)

Religion

Jesus von M. Dibelius }. 4. Auflage, mit einem Nachtrag von W.G.
Kiimmel. 140 Seiten, 1966, (1130)

Paulus von M. Dibelius }. Nach dem Tode des Verfassers herausge-
geben und zu Ende gefiihrt von W, G. Kiimmel. 3., durchgesehene
Auflage. 156 Seiten. 1964. (1160)

Luther von F. Lau. 2., verbesserte Auflage. 153 Seiten. 1966 (1187)

Melanchthon von R. Stupperich. 139 Seiten. 1960. (1190)
Zwingli von F, Schmidt-Clausing, 119 Seiten. 1965, (1219)
Saren Kierkegaard. Leben u. Werk von H, Gerdes, 134 Seiten, 1966.(1221)
Einfiihrung in die Konfesslonskunde der orthodoxen Kirchen von
K. Onasch, 291 Seiten. 1962, (1197/1197a)
Geschichte des christlichen Gottesdienstes von W. Nagel. 215 Seiten.
1962. (1202/1202a)
Geschichte Israels. Von den Anfingen bis zur Zerstérung des Tempels
(70n.Chr.)von E.L. Ehrlich. 2.Aufl. 1966, InVorbereitung. (231/231a)
Romische Religionsgeschichte von F. Altheim. 2 Bénde. 2., umgearbei-
tete Auflage.
I: Grundlagen und Grundbegriffe. 116 Seiten. 1956. (1035)
II: Der geschichtliche Ablauf, 164 Seiten. 1956. (1052)
Die Religion des Buddhismus von D. Schlingloff. 2 Bande.
I: DerHeilswegdes Ménchstums, 122 Seiten, 11 Abbildungen,
1 Karte. 1962, (174) .
II: Der Heilsweg fiir die Welt, 129 Seiten, 9 Abbildungen,
1 Karte. 1963. (770)



GEISTESWISSENSCHAFTEN

Musik

Musikdsthetik von H. J. Moser. 180 Seiten. Mit zahlreichen Noten-
beispielen, 1953, (344)
Systematische Modulation von R, Hernried. 2. Auflage. 136 Seiten. Mit
zahlreichen Notenbeispielen. 1950. (1094)
Der polyphone Satz von E. Pepping. 2 Binde.
I: Der cantus-firmus-Satz. 2. Auflage. 233 Seiten. Mit zahl-
reichen Notenbeispielen. 1950. (1148)
: Ubungen im doppelten Kontrapunkt und im Kanon.
137 Seiten, Mit zahlreichen Notenbeispielen. 1957. (1164/1164a)
Allgemeine Musiklehre von H. J. Moser. 2., durchgesehene Auflage.
155 Seiten. Mit zahlreichen Notenbeispielen. 1955. (220/220a)
Harmonielehre von H. J. Moser. 2 Bande.
I: 109 Seiten. Mit 120 Notenbeispielen. 1954. (809)
I1: In Vorbereitung. (810)
Die M_;.lsik des 19. Jahrhunderts von W. QOehlmann. 180 Seiten. 1953,
1

0)

Die Musik des 20. Jahrhunderts von W. Oehlmann. 312 Seiten. 1961.
(171/171 a)
hnik der deutschen G kunst von H. J. Moser. 3., durchgesehene
und verbesserte Auflage, 144 Seiten, 5 Figuren sowie Tabellen und
Notenbeispiele. 1954. (576/576a)

Die Kunst des Dirigierens von H. W. von Waltershausen . 2., vermehrte
Auflage. 138 Seiten. Mit 19 Notenbeispielen. 1954, (1147)

Die Technik des Klavierspiels aus dem Geiste des musikalischen Kunst-
werkes von K. Schubert . 3. Auflage. 110 Seiten. Mit Notenbei-
spielen. 1954. (1045)

Kunst
Stilkxn;lle von H, Weigert. 2 Bande. 3., durchgesehene und ergénzte
uflage,
1: Vorzeit, Antike, Mittelalter, 136 Seiten, 94 Abbildungen.
1958, (80)
II: Sé)étmittelalter und Neuzeit. 150 Seiten, 88 Abbildungen.
1958, (781)

Archaologle von A, Rumpf. 3 Bande,
Einleitung, historischer Uberbhck 143 Seiten, 6 Ab-
bildungen, 12 Tafeln. 1953. (53
Il: Die Archédologensprache. Die antiken Reproduktionen.
136 Seiten. 7 Abbildungen, 12 Tafeln. 1956. (539)
I11: In Vorbereitung. (540)

Geschichte

Einfiihrung in die Geschichtswissenschaft von P. Kirn.4., durchgesehene
Auflage. 127 Seiten. 1963. (270)
Einf(iill121314r;g in die Zeitgeschichte von B. Scheurig. 101 Seiten. 1962.
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GEISTESWISSENSCHAFTEN

Zeitrechnung der romischen Kaiserzeit, des Mittelalters und der Neuzeit
fir die Jahre 1—2000 n. Chr. von H. Lietzmann f. 3. Auflage, durch-
gesehen von K. Aland. 130 Seiten. 1956. (1085)

Kultur der Urzeit von F. Behn. 3 Biande. 4. Auflage der Kultur der
Urzeit Bd. 1—3 von M. Hoernes.

I: Die vormetallischen Kulturen. (Die Steinzeiten Europas.
Gleichartige Kulturen in anderen Erdteilen.) 172 Seiten, 48 Ab-
bildungen. 1950. (564)

II: Die alteren Metallkulturen. (Der Beginn der Metall-
benutzung, Kupfer- und Bronzezeit in Europa, im Orient und
in Amerika.) 160 Seiten, 67 Abbildungen. 1950. (565)

III: Die jiingeren Metallkulturen. (Das Eisen als Kultur-
metall, Hallstatt-Latene-Kultur in Europa. Das erste Auf-
treten des Eisens in den anderen Weltteilen.) 149 Seiten,
60 Abbildungen. 1950. (566)

Vorgeschichte Europas von F. Behn, Vo0llig neue Bearbeitung der
7. Auflage der ,,Urgeschichte der Menschheit von M. Hoernes.
125 Seiten, 47 Abbildungen. 1949, (42)

Der Eintritt der Germanen in die Geschichte von J. Haller t. 3. Auflage,
durchgesehen von H, Dannenbauer, 120 Seiten, 6 Kartenskizzen.
1957, (1117)

Von den Karolingern zu den Staufern. Die altdeutsche Kaiserzeit
(900—1250) von J. Haller . 4., durchgesehene Auflage von
H. Dannenbauer. 142 Seiten, 4 Karten. 1958, (1065)

Von den Staufern zu den Habsburgern. Aufldsung des Reichs und
Emporkommen der Landesstaaten (1250 —1519) von J. Haller f.
2., durchgesehene Auflage von H. Dannenbauer.' 118 Seiten,
6 Kartenskizzen. 1960. (1077)

Deutsche Geschichte im Zeitalter der Reformation, der Gegenreforma-
tion und des dreiBigjahrigen Krieges von F, Hartung. 2., durch-
gesehene Auflage. 128 Seiten. 1963, (1105)

Deutsche Geschichte von 1648—1740, Politischer und geistiger Wieder-
aufbau von W, Treue. 120 Seiten. 1956, (35)

Deutsche Geschichte von 1713—1806. Von der Schaffung des euro-
paischen Gleichgewichts bis zu Napoleons Herrschaft von W. Treue.
168 Seiten, 1957. (39)

Deutsche Geschichte von 1806—1890. Vom Ende des alten bis zur
Hohe des neuen Reiches von W. Treue. 128 Seiten. 1961. (893)

Deutsche Geschichte von 1890 bis zur Gegenwart von W, Treue, In
Vorbereitung. (894)

Queltenkunde der Deutschen Geschichte im Mittelalter (bis zur Mitte
des 15. Jahrhunderts) von K. jJacob f. 3 Béande.

I: Einleitung. Allgemeiner Teil. Die Zeit der Karolinger.
6. Auflage, bearbeitet von H. Hohenleutner. 127 Seiten. 1959.
279

I1: (Die)Kaiserzeit (911-1250). 5. Auflage, neubearbeitet von H.
Hohenleutner, 141 Seiien. 1961. (280)

111; Das Spdtmittelalter (vom Interregnum bis 1500). Heraus-
gegeben von F, Weden. 152 Seiten. 1952. (284)



GEISTESWISSENSCHAFTEN

Geschichte Englands von H. Preller. 2 Bande.
: bis 1815. 4., stark umgearbeitete Aufiage. Etwa 135 Seiten,
7 Stammtafeln, 2 Karten. 1966. Im Druck, (375)
11: Von 1815 bis 1910. 2., vollig umgearbeitete Auflage. 118 Seiten,
1 Stammtafel, 7 Karten. 1954, (1088)
Romlsche Geschichte von F. Altheim, 4 Bande, 2., verbesserte Auflage.
: Bglsﬁzllxg Schlacht bei Pydna (168 v. Chr.). 124 Seiten,
1956. (
II: Bis zur Schlacht bei Actium (31 v. Chr.). 129 Seiten,
1956. (677)
I1I: Biszur Schlacht ander Milvischen Briicke (312 n. Chr.).
148 Seiten, 1958, (679)
I1V: Bis zur Schlacht am Yarmuk (636 n. Chr.). In Vorberei~
tung. (684)
Geschichte der Vereinigten Staaten von Amerika von O. Graf zu Stolberg~
Wernigerode. 192 Seiten, 10 Karten. 1956. (1051/1051a)

Deutsche Sprache und Literatur

Geschichte der Deutschen Sprache von H, Sperber. 5., neubearbeitete
Auflage von P, ven Polenz. 136 Seiten. 1966, (315)

Deutsches Rechtschreibungsworterbuch von M. Gottschald f. 2., ver-
besserte Auflage. 269 Seiten. 1953, (200/200a)

Deutsche Wortkunde. Kulturgeschichte des deutschen Wortschatzes
von A, Schirmer, 5. Auﬂage von W. Mitzka. 125 Seiten. 1965. (929)

Deutsche Sprachlehre von W. Hofstaetter. 10. Auflage. Vollige Um-
arbeitung der 8. Auflage. 150 Seiten. 1960. (20)

Stimmkunde fiir Beruf, Kunst und Heilzwecke von H. Biehle. 111 Sei-
ten. 1955. (60)

Redetechnik. Einfiithrung in die Rhetorik von H. Biehle. 2., erweiterte
Auflage. 151 Seiten. 1961. (61)

Grundlagen der Sprecherziehung von J. Jesch 1966, In Vorbereitung
(1122/1122a)

Deutsches Dichten und Denken von der germanischen bis zur staufischen
Zeit von H. Naumannt. (Deutsche Literaturgeschichte vom
5.—13. Jahrhundert.) 3., verbesserte Auflage. 1966. (1121)

Deutsches Dichten und Denken vom Mittelalter zur Neuzeit von G. Miiller
(1270 bis 1700). 3., durchgesehene Auflage. 159 Seiten. In Vor-
bereitung. (1086)

Deutsches Dichten und Denken von der Aufklarung bis zum Realismus
(Deutsche Literaturgeschichte von 1700—1890) von K. Viétor f.
3., durchgesehene Auflage. 159 Seiten. 1958, (1096)

Deutsche Heldensage von H. Schneider. 2. Auflage, bearbeitet von
R. Wisniewski. 148 Seiten. 1964. (32)

Der Nibelunge N6t i« Auswahl, Mit kurzem Worterbuch herausgegeben
von K. Langosch. 11., durchgesehene Auflage. 166 Seiten. 1966. (1)

Kudrun und Dietrich- Epen in Auswahl mit Woérterbuch von O. L. Jiric-
zek., 6. Auflage, bearbeitet von R, Wisniewski. 173 Seiten. 1957. (10)

Wolfram von Eschenbach. Parzifal. Eine Auswahl mit Anmerkungen
und Wérterbuch von H, jantzen. 3. Auflage, bearbeitet von H. Kolb.
128 Seiten. 1966. (921)
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GEISTESWISSENSCHAFTEN

Hartmann von Aue. Der arme Heinrich nebst einer Auswahl aus der
,,Klage* dem , Gregorius* und den Liedern (mit einem Worter-
verzeichnis) herausgegeben von F. Maurer. 96 Seiten. 1958. (18)

Gottfried von StraBburg. Tristan und Isolde in Auswah! herausgegeben
von F. Maurer. 2. Auflage. 142 Seiten. 1965. (22)

Die deutschen Personennamen von M. Gottschald 7. 2., verbesserte
Auflage. 151 Seiten. 1955, (422)

Althochdeutsches Elementarbuch. Grammatik und Texte von H, Nau-
mann ) und W, Befz. 4., verbesserte und vermehrte Auflage.
183 Seiten. 1966. (1111/1111a)

Mittelhochdeutsche Grammatik von H. de Boor und R, Wisniewski. 4.,
verbesserte und ergénzte Auflage. 150 Seiten. 1965. (1108)

Indogermanisch, Germanisch

Indogermanische Sprachwissenschaft von H. Krahe. 2 Binde.

I: Einleitung und Lautlehre. 5. Auflage. 110 Seiten.1966. (59)
II: Formenlehre. 4., neubearbeitete Auflage. 100 Seiten.1963. (64)

Sanskrit-Grammatik mit sprachvergleichenden Erlauterungen von
M, Mayrhofer. 2,, vollig neu bearbeitete Auflage. 110 Seiten.
1965. (1158/1158a)

Atltirische Grammatik von J. Pokorny. 2. Auflage. In Vorbereitung. (896

Gotisches Elementarbuch. Grammatik, Texte mit Ubersetzung und
Erlauterungen von H. Hempel, 4., neubearbeitete Auflage. 169 Sei-
ten. 1966. (79/79a)

Altnordisches Elementarbuch. Einfiihrung, Grammatik, Texte (zum
Teil mit Ubersetzung) und Wérterbuch von F, Ranke 3., vollig
umgearb, Auflage vo nD. Hofmann. Etwa 180 Seiten. 1967 Im
Druck. (1115/1115a)

Germanische Sprachwissenschaft von H. Krahe. 3 Binde.

I: (Ezgré;eltung und Lautiehre. 6. Auflage. 147 Seiten. 1966.

1I: Formenlehre. 5., verbesserte Auflage. 149 Seiten. 1965. (780)

II: Wortbildungslehre von W. Meid. Etwa 240 Seiten. 1966.
(1218/1218a/1218b)

Englisch, Romanisch

Altenglisches Elementarbuch. Einfiihrung, Grammatik, Texte mit Uber-
setzung und Worterbuch von M. Lehnert, 6., verbesserte Auflage.
178 Seiten. 1965. (1125)

Mittelenglisches Elementarbuch von H. Weinstock. 1967. In Vorbe-
reitung (1226/1226a)

Historische neuenglische Laut- und Formenlehre von E. Ekwall. 4.,
verbesserte Auflage. 150 Seiten. 1965. (735

Englische Phonetik von H. Mutschmann +. 2. Auflage bearbeitet von
G. Scherer. 127 Seiten. 1963. (601)

Englische Literaturgeschichte von F, Schubel. 4 Binde.

I: Diealt-undmittelenglischePeriode.163 Seiten.1954.(1114)

Il: Von der Renaissance bis zur Aufkidrung. 160 Seiten.
1956. (1116)

I11: Romantik und Viktorianismus, 160 Seiten. 1960, (1124)
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GEISTESWISSENSCHAFTEN

Beowulf von M. Lehnert. Eine Auswahl mit Einfiihrung, teilweiser
Ubersetzung, Anmerkungen und etymologischem Wérterbuch, 4.,
verbesserte Auflage, 135 Seiten, 1966. (1135)

Shakespeare von P. Meifiner f. 2, Auflage, neubearbeitet von M. Leh-
nert, 136 Seiten. 1954, (1142)

Romanische Sprachwissenschaft von H, Lausberg. 4 Binde.

I: Einleitung und Vokalismus., 2., durchgesehene Auflage.
211 Seiten. 1963. (128/128a)
Il: Konsonantismus. 2, Auflage. 1966. Im Druck. (250)
IIl: Formenlehre, 1. Teil. 99 Seiten. 1962, (1199)
II1: Formenlehre. 2. Teil. S. 99—260. 1962. (1200/1200a)
IV: Wortlehre. In Vorbereitung, (1208)

Griechisch, Lateinisch

Griechische Sprachwissenschaft von W. Brandenstein. 3 Binde.
I: Einleitung, Lautsystem, Etymologie. 160 Seiten. 1954.
117

11: \A{gr)tbildung und Formenlehre. 192 Seiten. 1959. (118/
118a

111: %%rlintax I. Einleitung. Die Flexibilien. 145 Seiten. 1966, (924/
a)

Geschichte der griechisct Sprache. 2 Binde
I: Bis zum Ausgang der klassischen Zeit von O. Hoff-

mann f. 3. Auflage, bearbeitet von A. Debrunner t. 156 Seiten.
1953. (111) :

II: Grundfragen und Grundziige des nachklassischen
Griechisch von A. Debrunner f. 144 Seiten, 1954, (114)
Geschichte der griechischen Literatur von W, Nestle. 2 Bande, 3. Auf-
lage, bearbeitet von W. Liebich.

1: 144 Seiten, 1961. (70)
I1: 149 Seiten. 1963. (557)

Grammatik der neugriechischen Volkssprache von J. Kalitsunakis.
3., wesentlich erweiterte und verbesserte Auflage. 196 Seiten. 1963.
(756/756a)

Neugriechisch-deutsches Gespriachsbuch von J. Kalitsunakis. 2. Auf-
lage, bearbeitet von A. Steinmetz. 99 Seiten, 1960. (587)

Geschichte der lateinischen Sprache von F. Stolz und A. Debrunner 7.

., stark umgearbeitete Auflage von W. P. Schmid. 145 Seiten.
1966 (492/492a)

Geschichte der romischen Literatur von L., Bieler. 2., verbesserte Auf—
lage. 2 Bénde.

I: Die Literatur der Republik. 160 Seiten. 1965. (52)
I1: Die Literatur der Kaiserzeit, 133 Seiten, 1965. (866)

Orientalistik, Slavistik
Die Keilschrift von B. Meissner. 3. Auflage, neubearbeitet von K. Ober-
huber. Etwa 150 Seiten. 1966. (708/708a/708b)
Die Hieroglyphen von A. Erman. 3. Auflage, neu bearbeitet von
O. Kruckmann. 1966. In Vorbereitung. (608 608a/608b)
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GEISTESWISSENSCHAFTEN

Hebraische Grammatik von R. Meyer, 3 Bande.
I: Einleitung,Schrift-undLautlehre. 3., neubearbeitete Auf-
lage. 120 Seiten. 1966, (763/763a/763b)
II: Formenlehre und Flexionstabellen. 3. Auflage. In Vor-
bereitung. (764/764a/764b)
1I1: Satzlehre, In Vorbereitung (765/765a/765b)
Hebridisches Textbuch zu G. Beer-R. Meyer, Hebriische Grammatik
von R. Meyer, 170 Seiten. 1960, (769/769a)
Slavische Sprachwissenschaft von H. Brduer. 2 Bénde.
I: Einleitung, Lautlehre, 221 Seiten. 1961, (1191/1191a)
Vergleichende Geschichte der slavischen Literaturen von D. TschiZewskij.
2 Bénde, 1966. In Vorbereitung.
I: Einfiihrung. Anfinge des slavischen Schrifttums bis zum
Klassizismus. (1222/1222a)
II: Romantik bis zur Moderne. (1223/1223a)
Russische Grammatik von E. Berneker }. 6., verbesserte Auflage von
M. Vasmer +. 155 Seiten. 1961. (66
Polnische Grammatik von N. Damerau. Etwa 140 Seiten. 1967. (942/
942a)

Erd- und Linderkunde, Kartographie

Afrika von F. jaeger. Ein geographischer Uberblick. 2 Bénde. 3. Auflage.
I: Der Lebensraum. 179 Seiten, 18 Abbildungen. In Vorberei-
tung. (910)
II: Mensch und Kultur. 155 Seiten, 6 Abbildungen. In Vor-
bereitung, (911)
Australien und Ozeanien von H, J. Krug. 176 Seiten, 46 Skizzen. 1953,

(319)
Kartographie von V. Heissler. 2. Auflage. 213 Seiten, 125 Abb., 8 An-
lagen. 1966. (30/30a)

Volkswirtschaft, Statistik, Publizistik

Allgemeine Betriebswirtschaftslehre von K.Mellerowicz, 4 Bande.
11, und 12., durchgesehene Auflage,
1: 224 Seiten, 1964. (1008/1008a)
I1: 188 Seiten. 1966. (11563/1153a)
111: 260 Seiten. 1963. (1154/1154a)
1V: 209 Seiten, 1963. (1186/1186a)
Allgemeine Volkswirtschaftslehre von A. Paulsen. 4 Bande.
I: Grundlegung, Wirtschaftskreislauf. 7. Auflage. 159 Sei-
ten, 11 Abblldungen 1966. (1169)
11: Haushalte Unternehmungen, Marktformen. 7. Auflage,
172 Seiten, 31 Abbildungen, 1966. (1170)
I11: Produktionsfaktoren. 5. Auflage. 198 Seiten, 24 Abbildun-
gen. 1966, (1171)
1V: Gesamtbeschaftigung, Konjunkturen, Wachstum. 4.,
neubearbeitete und erganzte Auflage, 188 Selten 1966. (1172)
Ubungsaufgaben mit Losungen zur Allgemeinen Volkswirtschaftslehre
1lélzl von A, Paulsen von W. Wedig. Etwa 160 Seiten. 1966, (1227/
Ta)
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GEISTESWISSENSCHAFTEN

Geschichte der Volkswirtschaftslehre von S. Wendt, 182 S. 1961. (1194)

Allgemeine Volkswirtschaftspolitik von H. Oam. 2 Binde.

I: Systematisch-Theoretische Grundlegung. 2., verbesser-
te gund erganzte Auflage. 137 Seiten, 6 Abbildungen. 1965,
(1195)

II: Der volkswirtschaftliche Gesamtorganismus als Ob-
jekt der Wirtschaftspolitik. In Vorbereitung. (1196)

Finanzwissenschaft von H. Kolms. 4 Biande,

I: Grundlegung, Offentliche Ausgaben. 3., verbesserte Auf-
lage. 165 Seiten. 1966. (148)

II: Erwerbseinkiinfte, Gebihren und Beitrige, Allge-
rrgls.ine Steuerlehre. 3., verbesserte Auflage. 154 Seiten. 1966.
(391)

I11: Besondere Steuerlehre. 2., verbesserte und ergidnzte Auf-
lage. 178 Seiten. 1966, (776/776a)

1V: Offentlicher Kredit. Offentlicher Haushalt. Finanz-
ausgleich, 191 Seiten. 1964. (782/782a)

Finanzmathematik von M. Nicolas. 192 Seiten, 11 Tafeln, 8 Tabellen
und 72 Beispiele. 1959. (1183/1183a)

Programmierung von Datenverarbeitungsanlagen von H. J. Schneider,
D. Jurksch. Etwa 128 Seiten, 8 Tabellen, 11 Abbildungen. 1967,
(1225/1225a)

Lineare Programmierung von H. Langen. Etwa 200 Seiten. (1206/1206 a)

Buchhaltung und Bilanz von E. Kosiol. 170 Seiten. 1964, (1213/1213a)

Industrie- und Betriebssoziologie von R. Dahrendorf. 3. Auflage. 142
Seiten, 3 Figuren. 1965. (103)

Wirtschaftssoziologie von F. Fiirstenberg., 122 Seiten. 1961. (1193)

Psychologie des Berufs- und Wirtschaftslebens von W. Moede 1. 190 Sei-
ten, 48 Abbildungen. 1958. (851/851a)

Einfiihrung in die Arbeitswissenschaft von H. H. Hilf. 169 Seiten, 57 Ab-
bildungen. 1964. (1212/1212a)

Allgemeine Methodenlehre der Statistik von J. Pfanzagl. 2 Bande.

I: Elementare Methoden unter besonderer Berucksich-
tigung der Anwendungen in den Wirtschafts- und
Sozialwissenschaften. 3., neubearbeitete Auflage. 266 Seiten,
50 Abbildungen, 1966. (746/746a)

Il: Hohere Methoden unter besonderer Beriicksichtigung
der Anwendungen in Naturwissenschaften, Medizin
und Technik. 2., verbesserte Auflage. 315 Seiten, 41 Abbil-
dungen. 1966. (747/747a)

Zeitungslehre von E. Dovifat. 2 Bande. 5., neubearbeitete Auflage.
I: Theoretische und rechtliche Grundlagen — Nachricht

und Meinung — Sprache und Form. 149 Seiten. 1966.
Im Druck. (1039)

II: Redaktion — Die Sparten: Verlag und Vertrieb,
Wirtschaft und Technik — Sicherungder offentlichen
Aufgabe. 168 Seiten. 1966. Im Druck. (1040)
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Naturwissenschaften

Mathematik

Geschichte der Mathematik von J. E. Hofmann. 4 Bénde.
I: Von den Anféngen bis zum Auftreten von Fermat

und Descartes. 2., verbesserte und vermehrte Auflage.
251 Seiten. 1963. (226/2262a)

II: Von Fermat und Descartes bis zur Erfindung des
Calculus und bis zum Ausbau der neuen Methoden.
109 Seiten. 1957. (875)

III: Von den Auseinandersetzungen um den Calculusbis
zur franzodsischen Revolution. 107 Seiten. 1957, (882)

IV: Geschichte der Mathematik der neuesten Zeit von
N. Stuloff. In Vorbereitung. (883)

Mathematische Formelsammlung von F.O. Ringleb. 8., verbesserte Auf-
lage. Etwa 320 Seiten, 40 Figuren. 1967. (51/51a)

Vierstellige Tafeln und Gegentafeln fiir logarithmisches und trigono-
metrisches Rechnen in zwei Farben zusammengestellt von H. Schu-
bert und R, Haussner. 3., neubearbeitete Auflage von J. Erlebach.
1568 Seiten. 1960. (81)

Fiinfstellige Logarithmen mit mehreren graphischen Rechentafeln und
hdufig vorkommenden Zahlenwerten von A, Adler. 4. Auflage,
tiberarbeitet von J. Erlebach. 127 Seiten, 1 Tafel. 1962. (423)

Arithmetik von P, B. Fischer}. 3. Auflage von H. Rohrbach. 152 Seiten,
19 Abbildungen. 1958, (47)

Hohere Algebra von H. Hasse. 2 Bande. 5., neubearbeitete Auflage.

I: Lineare Gleichungen. 150 Seiten. 1963. (931)
ll(és(zi)leichungen héheren Grades. 158 Seiten, 5 Figuren. 1966.

Aufgabensammlung zur héheren Algebra von H. Hasse und W. Klobe.,
3., verbesserte Auflage. 183 Seiten. 1961. (1082)

Elementare und klassische Algebra vom modernen Standpunkt von
W. Krull. 2 Bande.

I: 3., erweiterte Auflage. 148 Seiten. 1963. (930)
I1: 132 Seiten. 1959. (933)

Lineare Programmierung von H. Langen. Etwa 200 Seiten. (1206/1206a)

Algebraische Kurven und Flichen von W. Burau. 2 Bande.

1: Algebraische Kurven der Ebene. 153 Seiten, 28 Abbil-
dungen. 1962, (435)

II: Algebraische Flachen 3. Grades und Raumkurven 3. und
4, Grades. 162 Seiten, 17 Abbildungen. 1962. (436/436a)

Einfidhrung in die Zahlentheorie von A. Scholz?. Uberarbeitet und
(hlelrgu)sgegeben von B. Schoeneberg., 4. Auflage. 128 Seiten. 1966.

1

Formale Logik von P. Lorenzen. 3., durchgesehene und erweiterte Auf-

lage. 184 Seiten. 1966. (1176/1176a)
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Topologie von W. Franz, 2 Bande,

I: Allgemeine Topologie. 2., verbesserte Auflage. 144 Seiten,
9 Figuren. 1965. (1181)

II: Algebraische Topologie. 153 Seiten. 1965. (1182/1182a)

Elemente der Funktionentheorie von K. Knopp . 7. Auflage. 144 Seiten,
23 Figuren, 1966. (1109)

Funktionentheorie von K. Knopp?. 2 Binde. 11. Auflage.

I: Grundlagen der allgemeinen Theorie der analytischen
Funktionen. 144 Seiten, 8 Figuren, 1965, (668)

II: Anwendu%%en und Weiterfithrung der allgemeinen
Theorie. 130 Seiten, 7 Figuren. 1965. (703)

Aufgabensammlung zur Funktionentheorie von K. Knoppt. 2 Bédnde.
I: Aufgaben zur elementaren Funktionentheorie. 7. Auf-

lage. 135 Seiten. 1965. (877)

II: Aufgaben zur hoheren Funktionentheorie. 6. Auflage.
151 Seiten. 1964, (878)

lefirentlac;- und Integralrechnung von M. Barner. (Frither Witting).

Binde.

I: Grenzwertbegriff, Differentialrechnung. 2., durchge-
sehene Auflage. 176 Seiten, 39 Figuren. 1963. (86)

Gewdhnliche Differentialgleichungen von G. Hoheisel, 7., neubearbeitete
und erweiterte Auflage. 142 Seiten. 1965, (920/920a)

Partielle Differentialgleichungen von G. Hoheisel. 4., durchgesehene
Auflage, 128 Seiten. 1960. (1003)

Aufgabensammlung zu den gewdhnlichen und partiellen Differential-
gleichungen von G. Hoheisel, 4., neubearbeitete Auflage, 153 Seiten.
1964. (1059/1059a)

Integralgleichungen von G. Hoheisel. 2., neubearbeitete und erweiterte
Auflage. 112 Seiten. 1963. (1099)

Mengenlehre von E. Kamke. 5. Auflage. 194 Seiten, 6 Figuren. 1965.
(999/999 a)

Gruppentheorie von L. Baumgartner. 4., erweiterte Auflage. 190 Seiten,
3 Tafeln. 1964. (837/837a)

Ebene und sphirische Trigonometrie von G. Hessenbergt. 5. Auflage,
durchgesehen von H. Kneser, 172 Seiten, 60 Figuren. 1957. (99)

Darstellende Geometrie von W. Haack. 3 Biande.

1: Die wichtigsten Darstellungsmethoden. Grund- und
AufriB ebenflichiger Kdérper. 5. Auflage. 113 Seiten, 120
Abbildungen. 1965. (142)

II: Kérper mit krummen Begrenzungsflichen. Kotierte
Projektionen. 4., durchgesehene Auflage. 129 Seiten, 86 Ab-
bildungen. 1965, (143)

IIl: Axonometrie und Perspektive. 3. Auflage. 129 Seiten,
100 Abbildungen, 1965. (144)

Analytische Geometrie von K. P. Grotemeyer, 3., neubearbeitete Auf-
lage, 218 Seiten, 73 Abbildungen, 1964. (65/65a)

Nichteuklidische Geometrie. Hyperbolische Geometrie der Ebene von
R. Baldust. 4. Auflage, bearbeitet und erganzt von F, Ldbell.
158 Seiten, 75 Figuren, 1964, (970/970a)
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Differentialgeometrie von K. Strubecker. 3 Bande,
I: Kurventheorieder Ebene und des Raumes, 2., erweiterte
Auflage, 253 Seiten, 45 Figuren. 1964. (1113/1113a)

II: Theorie der Fldchenmetrik. 195 Seiten, 14 Figuren, 1958.

(1179/1179a)
III: Theorie der Fldchenkriimmung. 254 Seiten, 38 Figuren.
1959. (1180/1180a)
Variationsrechnung von L. Koschmieder. 2 Bénde. 2., neubearbeitete
Auflage.
I: Das freie und gebundene Extrem einfacher Grund-
integrale. 128 Seiten, 23 Figuren. 1962, (1074) .

II: Anwendung klassischer Verfahren auf allgemeine
Fragen des Extrems. — Neuere unmittelbare Ver-
fahren. In Vorbereitung, (1075)

Einfihrung in die konforme Abbildung von L. Bieberbach. 6. Auflage,
Etwa 180 Seiten, 42 Figuren. 1966. In Vorbereitung. (768/768 a)
Vektoren und Matrizen von S. Valentiner. 4. Auflage. (11,, erweiterte
Auflage der ,,Vektoranalysis*). Mit Anhang: Aufgaben zur Vektor-
rechnung von H, Kénig, 206 Seiten, 35 Figuren. 1967, (354/354a)
Wahzrsgheidnllchkeitstheorle und Grundzuge der MaBtheorie von H. Bauer,
ande
I: 154 Seiten. 1964. (1216/1216a)
II: In Vorbereitung. (1217)
Versicherungsmathematik von F. Béhm, 2 Bénde.
Elemente der Versicherungsrechnung. 3., vermehrte
und verbesserte Auflage. Durchgesehener Neudruck. 151 Seiten.
1953, (180)

Il: Lebensversicherungsmathematik. Einfilhrung in die
technischen Grundlagen der Sozialversicherung. 2., verbesserte
und vermehrte Auflage. 205 Seiten. 1953. (917/917a)

Finanzmathematik von M. Nicolas. 192 Seiten, 11 Tafeln, 8 Tabellen
und 72 Beispiele. 1959. (1183/1183a)
Kinematik von H. R, Miiller. 171 Seiten, 75 Figuren. 1963, (584/584a)

Physik

Einfiihrung In die theoretische Physik von W. Déring. 5 Bénde,
1: Mechanik, 3., verbesserte Aufl. 125 Seiten, 23 Abb. 1965. (76)
i1: Das elektromagnetlsche Feld., 2, verbesserte Auflage.
132 Seiten, 15 Abbildungen. 1962, (77)
I11: Og%gi]z.sl, verbesserte Auflage. 117 Seiten, 32 Abbildungen.
1963. (78)
IV: Thermodynamik. 2., verbesserte Auflage. 107 Seiten, 9 Ab-
bildungen. 1964. (374)
V: Statistische Mechanik. 2., umgearbeitete Auflage. 117 Sei-
ten, 10 Abbildungen. 1966, (1017)
Mechanik deformierbarer Korper von M, Pasler, 199 Seiten, 48 Ab-
bildungen. 1960. (1189/1189a)
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Atomphysik von K, Bechert, Ch. Gerthsen} und A. Flammersfeld.
7 Bande. 4., durchgesehene Auflage.
I: Allgemeine Grundlagen. 1.Teil von A, Flammersfeld.
124 Seiten, 35 Abbildungen. 1959. (1009)
Il: Allgemeine Grundlagen. 2, Teil von A. Flammersfeld.
112 Seiten, 47 Abbildungen. 1963. (1033)
III: Theorie des Atombaus, 1. Teil von K. Bechert. 148 Seiten,
16 Abbildungen. 1963. (1123/1123a)
IV: Theorie des Atombaus, 2. Teil von K. Bechert, 170 Seiten,
14 Abbildungen. 1963. (1165/1165a)
Differentialgleichungen der Physik von F. Saufer. 4., durchgesehene
und erganzte Auflage. 147 Seiten, 16 Figuren. 1966. (1070)
Physikalische Formelsammlung von G. Mahler. 7. Fortgefihrt von
K. Mahler. Neubearbeitet von H. Graewe. 11. Auflage. 167 Seiten,
69 Figuren. 1963. (136)
Physikalische Aufgabensammlung mit Ergebnissen von G. Mahler f.
Fortgefuhrt von K. Mahler, Neubearbeitet von H. Graewe. 12. Auf-
lage. 141 Seiten, 1964. (243)

Chemie

Geschichte der Chemie in kurzgefafiter Darstellung von G. Lockemann.
2 Bénde. 2. Auflage. :

I: Vom Altertum bis zur Entdeckung des Sauerstoffs.
142 Seiten, { Bildnisse. In Vorbereitung, (264)

II: Von der Entdeckung des Sauerstoffs bis zur Gegen-
wart. 151 Seiten, 16 Bildnisse. In Vorbereitung (265/265a)

Anorganische Chemie von W. Klemm. 13. Auflage. 255 Seiten, 34 Ab-
bildungen. 1964. (37/37a)

Organische Chemie von W. Schlenk jun. 10., erweiterte Auflage. 273
Seiten, 16 Abbildungen. 1965, (38/38a)

Physikg{lsghe Methoden in der Organischen Chemie von G. Kresze.

dnde.
I: 119 Seiten, 65 Abbildungen. 1962. (44)
I1: 164 Seiten. 1962. (45/45a)

Allgemeine und physikalische Chemie von W. Schulze. 2 Binde.
I: 6., verbesserte Auflage. 139 Seiten, 10 Figuren, 1964, (71)

I1: 6., verbesserte Auflage. 178 Seiten, 37 Figuren. 1966. (698/698a)
Molekiilbau. Theoretische Grundlagen und Methoden der Struktur-
ermittlung von W. Schuize, 123 Seiten, 43 Figuren. 1958. (786)
Einfache Versuche zur allgemeinen und physikalischen Chemie von
E. Dehn. 371 Versuche mit 40 Abbildungen. 272 Seiten. 1962,

(1201/1201 a)

Physikalisch-chemische Rechenaufgaben von E. Asmus. 3., verbesserte
Auflage. 96 teiten, 1958, (445)

MaBanalyse. Theorie und Praxis der klassischen und der elektrochemi-
schen Titrierverfahren von G. jander und K. F. jahr, 11., durch-
gesehene Auflage, mitbearbeitet von H. Knoll. 359 Seiten, 56 Fi-
guren. 1966. (221/221a)
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Qualitative Analyse von H. Hofmann u. G. jander. 2., durchgesehene
und verbesserte Auflage. 308 Seiten, 5 Abbildungen. 1963,
(247/247 a)

Stochiometrische Aufgabensammlung von W, Bahrdt} und R. Scheer.
Mit den Ergebnissen. 8., durchgesehene Auflage. 119 Seiten. 1964.

(452)
Elektrochemie von K. Velter. 2 Bénde.
I: In Vorbereitung. (252)
I1: In Vorbereitung. (253)
Geochemie von K. H. Wedepohl. 220 Seiter, 26 Abbildungen, 37 Ta-
bellen. 1966. (1224/1224a/1224b)
Kristallchemie von J. Zemann. 144 Seiten, 90 Abbildungen. 1966.
(1220/1220a) .
Technologie

Die Chemie der Kunststoffe von K. Hamann, unter Mitarbeit von
W. Funke und H. D, Hermann. 2. Aufl. 143 Seiten. 1966. In Vor-
bereitung. (1173/1173a)

Warenkunde von K. Hassak und E. Beutel t. 2 Bande.

I: Anorganische Waren sowie Kohle und Erddél. 8. Auf-
lage. Neubearbeitet von A. Kufzelnigg. 119 Seiten, 18 Figuren.
1958. (222)

: Organische Waren. 8. Auflage. Vollstindig neu bearbeitet
von A. Kutzelnigg. 157 Seiten, 32 Figuren. 1959, (223)

Die Fette und Ole von Th. Klug. 6., verbesserte Auflage. 143 Seiten.
1961, (335)

Die Seifenfabrikation von K. Braun+. 3., neubearbeitete und ver-
besserte Auflage von Th. Klug. 116 Seiten, 18 Abbildungen. 1953.

(336)
Thermische Verfahrenstechnik von H, Bock. 3 Binde.
I: Eigenschaften und Verhalten der realen Stoffe. 184 Sei-
ten, 28 Abbildungen. 1963. (1209/1209a)
II: Funktion und Berechnung der elementaren Geridte.
195 Seiten, 54 Abbildungen. 1964. (1210/1210a)
11I: FlieBbilder, ihre Funktion und ihr Zusammenbau aus
Geraten. 224 Seiten, 67 Abbildungen, 1965, (1211/1211a)
Textilindustrie von A. Bliimcke.
: Spinnerei und Zwirnerei. 111 Seiten, 43 Abbildungen. 1954,
(184) c .
Biologie
Einfiihrung in die allgemeine Biologie und ihre philosophischen Grund-
und Grenzfragen von M. Hartmann. 2., unveranderte Auflage.
132 Seiten, 2 Abbildungen. 1965. (96)
Hormone von G. Koller. 2, neubearbeitete und erweiterte Autlage.
187 Seiten, 60 Abbildungen, 19 Tabellen. 1949. (1141)
Fortpflanzung im Tier- und Pflanzenreich von J, Hdmmerling. 2.,
erganzte Auflage, 135 Seiten, 101 Abbildungen, 1951 (1138)
Geschlecht und Geschlechtsbestlmmung im Tier- und Pflanzenreich von
M. Hartmann. 2., verbesserte Auflage. 116 Seiten, 61 Abbildungen,
7 Tabellen. 1951, (1127)
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Symbiose der Tiere mit pflanzlichen Mikroorganismen von P. Buchner.
2., verbesserte und vermehrte Auflage. 130 Seiten, 121 Abbildungen.
1949. (1128)

Grundrif} der allgemeinen Mikrobiologie von W, u, A. Schwartz. 2 Bande.
2., verbesserte und erginzte Auflage.

I: 147 Seiten, 25 Abbildungen. 1960. (1155)
II: 142 Seiten, 29 Abbildungen. 1961, (1157)

Botanik

Entwicklungsgeschichte des Pflanzenreiches von H. Heil, 2. Auflage.
138 Seiten, 94 Abbildungen, 1 Tabelle. 1950, (1137)

Morphologie der Pflanzen von L. Geitler, 3., umgearbeitete Auflage.
126 Seiten, 114 Abbildungen. 1953. (141)

Pflanzengeographie von L. Dielst. 5., vollig neu bearbeitete Auflage
von F. Mattick. 195 Seiten, 2 Karten. 1958. (389/389a)

Die Laubhdizer. KurzgefaBte Beschreibung der in Mitteleuropa ge-
deihenden Laubbaume und Straucher von F, W, Negerf und
E. Miincht. 3., durchgesehene Auflage, herausgegeben von B. Hu-
ber. 143 Seiten, 63 Figuren, 7 Tabellen. 1950. (718)

Die Nadelhélzer (Koniferen) und iibrigen Gymnospermen von F., W,
Negert und E. Miincht. 4. Auflage, durchgesehen und erganzt
(V;sn&B Huber. 140 Seiten, 75 Flguren 4 Tabellen, 3 Karten. 1952.

Pflanzenziichtung von H. Kuckuck, 2 Bande.

Grundziigeder Pflanzenziichtung,. 3., vollig umgearbeitete
unv?l3 erweiterte Auflage. 132 Seiten, 22 Abbildungen. 1952,
(1134)

II: Spezielle gartenbauliche Pflanzenziichtung (Ziuchtung
von Gemise, Obst und Blumen). 178 Seiten, 27 Abbildungen.
1957, (1178/1178a)

Zoologie
Entwicklungsphysiologie der Tiere von F. Seidel. 2 Bande.
I: Ei und Furchung. 2. Auflage. Etwa 160 Seiten, 61 Abbil-
dungen. 1966 (1162)
I1: Korpergrundgestalt und Organbildung, 2. Auflage. In
Vorbereitung (1163)
Vergleichende Physiologie der Tiere von K. Herter. 2 Biande. 4. Auflage
der ,, Tierphysiologie''.
I: Stoff- und Energlewechsel Neu bearbeitet von K. Urich.
158 Seiten, 61 Abbildungen. 1966. (972/972a)
11: Bewegung und Reizerscheinungen. Neu bearbeitet von
G. Birukow. In Vorbereitung. (973)
Das Tierreich
1: Einzeller, Protozoen von E. Reichenow. 115 Seiten. 59 Ab-
bildungen. 1956. (444)
II: Schwamme und Hohltiere von H. j. Hannemann. 95 Sei-
ten, 80 Abbildungen. 1956. (442)
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III: Wiirmer. Platt-, Hohl-, Schnurwiirmer, Kamptozoen, Ringel-
wiirmer, Protracheaten, Birtierchen, Zungenwurmer von
S. Jaeckel, 114 Seiten, 36 Abbildungen. 1955. (439)

1V, 1: Krebse von H. E. Gruner und K. Deckert. 114 Seiten, 43 Ab-
bildungen. 1956. (443)

IV, 2: Spinnentiere (Trilobitomorphen, Fiihlerlose) und Tau-
sendfuBler von A. Kaestner. 96 Seiten, 55 Abbildungen.
1955, (1161)

IV, 3: Insekten von H. von Lengerken. 2., neubearbeitete Auflage.
140 Seiten, 59 Abbildungen. 1966. (594)

V: Weichtiere. Urmollusken, Schnecken, Muscheln und Kopf-
fliBer von S, jaeckel. 92 Seiten. 34 Figuren. 1954. (440)

VI: Stachelhduter. Tentakulaten, Binnenatmer und Pfeilwiirmer
von 8. Jaeckel. 100 Seiten, 46 Abbildungen, 1955. (441)

VII, 1: Manteltiere, Schadellose, Rundmauler von H. Fechter,
In Vorbereitung. (448)

VII, 2: Fische von D, Lidemann. 130 Seiten, 65 Abbildungen.
1955. (356)

VII, 3: Lurche (Chordatiere) von K. Herter. 143 Seiten, 129 Abbil-
dungen. 1955, (847)

VII, 4: Kriechtiere (Chordatiere) von K. Herter. 200 Seiten, 142 Ab-
bildungen. 1960. (447/447 a)

VII, 5: Vigel (Chordatiere) von H.-A. Freye. 156 Seiten, 69 Figu-
ren. 1960. (869)

VII, 6: Sdugetiere (Chordatiere) von Th. Haltenorth. In Vorberei-
tung. (282)

Land- und Forstwirtschaft

Landwirtschaftliche Tierzucht. Die Ziichtung und Haltung der land-
wirtschaftlichen Nutztiere von H. Vogel. 139 Seiten, 11 Abbildun-
gen, 1952, (228)

Kulturtechnische Bodenverbesserungen von O. Fauser. 2 Biande. 5.,
verbesserte und vermehrte Auflage.

I: Aligemeines, Entwéasserung. 127 Seiten, 49 Abbildungen.
1959, (691)
11: Bewasserung, Odlandkultur, Flurbereinigung. 159 Sei-
ten, 71 Abbildungen. 1961, (692)
Agrikulturchemie von K. Scharrer. 2 Bande.
1: Pflanzenerndhrung. 143 Seiten. 1953, (329)
II; Futtermittelkunde. 192 Seiten. 1956. (330/330a)

Geologie, Mineralogie, Kristallographie
Geologie von F, Lotze. 3., verbesserte Auflage. 179 Seiten, 80 Abbil-
dungen. 1965. (13/13a)
Mineral- und Erzlagerstattenkunde von H. Huttenlocher f. 2 Bande,
2., neubearbeitete Auflage von P. Ramdohr.
1: 137 Seiten, 40 Abbildungen, 2 Tabellen. 1965. (1014/1014a)
I1: 135 Seiten, 41 Abbildungen. 1965. (1015/1015a)
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Allgemeine Mineralogie. 11., erweiterte Auflage der ,,Mineraiogie‘‘ von
R. Brauns t, neubearbeitet von K. F. Chudoba. 152 Seiten, 143
Textfiguren, 1 Tafel, 3 Tabellen. 1963. (20/29a)

Spezielle Mineralogie. 11., erweiterte Auflage der ,,Mineralogie* von
R. Brauns t, bearbeitet von K. F. Chudoba. 193 Seiten, 127 Text-
figuren, 6 Tabellen. 1964. (31/31a)

Petrographie (Gesteinskunde) von W, Bruhns}. Neubearbeitet von
(}’._l;?amdohr. 6., erweiterte Auflage. 141 Seiten, 21 Figuren. 1966.
173)

Geochemie von K. H. Wedepohl. 220 Seiten, 26 Abbildungen, 37 Ta-
bellen. 1966. (1224/1224a/1224 b)

Kristallchemie von J. Zemann. 144 Seiten, 90 Abbildungen. 1966.
(1220/1220a)

Kristallographie von W. Bruhnst. 6. Auflage, neubearbeitet von
P. Ramdohr. 115 Seiten, 164 Abbildungen. 1965. (210)

Einfihrung in die Kristalloptik von E. Buchwald. 5., verbesserte
Auflage. 128 Seiten, 117 Figuren. 1963. (619/619a)

Lotrohrproblerkunde. Mineraldiagnose mit Lotrohr und Tupfelreak-
tion von M. Henglein. 4., durchgesehene und erweiterte Auflage.
108 Seiten, 12 Figuren, 1962, (483)
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Graphische Darstellung in Wissenschaft und Technik von M. Pirani.
3., erweiterte Auflage bearbettet von J. Fischer unter Benutzung
der von I. Runge besorgten 2. Auflage. 216 Seiten, 104 Abbildun-
gen. 1957. (728/728a)

Technische Tabellen und Formeln von W. Miiller, 5., verbesserte und
erweiterte Auflage von E. Schulze. 165 Seiten, 114 Abbildungen,
99 Tafeln, 1962, (579)

Einfiilhrung in die Arbeitswissenschaft von H. H. Hilf. 164 Seiten,
57 Abbildungen, 1964. (1212/1212a)

Grundlagen der StraBenverkehrstechnik. Theorie der Leistungsfahigkeit
von E. Engel. 101 Seiten, 55 Abbildungen. 1962, (1198)

Elektrotechnik

Grundlagen der allgemeinen Elektrotechnik von O. Mohr. 3. Auflage.
260 Seiten, 136 Bilder, 14 Tafein. 1965. (196/196a)

Die glenlchstrommaschine von K., Humburg. 2 Biande. 2., durchgesehene

uflage.

I: 102 Seiten, 59 Abbildungen. 1956, (257)
11: 101 Seiten, 38 Abbildungen. 1956. (881)

Die Synchronmaschine von W, Putz. 92 Seiten, 64 Bilder. 1962. (1146)

Induktionsmaschinen von F. Unger. 2., erweiterte Auflage. 142 Seiten,
49 Abbildungen. 1954, (1140)

Die komplexe Berechnung von Wechselstromschaltungen von H. H.
Meinke. 3., neubearb. Aufl, 185 S., 126 Abb, 1965. (1156/1156a)

Theoretische Grundlagen zur Berechnung der Schaitgerdte von F. Kessel-
ring. 4. Auflage. In Vorbereitung. (711/711a)

Einflihrung in die Technik selbsttidtiger Regelungen von W. zur Megede,
3., durchgesehene Aufl, 180 S., 86 Abb, 1966, In Vorb. (714/714a)

Elektromotorische Antriebe von w. Meyer. In Vorbereitung. (827/827a)

Uberspannungen und Uberspannungsschutz von G. Frithauf. Durch-
gesehener Neudruck. 122 Seiten, 98 Abbildungen. 1950. (1132)

Elektrische Hﬁchstspannungs-Schaltanlagen. Fiir Freiluft und Innen-
anordnung von G. Meiners und K.-H. Wiesenewsky. 138 Seiten,
58 Abbildungen. 1964, (796/796a)

Transformatoren von W. Schdfer. 4., iiberarbeitete und ergdnzte Auf-
lage. 130 Seiten, 73 Abblldungen 1962, (952)

Maschinenbau

Thermische Verfahrenstechnik von H. Bock. 3 Bénde.
I: Eigenschaftenund Verhalten derrealen Stoffe. 184 Sei-
ten, 28 Abbildungen. 1963. (1209/1209a)
II: Funktion und Berechnung der elementaren Gerite,
195 Seiten, 54 Abbildungen. 1964. (1210/1210a)
111 FlleBbllder ihre Funktion und ihr Zusammenbau aus
Geraten. 224 Seiten, 67 Abbildungen. 1965. (1211/1211a)
Technische Thermodynamik von U. Grigull, 171 Seiten, 74 Abbildungen.
1966. (1084/1084 a)
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Metallkunde von M. Borchers. 3 Bande.
I: Aufbauder Metalle und Legierungen, 6. Auflage. 120 Sei-
ten, 90 Abbildungen, 2 Tabeilen, 1964. (432)
1L Eigenschaften Grundzage der Form- und Zustands-
gebung. 5., erganzte und durchgesehene Auflage. 182 Seiten,
107 Abblldungen 10 Tabellen. 1963. (433/433a)
III: Die metallkundlichen Untersuchungsmethoden von
E., Hanke. In Vorbereitung (434)
Die Werkstoffe des Maschinenbaues von A. Thum f und C. M. v. Mey-
senbug. 2 Bande.
I: Einfiihrung in die Werkstoffpriifung. 2., neubearbeitete
Auflage. 100 Seiten, 7 Tabellen, 56 Abbildungen. 1956. (476)
II: Die Konstruktionswerkstoffe, 132 Seiten, 40 Abbildungen.
1959. (936)
Dynamik von W. Miiller. 2 Bande. 2., verbesserte Auflage.
I: (l?)g;amik des Einzelkdrpers. 128 Seiten, 48 Figuren, 1952,
)
II: Systeme von starren Korpern. 102 Seiten, 41 Figuren.
1952 (903)
Technische Schwingungslehre von L. Zipperer. 2 Binde. 2., neube-
arbeitete Auflage.
I: Allgemeine Schwingungsgleichungen, einfache
Schwinger. 120 Seiten, 101 Abbildungen. 1953. (953)
II: Torsionsschwingungen in Maschinenanlagen. 102 Sei-
ten, 59 Abbildungen. 1955, (961/961a)
Werkzeugmaschinen fiir Metallbearbeitung von K. P. Matthes. 2 Bénde.
I: 100 Seiten, 27 Abbpildungen, 11 Zahlentafeln, 1 Tafelanhang.
1954. (561)
IlI: Fertigungstechnische Grundlagen der neuzeitlichen
Metallbearbeitung. 10! Seiten, 30 Abbildungen, 5 Tafeln.
1955. (562)
Das Maschinenzeichnen mit Einfiihrung in das Konstruieren von W.
Tochtermann. 2 Bande. 4. Auflage.
I: Das Maschinenzeichnen. 156 Seiten, 75 Tafeln. 1950. (589)
II: Ausgefiihrte Konstruktionsbeispiele. 130 Seiten, 58 Ta-
feln. 1950. (590)
Die Maschinenelemente von E. A, vom Ende #, 4., iiberarbeitete Auf-
vage. 184 Seiten, 179 Figuren, 11 Tafeln. 1963, (3/3a)
Die Maschinen der Eisenhiittenwerke von L. Engel. 156 Seiten, 95 Ab-
bildungen. 1957. (583/583a)
Walzwerke von H. Sedlaczek # unter Mitarbeit von F. Fischer und
M. Buch. 232 Seiten, 157 Abbildungen. 1958. (580/580a)
Getriebelehre von P. Grodzinski 7. 2 Bande, 3., neubearbeitete Auflage
von G. Lechner.
I: Geometrische Grundlagen. 164 S., 131 Fig. 1960, (1061)
I1: Angewandte Getriebelehre. In Vorberextung (1062)
Kinematik von H. R, Miiller. 171 Seiten, 75 Figuren. 1963. (584/584 a)
GieBereltechnik von H. Jungbluth, 2 Bande.
I: EisengieBerei. 126 Seiten, 44 Abbildungen. 1951, (1159)
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TECHNIK

Die Dampfkessel einschlieBlich Feuerungen und Hilfseinrichtungen,
Physikalische und chemische Grundlagen, Berechnung und Kon-
struktion, Vorschriften und Beispiele von W. Marcard. 3., neube-
arbeitete Auflage von G. Beyer. 2 Bande.

I: Physikalische und chemische Grundlagen, Wirme-
lehre, Wéarmeiibertragung, Verbrennung. 133 Seiten,
35 Bilder, 26 Tabellen. 1964. (9/9a)

II: Berechnung und Konstruktion. Dampfkessel,
Hilfseinrichtungen. Feuerungen, Berechnung. 108
Seiten, 45 Bilder. 1966. (521/521a)

Die Dampfturbinen. IThre Wirkungsweise, Berechnung und Konstruk-
tion von C. Zietemann. 3 Binde,

I: Theorieder Dampfturbinen. 4. Auflage. 139 Seiten, 48 Ab-
bildungen. 1966. In Vorbereitung. (274)

I1I: Die Berechnung der Dampfturbinen und die Kon-
struktion der Einzelteile. 4., verbesserte Auflage. 132 Sei-
ten, 111 Abbildungen. 1966. In Vorbereitung. (715)

III: Die Regelung der Dampfturbinen, die Bauarten,
Turbinen fiir Sonderzwecks+, Kondensationsanlagen.
3., verbesserte Auflage. 126 Seiten, 90 Abbildungen. 1956. (716)

Verbrennungsmotoren von W, Endres. 3 Bande.

I: Uberblick. Motor-Brennstoffe, Verbrennung im Motor
allgemein, im Otto- und Diesel-Motor. 153 Seiten, 57 Ab-
bildungen. 1958. (1076/1076a)

II: Gaswechselvorgang. Aufladen, Leistung, mittl. Druck,
Reibung. Wirkungsgrade und Kraftstoffverbrauch,
152 Seiten, 62 Abbildungen. 1966. (1184/1184a)

III: Die Einzelteile des Verbrennungsmotors. In Vorbe-
reitung, (1185/1185a)

Autogenes SchweiBen und Schneiden von H. Niese. 5. Auflage, neu-
bearbeitet von A. Kiichler, 136 Seiten, 71 Figuren. 1953. (499)
Die elektrischen SchweiBiverfahren von H. Niese. 2. Auflage, neube-

arbeitet von H. Dienst, 136 Seiten, 58 Abbildungen. 1955. (1020)

Die Hebezeuge. Entwurf von Winden und Kranen von G. Tafel. 2., ver-
besserte Auflage. 176 Seiten, 230 Figuren. 1954. (414/414a)

Vermessungswesen

Vermessungskunde von W, Grofimann. 3 Bande,
I: Stiickvermessung und Nivellieren. 12., verbesserte Auf-
lage. 156 Seiten, 122 Figuren. 1965. (468)
II: Horizontalaufnahmen und ebene Rechnungen, 9,, ver-
besserte Auflage. 136 Seiten, 101 Figuren, 1963. (469)
1I1I: Trigonometrische und barometrische Hohenmessung.
Tachymetrie und Absteckungen. 8., verbesserte Auflage.
140 Seiten, 102 Figuren., 1965. (862)
Kartographie von V., Heissler, 2. Auflage. 213 Seiten, 125 Abb., 8 Anlia-
gen. 1966. (30/30a) .
Photogrammetrie von G. Lehmann. 2., neubearbeitete Auflage. 205 Sei-
ten, 136 Abbildungen. 1966. (1188/11882a)
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TECHNIK
‘Wasserbau

Wasserkra;tanlagen von A, Ludin unter Mitarbeit von W. Borkenstein,
2 Bande
I: Planung, Grundlagen und Grundziige. 124 Seiten, 60 Ab-
bildungen. 1955, (665)
I1: Anordnung und Ausbildung der Hauptbauwerke.
184 Seiten, 91 Abbildungen, 1958, (666/666a)
Verkehrswasserbau von H. Dehnert, 3 Bande.
: Entwurfsgrundlagen, Fluiregelungen. 103 Seiten, 53 Ab-
bildungen, 1950, (5685)
II: FluBkanalisierung und Schiffahrtskanédle. 94 Seiten,
60 Abbildungen. 1950. (597)
I11: Schleusen und Hebewerke. 98 Seiten, 70 Abbildungen.
1950. (1152)
Wehr- und Stauanlagen von H. Dehnert. 134 Seiten, 90 Abbildungen.
1952, (965)
Talsperren von F. Tdlke. 122 Seiten, 70 Abbildungen. 1953, (1044)

Hoch- und Tiefban

Die wichtigsten Baustoffe des Hoch- und Tiefbaus von O. Graf . 4., ver-
besserte Auflage. 131 Seiten, 63 Abbildungen. 1953. (984)

Baustoffverarbeitung und Baustellenpriifung des Betons von A. Klein-
logel. 2., neubearbeitete und erweiterte Auflage. 126 Seiten, 35 Ab-
bildungen. 1951. (978)

Festigkeitslehre. 2 Bande.

I: Elastizitat, Plastizitdt und Festigkeit der Baustoffe
und Bauteile von W. Gehler f und W. Herberg. Durchge-
sehener und erweiterter Neudruck. 159 Seiten, 118 Abbildungen.
1952, (1144)

Il: Formanderung, Platten, Stabilitdt und Bruchhypo-
thesen von W. Herberg und N. Dimitrov. 187 Seiten, 94 Ab-
bildungen, 1955, (1145/1145a)

Grundlagen des Stahlbetonbaues von A. Troche. 2., neubearbeitete und
erweiterte Auflage. 208 Seiten, 75 Abbildungen, 17 Bemessungs-
tafeln, 20 Rechenbeispiele. 1953. (1078)

Statik der Baukonstruktionen von A. Teichmann. 3 Bande.

I: Grundlagen. 101 Seiten, 51 Abbildungen, 8 Formeltafeln.
1956. (119)

I1: Statisch bestimmte Stabwerke. 107 Seiten, 52 Abbildun-
gen, 7 Tafeln. 1957, (120)

I1T: Statisch unbestimmte Systeme. 112 Seiten, 34 Abbildun-
gen, 7 Formeltafeln. 1958. (122)

Fenster, Tliren, Tore aus Holz und Metall. Eine Anleitung zu ihrer
guten Gestaltung, wirtschaftlichen Bemessung und handwerks-
gerechten Konstruktion von W. Wickop f. 5. Auflage ge-
plant. (1092)
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TECHNIK

Heizung und Liiftung von W. Korting. 2 Biande, 9., neubearbeitete

Auflage,

I: Das Wesen und die Berechnung der Heizungs- und

Liuftungsanlagen.
tafeln. 1962. (342/342a)

171 Seiten, 29 Abbildungen, 36 Zahlen-

II: Die Ausfilthrung der Heizungs- und Liiftungsanlagen.

1966, In Vorbereitung. (343)

Industrielle Kraft- und Wiarmewirtschaft von F. A, F. Schmidt und
A. Beckers, 167 Seiten, 73 Abbildungen. 1957. (318/318a)

Sammlung Géschen [Bandnummernfolge

1 Langosch, Der Nibelunge Not
3/3a v. Ende, Maschinenele-

mente

9/9a Marcard-Beyer, Dampf-
kessel I

10 Jiriczek-Wisniewski, Kudrun
und Dietrich-Epen

13/13a Lotze, Geologie

18 Maurer, Hartmann von Aue,
Der arme Heinrich

19 Alt[heim, Romische Geschich-
te

20 Hofstaetter, Dt. Sprachlehre

22 Maurer, Gottfried von Strass-
burg

29/29a Brauns-Chudoba, Alige-
meine Mineralogie

30/30a Heissler, Kartographie

31/31a Brauns-Chudoba, Speziel-
le Mineralogie

32 Schneider-Wisniewski,
sche Heldensage

35 Treue, Dt. Geschichte von
1648—1740

37/37a Klemm, Anorganische
Chemie

38/38a Schlenk, Organische Che-

mie

39 Treue, Dt. Geschichte von
1713—1806

42 Behn-Hoernes, Vorgeschichte
Europas

44 Kresze, Physikalische Metho-
den in der Organischen Che-
mie I
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Deut-

45/45a Kresze, Physikalische Me-
thoden in der Organischen
Chemie 11
47 Fischer-Rohrbach, Arithmetik
51/51a Ringleb, Mathem. For-
melsammlung
52 Bieler, Rom. Literaturgesch. |
59 Krahe, Indog. Sprachwiss. I
60 Biehle, Stimmkunde
61 Biehle, Redetechnik
64 Krahe, Indog. Sprachwiss, 11
65/65a Grotemeyer, Analyt.
Geometrie
66 Berneker-Vasmer, Russische
Grammatik
70 Nestle-Liebich, Gesch. d.
griechischen Literatur I
71 Schulze, Aligemeine und phy-
sikalische Chemie [
76 Ddoring, Einf. i. d. th. Phy-
sik |
77 Dbéring, Einf. i. d. th. Phy-
sik 11
78 Doring, Einf. i. d. th. Phy-
sik 111
79/79a Hempel, Got. Elementar-
buch
80 Weigert, Stilkunde I
81 Schubert-Haussner-Erlebach
Vierstell. Logarithmentafeln
86 Barner, Differential- u, Inte-
gralrechnung |
96 Hartmann, Einf. in die all-
gem, Biologie



99 Hessenberg-Kneser, Ebene
und sphér. Trigonometrie

101 v, Wiese, Soziologie

103 Dahrendorf, Industrie- und
Betriebssoziologie

104/104a Hofstéitter, Sozialpsy-
chologie

111 Hoffmann-Debrunner,Gesch.
der griechischen Sprache |

114 Debrunner, Gesch, der grie-
chischen Sprache I1

117 Brandenstein, Griechische
Sprachwissenschaft I

118/118a Brandenstein, Griechi-
sche Sprachwissenschaft 11

119 Teichmann, Statik der Bau-
kenstruktionen I

120 Teichmann, Statik der Bau-
konstruktienen I1

122 Teichmann, Statik der Bau-
konstruktionen I11

128/128a Lausberg, Romanische
Sprachwissenschaft [

136 Mahler-Graewe, Physikal.
Formelsammlung

141 Geitler, Morphologie der

Pflanzén

142 Haack, Darst. Geometrie I

143 Haack Darst. Geometrie 11

144 Haack Darst. Geometrie 111

145/ 145a Wexmer Gesch. der
Pidagogik

148 Kolms, Finanzwissenschaft I

156/156a Landmann, Philosophi-
sche Anthropologie

170 Oehlmann, Musik des 19. Jhs.

171/171a Oehlmann Musik des

20. Jhs.
173 Bruhqs-Ramdohr, Petro-

graphie

174 Schlingloff, Religion des
Buddhismus [

180 Bohm, Versicherungsmathe-
matik |

184 Bliimcke, Textilindustrie I

196/196a Mohr, Grundlagen der
allgem, Elektrotechnik

200/200a Gottschald, Dt. Recht-
schreibungswdrterbuch

210 Bruhns-Ramdohr, Kristallo-

raph
220/2ZOa Moser Allg. Musiklehre

pury

221/221a Jander-Jahr-Knoll,
MaBanalyse

222 Hassak-Beutel-Kutzelnigg,
Warenkunde 1

223 Hassak-Beutel-Kutzelnigg,
Warenkunde 11

226/226a Hofmann, Gesch, der
Mathematik I

228 Vogel, Landw, Tierzucht

231/231a Ehrlich, Gesch, Israels

238 Krahe, Germ. Sprachwiss. |

243 Mahler-Graewe, Physikal.
Aufgabensammlung

247/247a Hofmann-Jander, Qua-
litative Analyse

250 Lausberg, Romanische
Sprachwissenschaft 11

252 Vetter, Elektrochemie I

253 Vetter, Elektrochemie 11

257 Humburg, Gleichstromma-
schine I

264 Lockemann, Gesch. der
Chemie |

265/265a Lockemann, Geschichte
der Chemie 11

270 Kirn, Einfihrung in die Ge-
schichtswissenschaft

274 Zietemann, Dampfturbinen I

279 Jacob-Hohenleutner,
Quellenkunde der deutschen
Geschichte I

280 Jjacob-Hohenleutner, Quel-
lenkunde der deutschen Ge-
schichte 11

281 Leisegang, Einfiihrung in die
Philosophie

282 Haltenorth, Saugetiere

284 Jacob-Weden, Quellenkunde
der deutschen Geschichte 111

318/318a Schmidt-Beckers, In-
dustrielle Kraft- u. Warme-
wirtschaft

319 Krug, Australien und Oze-
anien

329 Scharrer, Agrikulturchemie I

330/330a Scharrer, Agrikultur-
chemie 11

335 Klug, Fette und Ole

336 Braun Klug, Seifenfabrika-

342/342a Korting, Heizung und
Liiftung 1
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343 Korting, Heizung und Liif-
tung I1

344 Moser, Musikasthetik

354/354a Valentiner-Konig, Vek-
toren und Matrizen

355 Neger-Miinch-Huber, Nadel-
holzer

356 Liidemann, Fische

374 Déring,Einf.i.d.th. PhysiklV

375 Preller, Geschichte Englandsl

389/389a Diels-Mattick, Pflanzen-
geographie

391 Kolms, FinanzwissenschaftlI

394/394a Schilling, Von der Re-
naissance bis Kant

414/414a Tafel, Hebezeuge

422 Gottschald, Dt. Personen-

namen

423 Adler-Erlebach, Fiinfstellige
Logarithmen

432 Borchers, Metallkunde I

433/433 a Borchers,Metallkundell

434 Borchers-Hanke, Metall-
kunde 111

435 Burau, Algebr. Kurven u.
Flachen 1

436/436a Burau, Algebr. Kurven
und Flichen 11

439 Jaeckel, Wiirmer

440 Jaeckel, Weichtiere

441 Jaeckel, Stachelhduter

442 Hannemann, Schwiamme und
Hohltiere

443 Gruner-Deckert, Krebse

444 Reichenow, Einzeller

445 Asmus, Physikal.-chem. Re-
chenaufgaben

447/447a Herter, Kriechtiere

448 Fechter, Manteltiere

452 Bahrdt-Scheer, Stéchiome-
trische Aufgabensammlung

468 Grofmann,  Vermessungs-
kunde 1
469 GroBmann, Vermessungs-

kunde 11
476 Thum-Meysenbug, Die Werk-
stoffe des Maschinenbaues I
483 Henglein, Lotrohrprobier-

kunde

492/492aStolz-Debrunner-Schmid
Geschichte der lateinischen
Sprache
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499 Niese-Kiichler, Autogenes
Schweillen

500 Simmel, Hauptprobleme der
Philosophie

6521/521a Marcard-Beyer, Dampf-
kessel 11

536 Lehmann, Kant

538 Rumpf, Archéologie I

539 Rumpf, Archéologie I

540 Rumpf, Archéologie 111

557 Nestle-Liebich, Gesch, der
griech. Literatur 11

561 Matt[hes, Werkzeugmaschi-
nen

562 Matthes, Werkzeugmaschi-
nen 11

564 Behn-Hoernes, Kultur der
Urzeit I

565 Behn-Hoernes, Kultur der
Urzeit I1

566 Behn-Hoernes, Kultur der
Urzeit 111

571 Lehmann, Philosophie des
19. Jahrhunderts 1

576/576a Moser, Gesangskunst

579 Miiller-Schulze, Techn. Ta-

bellen

580/580a Sedlaczek-Fischer-
Buch, Walzwerke

583/583a Engel, Maschinen der
Eisenhiittenwerke

584/584a Miiller, Kinematik

585 Dehnert, Verkehrswasser-
bau I

587 Kalitsunakis-Steinmetz,Neu-
griech.-dt. Gesprachsbuch

589 Tochtermann, Maschinen-
zeichnen 1

590 Tochtermann, Maschinen-
zeichnen 11

594 v. Lengerken, Insekten

597 Dehnert, Verkehrswasser-

bau 11

601 Mutschmann-Scherer, Engl.
Phonetik

608/608 a/608b Erman-Kriick-

mann, Hieroglyphen
619/619a Buchwald, Kristalloptik
665 Ludin-Borkenstein, Wasser-
kraftanlagen I
666/666a Ludin-Borkenstein,
Wasserkraftanlagen 11



668 Knopp, Funktionentheorie 1

677 Altheim, Rom. Geschichte I1

679 Altheim, Rom, Geschichtelll

684 Altheim, Rom. Geschichte IV

691 Fauser, Kulturtechn. Boden-
verbesserungen I

692 Fauser, Kulturtechn. Boden-
verbesserungen 11

698/698a Schuize, Allgemeine u.
physikalische Chemie 11

703 Knopp, Funktionentheorie Il

708/708a/708b Meissner-Oberhu-
ber, Keilschrift

709 Lehmann, Philosophie des
19. Jahrhunderts I1

711/711a Kesselring, Berechnung
der Schaltgerate

714/714a zur Megede, Technik
selbsttatiger Regelungen

715 Zietemann, Dampfturbinenll

716 Zietemann, Dampfturbinen

111

718 Neger-Minch-Huber, Laub-
holzer

728/728a Pirani-Fischer-Runge,
Graph. Darstellung in Wis-
senschaft u. Technik

735 Ekwall, Historische neuengl.
Laut- und Formenlehre

746/746a Pfanzagl, Allg. Metho-
denlehre der Statistik I

747/747a Pfanzagl, Alig. Metho-
denlehre der Statistik 11

756/756a Kalitsunakis, Gramm.
d. Neugriech. Volksspr,

763/763a/763b Meyer, Hebraische
Grammatik |

764/164a/764b Meyer, Hebraische
Grammatik 11

765765 a/765b Meyer, Hebriische
Grammatik 111

768/768 a Bieberbach, Einfiihrung
in die konforme Abbildung

769/769a Beer-Meyer, Hebrai-
sches Textbuch

770 Schlingloff, Religion des
Buddhismus 11

776/a Kolms, Finanzwissensch.111

780 Krahe, Germ, Sprachwiss. [1

181 Weigert, Stilkunde 1

782,782a Kolms, Finanzwissen-
schaft [V

786 Schulze, Molekulbau

796/796a Meiners-Wiesenewsky,
Elektr. Hochstspannungs-
Schaltanlagen

807 Kropp, Erkenntnistheorie

809 Moser, Harmonielehre I

810 Moser, Harmonielehre 11

826 Koch, Philosophie d. Mittel-
alters

827/827a Meyer, Elektromotori-
sche Antriebe

Allg.

gie |
832/832a Erismann, Allg. Psy-
chologie 11
833 Erismann,

831 Erismann, Psycholo-

Allg. Psycholo-

gie

834/834a Erismann, Allg. Psy-
chologie IV

837/837a Baumgartner, Gruppen-
theorie

845 Lehmann, Philosophie im
ersten Drittel des 20. Jhs. I

847 Herter, Lurche

850 Lehmann, Philosophie im
ersten Drittel des 20, Jhs. I

851/851a Moede, Psychologie des
Berufs- und Wirtschafts-
lebens

857 Capelle, Griech. Philosophiel

858 Capelle, Griech. Philos. 11

859 Capelle, Griech. Philos. 111

862 GroBmann, Vermessungs-
kunde 111

863 Capelle, Griech. Philos. IV

866 Bieler, ROm. Literaturge-
schichte I

869 Freye, Vogel

875 Hofmann, Geschichte der
Mathematik 11

877 Knopp, Aufgabensammlung
zur Funktionentheorie I

878 Knopp, Aufgabensammlung
zur Funktionentheorie 11

881 Humburg, Gleichstromma-
schine I1

882 Hofmann, Geschichte der
Mathematik 111

383 Stulotf, Mathematik der
neuesten Zeit

393 Treue, Dt. Geschichte von
1806—1890
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894 Treue, Dt. Geschichte von
1890 bis zur Gegenwart

896 Pokorny, Altirische Gramm.

902 Miiller, Dynamik I

903 Muller, Dynamik 11

910 Jaeger, Afrika I

911 Jaeger, Afrika II

915 Sperber-v. Polenz, Gesch.der
Deutschen Sprache

917/917a Bohm, Versicherungs-
mathematik I1

920/920a Hoheisel, Gewohnliche
Differentialgleichungen

921 Jantzen-Kolb, W. v. Eschen-
bach. Parzival

924/924a Brandenstein, Griechi-
sche Sprachwissenschaft 111

929 Schirmer-Mitzka, Dt, Wort-
kunde

930 Krull, Elementare und klas-
sische Algebra I

931 Hasse, Hohere Algebra I

932 Hasse, Hohere Algebra Il

933 Krull, Elementare und klas-
sische Algebra II

936 Thum-Meysenbug, Werk-
stoffe d. Maschinenbaues 11

942/942a Damerau, Polnische
Grammatik

952 Schafer, Transformatoren

953 Zipperer, Techn. Schwin-
gungslehre [

961/961a Zipperer, Techn.
Schwingungslehre I1

965 Dehnert, Wehr- und Stau-
anlagen

970/970a Baldus-Lébell, Nicht-
euklidische Geometrie

972/972a Herter-Urich, Verglei-
chende Physiologieder Tiere [

973 Herter-Birukow, Verglei-
chende Physiologie der
Tiere 11

978 Kleinlogel, Baustoffverar-
beitung und Baustellen-
prufung d. Betons

984 Graf, Baustoffe des Hoch-
und Tiefbaues

999/999a Kamke, Mengenlehre

1000 Jaspers, Geistige Situat. der
Zeit
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1003 Hoheisel. Partielle Diffe-
rentialgleichung

1008/1008a Mellerowicz, Allgem.
Betriebswirtschaftslehre I

1009 Bechert-Gerthsen-Flam-
mersfeld, Atomphysik I

1014/1014a Huttenlocher-Ram-
dohr, Mineral- und Erzla-
gerstiattenkunde 1

1015/1015a Huttenlocher-Ram-
dohr, Mineral- u. Erzlager-
stattenkunde 11

1017 Déring, Einf. i. d. th. Physik

\A

1020 Niese-Dienst, Elektrische
SchweiBverfahren

1031/1031a Apel-Ludz, Philoso-
phisches Worterbuch

1033 Bechert-Gerthsen-Flam-
mersfeld, Atomphysik 11

1034 Kranefeldt-Jung Thera-
peutische Psychologie

1035 Altheim, RoOm, Religlons-
geschichte I

1039 Dovifat, Zeitungslehre I

1040 Dovifat, Zeitungslehre 11

1044 Tolke, Talsperren

1045 Schubert. Technik des Kla-
vierspiels

1051/1051a Stolberg-Wernige-
rode, Gesch. d. Vereinigten
Staaten

1052 Altheim, ROm. Religions-
geschichte 11

1059/1059a Hoheisel, Aufgaben-
slg. z. d, gew. u, part. Diffe-
rentialgleichungen

1061 Grodzinski-Lechner, Getrie-
belehre 1

1062 Grodzinski-Lechner, Getrie-
belehre 11

1065 Haller-Dannenbauer, Von
d. Karolingern zu den Stau-
fern

1070 Sauter. Differentialglei-
chungen der Physik

1074 Koschmieder, Variations-
rechnung I

1075 Koschmieder,
rechnung I1

1076/1076a Endres, Verbren-
nungsmotoren |

Varlations-



1077 Haller-Dannenbauer, Von
den Staufern zu den Habs-
burgern

1078 Troche, Stahlbetonbau

1082 Hasse-Klobe, Aufgaben-
sammlung zur hoheren Al-

gebra
1084/1084a Grigull, Techn. Ther-

modynamik

1085 Lietzmann-Aland, Zeitrech-
nung

1086 Muiller, Dt. Dichten und
Denken

1088 Preller, Gesch. Englands 11

1092 Wickop, Fenster, Turen,
Tore
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