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Einleitung. 
Methodische Vorbetrachtungen und Überblick. 

In 1, § 5 haben wir die uns als Leitfaden dienende Grund-
aufgabe der Algebra formuliert und zwei besonders wichtige 
Teilaufgaben hervorgehoben. Deren erste, das Auflösungs-
problem linearer Gleichungssysteme, wurde in 1, III und IV 
vollständig gelöst. Der vorliegende Band 2 ist der zweiten 
jener Teilaufgaben gewidmet: 

Es sei K ein Körper und 
j(x)=a() + alx-\ K+0,m^l) 

ein n ich t zu Kgehör iges E l e m e n t ausK[a;]. Es sollen 
Methoden zur Gewinnung al ler Lösungen der alge-
braischen Gleichung 

/(*) = 0 
en twicke l t werden. 

f(x) Da die Gleichung f(x) == 0 dasselbe fordert wie — = 0, 
<in 

ist es keine Einschränkung, wenn wir uns im folgenden auf 
Gleichungen der Form 

j(x) =a0 + axx H 1- an_t x"-1 + xn = 0 1) 
beschränken. Wir nennen solche Elemente f(x) aus K[x] 
P o l y n o m e (in x) in oder aus1) oder über K und den ein-
deutig bestimmten Index n ^ 1 ihren Grad [vgl. 1, §5, (2.) 
[48]]. Für Lösungen einer algebraischen Gleichung f(x) == 0 
gebrauchen wir ferner die übliche Bezeichnung Wurzeln des 
Polynoms f ( x ) . 

Die Behandlungsmethoden für unsere jetzige Aufgabe sind 
von den in 1 zur Behandlung linearer Gleichungssysteme ver-

1) Dies ist deshalb eigentlich nicht korrekt, weil die f(?) Elemente aus 
K[ar] sind. Unsere Ausdrucksweise bezieht sich also auf die Koeffizienten. 
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wendeten wegen der folgenden beiden eng zusammenhängen-
den Umstände grundsätzlich verschieden: 

1.) Es kann (im Gegensatz zu 1, IV) kein allein aus den 
im Grundkörper K definierten vier elementaren Rechen-
operationen gebildetes Verfahren (kurz r a t i o n a l e s R e c h e n -
v e r f a h r e n ) existieren, um über die Lösbarkeit einer alge-
braischen Gleichung zu entscheiden und im Lösbarkeitsfalle 
alle Lösungen zu berechnen. 

2.) Lösbarkeit und Lösungsgesamtheit einer algebraischen 
Gleichung aus K sind (im Gegensatz zu 1, Satz 84 [149]) ab-
hängig von der Wahl des Grundkörpers, d. h. davon, ob man 
für die Lösungen nur den Körper K oder irgendeinen Er-
weiterungskörper von K in Betracht zieht, und im alge-
meinen werden algebraische Gleichungen aus K überhaupt 
erst in geeigneten Erweiterungskörpern von K lösbar. 

Für 2.) mag schon hier, die späteren allgemeinen Ein-
sichten illustrierend, das einfache Beispiel der Gleichung 
x2— 2 = 0 genannt werden, die im Körper der rationalen Zahlen 
keine Lösung, im Körper der reellen Zahlen dagegen die beiden 
Lösungen i }/2 besitzt. Aus 2.) ergibt sich 1.); denn würde 
ein Verfahren, wie in 1.) genannt, existieren, so wäre dieses, 
wie in 1, Satz 84 [149], unabhängig von der Wahl des Grund-
körpers, was 2.) widerspricht1). 

Wegen 1.) darf unsere Aufgabe nicht dahin verstanden 
werden, daß die Lösungen einer algebraischen Gleichung im 
obigen Sinne b e r e c h n e t werden sollen. Was statt dessen 
zu erstreben ist, zeigt 2.). Da nämlich für abstrakte Grund-
körper (d. h. unter alleiniger Voraussetzung der in 1, § 1 zu-
sammengestellten Gegebenheiten) nicht von vornherein 
etwas Entsprechendes zur Verfügung steht, wie im obigen 

' ) Damit soll natürlich nicht gesagt sein, daß nicht fü r spezielle Grund-
körper, z. B. den Körper der rationalen Zahlen, wirkliche Auflösungsverfahren 
existieren. Nur gehören diese in dem Sinne nicht mehr zur Algebra, als dazu-
auuer den vier elementaren Rechenoperationen noch andere, der Analysis an 
gehörige Hilfsmittel herangezogen werden müssen. Vgl. auch dazu § 11 [77]. 
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Beispiel der aus der Elementarmathematik (Grundlagen der 
Analysis) bekannte reelle Zahlkörper, da vielmehr im allge-
meinen Falle über das Vorhandensein von Erweiterungs-
körpern, die die Lösung einer algebraischen Gleichung er-
möglichen, zunächst keinerlei Kenntnis besteht, kommt es 
darauf an, solche Erweiterungskörper und damit die Wurzeln 
algebraischer Gleichungen zu konstruieren. 

Unsere Entwicklungen werden demgemäß den folgenden 
Gang nehmen: Nachdem wir in I und II vorbereitende Tat-
sachen über die die linken Seiten algebraischer Glei-
chungen bildenden Polynome aus K einerseits und die (vor-
läufig hypothetischen) Wurzeln algebraischer Glei-
chungen aus K in Erweiterungskörpern andererseits ausein-
andergesetzt haben, konstruieren wir in III die Wurzel-
körper algebraischer Gleichungen und damit deren 
Wurzeln. Dadurch ist dann die obige Aufgabe vom prak-
tischen Standpunkt (analog zu 1, IV — Lösungsbestimmung) 
als gelöst anzusehen. Vom theoretischen Standpunkt erhebt 
sich darüber hinaus (analog zu 1, III — Struktur der Lö-
sungsgesamtheit) die hier ganz besonders interessante Frage 
nach der S t ruk tur der Wurzelkörper algebraischer 
Gleichungen, insbesondere nach ihrem Aufbau aus mög-
lichst einfachen Bestandteilen. Diese im Mittelpunkt unseres 
Interesses stehende Frage behandeln wir in IV durch Dar-
legung der sogenannten Galoisschen Theorie, die die 
Struktur jener Körper mit der Struktur gewisser endlicher 
Gruppen, ihrer Galoisgruppen, in engen Zusammen-
hang bringt. In V beantworten wir schließlich mittels 
dieser Theorie die Frage nach der Auflösbarkeit alge-
braischer Gleichungen durch Wurzelzeichen, d. h. die 
berühmte Frage, wann die Wurzeln einer algebrai-
schen Gleichung unter Hinzunahme der (bei festem 
Grundkörper nicht unbeschränkt und eindeutig definierten) 
Operation des Wurzelziehens berechnet werden 
können. 
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I. Die linken Seiten algebraischer 
Gleichungen. 

Wir leiten in den §§ 1, 2 dieses Abschnittes im Anschluß 
an die Entwicklungen von 1,1 eine Reihe bedeutsamer Sätze 
über Polynome aus K her, die mit deren Auftreten als linke 
Seiten algebraischer Gleichungen zunächst nichts zu tun 
haben und erst in den folgenden Abschnitten in diesem Sinne 
angewendet werden. Diese auf den Integritätsbereich K[z] 
der ganzen rationalen Funktionen einer Unbestimmten x über 
einem Grundkörper K bezüglichen Sätze sind das genaue 
Analogon zu den in der elementaren Zahlentheorie behandelten 
Sätzen über den Integritätsbereich T der ganzen Zahlen, 
die sich um den Fundamentalsatz von der eindeutigen Zer-
legbarkeit in Primzahlen gruppieren, — ebenso wie auch die 
Konstruktion des Körpers K(a;) der rationalen Funktionen 
von x über K von K[a;] aus ganz analog zu der Konstruktion 
des Körpers P der rationalen Zahlen von T aus verläuft, näm-
lich beidemal als Quotientenkörper. Da wir die später viel-
fach anzuwendende elementare Zahlentheorie hier nicht vor-
aussetzen wollen, leiten wir die genannten Sätze für die beiden 
Fälle K[®] und T gleichzeitig, d. h. mit denselben, doppelte 
Bedeutung tragenden Worten und Zeichen her. In den §§ 1, 2 
bezeichnen demnach /, g, h,... Elemente aus K[s] bzw. T. 
In den §§ 3,4 dieses Abschnitts entwickeln wir dann mittels 
der auf den Fall T bezüglichen Resultate der §§ 1, 2 noch 
einige für die Folge wichtige Begriffe und Tatsachen über 
Gruppen, Integritätsbereiche und Körper, die bei Voraus-
setzung der elementaren Zahlentheorie schon an früherer 
Stelle (1,1 und II) einzufügen gewesen wären. 

§ 1. Der Fundamentalsatz von der eindeutigen Zerleg-
barkeit in Primelemente in K[x] und T. 

A. Teilbarkeitslehre in einem Integritätsbereich. 
Der in der Überschrift genannte Fundamentalsatz setzt 
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zu seiner genauen Formulierung die Begriffe der sog. T e i l -
b a r k e i t s l e h r e in K[as] bzw. T voraus. Da die gemeinsame 
Eigenschaft von K[a;] und I", Integritätsbereich zu sein, hin-
reicht, um diese Teilbarkeitslehre zu entwickeln, legen wir 
dabei irgendeinen Integritätsbereich I zugrunde. f,g,h,... 
sollen dann Elemente aus I bezeichnen. 

Definition 1. g h e i ß t teilbar d u r c h / ode r e in Viel-
faches v o n / u n d / e in Teiler v o n g o d e r in g enthalten 
( B e z e i c h n u n g /1 g, G e g e n t e i l f-Y g), w e n n ein / e x i -
s t i e r t , so d a ß g — f f i s t . 

Es wird natürlich gefordert, daß / in I existiere. Unsere Be-
zeichnungsfestsetzungen erlauben es, derartige Zusätze hier und an 
ähnlichen Stellen fortzulassen. Es sei aber ausdrücklich betont, daß 
darauf der Nachdruck in Def. 1 liegt. Würde man auch den Quo-
tientenkörper zu I für die „Existenz" zulassen, so wäre Def. 1 bis 
auf die Unterscheidung von / 4= 0 und / = 0 trivial. Demgemäß 
wird die Teilbarkeitslehre inhaltlos, wenn I mit seinem Quotienten-
körper zusammenfällt. Für K[x] und T ist das nicht der Fall. 

Aus den in 1, § 1 dargelegten Grundeigenschaften der Inte-
gritätsbereiche ergeben sich ohne weiteres die folgenden Sätze 
über Teilbarkeit, auf deren einfache Beweise wir verzichten 
dürfen 

Satz 1. E s g e l t e n d ie T e i l b a r k e i t s r e l a t i o n e n 
e\/, f\f, / [ 0 f ü r j e d e s / , 

OJrf f ü r / 4 = 0 . 

Satz 2. A u s f\g, g\h f o l g t / | h; a u s | gv f2 | g2 

f o l g t iih\g1g2; a u s hf\hg,h=£0 f o l g t f\g. 
Satz 3. A u s f\gv f\g2 f o l g t / I M 1 + M 2 f ü r b e -

l i e b i g e gvg2. 
Definition 2. f h e i ß t Einheit, w e n n / | e. 
Wir bezeichnen Einheiten im folgenden mit a, b. Es gibt 

solche, z. B. e. 

Auch für eine Reihe weiterer Sätze des § 1 deuten wir die ganz elemen-
taren Beweise DUT durch Hinweis auf die heranzuziehenden früheren Sätze an. 
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Satz 4. D ie E i n h e i t e n v o n I b i l d e n e ine U n t e r -
g r u p p e ( N o r m a l t e i l e r ) d e r m u l t i p l i k a t i v e n a b e l -
s c h e n G r u p p e a l l e r E l e m e n t e 4= 0 d e s Q u o t i e n t e n -
k ö r p e r s zu I. 

B e w e i s : Aus at | e, a21 e folgt axaz | e (Satz 2); es ist e \ e 
6 6 

(Satz 1); aus a I e folgt, daß - zu I gehört und -
a a 

e ist 

(Def. 1). Daxaus ergibt sich die Behauptung nach 1, Satz 19, 
26 [55, 60] (vgl. auch 1, § 6, Beisp. 1 [53]). 

Definition 3. S i n d v o n 0 v e r s c h i e d e n e f t , f 2 n a c h 
d e m N o r m a l t e i l e r d e r E i n h e i t e n k o n g r u e n t , d . h . 

i s t ^ = a , so h e i ß e n f t u n d /2 assoziiert. D i e R e s t -
12 

k l a s s e n n a c h d i e s e m N o r m a l t e i l e r h e i ß e n d ie 
Klassen assoziierter Elemente. 

Die Klasse der zu einem Element / 4= 0 assoziierten Elemente 
wird hiernach durch alle af gebildet, wo a alle Einheiten durch-
läuft. Für { = 0 mag ebenfalls die Gesamtheit af, d. h. das einzige 
Element 0, als die zugehörige Klasse assoziierter Elemente ange-
sehen werden. — Im Sinne von 1, §§ 7—9 erstreckt sich die Rest-
klasseneinteilung nach dem Normalteiler der Einheiten nicht nur 
auf den Integritätsbereich I, sondern auch auf dessen Quotienten-
körper. Wir verfolgen sie hier aber nur im Integritätsbereich I 
selbst. Wir können das um so eher tun, als die einem / aus I ent-
sprechende Klasse ganz zu I gehört. 

Aus Def. 1—3 folgt unmittelbar: 
Satz 5. u n d /2 s i n d d a n n u n d n u r d a n n a s s o 

z i i e r t , w e n n | /2 u n d /21 i s t . 
Nach Satz 2, 5 ist eine Teilbarkeitsrelation f \ g gleichbedeu-

tend mit jeder Relation / ' | g', wo f zu /, g' zu g assoziiert ist. Es 
genügt daher für die Teilbarkeitslehre, aus jeder Klasse assoziierter 
Elemente nur einen Repräsentanten zu betrachten; doch ist die 
Auszeichnung eines solchen nach einem durchgängigen Prinzip für 
allgemeines I nicht möglich (vgl. aber Def. 7 [13]). 

Nach dem Vorhergehenden besitzt jedes g als sog. t r i v i a l e 
T e i l e r alle Einheiten und alle zu g assoziierten Elemente. 
Um diese bequem ausschließen zu können, setzen wir fes t : 
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Definition 4 . / h e ißt echter Teiler von g, wenn /1 g 
aber / weder E i n h e i t noch zu g a ssoz i ie r t is t . 

Der zu beweisende Fundamentalsatz beruht dann auf fol-
gender Definition: 

Definition 5 1 ) . p he ißt Primelement, wenn es 
n icht Null und keine E i n h e i t is t und keine echten 
Te i ler bes i tz t . 

Ob es solche Primelemente gibt, wird in Def. 5 nicht gesagt 
und läßt sich auch ohne Hinzunahme weiterer Voraussetzungen über 
I nicht entscheiden. Fällt z. B. I mit seinem Quotientenkörper zu-
sammen, so gibt es keine Primelemente. 

B. Der absolute Betrag in K [xj und I". 
Um den (keineswegs allgemein in Integritätsbereich°n 

gültigen) Fundamentalsatz von der eindeutigen Zerlegbar-
keit in Primelemente in K[K] und P beweisen zu können, 
müssen wir spezielle Eigenschaften dieser Integritätsbereiche 
heranziehen, nämlich in T die Anordnung der ganzen Zahlen 
nach ihrem absoluten B e t r a g e , deren Gesetze wir hier als 
bekannt voraussetzen2), in K[a;] die Anordnung der ganzen 
rationalen Funktionen von x nach ihrem Grade. Die Mög-
lichkeit der weiteren gleichzeitigen Behandlung beider Fälle 
beruht dann auf der Tatsache, daß man die Anordnung nach 
dem Grade in K [rc] auch durch ein genaueres Analogon zum 
absoluten Betrag in T beschreiben kann, als es der Grad 
selbst ist. Wir setzen nämlich fest: 

Definition 6. Unter dem absoluten Betrage |/| eines 
E l e m e n t e s / aus K[a:] werde vers tanden 

|/| = 0, wenn / = 0 , 
|/| = hn, wenn / vom Grade n. 

Dabei sei k eine be l iebige , aber ein für a l l emal 
f es t gewählte ganze Zahl > 1 . 

' ) Vgl. auch die spätere, zusätzliche Def. 8 [14], 
! ) Wir setzen ausführlicher gesagt als bekannt voraus: 1. die Relation 

< in T und deren Gesetze, 2. die Beziehungen dieser Relation zu den Rechen-
operationen, 3. die Definition des absoluten Betrages, 4. die aus 1. und 2. folgen-
den Beziehungen des absoluten Betrages zur Anordnung und den Rechen-
operationen. 
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k könnte auch als irgendeine reelle Zahl > 1 angenommen 
werden; wir wollen jedoch hier aus methodischen Gründen die 
reellen Zahlen vermeiden. 

Es gelten dann die folgenden, im Falle T gültigen Gesetze 
für den absoluten Betrag unverändert auch in K[a;]: 

(1-) 1 / 1 ^ 1 , wenn /=j= 0 , 
(2.) l / ± f f l ^ l / l + l i l , 
(3.) l / - f f l = l / H f f | . 
Beweis : (1.) ist nach Def. 6 klar, ebenso auch (2.) und 

(3.) im Falle / = 0 oder g = 0. Ist aber / 4= 0, g 4= 0, also 
/(*) = ffl0+ ••• + anxn («„=}= 0), | / | = r , 
g ( x ) ^ b 0 + - - - + bmxm (bm =(= 0) , \g\ = hm, 

so kommen in / ± </ keine höheren Potenzen von x als ®Max 

vor. Daher ist 
l / ± 9 \ ^ fcMaJ£(B'm) =Max (kn, k m ) ^ k n + km=\1\ + \g\. 
Im Falle K[a;] gilt hiernach sogar die im Falle T nicht 
allgemein richtige Relation 

(2a.) | / ± f f | ^ M a x ( | / | , | 0 | ) . 
Ferner ist 

n m n m 
i(x) g(x) = 2 «„x' • 2 b „ = H 2 avb„ 0;"+" 

1 = 0 »+/! = » \fi = "l " * m / 
= «o&o + (aoh + <hK) x H 
+ K - i K + «n K - i ) + an bm xn+m 

K&»4= 0) , 
also 

\f-g\=kn+m=lcn-km = \ f \ - \ g \ . 
Neben (1.)—(3.) haben wir im folgenden noch das nach-

stehende Prinzip wiederholt anzuwenden, dessen Richtigkeit 
sich aus der Tatsache ergibt, daß alle absoluten Beträge nach 
Def. 6 natürliche Zahlen oder 0 sind: 

(4.) In jeder n ich t leeren Tei lmenge von K[a;] 
bzw. T g ib t es E l emen te von k l e in s tmög l i chem 
Betrage. 
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Der absolute Betrag in K[a;] bzw. T steht nun mit den 
unter A. erklärten Begriffen der Teilbarkeitslehre in diesen 
Integritätsbereichen in den folgenden Beziehungen: 

Satz 6. I s t f\g,g=$=0, so i s t |/|<:\g\. 
B e w e i s : Ist gr = f f , so ist auch / =f= 0, / 4= 0, also 

nach (1.) | /1 ^ 1, |/ | ^ 1. Da ferner nach (3.) | g | = | /1 • | /1 

ist, folgt 1/1 = j y j , d.h. \f\^\g\. 

Satz 7. / i s t dann und nur dann E i n h e i t , wenn 
]/| = l is t . I m F a l l e K[x] s ind also die E l e m e n t e 
a=f= 0 aus K, im F a l l e T die ganzen Zahlen a = ^ 1 
die e inzigen E i n h e i t e n . 

B e w e i s : a.) Aus /1 e folgt wegen |e| = 1 nach Satz 6 
1/1 = 1. 

b.) Daß die / mit |/| = 1, d. h. die im Satz genannten a 
Einheiten sind, ist nach Def. 2 [9] klar (im Falle K[a;] 
wegen der unbeschränkten Division in K). 

Aus Satz 6, 7 ergibt sich mittels (3.): 
Satz 8. S i n d u n d / 2 a s s o z i i e r t , so i s t |/x| = |/2|. 

Ist |/il = |/g| und /x | /2, so sind f1 und /2 a s soz i i e r t . 
Die Nebenvoraussetzung f11 /2 für die Umkehrung ist im Falle T 

entbehrlich, im Falle K[z] aber nicht. 
Aus Satz 6—8 ergibt sich: 
Satz 9. I s t / | g, 3=}= 0. so i s t / dann und nur dann 

e c h t e r T e i l e r von g, wenn 1 < |/| < |<jr| ist . 

C. Formulierung des Fundamentalsatzes. 
In den speziellen Integritätsbereichen K[x] und T können 

wir aus den Klassen assoziierter Elemente je einen speziellen 
Repräsentanten durch die folgende Festsetzung hervorheben: 

Definition 7. / h e i ß t normiert, wenn e r s t e n s 
/=j=0 i s t , und wenn zwei tens 

a.) im Fal leK[a ; ] der K o e f f i z i e n t an der h ö c h s t e n in 
j{x)= a0 + • • • + a„xn (a„=j=0) v o r k o m m e n d e n P o t e n z 
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von x ( k u r z : der höchste Koeffizient v o n f(x)) g l e i c h 
e i s t ; 

b.) i m F a l l e T / > 0 i s t . 
Es ist zweckmäßig, die Forderung / =t= 0 in normiert auf-

zunehmen, obwohl 0 ebenfalls ein ausgezeichneter (nämlich einziger) 
Repräsentant einer Klasse assoziierter Elemente ist. Im Falle K [z] 
besagt also normiert dasselbe, wie die in der Einleitung ein-
geführte Bezeichnung Polynom, wenn man von dem einzigen 
normierten Element 0-ten Grades / = e absieht, das wir der Zweck-
mäßigkeit halber nicht in den Begriff Polynom aufnahmen. Die 
von uns befolgte Ausdrucksweise, bei der nur die n o r m i e r t e n 
Elemente aus K[x] P o l y n o m e genannt werden, ist übrigens 
nicht allgemein üblich. 

Aus Satz 7 folgt unmittelbar, daß Def. 7 wirklich das 
Gewünschte leistet: 

Satz 10 . I n j e d e r von der N u l l k l a s s e v e r s c h i e -
d e n e n K l a s s e a s s o z i i e r t e r E l e m e n t e e x i s t i e r t e in 
und nur ein n o r m i e r t e r R e p r ä s e n t a n t . 

Ferner gilt für normierte Elemente: 

Satz 11 . M i t / und g i s t fg u n d , f a l l s g | /, a u c h — 

n o r m i e r t . 
B e w e i s : Im Falle T ist der Satz klar. Im Falle K[a;] 

folgt die Behauptung aus der vorher im Beweis für (3.) [12] 
verwendeten Multiplikationsformel, angewandt auf fg und 

auf ~q. 
9 

Wir setzen im Anschluß an Def. 7 für später fest: 
Definition 8. E i n n o r m i e r t e s P r i m e l e m e n t h e i ß t 

im F a l l e K[a;] Primfunktion o d e r irrednzibles Polynom, 
i m F a l l e T Primzahl. 

In §§ 1, 2 gebrauchen wir der Kombination der Fälle K[x] 
und r halber noch die gemeinsame Bezeichnung n o r m i e r t e s 
P r i m e l e m e n t . 

Der zu beweisende Fundamentalsatz lautet nun fol-
gendermaßen: 

Satz 12 . J e d e s E l e m e n t /=)= 0 aus K[z] bzw. T b e -
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s i t z t e ine Ze r l egung 
/ = « 2 V •Pr x ) 

in r ^ 0 n o r m i e r t e P r i m e l e m e n t e plt..., pr und e i n e n 
E i n h e i t s f a k t o r a. Diese Ze r l egung i s t bis auf die 
R e i h e n f o l g e der F a k t o r e n e i n d e u t i g , d .h . a und 
pv ..., pT s ind d u r c h / e i n d e u t i g b e s t i m m t . 

Es wird nicht behauptet, daß p 1 ( . . . , p r verschieden seien. 
Die Eindeutigkeitsbehauptung bezieht sich aber auch auf die Häufig-
keit des Auftretens der verschiedenen Primfaktoren. 

Der Beweis zerfällt wie die Behauptung in zwei Teile, 
deren ersten, einfacheren wir unter D. durchführen, während 
der zweite, tieferliegende unter F. folgt, nachdem wir unter E. 
eine Reihe dazu erforderlicher, aber auch über diesen Zweck 
hinaus sehr wichtiger Sätze hergeleitet haben werden. 

D. Möglichkeit der Zerlegung in normierte Primelemente. 
Wir beweisen zunächst den Hilfssatz: 
(Dj). I s t / ke ine E i n h e i t , so h a t / m i n d e s t e n s 

e inen n o r m i e r t e n P r i m t e i l e r . 
B e w e i s : Da im Falle / = 0 jedes normierte Element 

4= e, im Falle / =f= 0 der zu / assoziierte normierte Repräsen-
tant ein von Einheiten verschiedener, normierter Teiler von / 
ist, gibt es nach (4.) [12] einen von Einheiten verschiedenen 
normierten Teiler p von / von kleinstmöglichem Betrage. 
Dieser Teiler p ist normierter Primteiler von /. Denn nach 
Konstruktion ist er normiert und von Einheiten verschieden. 
Hätte ferner p einen echten Teiler, so wäre dessen normierter 
Repräsentant ein von Einheiten verschiedener, normierter 
Teiler von / (Satz 2 [9]) von kleinerem Betrage als p 
(Satz 9 [13]), was der Minimalauswahl des Betrages von p 
widerspricht. 

Durch (Dj) ist insbesondere die Ex i s t enz von Pr imele-
m e n t e n nachgewiesen. Für den Spezialfall / = 0 ergibt unser Be-

*) Wir setzen fest, daß ein Produkt p • • - pr für r = 0 das Element e be-
deuten soll (vgl. auch die Ann), in 1, § 12 [84] zum Toeplitzschen Satz). 
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weis im Falle K[z] jedes Polynom 1-ten Grades a0 + x, im Falle I" 
die Zahl 2 als normiertes Primelement. 

Aus (Dx) folgern wir nun D., d. h. den Satz: 
(D2). J e d e s /4= 0 b e s i t z t eine Zerlegung 

/ = « V i - " V T 
in r ^ i 0 n o r m i e r t e P r i m e l e m e n t e pv .. .,pr und e inen 
E i n h e i t s f a k t o r a. 

B e w e i s : Ist / Einheit, so ist die Behauptung klar (r = 0). 
Ist / keine Einheit, so kann nach (D t) 

f = V i f i 
mit einem normierten Primelement p1 gesetzt werden. Ist 
f t Einheit, so ist dies eine Zerlegung, wie behauptet (r = 1). 
Ist /x keine Einheit, so kann nach (D^ 

f 1 = p 2 f i , also Í = ViViÍí 
mit einem normierten Primelement p2 gesetzt werden. Nach 
endlich vielen Schritten muß man bei diesem Vorgehen auf 
eine Einheit fr stoßen. Denn da / 4= 0 ist, gilt nach Satz 9 [13], 
solange /¿ keine Einheit ist, 

i / l > l / i l > - ' - > l / i l > l , 
was mit einer unendlichen Folge solcher fi wegen der Ganz-
zahligkeit der Beträge | fi \ unverträglich ist. Ist als erstes fr 

Einheit, so gilt 
f = ap1---pr, 

wo pv ..., pr normierte Primelemente sind und a (= fr) Ein-
heit ist. 

Damit ist (D2), also D., bewiesen. 

E . Division mit Rest, größter gemeinsamer Teiler. 
Satz 13. I s t / 4 = 0 und g b e l i e b i g , so e x i s t i e r e n 

e i n d e u t i g b e s t i m m t e / und h d e r a r t , daß g i l t 
[1^1 < | / | im F a l l e K[a;], 

g = ff + h und i |Ä| < |/! und Ä ^ O , d.h. Q^h < |/| 
l im F a l l e T. 

B e w e i s : a.) Es sei / so gewählt, daß h — g — / / u n t e r 
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allen g — ff* einen kleinstmöglichen Betrag hat, was nach 
(4.) [12] möglich ist. Wäre dann |/|, SO folgte 

1.) im Falle K [b] , wenn l, n die Grade und ch an die 
höchsten Koeffizienten von h, f sind, daß l n, also 

m = a„ 
ein Element aus K[a] wäre. Es hätte dann ff1 den Grad l und 
den höchsten Koeffizienten ci, genau wie ht so daß 

* - f f i = 9 - f t - f t i = g-t(t + fJ 
einen niedrigeren Grad, also kleineren Betrag als h hätte. 

2.) im Falle V, daß 

hTf = g - f f T f = g - f ( f ± 1) 
bei einem der beiden Vorzeichen einen kleineren Betrag als h 
hätte. 

Die Existenz eines solchen /* = / -\-f1 bzw. = / ± 1 
widerspricht aber in beiden Fällen der Minimalauswahl des Be-
trages von h = g — //. Also ist \ h\ < |/[. 

Um im Falle T neben der hierdurch als möglich erwie-
senen Bedingung \h \ < |/1 auch noch h^z 0 zu erreichen, 
hat man, falls h < 0, also — | f | < h < 0 ist, nur 

h1 = h+\f\ = h±f = g - f ( f T l ) 
zu bilden, wofür dann 0 < \ < | /1 gilt. 

b.) Aus g = ff -f- h, g = //' + h', wo h und h' den Bedin-
gungen des Satzes genügen, folgt 

f(J—f) = h' — h, also f\h' — h. 
Wäre nun h' =j= h, so folgte nach Satz 6 ] /1 ^ | h' — h |. Dar-
aus ergäbe sich gemäß den Bedingungen des Satzes für h, h' 

1.) im Falle K[>] nach (2a.) [12]: 
|/| Max (| A|> | Ä ' | ) < | / | , 

2.) im Falle I": 
\f\^(h'-h oder A _ Ä ' ) < | / | _ 0 = | / | , 

Hasse, Höhere Algebra. II. 2 
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also in beiden Fällen ein Widerspruch. Somit ist h = h' und 
dann wegen /=f= 0 auch / = /'. Damit ist Satz 13 bewiesen-

Da 0 den Bedingungen des Satzes 13 für h genügt, ergibt sich 
aus der Möglichkeit und Eindeutigkeit der dortigen Relationen noch: 

Zusatz: I s t / #= 0 und g bel iebig , so ist dann und nur 
dann / | g, wenn das h aus Satz 13 gleich 0 ist . 

Die Bestimmung von f und h zu / =$= 0 und g gemäß Satz 13 
nennt man Division von g durch / mit R e s t , 7 den Quotienten, 
h den Rest. Das auf die dezimale (oder irgendeine andere Ziffern-) 
Schreibweise der ganzen Zahlen gegründete Verfahren zur prak-
tischen Ausführung der Division mit Rest im Falle T darf als be-
kannt vorausgesetzt werden, ebenso auch das in entsprechender 
Weise auf die Normaldarstellung (1, Def. 9 [38]) gegründete Ver-
fahren hierzu im Falle Kfz], das sich durch direkte Wendung des 
indirekten Beweises unter a.), 1.) ergibt. Insbesondere ermög-
lichen diese Verfahren nach dem Zusatz die praktische Entscheidung, 
ob eine Teilbarkeitsrelation / | g besteht. 

Aus Satz 13 folgern wir durch nochmalige Anwendung 
einer ähnlichen Schlußweise: 

Satz 14 . S i n d / j und f2 n i c h t b e i d e 0, so e x i s t i e r t 
e in e i n d e u t i g b e s t i m m t e s , n o r m i e r t e s d d e r a r t , 
daß g i l t 

(1.) d\fv ä\ f2, 
(2.) aus h | fv h\f2 f o l g t h \ d. 

d l ä ß t s i ch in der F o r m 

ä = f j i + f j 2 

d a r s t e l l e n . I m H i n b l i c k auf die E i g e n s c h a f t e n 
(1.), (2.) h e i ß t d der größte gemeinsame Teiler von f1 

und f2 ( B e z e i c h n u n g d= (fi,f2)). 
B e w e i s : a.) Es seien fv f2 so gewählt, daß d = + /2/2 

normiert ist und unter allen normierten Elementen der Form 
f j * + /2/| einen kleinstmöglichen Betrag hat. Das ist nach 
(4.) [12] möglich; denn ist etwa /x=j= 0, so ist der normierte 
Repräsentant a1f1 zu f1 ein normiertes Element der ange-
gebenen Form ( 7 * = a v /f = 0) ; die betr. Menge von Be-
trägen ist also nicht leer. Daß (2.) für das so bestimmte d er-
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füllt ist, ist klar (Satz 3) [9]. Wäre ferner (1.) nicht erfüllt 
und etwa d )f fv so existierte, weil d als normiertes Element 
4= 0 ist, ein h = f1 — dd mit | h | < | d | (Satz 13), für das 
h =f= 0 gälte (Zusatz). Wird dann k durch den Faktor a nor-
miert, so wäre 

ah = 0/2 — add = f^a — adf-,) + /2(— adf.£) 

ein normiertes Element der Form f ^ * + / 2 / 2 * von kleinerem 
Betrage als d, was der Minimalauswahl des Betrages von 
d = /J /J + Ufi widerspricht. Also ist d \ f1 und ebenso d \ /2. 

b.) Genügt auch das normierte d' den Bedingungen f l . ) 
und (2.), so folgt aus (1.) für d' und (2.) für d (mit d' als h), 
daß d' | d. Ebenso folgt umgekehrt d | d!. Daraus ergibt sich 
d = d' (Satz 5 , 1 0 [10, 14]). 

Das oben angefühlte Verfahren zur Division mit Rest liefert 
durch wiederholte Anwendung das folgende Verfahren zur prak-
tischen Bestimmung des größten gemeinsamen Teilers, das unter 
dem Namen Eukl idischer Algorithmus bekannt ist: 

Es sei etwa /2 4= 0. Dann werden die folgenden Divisionen mit 
Rest ausgeführt, bis man auf einen Rest fT+1 = 0 stößt: 

/i = /2?i + /8. I / 3 I < I / 2 I 
h = l A + h , | / « | < | / » | 

/ r _ 2 = / r _ i ? r _ 2 + / r , l / , l < l / , _ i l 
f r - l = fr9r-l + / , + ! • 0 = l / r + 1 \<\tr\. 

Wegen des dauernden Abnehmens der Beträge | fi \ tritt / f + 1 = 0 
nach endlich vielen Schritten wirklich ein. Dann ist der normierte 
Repräsentant zu fT der größte gemeinsame Teiler von fv /2. Denn 
durch Zurückgehen von der letzten Relation aus folgt nach Satz 3 
[ 9 ] sukzess ive fr\fr_v fr\fr_2, • • •, tT I /2. / , I f v a l s o C1-). u n d 

durch Zurückgehen von der vorletzten Relation aus, daß / durch 
die Paare /r_2» /r t ; . . . ; fv f2 in der Form des Satzes darstellbar 
ist, also (2.). 

Wir vermerken noch die speziellen Relationen 
(0, / ) = / , ( / , / ) = / für normiertes / , 
(,a, /) = e für jedes /. 

2 * 
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Aus dem grundlegenden Satz 14 ergeben sich nunmehr 
durch elementare Schlüsse die folgenden Tatsachen, die 
schrittweise zu dem erstrebten Eindeutigkeitsnachweis führen: 

Satz 15. I s t g n o r m i e r t , so i s t ( f v f2)g = ( f t f , f^g). 
B e w e i s : Ist (/ l5 f2) = d, (f±g, f^g) = d', so ist einerseits 

dg | fy, dg | f^g (Satz 14, (1.) für d\ Satz 2 [9]), also dg | d! 
d' \ d! 

(Satz 14, (2.) für d'); andererseits - fv - /2 (Satz 14, (1.) 

d' für d'; Satz2) , a l s o - d (Satz 14, (2.) für d), d .h. d'\dg 
(Satz 2). Daraus folgt d' = dg (Satz 5 , 1 0 [10, 14]). 

Definition 9. fx und /2 h e i ß e n relativ prim oder teiler-
fremd, w e n n ( f v /2) = e i s t . 

Hiernach ist speziell 0 zu allen und nur den Einheiten, eine Ein-
heit zu allen / relativ prim. Ist ferner ( f l t /2) = d und wird = dglt 

fz = dg2 gesetzt, so sind g1 und g2 relativ prim (Satz 15). 

Satz 16. S ind / und gx r e l a t i v pr im und i s t / | g ^ , 
so i s t / | g2. 

B e w e i s : Ist gz = 0, so ist die Behauptung klar. Ist g2 =f= 0 
und g2 der normierte Repräsentant zu g2, so folgt nach Satz 15 
aus (/, g-j) = e, daß (Jg2, g^) = g2, also nach Satz 14, (2.) und 
der Voraussetzung, daß / | g2, d. h. auch / | g2 ist. 

Satz 17. I s t p P r i m e l e m e n t , so i s t ( p , g ) = e m i t 
p Je g g l e i c h b e d e u t e n d , d. h. p i s t dann und nur dann 
pr im zu g, wenn p ke in T e i l e r von g ist . 

B e w e i s : Ist p der normierte Repräsentant zu p, so kann 
(p, g) als normierter Teiler von p nur e oder p sein (Def. 4, 5 
[11]). Ist nun einerseits p Je g, so kann nicht (p, g) = p 
sein, weil sonst nach Satz 14, (1.) p | g, also p | g folgte; daher 
ist dann (p, g) = e. Ist andererseits (p, g) — e, so kann nicht 
p\g sein, weil sonst nach Satz 14, (2.) p\e folgte, entgegen 
Def. 5; daher ist dann p Je g. 

Satz 18. I s t p P r i m e l e m e n t und so i s t p\gt 

oder p\g2. 
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B e w e i s : Ist p % gv so ist p prim zu g1 (Satz 17), also 
wegen der Voraussetzung p | g2 (Satz 16). 

Satz 19 . I s t p P r i m e l e m e n t und p • • • gT, so i s t 
p\gt oder . . . oder p\gr. 

B e w e i s : Folgt durch wiederholte Anwendung von 
Satz 18. 

Auf dem letzten Satz beruht der nun zu erbringende Ein-
deutigkeitsnachweis. 

F. Eindeutigkeit der Zerlegung in normierte Primelemente. 
Es seien 

f=ap1---pr=bq1---q, 
zwei Zerlegungen eines / =)= 0 in r ^ 0 bzw. s 0 normierte 
Primelemente pv ..., pr bzw. qv . . q t und einen Ein-
heitsfaktor a bzw. b. Durch Division mit b folgt dann zu-

a 
nächst nach Satz 11 [14], daß — normiert, also = e, d. h. 

o 
a = b ist. Es ist daher 

Vi • • • Pr = ' •" • 
Ist r= 0, so ist auch s— 0 ; denn sonst wäre qy \e entgegen 
Def. 5 [11]. Dann stimmen also beide Zerlegungen / = a, 
f = b überein. 

Ist r > 0, so ist nach demselben Schluß auch s > 0. Dann 
folgt p j | q1 • • • qt, also nach Satz 19 \ q1 oder • • • oder px | qs. 
Da die qi keine echten Teiler haben, ist somit das von Ein-
heiten verschiedene p1 zu einem der qi assoziiert, also gleich 
(Satz 10 [14]). Die Reihenfolge werde so angenommen, daß 
pl = q1 ist. Es folgt dann 

Ist r = 1, so ist wie oben auch s = 1. Dann stimmen also 
beide Zerlegungen / = apv f = bq1 überein. 

Ist r > 1, so ist auch s > 1, und die Fortsetzung der obigen 
Schlußweise liefert bei passender Wahl der Reihenfolge der qt 

sukzessive 
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P2 = 3a, • • p r = und r = s , 
letzteres, da nach dem obigen Schluß die bei demselben 
Schritte erschöpft sein müssen, wie die q B e i d e Zerlegungen 
stimmen also bis auf die Reihenfolge der Faktoren überein. 

Durch D. und F . ist nunmehr der Fundamentalsatz be-
wiesen. 

G. Folgerungen aus dem Fundamentalsatz. 
Durch Heranziehung der Zerlegung in Primelemente er-

halten die unter A. und F . eingeführten Begriffe der Teilbar-
keitslehre ein neues Gesicht. Es gelten nämlich die folgenden 
Tatsachen 

Satz 20 . I s t <74=0, so i s t dann und nur dann 
i\g, wenn die n o r m i e r t e n P r i m f a k t o r e n von / 
unter denen von g v o r k o m m e n 2). (Def. 1 [9], 
Satz 12 [14].) 

Die daraus sich unmittelbar ergebenden Folgerungen für die 
Begriffe E i n h e i t und a s s o z i i e r t brauchen nicht erst besonders 
aufgeführt zu werden. 

Satz 21. S ind / j und /2 von 0 v e r s c h i e d e n , so 
i s t ihr g r ö ß t e r g e m e i n s a m e r T e i l e r das P r o d u k t 
der g e m e i n s a m e n n o r m i e r t e n P r i m f a k t o r e n von 
fi und /2. (Satz 12, 14, 20.) 

Satz 22 . Von 0 v e r s c h i e d e n e und /2 sind dann 
und nur dann r e l a t i v p r i m , wenn sie k e i n e n ge-
meinsamen P r i m f a k t o r bes i tzen . (Def. 9 [20], 
Satz 21.) 

Aus Satz 22 ergibt sich ferner ohne weiteres die folgende 
Verallgemeinerung von Satz 18 [20] in der Richtung von 
Satz 16 [20]: 

Satz 23. I s t / pr im zu g± und g2, so auch zu gxg2. 
l ) Siehe die Anm. vor Satz 1 [9], Die heranzuziehenden früheren Defi-

nitionen und Sätze sind in Klammern angemerkt. 
' ) Diese und die folgenden Aussagen sind mit Berücksichtigung der Häufig-

keit des Auftretens der verschiedenen Primfaktoren gemeint (vgl. d. Bern, bei 
Satz 12 [15]). 
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H. Abhängigkeit vom Grundkörper. 
Es ist fü r uns wichtig festzustellen, wie die im Vorher-

gehenden entwickelten Begriffe und Tatsachen für den Fall 
K[x] beeinflußt werden, wenn an Stelle von K[a;] der Inte-
gritätsbereich K[a;] über einem Erweiterungskörper K von K 
zugrunde gelegt wird. In dieser Hinsicht gilt folgendes: 

Satz 24. W e r d e n d ie v o r k o m m e n d e n E l e m e n t e 
a u s K[a;] a l s s o l c h e des I n t e g r i t ä t s b e r e i c h e s K[a;] 
ü b e r e i n e m E r w e i t e r u n g s k ö r p e r K v o n K a n g e -
s e h e n , so b l e i b e n d ie R e l a t i o n e n „f\g, f Jf g, h i s t 
d e r B e s t b e i d e r D i v i s i o n v o n g d u r c h f, (fv /2) = d " 
e r h a l t e n , d a g e g e n n i c h t n o t w e n d i g d ie R e l a t i o n 
„ f i s t P r i m f u n k t i o n " . 

B e w e i s : a.) Die Bestimmung von h aus / und g und die 
Bestimmung von d aus ¡ 1 und /2 kann nach den Ausführungen 
hinter Satz 13 [18] und Satz 14 [19] durch Rechenver-
fahren ausgeführt werden, die in der Anwendung der vier 
elementaren Rechenoperationen auf die zu K gehörigen 
Koeffizienten der vorkommenden Elemente bestehen. Durch 
Auffassung dieser Koeffizienten als Elemente aus K ändern 
sich jene Verfahren, also auch deren Ergebnisse h und d 
nicht. Auch die Alternative h = 0, h =f= 0 bleibt unbeein-
flußt, was nach Satz 13, Zusatz [18] die Invarianz der Alter-
native f\g, f Jf g im Falle / =j= 0 ergibt. Für / = 0 ist deren 
Invarianz nach Satz 1 [9] trivial. 

b.) Schon das in der Einleitung genannte Beispiel zeigt, 
daß die Primfunktion x2 — 2 aus P[a;]1) bei Erweiterung 
von P zum Körper P der reellen Zahlen die Zerlegung 
(x — Y2) (x -f- j /2) in echte Teiler bekommt. 

Wegen b.) kann analog wie in der Einleitung bei 1.) prinzipiell 
kein rationales Rechenverfahren zur Entscheidung darüber existie-

') Daß %* — 2 In P[x] Primfunktion ist, kommt auf die I r r a t i o n a l i t ä t 
von [/2 hinaus, und diese kann leicht aus Satz 12 [14] für den Fall T gefolgert 
werden. 
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ren, ob ein vorgelegtes Element aus Kfx] Primfunktion ist, und eben-
sowenig ein solches zur Herstellung der Primfaktorzerlegung eines 
vorgelegten / aus K[®]. Hierzu ist man vielmehr in jedem kon-
kreten Falle auf Probierverfahren angewiesen. 

Wenn wir, wie im folgenden häufig, neben dem Grund-
körper K Erweiterungskörper K von K zu betrachten haben, 
müssen wir bei Verwendung der Bezeichnungen P r i m -
f u n k t i o n , i r r eduz ibe l (Def. 8 [14]) angeben, ob sie in 
bezug auf K[a;] oder K[ir] gemeint sind. Wir tun dies durch 
die Zusätze in K bzw. in K (vgl. die erste Anm. i. d. Einl. [5]). 

Aus dem Fundamentalsatz (angewandt in K[a;]) ergibt 
sich noch ohne weiteres die im folgenden vielfach benutzte 
Tatsache: 

Satz 25. I s t K ein E r w e i t e r u n g s k ö r p e r von K, 
so e n t s t e h t die P r i m f a k t o r z e r l e g u n g eines / aus 
K[»] in K[a;] aus der in K[a;], wenn man die P r i m -
f a k t o r e n von / in K[a;] in ihre P r i m f a k t o r e n in 
K[a:] zerlegt . 

§ 2. Restklassenringe in K[x] und T. 
In 1, § 2 haben wir den allgemeinen Begriff der Kon-

gruenzrelation in einem Bereich eingeführt. Die Resultate 
des § 1 setzen uns in Stand, alle in den Integritätsbereichen 
K[a;] und T möglichen Kongruenzrelationen in ganz ent-
sprechendem Sinne zu übersehen, wie es durch 1, Satz 34, 
35 [65, 66] für die Kongruenzrelationen in Gruppen geschah. 
Wir erhalten diese Übersicht aus dem folgenden Satz: 

Satz 26. Zu einer K o n g r u e n z r e l a t i o n = in K[®] 
bzw. T ex i s t i e r t ein bis auf assoz i ie r te e indeu t ig 
be s t immtes E lemen t / d e r a r t , daß 

(1.) \ dann und nur dann , wenn f W — h2. 
Umgekehr t e n t s t e h t so f ü r jedes / eine Kon-
g r u e n z r e l a t i o n in Kfz] bzw. f . 
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B e w e i s : a.) Jede Kongruenzrelation = entspringt gemäß 
(1.) aus einem f. Es sei nämlich M die Menge aller Elemente 
g= 0. Nach 1, § 2, («.), (ß.), (y.), (1.), (2.) [15, 21] ist dann 

= h2 mit Aj — ft2=0, d.h. mit dem Enthaltensein von 
K — in M gleichbedeutend. Entweder besteht nun M nur 
aus dem Elemente 0. Dann ist \ = h2 mit \ = h2 gleich-
bedeutend, unsere Kongruenzrelation also die Gleichheit und 
die Behauptung des Satzes mit / = 0 richtig (Satz 1 [9]). 
Oder aber M enthält von 0 verschiedene Elemente. Dann 
gibt es nach § 1, (4.) [12] unter den von Null verschiedenen 
Elementen von M ein / von kleinstmöglichem Betrage. Ist 
dann g irgendein Element aus M und wird nach Satz 13 [16] 

g = f f +h,\h\<\f\ 
gesetzt, so gehört auch h = g — / / z u M, weil nach der De-
finition der Kongruenzrelation in 1, § 2 aus / = 0 auch 
f f = 0 und dann aus g= 0 auch h = g — / / = 0 folgt. Es 
muß also wegen der Minimalbestimmung des Betrages von / 
gelten h= 0, d. h. / | g. Da nun umgekehrt aus / = 0 auch 
für jedes Vielfache g = / / von / folgt g= 0, besteht somit 
M aus allen und nur den Vielfachen von /, ist also g= 0 mit 
/1 g und daher nach dem schon Gesagten \ = mit 
/ | ^ — h2 gleichbedeutend. 

b.) Die Relation (1.) ist für jedes feste / eine Kongruenz-
relation. Denn die Bedingungen 1, § 2, (<%.), (ß.), (y.) [15] 
sind erfüllt, weil erstens /1 0 (Satz 1 [9]), zweitens aus 
iW — h2 folgt / | h2 — /tj (Satz 3 [9]) und drittens aus 
/ | — ht, f | h2 — hz folgt f\hx — hz (Satz 3); und die Be-
dingungen 1, § 2, (1.), (2.) [21] sind erfüllt, weil aus 
f\h~Kf\9i — 9» erstens folgt / | + gt) — {h2 + g2) 
(Satz 3) und zweitens zunächst folgt / | h ^ — h i g l , f\h2(j1— 
(Satz 3) und daraus wie eben / | h1g1 — 

c.) / ist bis auf assoziierte (unter denen man es natürlich 
beliebig wählen kann, ohne die Kongruenzrelation (1.) zu 
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ändern) eindeutig durch die Kongruenzrelation bestimmt. 
Es sei nämlich die Kongruenzrelation = h2 sowohl mit 
/ 1 - — als auch mit J \ \ — h2 gleichbedeutend. Aus 
/1 / — 0, /1 / — 0 folgt dann / = 0, / = 0, also wegen der 
gemachten Annahme auch / | / — 0, / | / — 0, wonach / 
und / assoziiert sind (Satz 5 [10]). 

Auf Grund von Satz 26 definieren wir: 
Definition 10. Das zu e iner K o n g r u e n z r e l a t i o n 

= in K[a;] bzw. T g e m ä ß S a t z 26 g e h ö r i g e , bis auf 
a s s o z i i e r t e e i n d e u t i g b e s t i m m t e E l e m e n t f h e i ß t 
ih r Modul. Man s c h r e i b t d a n n a u s f ü h r l i c h e r 

mod. f 1 ) f ü r 2, d .h . f ü r / \ \ — 
und n e n n t die z u g e h ö r i g e n K l a s s e n die Restklassen 
mod. f , den d u r c h sie g e b i l d e t e n R i n g 2 ) den Rest-
klassenring mod. f. 

Falls / =1= 0, werde der Eindeutigkeit halber / als normiert an-
genommen. — Wir bezeichnen den Restklassenring mod. / im Falle 
K[z] mit K[i, mod. j(x)], im Falle I" mit f f , ferner schreiben wir 
gelegentlich {h} für die durch das Element h bestimmte Restklasse 
nach dem jeweils betrachteten Modul. 

Wenn auch das zum Restklassenring führende Rechnen 
mit den Restklassen (1, Satz 8 [22]) sich nicht auf irgend-
welche speziellen Repräsentanten zu stützen braucht, so ist 
es doch für unsere späteren Anwendungen und auch zur Ge-
winnung eines Überblicks über die Restklassen wichtig, ein 
möglichst einfaches vollständiges Repräsentantensystem (1, 
§ 2 [17]) für die Restklassen mod. / zu besitzen. Ein solches 
wird in folgendem Satz genannt: 

Satz 27. I s t / = 0, so b i l d e t j edes E l e m e n t von 

*) Im Falle K[x] wird übrigens durch diese Hinzufügung von „mod. /(x)" 
eine Verwechselung mit der Gleichheit in K[x] bei der Schreibweise mit Argu-
ment x(i, nach Satz 12 [42]) ausgeschlossen. 

! ) Wir reden hier, etwas allgemeiner als in 1, Satz 8 [22], auch in dem dort 
ausgeschlossenen Falle, daß alle Elemente einander kongruent, also / wegen 
e = 0 mod. j Einheit ist, von einem King . Dieser enthält dann nur ein einziges 
Element, erfüllt also nicht mehr die in 1, § 1, (a.) [7] gestellte Forderung. 
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K[z] bzw. r für sich eine Res tk la s se . I s t /4= 0, 
so wird ein v o l l s t ä n d i g e s R e p r ä s e n t a n t e n s y s t e m 
der R e s t k l a s s e n mod. / geb i ldet durch die Ele-
mente h mit der E i g e n s c h a f t 

JIi| < | / | im F a l l e K[a] , 
0 < L h < f im F a l l e T. 

Beweis : a.) Für / = 0 ist h2 mod. 0 mit 0 | — h2, 
d. h. mit /¡j = h2 gleichbedeutend. 

b.) Für /=(= 0 ist wegen der Existenztatsache von Satz 13 
[16] jedes Element einem der genannten mod. / kongruent, 
und wegen der Eindeutigkeitstatsache auch nur einem. Die 
genannten Elemente repräsentieren also alle Restklassen 
mod. /, jede einmal. 

Ausführlich geschrieben lautet das vollständige Reprä-
sentantensystem mod. / für / =)= 0 

im Falle K[a;]: c0 + c1 x H + cn—I x"—1, wenn / vom 
Grade n > 0, wobei e0, cv . . . , cn—1 alle Systeme von n Ele-
menten aus K durchläuft; 0, wenn / vom Grade 0 (/ = e); 

im Falle T: 0 , 1 , . . . , / — 1; hier ist also die Anzahl der 
Restklassen mod. / endlich, nämlich f. 

Aus dem Sachverhalt von Satz 27 motiviert sich die Be-
zeichnung R e s t k l a s s e n , insofern diese je durch alle Elemente 
gebildet werden, die bei der Division durch / ein und den-
selben R e s t ergeben1). 

Besonders wichtig ist für uns die Feststellung, für welche 
/ der Restklassenring mod. / ein Integritätsbereich oder sogar 
ein Körper ist. Darüber gibt der folgende Satz Auskunft: 

Satz 28. Der R e s t k l a s s e n r i n g mod. / i s t dann 
und nur dann I n t e g r i t ä t s b e r e i c h , wenn / = 0 oder 
/ Pr imelement ist . I s t / Pr imelement , so i s t er 
sogar Körper . 

1) Auch über die speziellen Integritätsbereiche K[z] und f hinaus lassen 
sich die Restklassen nach Kongruenzrelationen in allgemeinen Integritäts-
bereichen in eine ähnliche Beziehung zur Division setzen (vgl. l t Anm. zu Def.6 
[21]), wodurch die allgemeine Bezeichnung K e s t k l a s s e n gerechtfertigt wird. 
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B e w e i s : a.) Ist / = 0, so fällt nach Satz 27 der Rest-
klassenring mit dem Integritätsbereich K[k] bzw. T zu-
sammen. Es sei ferner f = p Primelement. Ist dann g1 g2 = 0 
mod. p, d.h. p | g1 g2, so ist nach Satz 18 [20] p \ g1 oder 
p\g2, d. h. g1= 0 mod. p oder g2 = 0 mod. p. Wenn also 
das Produkt zweier Restklassen {t^} [g2] = 0 ist, ist min-
destens einer der Faktoren [g^ oder {g2} = 0, d. h. es gilt 
das Analogon zu 1, Satz 4 [12] im Restklassenring mod. p. 
Daß auch das Analogon zu 1, Satz 3 [11] gilt, ist klar, weil {e} 
das Einselement des Restklassenrings ist. Also ist dieser zu-
nächst Integritätsbereich. Er ist aber sogar Körper. Denn ist 
g ^ 0 mod. p, d. h. p g, also p prim zu g (Satz 17 [20]), 
so kann nach Satz 14 [18] ph* - f 99* = also bei vor-
gegebenem h auch ph-\- gg = Ä gesetzt werden. Die letztere 
Relation besagt aber, daß gg = h mod. p ist, d. h. daß 

!h\ 
[g] {3} = {h} oder {¡7} = i - i ist. Hiernach ist also die Division 

durch von Null verschiedene Restklassen mod. p unbeschränkt 
ausführbar [1, §1, (7.) [10]], so daß ein Körper vorliegt. 

b.) Ist / =J= 0 und kein Primelement, so ist entweder / 
Einheit und es gibt dann nur eine einzige Restklasse, so daß 
also kein Integritätsbereich vorliegt [1, § 1, (a.) [7]]. Oder 
aber es besteht eine Zerlegung / = g±g2 in echte Teiler gv g2. 
Die Relation g-ig2 = 0 mod. /, d. h. { j j J {g2} = 0 besagt 
dann, daß das Produkt zweier von 0 verschiedener Rest-
klassen mod. / gleich 0 ist, so daß wiederum kein Integritäts-
bereich vorliegt. 

Wir bezeichnen im folgenden den Restklassenkörper nach einer 
Primfunktion p(x) mit K(«, mod. p(x))> den Restklassenkörper 
nach einer Primzahl p mit Pp1). 

Der Restklassenkörper Pp ist nach Satz 27 ein endlicher 
Körper2) von p Elementen. Wir beweisen über ihn noch den fol-

1) Diese nach den Festsetzungen nach Def. 10 [26] an sich entbehrlichen, 
neuen Bezeichnungen sind des besseren Einklangs halber mit der in 1, Def. 9 
[38], 10 [39], Satz 6 [13] eingeschlagenen Bezeichnungsweise gewählt. 

' ) Für p = 2 ist P, der in 1, § 1, Beisp. 4 [14] genannte und in 1 ver-
schiedentlich als Beispiel herangezogene Körper. 
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genden, später anzuwendenden Satz: 
Satz 29. Für jedes o aus Pp gilt av = a, für jedes a 4= 0 

also aP~1 - e. 
Beweis: Für a = 0 ist das klar. Sei a 4= 0 und seien 0, ax,..., 

ap_1 die p verschiedenen Elemente aus Pp. Wegen der Eindeutig-
keit der Division durch a in Pp sind dann die p Elemente aO = 0, 
a a i t . . . , aap_j voneinander verschieden, also wieder die sämtlichen 
Elemente von Pp in irgendeiner Reihenfolge, und daher aalt..., 
mit « ! , . . . , a p _ 1 bis auf die Reihenfolge identisch. Daraus folgt 
durch Produktbüdung 

• • • = ' • • • 

Da aber ax • • • l =)= 0 ist, ergibt sich aP—1 — e a p — 0 j r̂ie be-
hauptet. 

Während im v o l l e n Restklassenring mod. / nach Satz 28 
die Division dann und nur dann unbeschränkt und eindeutig 
ist, wenn / ein Primelement ist, läßt sich in jedem Falle eine 
Tei lmenge dieses Restklassenrings angeben, innerhalb deren 
dies der Fall ist. Zu dieser Teilmenge führ t der folgende Satz 
und die anschließende Definition: 

Satz 30. A l l e E l e m e n t e e i n e r R e s t k l a s s e m o d . / 
h a b e n m i t / e i n - u n d d e n s e l b e n g r ö ß t e n g e m e i n -
s a m e n T e i l e r , d e r s o m i t T e i l e r d i e s e r R e s t k l a s s e 
g e n a n n t w e r d e n k a n n . 

B e w e i s : Ist g1= g2 mod. /, d. h. g1 — g2 = ff, so ist nach 
Satz 3 [9], 14 [18] (gv /) | (g2, / ) und (g2, f) \ (gv f), also 

/) = fe, /)• 
Definition 11. D ie R e s t k l a s s e n m o d . / v o m T e i l e r 

e h e i ß e n d ie primen Restklassen mod f . 
Diese stellen also die Restklasseneinteilung mod. / innerhalb 

der Menge aller zu / primen Elemente (Def. 9 [20]) dar. 
Die obige Behauptung wird nun durch folgenden Satz 

bestätigt: 
Satz 31. D ie p r i m e n R e s t k l a s s e n m o d . / b i l d e n e i n e 

a b e l s c h e G r u p p e b e z ü g l i c h d e r M u l t i p l i k a t i o n 1 ) . 

') Für / = 0 vgl. übrigens Satz i [10], 
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Beweis: Da iß/ Teilmenge des Restklassenrings mod. / 
ist, genügt es zu zeigen, daß die Multiplikation nicht aus 
herausführt und daß die Division in eindeutig und 
ebenfalls unbeschränkt ist. Das erstere folgt unmittelbar aus 
Satz 23 [22], das letztere durch ganz entsprechende Schlüsse, 
wie im Beweis zu Satz 28 unter a.), jetzt mittels Satz 16 [20] 
anstelle von Satz 18 [20]. 

Satz 31 ist vor allem im Falle T von Bedeutung. Die Gruppe 
ist dann endl ich , ihre Ordnung bezeichnet man mit <p(f) 

(Eulersche Funkt ion) . Es ist <p(0) = 2 1 ) , ferner nach Satz 17 
[20], 27 [26] <p(p) = p — 1 für Primzahlen p. Die mittels der 
Sätze von § 1, E. unschwer zu beweisende allgemeine Formel 

<r(f) = f n U - - \ ( / > 0 ) , 
p\ 1 V PI 

wo p die verschiedenen, in / aufgehenden Primzahlen durchläuft, 
brauchen wir im folgenden nicht, ebenso auch nicht die Satz 29 
verallgemeinernde, ganz entsprechend zu beweisende Relation 

0 , ^ = l m o d . / 
für jedes zu / prime a aus I", den sog. k le inen F e r m a t s c h e n 
S a t z 2 ) . Wir führen diese Tatsachen hier nur an, um unsere auf 
den Fall T bezüglichen Entwicklungen, die ein wichtiges Kapitel 
der e lementaren Zahlentheor ie bilden, abzurunden. 

§ 3. Zyklische Gruppen. 
Wir machen in diesem Paragraphen eine für später 

wichtige Anwendung der auf den Fall T bezüglichen Re-
sultate der §§ 1, 2 auf die Gruppentheorie. 

Definition 12. E ine Gruppe 3 heißt zyklisch, 
wenn sie aus den ganzen Potenzen eines ihrer 
Elemente A besteht . 3 heißt dann auch durch A 
erzeugt und A ein primitives Element von 3-

Für die ganzen Potenzen von A gelten nach ihrer Er-
klärung (1 [51]) die Rechenregeln 

(1.) AmAn = Am+n, (Am)n = Amn. 

•) Vgl. Anm. 1 [29] sowie Satz 7 [13]. 
' ) Von F e r m a t selbst nur für / = p angegeben (Satz 29), in dieser all-

gemeinen Form erst von E u l e r . 
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Daraus folgt zunächst (1, Def. 13 [50]): 
Satz 32. J ede zykl ische Gruppe is t abelsch. 
Aus (1.) folgern wir nun weiter den folgenden, grund-

legenden Satz über zyklische Gruppen: 
Satz 33. Es sei 3 eine durch A e rzeugte zykl i -

sche Gruppe. Dann ex i s t i e r t eine e indeut ig be-
s t immte ganzeZah l /Sä0 d e r a r t , daß 3 vermöge der 
Zuordnung 

(2.) Äm {m} 
zur a d d i t i v e n Gruppe SR/ der Res tk lassen mod. f1) 
i somorph ist . 

Beweis: a.) Durch die Festsetzung 
(3.) ml= m2 dann und nur dann, wenn Am' = Am', 

wird eine Kongruenzrelation in T definiert. 
Denn 1, § 2, («.), (ß.), (y.) [15] sind erfüllt, weil die 

Gleichheit in 3 ihnen genügt. Weiter gelten auch 1, § 2, (1.), 
(2.) [21]; ist nämlich m1=m2, w2, also A™1 = Arn\ 
An' = An\ so folgt nach (1.) 

jgn&i _ ^m^n, _ = (A"1)'™1 = (An')m' = Am'n' 
also m1 -f- = m2 + n2, mJWJ = m2n2. 

Ist / der Modul der Kongruenzrelation (3.), so gilt also 
(4.) A™1 = Am' dann und nur dann, wenn m1= m2 mod. /. 

Die Zuordnung (2.) zwischen 3 und ist nach (4.) 
eineindeutig. Sie ist ferner auch isomorph, weil nach (1.) 
der Multiplikation der Potenzen Am die Addition der Expo-
nenten TO, also auch ihrer Restklassen {m} entspricht. So-
mit ist 3 = 9i/ vermöge (2.). 

b.) Für verschiedene 0 unterscheiden sich die zuge-
hörigen 9}/ durch die Anzahl ihrer Elemente (Satz 27 [26]), 
sind also nicht isomorph. Somit ist / durch 3 eindeutig 
bestimmt. 

') Vgl. I, § 6, Beispiel 1 [63]. 
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Nach Satz 33 lassen sich die möglichen Typen zyklischer 
Gruppen den nicht-negativen ganzen Zahlen / = 0,1, 2 , . . . ein-
eindeutig zuordnen, und alle diese Typen existieren wirklich, da 
sie ja durch die SR/ repräsentiert werden. Ist 3 eine durch A er-
zeugte zyklische Gruppe vom Typus 3t/, so sind die verschiedenen 
Elemente von 3 nach Satz 27 [26] gegeben 

a.) für / = 0 durch die sämtlichen ganzen Potenzen 
..., A~\A-\ A°=E, A\A2,...; 

dann ist also 3 von unendlicher Ordnung. 
b.) für / > 0 etwa durch die / Potenzen An = E, 

an die sich bei beiderseitiger Fortsetzung dasselbe System von / 
Elementen in gleicher Reihenfolge wiederholt anreiht1); dann ist 
also 3 endlich von der Ordnung f . 

Um alle Untergruppen einer zyklischen Gruppe zu be-
stimmen, vermerken wir zunächst die nachstehende, nach 1, 
Satz 19, 25 [55,59] ohne weiteres klare Tatsache: 

Satz 34. I s t A ein E l e m e n t aus e i n e r G r u p p e ©, 
so b i l d e n die g a n z e n P o t e n z e n von A e i n e z y k l i s c h e 
U n t e r g r u p p e SC von die Periode von A, d e r e n 
O r d n u n g a u c h die Ordnung von A h e i ß t . I s t © 
e n d l i c h von de r O r d n u n g n, so i s t a u c h A v o n 
e n d l i c h e r O r d n u n g m u n d m | n. 

Falls A von endlicher Ordnung m ist, läßt sich m nach Satz 33 
auch dadurch charakterisieren, daß 

Ak = E mit k = 0 mod. m, d. h. mit m [ k 
gleichbedeutend ist, oder auch als k le ins ter der pos i t iven 
Exponenten k, f ü r die Ak = E ist. Wir beweisen zur späteren 
Anwendung noch: 

Satz 35. Sind Alt A2 ve r t auschbare Elemente aus ® 
von den endlichen Ordnungen m1,mi und is t (m1,mt) = 1, 
so ha t AtA2 die Ordnung 

Beweis: Soll {A^A^ = E sein, so folgt durch Potenzieren 
mit m2 bzw. mv unter Berücksichtigung der Voraussetzung 

= A1A¡j, 
Af'k=E, A™lk = E, 

also m11m2k, m2]m1 k. Wegen (m l t m2)= 1 muß also m1\k,m2\k 
') Daher die Bezeichnung zykl isch. Als Bild des Falles a.) ist dabei ein zu 

einer Geraden ausgearteter Kreis zu denken. 
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sein (Satz 16 [20]). Daraus folgt m1mi \ k (Satz 22, 20 [22]). Da 
umgekehrt 

(A^42)mim' = (A?')m> = E 
ist, ist also (AiA^f - E dann und nur dann, wenn mlmt1 k, d. h. 
m1m2 ist die Ordnung von AtA2. 

Durch Anwendung von Satz 34 auf eine zyklische Gruppe 
© = 3 erhalten wir leicht alle Untergruppen von 3 : 

Satz 36. I s t 3 e i n e d u r c h A e r z e u g t e zyk l i sche 
G r u p p e von der e n d l i c h e n O r d n u n g n (von u n e n d -
l i c h e r O r d n u n g 1 ) ) , so e n t s p r i c h t j e d e m p o s i t i v e n 
Te i le r j von n ( j edem p o s i t i v e n j) ein N o r m a l t e i l e r 

n 
Slj- von der O r d n u n g m = — (von u n e n d l i c h e r Ord-
nung) , n ä m l i c h die P e r i o d e von AK Deren F a k t o r -
g r u p p e 3/2ij i s t w iede r zyk l i s ch , von der O r d n u n g j. 
Auf diese Weise e n t s t e h e n al le (von der i d e n t i s c h e n 
v e r s c h i e d e n e n ) U n t e r g r u p p e n von 3- Diese , sowie 
i h r e F a k t o r g r u p p e n , s ind also i n s b e s o n d e r e s ä m t -
l ich wiede r zyk l i sch . 

Beweis : a.) Nach Satz 34 sind die Perioden SC; der ge-
nannten A/ Untergruppen von den angegebenen Ordnungen, 
und nach 1, Satz 26 [60] natürlich Normalteiler von 3 . 

b.) Für die Kongruenz nach gilt nach ihrer Erklärung 
(1, Def. 16 [56]) und nach Def. 10 [26] 

Am' = Am'(Stf) dann und nur dann, wenn m1= m2 mod. j. 
Die Restklassen nach 91 j können also durch A =E,A ,...,A}~ 
repräsentiert werden. Hiernach ist 3/21; zyklisch von der 
Ordnung j, nämlich durch die Restklasse von A erzeugt. 

c.) Ist 3 ' irgendeine Untergruppe (also Normalteiler) von 
3, so liefert analog zu (3.) [31] die Festsetzung 

m1= m2 dann und nur dann, wenn Am'= Am'($'), 
1) Das auf diesen — weiterhin nicht benötigten — Fall Bezügliche ist in 

Klammern beigefügt. 
Hasse , Höhere Algebra. II. 3 
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eine Kongruenzrelation in T. Ist j deren Modul, so ist Am 

dann und nur dann in wenn m = 0 mod. j (1, Satz 35 
[66]), d.h. j\m ist; 3 ' besteht also aus allen und nur den 
ganzen Potenzen von A\ d. h. ist die Periode St,- von A1. 
Ist 3 endlich von der Ordnung n, so ist j \ n, weil An — E 
zu 3 ' gehört; ist 3 unendlich, so entspricht j = 0 die iden-
tische Untergruppe, positiven j von der identischen ver-
schiedene Untergruppen. 

Der Satz 34 ermöglicht auch die Bestimmung aller primitiven 
Elemente einer zyklischen Gruppe: 

Satz 37. I s t 3 e i n e durch A erzeugte z y k l i s c h e 
Gruppe vom Typus SR/, so entsprechen die p r i m i t i v e n 
E l e m e n t e von 3 bei der Zuordnung (2.) den primen 
R e s t k l a s s e n m o d . / , d.h. es ist dann und nur dann 4™ 
p r i m i t i v , wenn m prim zu / ist . 

Beweis : Am ist dann und nur dann primitiv, wenn seine 
Periode gleich 3 ist, und das ist dann und nur dann der Fall, wenn 
sie A enthält, d. h. wenn ein m existiert, so daß Amm = A, also 
mm = 1 mod. / ist. Hierzu ist aber nach Satz 3, 14 [9, 18] 
notwendig und nach Satz 31 [29] hinreichend, daß m prim zu / ist. 

Für / = 0 (also unendliches 3 ) sind hiernach A1, die 
einzigen primitiven Elemente, für / > 0 (also endliches 3 der 
Ordnung /) gibt es unter den f Elementen cp(f) primitive [30]. 
Speziell sind, wenn / = p Primzahl ist, alle <p {'p) = p — 1 Ele-
mente =j= E primitiv. 

§ 4. Primintegritätsbereichc, Primkörper, 
Charakteristik. 

Wir leiten in diesem Paragraphen eine auf die Kesultate 
von §§ 1, 2 für den Fall V gestützte, grundlegende Unter-
scheidung der Integritätsbereiche und Körper her. Dazu 
bezeichne durchweg I irgendeinen Integritätsbereich, K dessen 
Quotientenkörper. Da sieh jeder Körper K als Quotienten-
körper eines Integritätsbereiches (nämlich wieder K) auf-
fassen läßt, bedeutet das keinerlei Einschränkung bezüglich 
der in Betracht gezogenen Körper K. 
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Wir betrachten die ganzen Vielfachen me des Einselemen-
tes e von 1, für die nach ihrer Erklärung (1, am Schluß von 
§ 1 [13]) die Rechenregeln gelten: 

(1.) m^e + m2e = (m1 + m2)e, (m¿e)(m2e) = (m1 m2)e. 
Die me sind die ganzen „Potenzen" von e, d. h. die Pe r iode 
von e in der durch die Elemente von I gebildeten additiven 
abelschen Gruppe, und in diesem Sinne sind die Formeln 
(1.) nichts anderes als die Formeln (1.) des § 3 [30], aller-
dings mit einer kleinen Abweichung in der zweiten Formel. 
In Analogie zu dem dortigen Satz 34 [32] (aber unter Berück-
sichtigung der in I neben der als Gruppenverknüpfung ge-
deuteten Addition überdies vorhandenen zweiten Ver-
knüpfung Multiplikation) ergibt sich aus (1.) nach 1, Satz 6 
[19]: 

Satz 38. Die ganzen Vie l fachen des Einse le -
mentes von 1 bi lden einen Te i l i n t eg r i t ä t sbe re i ch I0 
von I. Dessen Q u o t i e n t e n k ö r p e r ist ein Teil-
körper !<<, von K. 

Da e und somit auch alle me in jedem Teilintegritäts-
bereich von 1 und die Quotienten der me in jedem Teilkörper 
von K enthalten sind, gilt: 

Satz 39. I0 i s t der engste Te i l i n t eg r i t ä t sbe re i ch 
(Durchschn i t t al ler solchen) von I. Kg is t der 
engs te Te i lkörper (Durchschn i t t al ler solchen) 
von K. 

Die in Satz 39 ausgesprochene Eigenschaft von l0 bzw. 
K„ rechtfertigt die Definition: 

Definition 13. I0 he iß t der Primintcgritätsbereich 
von I, K„ der Primkörper von K. 

Die angekündigte Unterscheidung der Integritätsbereiche I 
und der Körper K bezieht sich nun auf den Typus ihrer Prim-
integritätsbereiche I0 bzw. Primkörper K„. Wenn auch nach 
(1.) die Rechenope ra t ionen mit den me aus I0 i somorph 
zu den entsprechenden Rechenoperationen mit den m aus T 

3* 
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verlaufen, braucht deshalb doch nicht l0 vom Typus T zu 
sein; denn, wie das Beispiel der Pp lehrt, ist die Zuordnung 
me »• m nicht notwendig eineindeutig, d.h. Gleichheit 
und Unterschiedenheit in l0 und in T entsprechen sich 
bei dieser Zuordnung nicht notwendig. Für die möglichen 
Typen von l0 gilt vielmehr ganz Entsprechendes, wei wir 
in § 3 (Satz 33 [31]) für die Typen zyklischer Gruppen fest-
gestellt haben: 

Satz 40. Zu I existiert eine eindeutig bestimmte 
ganze Zahl /SiO, so daß l0 vermöge der Zuordnung 

(2.) me *—>• { m } 
zum Restklassenring T; isomorph ist. 

Beweis: Aus der Auffassung von l0 als Periode von e 
in I resultiert nach § 3, (3.) [31], daß die Relation 

(3.) mx=m% dann und nur dann, wenn m1e = m2co 
eine Kongruenzrelation in T ist. Ist / deren Modul, also 

(4.) m^e = m 2 e dann und nur dann, wenn mx = m2 mod. /, 
so ist nach (4.) die Zuordnung (2.) zwischen l0 und V t ein-
eindeutig. Wie im Bew. zu Satz 33 [31] ist sie ferner nach (1.) 
isomorph, hier außer für die Addition (die der dortigen Grup-
penverknüpfung entspricht) auch für die in l0 und I"/ er-
klärte Multiplikation. 

Auf Grund von Satz 40 definieren wir: 
Definition 14. Die ganze Zahl 0 aus Satz 40, 

d.h. der Modul der Kongruenzrelation (3.) heißt 
die Charakteristik von I und K. 

Da nun das zu ["/ isomorphe l0 Integritätsbereich ist, 
ergibt sich aus Satz 28 [27]: 

Satz 41. Die Charakter is t ik von I und K ist 
entweder 0 oder eine Primzahl p . Ist sie 0, so ist 
l 0 = r , KflSiP; ist sie p , so ist l 0 = K 0 s P P . 

Durch Satz 41 motiviert sich die Bezeichnung Charakterist ik 
von I und K, insofern diese den Typus des Primintegritäts-
bereiches l0 bzw. Primkörpers K0 charakteris iert . Daß alle 
nach Satz 41 möglichen Charakteristiken wirklich vorkommen, 
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zeigen die Bereiche T, P, Pp, die ihre eigenen Primbereiche1) sind. 
Nach dem Verfahren von 1, § 3, d) [29] kann man aus jedem Be-
reich I oder K einen isomorphen herleiten, der als Primbereich I" 
oder P bzw. ein Pp (d. h. die ganzen oder rationalen Zahlen bzw. 
die Restklassen nach einer Primzahl p) selbst enthält. Wir reden 
daher im folgenden kurz von den Primbereichen T, P, Pp. 

Man sieht ferner ohne weiteres folgende Tatsachen ein 
(vgl. schon Satz 39): 

Satz 42 . A l l e E r w e i t e r u n g s - u n d T e i l b e r e i c h e 
e i n e s B e r e i c h e s h a b e n d i e s e l b e C h a r a k t e r i s t i k . 

Aus dem Gesetz (4.) für die ganzen Vielfachen von e ergibt 
sich vermöge der Umformung 
m1a — m2a = (m1 — m2)a = (mi —' mz> e' a = (mie — »iae) • a 

leicht ein entsprechendes Gesetz für die ganzen Vielfachen eines 
a 4= 0: 

Satz 43. I s t a ein E l e m e n t eines Be re i ches der 
C h a r a k t e r i s t i k /, so i s t 
m1a = w2o d a n n u n d , f a l l s a + 0, auch nu r d a n n , wenn 

(m1 = mi ( für f = 0) 1 
\ m-L = m2 mod. •p ( für / = p) j " 

I n s b e s o n d e r e i s t also 
ma = 0 d a n n u n d , f a l l s a 4= 0, auch n u r d a n n , w e n n 

fm = 0 ( fü r / = 0) 1 
j m = 0 mod. p ( fü r / = p) ) ' 

Infolge des in diesem Satz zum Ausdruck kommenden ab-
weichenden Verhaltens der Bereiche mit einer Charakteristik p 
gegenüber denen mit der Charakteristik 0 (z. B. allen Zahlbereichen) 
sind nicht alle aus der „Zahlenalgebra" geläufigen Schlußweisen in 
unserer abstrakten „Bereichalgebra" anwendbar, wie wir das ja 
in 1 mehrfach hervorhoben [Beweise zu Satz 12, d); Satz 13, d); 
Satz 70 [41, 44,129]]. 

Auch die folgende, später anzuwendende Tatsache zeigt eine 
Abweichung der Bereiche mit einer Charakteristik p gegenüber 
den in der Zahlenalgebra vorliegenden Verhältnissen: 

Satz 44. In Be re i chen der C h a r a k t e r i s t i k p darf 
e ine S u m m e g l iedweise m i t p p o t e n z i e r t w e r d e n : 

n \P n 

*) B e r e i c h steht hier und in den folgenden Auaführungen für I n t e -
g r l t ä t s b e r e i c h oder K ö r p e r . 
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Beweis: Es genügt, den Satz für n— 2 zu beweisen, da er 
dann durch Induktion allgemein folgt. Nach dem (aus den Ele-
menten vorausgesetzten) binomischen Satz ist nun 

(fll + a2y = a\ + *£( l ) a{ a*- + af , 
V = 1 \ v I 

wo j die Kombinationsanzahl von p Elementen zur v-ten Klasse 
bezeichnet, für die die Formel 

/ V \ = P}_ = p • (p — 1) • • • (p — (v — 1)) 
W v!(p— v)\ 1-2---V ' 

gilt (vgl. 1, Bew. zu Satz66 [123]). Dafür l ^ v ^ p — 1 das Produkt 
1 • 2 • • • v zu p prim ist (Satz 23 [22]) und wegen der Ganzzahlig-
keit der Anzahl ^ j in dem Produkt p • [(p—1) • • • (p—(»>—1))] 
aufgeht, muß es nach Satz 16 [20] in dem zweiten Faktor [ . . . ] 
dieses Produktes aufgehen, so daß (j* j = 0 mod. p ist. Aus Satz 43 
folgt daher 

(a1 + a2f = a\ + c%. 
Es sei übrigens bemerkt, daß eine entsprechende Regel auch 

für die Subtraktion gilt; denn aus (a l + a2)v — a i = a ! ja 
wegen der Unbeschränktheit der Subtraktion allgemein b\ — 

II. Die Wurzeln algebraischer 
Gleichungen. 

Wir leiten in diesem Abschnitt eine Reihe von Sätzen über 
Wurzeln a. von Polynomen f(x) aus K in Erweiterungskörpern 
A von K her, ohne dabei auf die erst in III zu behandelnde 
Existenzfrage der A und oc bei gegebenem K und f(x) ein-
zugehen. Diese Sätze sind also lediglich als Folgerungen aus 
der Voraussetzung anzusehen, daß ein Polynom aus K in 
einem Erweiterungskörper A von K eine oder mehrere Wurzeln 
hat. 

Zur Vereinfachung der Ausdrucksweise treffen wir folgende 
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B e z e i c h n u n g s f e s t s e t z u n g e n f ü r A b s c h n i t t II—IV. 
Große griechische Buchstaben, außer den bereits vergebenen 

M (Menge), B (Bereich), I (Integritätsbereich), I" (Integritäts-
bereich der ganzen Zahlen), bedeuten stets K ö r p e r , ohne daß 
dies immer ausdrücklich gesagt wird, und zwar K den G r u n d -
k ö r p e r , A irgendeinen Erweiterungskörper (kurz E r w e i t e r u n g ) 
von K, weitere Buchstaben Erweiterungen von K mit speziellen, 
wie bei P (Körper der rationalen Zahlen) durch die Bezeichnung 
schon angedeuteten Eigenschaften, die wir aber der Deutlichkeit 
halber doch immer ausführlich nennen werden. Für das E n t -
h a l t e n s e i n und E n t h a l t e n bei Körpern (später auch bei Gruppen) 
verwenden wir sinngemäß die Zeichen ;>, < , > . Ist K iS K g A, 
so nennen wir K einen K ö r p e r z w i s c h e n K u n d A. 

Elemente aus dem Grundkörper K bezeichnen wir mit a, b, c,..., 
solche aus Erweiterungen A von K mit a , ß, y,... (vgl. 1, erste 
Anm. zu § 1 [9]), ebenso Elemente aus K [x] mit / ( x ) , g(a;), h(x),..., 
solche a u s A[a : ] m i t <p{x), ip{x), %{x),.. .1). W i r d ü r f e n d a n n 
erläuternde Zusätze über die Körper, denen vorkommende Elemente 
angehören sollen, oft fortlassen. 

Ebenso lassen wir auch die Zusätze „in K" bei „irreduzibel" 
und „Primfaktorzerlegung", sowie entsprechende Zusätze bei 
einigen im weiteren Verlaufe einzuführenden Begriffen, die sich 
auf einen bestimmten Grundkörper beziehen, gelegentlich fort, 
wenn nur ein in der gerade vorliegenden Betrachtung f e s t e r 
Grundkörper K in Betracht kommt. Definitionen, auf die diese 
Festsetzung Anwendung finden soll, werden durch * gekennzeichnet. 

§ 5. Wurzeln und Linearfaktoren. 
1.) Der in § 1 f ü r K[a;] bewiesene Fundamenta l sa tz er-

möglicht zunächst die Herstel lung eines Zusammenhangs 
zwischen den Wurzeln eines Polynoms aus K in einer E r -
weiterung A von K und denen seiner Pr imfaktoren in K. 
Nach 1, Satz 4 [12] und dem Einsetzungsprinzip gilt nämlich: 

Satz 45. I s t 
Kx) = Pi(x)" • ' Pt{%) 2) 

e i n i n s e i n e P r i m f a k t o r e n z e r l e g t e s P o l y n o m a u s 
1) Vorkommende g e b r o c h e n e rationale Funktionen, die wir in 1 so be-

zeichneten, werden als Quotienten ganzer rationaler Funktionen dargestellt. 
' ) Nach der Definition von P o l y n o m 1. d. Ein]., sowie nach Def. 8 [14] 

und Satz 11 [14] Ist dabei der in Satz 12 [14] auftretende Einheitsfaktor 
a — e. 
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K, so ist jede Wurze l von f(x) in A auch Wurze l 
von mindes t ens einem der pi(x) und u m g e k e h r t 
jede Wurze l eines der pi(x) in A auch Wurze l von m 

Man beherrscht somit die Wurzeln von /(x), wenn man die der 
pä(x) beherrscht, und könnte sich demnach auf die Untersuchung 
der Wurzeln irreduzibler Polynome beschränken. Da sich diese 
Beschränkung aber für die in III, IV auseinanderzusetzende Theorie 
als überflüssig erweist, wollen wir sie nicht einführen. Das erscheint 
auch in Hinsicht auf das Nichtvorhandensein eines rationalen 
Rechenverfahrens zur Herstellung der Primfaktorzerlegung er-
wünscht. 

2.) Wir beweisen ferner einige Sätze über den Zusammen-
hang der Wurzeln eines Polynoms aus K mit dessen Prim-
faktoren 1-ten Grades (sog. Linearfaktoren) in einer Er-
weiterung A von K. 

Satz 46. I s t « Wurze l von f(x) in A, so is t f(x) 
durch den L i n e a r f a k t o r x — tx t e i l b a r , d.h. es be-
s t e h t in A eine Zer legung 

i ( x ) ~ ( x — <x) <p(x). 
U m g e k e h r t fo lg t aus einer solchen Zer legung, daß 
« Wurze l von f(x) ist . 

Beweis: a.) Nach Satz 13 [16] kann 
f(x) = (x—a) cp{x) + y>{x) mit | y>(a ; ) |< | a ;—a | 

gesetzt werden. Da | x — a | = k1 ist, muß | y>(x) | = = 1 
sein, so daß tp{x) = ß ein Element aus A ist. Für x = oc 
folgt dann wegen f(oc) — 0 auch ß = 0, d. h. die behauptete 
Zerlegung. 

b.) Die Umkehrung ist klar. 
Satz 47. Sind oc1: . . . , « „ versch iedene Wurze ln 

von f(x) in A, so b e s t e h t in A eine Zer legung 
f(x) = (x — ocj) • • • (x — «„) cp{x). 

Umgekehr t fo lg t aus einer solchen Zer legung , daß 
Wurze ln von f(x) sind. 

Beweis: a.) Die Primfunktionen 
sind nach Voraussetzung verschieden, und jede kommt nach 
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Satz 46 in der Primfaktorzerlegung von f(x) im Körper A 
vor. Wegen der Eindeutigkeit dieser Zerlegung muß also auch 
ihr Produkt in f(x) enthalten sein, d.h. eine Zerlegung der 
behaupteten Art bestehen, 

b.) Die Umkehrung ist klar. 
Aus Satz 47 ergibt sich durch Vergleichung der beider-

seitigen Grade unmittelbar die wichtige Tatsache: 
Satz 4 8 . E i n P o l y n o m w-ten Grades aus K h a t 

in keiner E r w e i t e r u n g A von K m e h r als n ver-
s c h i e d e n e W u r z e l n . 

Aus Satz 48 läßt sich der folgende, später anzuwendende Satz 
folgern: 

Satz 49. B e s t e h t K aus unendlich vielen E lementen 
u n d s i n d gx{xx,..., xn),..., gr{xlt..., xn) v o n e i n a n d e r v e r -
schiedene E lemente aus K f a ^ , . . . , xn], so gibt es in jeder 
unendlichen Teilmenge M von K E lementsys teme 
alt...,an d e r a r t , daß die E lemente gi(av . . . , a „ ) , . . . , 
gT(a1,...,a„) aus K ebenfal ls voneinander verschieden sind. 

Beweis : Durch Betrachtung des Differenzenprodukts 
r 

g = JJ{gi — gk) reduziert sich die Behauptung ohne weiteres auf 
i, 1 
i<h 

jede der beiden folgenden, gleichbedeutenden: 
(a.) Ist g(xlt..., xn) ^E 0, so gibt es av . . . , an aus M, so daß 

g{aj,..., an) 4= 0 i s t . 
(b.) Ist g(av ..., an) = 0 für alle au ..., an aus M, so ist 

g{xt,..., x „ ) = 0 1 ) . 
Diese beweisen wir durch vollständige Induktion: Für « = 1 

ist (a.) eine Folge aus Satz 48; ist namüch g(x) ^ 0, so ist ent-
weder g{x)= h 4= 0 (Einheit) und also g(a)= i 4= 0 für alle a 
aus M, oder g(x) ist bis auf einen von Null verschiedenen Faktor 
aus K ein Polynom und dann g (a) = 0 für nur endlich viele a aus 
K, so daß nach den Voraussetzungen über K und M Elemente a 
in M existieren, für die g(a) 4= 0 ist. Sei nun (a.) und somit (b.) 
für n = v — 1 schon bewiesen. Dann betrachten wir die Polynome 

' ) Hierdurch wird die in 1, Bew. zu Satz 12, d) [41] ausgesprochene Be-
hauptung [vgl. dazu 1, Bew. zu Satz 13, d) [44]] bestätigt. Man hat dazu unter 
K den Quotientenkörper des dortigen Integritätsbereichs I und unter M das 
dortige I zu verstehen. 
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ff(a>)= • • über K f Z j , . . . , x ^ ] , 
</*(*,,) = 9(av ..., av_v xr) über K, 

von denen die letzteren durch Einsetzung von Systemen av..., 
aus M für xv ..., xv_1 aus dem ersteren entstehen. Ist nun 
g(alt..., a„) = O für alle alt..., av aus M, so ist nach (b.) (n = 1) zu-
nächst jedes g* (x„) = 0. Folglich sind nach (b.) (n = v — 1) die 
Koeffizienten von g(xr), d. h. g{xv) selbst = 0 , was g(xlt ..., z „ )=0 
bedeutet. Also ist (b.) dann auch für n = v, und daher allgemein 
richtig. 

Präziser als Satz 47, 48, insofern nicht mehr die Ver-
schiedenheit der Wurzeln vorausgesetzt wird, ist der folgende 
Satz: 

Satz 50. Z e r f ä l l t f(x) in A in L i n e a r f a k t o r e n : 
f{x)= ( x — a j ••• (x—ocn), 

so s ind ocv . . . , « „ W u r z e l n v o n f(x). W e i t e r e W u r -
ze ln v o n f(x) e x i s t i e r e n dann w e d e r in A noch in 
i rgende iner E r w e i t e r u n g A v o n A. 

B e w e i s : a.) Der erste Teil des Satzes ist klar (Satz 47 
[40]). 

b.) I s t « Wurzel von f(x) (in A oder einem A), so folgt 
aus /(<%) = 0, daß (a — a 1 ) • • • (a —ocn) = 0 ist, so daß oc 
einer der Wurzeln «¡ gleich sein muß (1, Satz 4 [12]). 

Wir verabreden für die Folge, daß bei der Voraussetzung 
von Satz 50 unter den Wurzeln von f(x) in A stets die den 
Linearfaktoren von f(x) entsprechende v o l l e Reiheoc1 ; . . .,<xn 

verstanden wird, ungeachtet ob darunter gleiche vorkommen 
oder nicht. 

Durch die Sätze 46, 47, 50 ist der Weg für die in III auszu-
führende Konstruktion der Wurzeln eines Polynoms f(x) aus K 
vorgezeichnet. Wir werden K schrittweise so zu erweitern haben, 
daß von fix) bei jedem Schritt mindestens ein Linearfaktor ab-
gespalten wird. Ist auf diese Weise eine Erweiterung A gefunden, 
in der f(x) vollständig in Linearfaktoren zerfällt, so dürfen wir 
mit dem Erweiterungsprozeß haltmachen, da eine Fortsetzung 
dann nach Satz 50 keine neuen Wurzeln mehr liefern kann. 

3.) Wir beweisen schließlich einige Tatsachen über die 
Wurzeln irreduzibler Polynome. 
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Aus Satz 46 [40] und dem Begriff der Irreduzibilität 
folgt zunächst unmittelbar: 

Satz 51. E i n i r r e d u z i b l e s P o l y n o m a u s K. h a t in 
K d a n n u n d n u r d a n n e ine W u r z e l , w e n n es v o m 
G r a d e 1 i s t . 

Hierdurch wird der in der Einleitung hervorgehobene Umstand 
2.) in Evidenz gesetzt, daß man i. a. den Grundkörper erweitern 
muß, um zu Wurzeln eines Polynoms zu gelangen. Man muß 
allerdings die hier nicht vollständig zu erörternde Tatsache hin-
zunehmen, daß der Grundkörper i. a. irreduzible Polynome von 
höherem als dem 1-ten Grade enthält. (Spezielle Sätze in dieser 
Richtung siehe in § 23.) 

Satz 52. Zwe i r e l a t i v p r i m e P o l y n o m e , i n s -
b e s o n d e r e a l so zwe i v e r s c h i e d e n e i r r e d u z i b l e P o l y -
n o m e a u s K h a b e n in k e i n e r E r w e i t e r u n g v o n K 
e i n e g e m e i n s a m e W u r z e l . 

B e w e i s : Ist oi eine gemeinsame Wurzel von f ^ x ) und 
f2(x) in A, so ist x — « nach Satz 46 [40] ein gemeinsamer 
Teiler von f^x) und f2(x) in A. Nach Satz 24 [23] ist dann 
also (j^x), f2(x)) 4= e. 

Aus Satz 52 ergibt sich der folgende sog. Fundamental-
satz über irreduzible Polynome: 

Satz 53. H a t d a s i n K i r r e d u z i b l e f(x) m i t 
i r g e n d e i n e m h(x) a u s K i n e i n e r E r w e i t e r u n g v o n 
K e i n e g e m e i n s a m e W u r z e l , so i s t f(x)\ h(x). 

B e w e i s : Nach Satz 17 [20] wäre sonst f(x) prim zu 
h(x'), was nach Satz 52 der Voraussetzung widerspricht. 

In diesem Satz braucht h(x) nicht ein Polynom, also von 0 
und Einheiten verschieden und normiert zu sein. Insbesondere 
wird der Satz für h(x)= 0 trivial, für h(x) = a inhaltlos. 

Auf Satz 53 wird sich unsere in I I I auszuführende Kon-
struktion der Wurzeln von j(x) vornehmlich stützen. 

§ 6. Mehrfache Wurzeln, Ableitung. 
Definition 15. E i n e W u r z e l a v o n f(x) i n A h e i ß t 

»'-fach, w e n n in A ( und s o m i t in j e d e r E r w e i t e r u n g 
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von A) eine Zerlegung 
f(x)= (x—oc)" <p(x) m i t 9?(«)4=0 

bes teh t ; mehrfach, wenn v > 1 ist. 
Die Bezeichnung v - fach rechtfertigt sich durch die Tatsache: 
Satz 54. I s t « eine v - fache W u r z e l von f(x) in A, 

so s ind genau v W u r z e l n von f(x) in A (und in j e d e r 
E r w e i t e r u n g von A) g le ich a . 

Beweis : Nach Def. 15 enthält dann f(x) den Primfaktor 
x — <x mindestens v-mal, wegen q>(tx) 4= 0 aber nach Satz 46 [40J 
nicht öfter. 

Die Vielfachheit einer Wurzel von f(x) steht in Zusammen-
hang mit der aus der Analysis bekannten Ableitung f'(x) 
von f(x). Natürlich können wir die Ableitung hier, für unsere 
abstrakten Grundkörper nicht auf die in der Analysis übliche 
Weise durch einen Grenzprozeß definieren. Wir geben daher 
die folgende, formale Definition: 

Definition 16. Unter der Ableitung von 
CD 

f(x)= a0 + djX + 1- anxn = 2 akxl 

vers tehen wir 
00 

f { x ) = iij + 2a2 x + • • • + nan 1 == x*—1 

CD 

= JS (k + l)ak+1xk. 

Für diesen formal mit der entsprechenden Differentiations-
regel der Analysis übereinstimmenden Prozeß der Ableitungs-
bildung gelten wie dort die Formeln 

(1-) (f(x)±g(x)y=f(x)±g'(a:), 
(2.) ( f ( x ) g(x))'^ f { x ) g{x) + f(x) g'(x), 

insbesondere also 
(al(x))'= a f ( x ) , 

( f ( x ) n ) ' = n f ( x r * f ( x ) . 
Beweis: Ist 
') Vgl. 1, Anm. 3 zu Satz 11 [32]. 
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00 00 

/(») = 2 ak xh, g(x) = 2 bkxk, 
S«=0 « = 0 

also 

fix) = 2 k a h x = 2 (k + 1) ak+1x", 
k=l k=0 

g'(x) hlk = 2q (k + 1) h+i xk, 

so folgt nach 1, § 4, (2.), (3.) [33] (vgl. auch 1, Schluß von 
§ 1 [13]) 

(/(*) + J(®))' = ( ß K + h) xk) = i Hat + bk) 

= 2 kak x*-1 + 2 klk x*-1 = f(x) + g'(x), 
k=1 k=1 

(j(x) g(x))' = ( 1 ( 2 xk) = 2 (k 2 avlß) x«-1 

= i ( (v + /,) av\) 

= 2 ( 2 vav b ) x*-1 + 2 ( 2 fiaX) 

= i ( (v +1)«v+i&„)x4 + 2( 2 U + 1 ) 1 ) x 4 

= f{x) g(x) + f(x)g'(x). 
Ferner gilt, sozusagen als Ersatz für die fehlende Grenz-

relation : 
Satz 55. W i r d für ein « 

/ W W W 
x — « 

g e s e t z t , so i s t 
9>(«) = /'(<*) • 

B e w e i s : D a « Wurzel von /(z) — /(a) ist, ist <p(x) nach 
Satz 46 [40] wirklich eine ganze rationale Funktion. Aus 

f(x)=f(<x)+(x — ot) <p(x) 
folgt daher nach (1.), (2.) 

/' (») =<p{x)+(x—ot)(p' (x), 
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also 
/'(«)= <p(<x). 

Aus Satz 55 ergibt sich nun der folgende Zusammenhang 
zwischen der Mehrfachheit einer Wurzel <x von f(x) und dem 
Ableitungswert f(oc): 

Satz 56. E i n e W u r z e l a v o n f(x) i s t d a n n u n d n u r 
d a n n m e h r f a c h , w e n n / ' («) = 0 i s t . 

B e w e i s : Ist oc Wurzel von f(x), so hat in der nach 
Satz 46 [40] bestehenden Zerlegung 

f(x)= (x—ot) <p(x) 
(p(x) dieselbe Bedeutung wie in Satz 55. Nun ist nach Def. 15 
[43] die Mehrfachheit v o n « mit <p(oc) = 0, also nach Satz 55 
mit /'(oc) = 0 gleichbedeutend. 

Der hierin liegende Zusammenhang führt zu einer wich-
tigen Folgerung über die Vielfachheit der Wurzeln eines irre-
duziblen Polynoms. Diese Folgerung beruht auf dem Ana-
logon zu dem Satz der Analysis, daß aus f'(x)= 0 folgt 
f(x) = a0. Wegen des Auftretens der ganzen Vielfachen 
ka/c der a-k als Koeffizienten von f'(x) findet aber hier eine Ab-
weichung gegenüber der Analysis statt : 

Satz 57. H a t K die C h a r a k t e r i s t i k 0, so h a b e n a l le 
u n d n u r die E i n h e i t e n f(x)= a0 au s K[»] die Able i -
t u n g f'(x)= 0. H a t K die C h a r a k t e r i s t i k p, so h a b e n 
a l le u n d n u r die E l e m e n t e von der F o r m 

OD 
(3.) f(x)= Zalv x1*, a l s o f(x) = f0(xP) 

aus K[a;] die A b l e i t u n g f(x)= 0. 
B e w e i s : a.) Daß für die genannten j(x) durchweg 

j'(x)= 0 ist, ist nach Satz 43 [37] und Def. 16 [44] klar. 
oo co 

b.) Ist i(x) = und ist f'(x) = 2kaky}~1 = 0 , 

also kak = 0 (k = 1, 2 , . . . . ) , so folgt nach Satz 43 im Falle 
der Charakteristik 0 

«4 = 0 (fc = 1, 2 , . . . ), 
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d. h. f(x) = a0, im Falle der Charakteristik p dagegen nur 
a¡¡ = 0 für k ^ 0 mod. p, 

so daß j(x) von der Form (3.) ist. 
Die in Satz 57 liegende Abweichung für den Fall der Charak-

teristik p bedingt nun, daß die angekündigte Folgerung über die 
Vielfachheit der Wurzeln eines irreduziblen Polynoms im Fall der 
Charakteristik p auf solche irreduziblen Polynome zu beschränken 
ist, die nicht von der Form (3.) sind. S t e i n i t z 1 ) nennt solche 
irreduziblen Polynome v o n ers ter Art , die von der Form (3.) 
v o n z w e i t e r Art . 

Dem Vorgang v. d. W a e r d e n s folgend, wollen wir die in 
der nachstehenden Definition gegebene Bezeichnung ge-
brauchen: 

Definition 17. E i n irreduzibles Polynom f(x) aus K 
h e i ß t separabel, wenn seine A b l e i t u n g f(x) ^ 0 i s t , 
a lso, f a l l s K die C h a r a k t e r i s t i k 0 h a t , s t e t s ; f a l l s K 
die C h a r a k t e r i s t i k p h a t , d a n n und nu r d a n n , wenn 
es n i c h t von der F o r m (3.) in Sa tz 57 ist. 

A n d e r n f a l l s h e i ß t f(x) inseparabel. 
Die Bezeichnung s e p a r a b e l spielt auf die folgende Tat-

sache, die bereits angekündigte Folgerung aus Satz 56, an: 
Satz 58. I s t ein i r r e d u z i b l e s P o l y n o m /(x) sepa-

r a b e l , so h a t /(x) nu r e i n f a c h e Wurze ln . 
Bewei s : Wäre a eine mehrfache Wurzel von f(x), so 

wäre / ' («) = 0 (Satz 56) und daher f(x) | / ' (x) (Satz 53 [43]). 
Wegen der vorausgesetzten Separabilität von f(x) ist nun 
f(x) ^ 0 (Def. 17). f{x) kommt also ein Grad zu, und dieser 
ist kleiner als der von f(x) (Def. 16 [44]). Das steht aber im 
Widerspruch zu f(x) \ f(x) (Satz 6 [13]). Also ist die An-
nahme, f(x) habe eine mehrfache Wurzel, unzutreffend. 

l ) Wir meinen bei Nennung des Namens S t e i n i t z hier und im folgenden 
stets dessen in I, Lit. Verz. I zitierte Arbeit, deren Abschnitte I und II bis auf 
das die Erweiterungen zweiter Art Betreffende in unseren Abschnitten I, I und 

I—IV verarbeitet sind, ja geradezu deren Inhalt ausmachen. In diese 
grundlegende Originalarbeit zur Körpertheorie sollte jeder Algebraiker ein-
mal hineingesehen haben. 
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Satz 58 läßt übrigens folgende Umkehrung zu: 
Satz 59. H a t ein i r r eduz ib le s Po lynom f(x) eine 

nur e in fache Wurze l oc, so is t f(x) separabel . 
Beweis : Es ist dann /'(«)=f=0 (Satz56), also gewiß 

f'(x) ^ 0, und daher f(x) separabel (Def. 17). 
Wir definieren ferner noch im Anschluß an Def. 17: 
*Zusatz zu Definition 17 E in beliebiges Polynom 

aus Khe iß t separabel in K, wenn seine P r i m f a k t o r e n 
in K s eparabe l s ind, sonst inseparabel in K. 

Im Falle der Charakteristik 0 ist also j e d e s Polynom separabel. 
Für den Fall der Charakteristik p sei ausdrücklich bemerkt, daß die 
Entscheidung über die Separabilität beliebiger Polynome nicht etwa, 
wie gemäß Def. 17 für irreduzible Polynome, einfach durch Bilden 
der Ableitung getroffen werden kann. Es kann sehr wohl f'(x) = 0 
auch für separables f(x) sein (z. B. wenn f(x) = f0(x)p mit sepa-
rablem irreduziblem f0(x) ist), und f'(x) ^ 0 für inseparables 
f(x) ( z . B . wenn f ( x ) = x f 0 ( x ) mit inseparablem irreduziblem 
f0(x) ist). Auch der in Satz 58, 59 gegebene Zusammenhang mit 
der Wurzelvielfachheit, der die Bezeichnung s e p a r a b e l recht-
fertigte, überträgt sich nicht auf beliebige Polynome. Dennoch ist 
die im Zusatz zu Def. 17 gegebene Ausdehnung dieser Bezeichnung 
auf beliebige Polynome für die späteren Zwecke nützlich. 

Über ein Verfahren zur Entscheidung über die Separa-
bilität beliebiger Polynome, das nicht die Zerlegung in Prim-
faktoren erfordert (was nach dem im Anschluß an Satz 24 
[23] Gesagten erwünscht sein muß), sei des knappen Raumes 
halber auf S t e i n i t z verwiesen. Hier sei nur die folgende für 
unsere Zwecke ausreichende Tatsache vermerkt, die sich 
gemäß Def. 17, Zusatz unmittelbar aus Satz 59 ergibt: 

Zusatz zu Satz 59. Ze r fä l l t ein bel iebiges Po ly-
nom f(x) aus K in einer E r w e i t e r u n g von K in ver-
schiedene L i n e a r f a k t o r e n , d. h. sind die Wurze ln 
Kv . . . ,«„ von 

f ( x ) = (x—Kj) • • • (x—Xn) 
vone inande r versch ieden , so ist f(x) separabe l (in K 
und j eder E r w e i t e r u n g von K). 

*) Über die Bedeutung von * vgl. die Einl. zu II [39], 
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Von Bedeutung sind diejenigen Körper, in denen jedes Polynom 

separabel ist. Sie heißen vollkommene Körper. Wir wollen 
unter Benutzung teilweise erst später zu gewinnender Resultate 
ganz kurz einige Angaben über vollkommene Körper machen. 

Zunächst ist jeder Körper der Charakteristik 0 vollkommen, wie 
wir den obigen Betrachtungen unmittelbar entnehmen können. — Soll 
ferner ein Körper K der Primzahlcharakteristik p vollkommen sein, 
so muß insbesondere jedes Polynom x v — a aus K separabel sein. 
Dann ist die Gleichung x p i o in K lösbar. Denn aus ihrer Unlös-
barkeit in K folgte nach dem späteren Satz 123, b.) [137] die 
Irreduzibilität des Polynoms x p — a in K und daher nach Def. 17 
seine Inseparabilität. Die Lösung von x p = a in K ist überdies 
eindeutig. Aus a p — a, a p = a folgt ja 0 = a p — a? = {ax — a2) p  

(Satz 44 [37]), also ai — a2 = 0, % = a2. Wir bezeichnen diese 

eindeutige Lösung von x p a mit )J a. 
Sei umgekehrt in dem Körper K der Primzahlcharakteristik p 

die Gleichung x p a für jedes a aus K lösbar. Wäre dann das 
irreduzible Polynom /(x) aus K inseparabel, so wäre f(x) nach 
Def. 17 von der Form 

n n / V \ p 
j ( x ) = 2 OvX> p = 2 ( Ko»)  V V > 

v=0 v=0 V ' 
und Satz 44 [37] lieferte 

/ n v sp 
f ( x ) = ( j : \ / a r x ) , 

\v=o y 
im Widerspruch zur Irreduzibihtät von f(x). — Wir haben dem-
nach gefunden: 

Ein Körper K der Pr imzahlcharak te r i s t ik p ist dann 
v 

und nur dann vol lkommen, wenn mit a s te t s auch ]/a 
in K en tha l t en ist. 

Hiernach und nach Satz 29 [29] sind die Primkörper P p voll-
kommene Körper. — Daß nicht jeder Körper vollkommen ist, 
d.h. daß es sogenannte unvol lkommene Körper gibt, zeigt 
das Beispiel P p ( x ) \ denn dieser Körper hat die Charakteristik p, 
und das Element x besitzt keine p-te Wurzel in ihm. Wäre nämlich 

d .h . ( f ( x ) ) p = x ( g ( x ) ) p (wobei natürlich f ( x ) , 

g(x) 0 sein müßten), und wären n, m die Grade von /(x), g(x), 
so folgte nach § 1, B., (3.) [12] pn = 1 + pm, d.h. 0 = 1 mod.p, 
was nicht der Fall ist. 

B a s s e , H ö h e r e A lgeb ra . I I . 4 
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III. Die Körper der Wurzeln 
algebraischer Gleichungen. 

Wir führen in diesem Abschnitt die Konstruktion der 
Wurzeln eines Polynoms f(x) aus K nach dem bei Satz 50 
[42] gegebenen Schema aus, indem wir zunächst eine Er-
weiterung 1. (S tammkörper ) herstellen, in der sich von 
¡(x) ein Linearfaktor abspaltet (§ 8), und von da aus schritt-
weise zu einer Erweiterung W (Wurzelkörper) aufsteigen, 
in der f(x) vollständig in Linearfaktoren zerfällt (§ 10). Da-
neben entwickeln wir, um unsere Untersuchungen in IV über 
die Struktur dieser Wurzelkörper vorzubereiten, eine allge-
meine Theorie der E rwe i t e rungen eines Körpers, bei 
der deren Entspringen aus bestimmten Polynomen keine Rolle 
spielt (§§ 7, 9). Zum Abschluß (§ 11) fügen wir eine nur von 
methodischen und historischen Gesichtspunkten aus inter-
essierende Digression über den sog. F u n d a m e n t a l s a t z der 
Algebra an. 

§ 7. Allgemeine Theorie der Erweiterungen 1. Grund-
legende Begriffe und Tatsachen. 

In 1, § 4 haben wir die speziellen Erweiterungsbereiche 
I [xlt..., xn] und K(a;1,..., x„) eines Grundbereiches I bzw. 
K konstruiert und untersucht. Für die jetzt zu gebende Ver-
tiefung und Ausdehnung dieser Entwicklungen beschränken 
wir uns der Kürze halber auf den Fall eines Grundkörpers K, 
der im folgenden allein zur Anwendung kommen wird. 

A. Adjunktion, einlache und endliche Erweiterungen. 
Definition 18. Es sei A ein E r w e i t e r u n g s k ö r p e r 

von K u n d M e i n e Tei lmenge von A. D a n n he iß t der 
I n t e g r i t ä t s b e r e i c h aller ganzen r a t i o n a l e n F u n k -
t i onen über K von je endl ich vielen E l e m e n t e n aus 
M der durch Adjunbtion von M zu K entstehende Teil-
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integritätsbercich von A ( B e z e i c h n u n g K[M]) , u n d der 
K ö r p e r a l l e r r a t i o n a l e n F u n k t i o n e n ü b e r K v o n j e 
e n d l i c h v i e l e n E l e m e n t e n a u s M der durch Adjunk-
tion von M zu K entstehende Teilkörper von A ( B e z e i c h -
n u n g K(M)) . 

Daß K [ M ] wirklich ein Teilintegritätsbereich, K ( M ) 
ein Teilkörper von A ist, folgt aus 1, Satz 6 [19] und den 
Eigenschaften der ganzen rationalen bzw. rationalen Funk-
tionen über K. D a ferner unter den ganzen rationalen Funk-
tionen über K speziell die Elemente aus K vorkommen, sind 
K [ M ] und K ( M ) Erweiterungsbereiche von K. Es gilt somit 

K ^ K [ M ] ^ K ( M ) ^ A . 
Unter Verwendung des in 1, Satz 7 [20] eingeführten Be-
griffs D u r c h s c h n i t t kann man (mit S t e i n i t z ) K [ M ] und 
K ( M ) auch als D u r c h s c h n i t t a l l e r I n t e g r i t ä t s b e r e i c h e 
bzw. K ö r p e r z w i s c h e n K u n d A e r k l ä r e n , d ie die 
T e i l m e n g e M v o n A e n t h a l t e n . 

Wenn auch der Körper A in Def. 18 nur die Rolle eines Hi l fs -
körpers spielt, dessen Ersetzung durch irgendeine andere, M 
enthaltende Erweiterung A von K keine Änderung von K[M] und 
K(M) bewirkt, der also auf die E r g e b n i s s e der Adjunktion 
keinerlei Einfluß hat, so ist doch sein Vorhandensein für den Prozeß 
der Adjunktion unbedingt erforderlich. Wir betonen hinsichtlich 
des leicht mißzuverstehenden Wortes A d j u n k t i o n ausdrücklich, 
daß die Adjunktion einer Menge M zu K auf die beiden in Def. 18 
erklärten Weisen nur dann einen Sinn hat, wenn sie innerhalb einer 
Erweiterung A von K, also sozusagen von oben her, vor sich 
geht, wenn man also weiß, daß man die Elemente von M unterein-
ander und mit den Elementen von K nach den Körpergesetzen 
durch die vier elementaren Rechenoperationen miteinander ver-
knüpfen kann. Eine Adjunktion von unten her , d. h. ohne 
Kenntnis einer M enthaltenden Erweiterung A von K ist auf alle 
Fälle unzulässig. Denn unter alleiniger Voraussetzung der in 1, § 1 
zusammengestellten Körperaxiome über K hat man nicht das 
mindeste Recht, ohne weiteres die Existenz einer Menge M von 
Elementen außerhalb K anzunehmen, die man mit den Elementen 
von K zusammen den vier elementaren Rechenoperationen unter-
werfen kann. Man kann also z. B. nicht durch die D e f i n i t i o n 

4 * 
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der Adjunktion die in 1, § 4 geführten Existenzbeweise für die 
Bereiche K [ x x , . . . , xn~\ und K ( a 1 , . . . , xn) über K umgehen, die ja 
(trivialerweise) durch Adjunktion von xv ..., x„ zu K auf die 
beiden Arten der Def. 18 entstehen, eben weil hierbei der in Def. 18 
vorkommende nicht entbehrliche Körper A mit K(xv . . x n ) 
(oder einem noch weiteren Körper) zu identifizieren ist. Ent-
sprechendes gilt auch für den in 1, § 3 geführten Existenzbeweis 
des Quotientenkörpers K, der durch Adjunktion aller Quotienten 
aus Elementen des Integritätsbereiches 1 entsteht, wobei K die 
Rolle von A hat1), sowie für die in den folgenden §§8,10 zu erbrin-
genden Existenzbeweise der Stammkörper und Wurzelkörper. 

Über die Abhängigkeit der Adjunktion vom Grundkörper K 
stellt man ohne weiteres folgende Tatsachen fest, die wir der 
Kürze halber nur für den später allein gebrauchten Fall der 
Körperadjunktion K(M) aussprechen: 

Satz 60. Dann und nur dann , wenn M Tei lmenge 
von K ist , i s t K(M) = K. 

Satz 61. I s t A ^ K ^ K und A = K(M), so is t a u c h 
A = K(M). 

Satz 62. I s t A ^ KS; K u n d A = K(M), K = K(M), 
so ist A = K(M, M), wo (M, M) die Vere in igungsmenge 
von M und M ist. 

Nach Satz 62 ist die sukzess ive A d j u n k t i o n von erst M 
und dann M gleichbedeutend mit der s imu l t anen A d j u n k -
t ion von M, M. Unter Verwendung des in 1, Def. 5 [20] ein. 
geführten Begriffs Kompos i t um ist übrigens K(M, M) das 
Kompos i tum von K(M) und K(M), nämlich der engste 
K(M) und K(M) enthaltende Teilkörper von A. 

Wir definieren nunmehr speziell, wieder unter Beschrän-
kung auf die Körperadjunktion: 

•Definition 19. E ine E r w e i t e r u n g A von K he iß t 
einfach bzw. endlich übe rK , wenn sie durch A d j u n k -
t ion eines bzw. endl ich vieler ih re r E l e m e n t e zu K 

') Vgl. die „Vorbemerkungen zum Existenzbeweis" in I, §§3,4 [27, 34]. 
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h e r g e l e i t e t werden k a n n , wenn sie also aus den 
r a t i o n a l e n F u n k t i o n e n über K eines E l e m e n t s a 
bzw. endl ich v i e l e r E l e m e n t e ocv . . . , « „ b e s t e h t . 
J e d e s so lche E l e m e n t a bzw. E l e m e n t s y s t e m 
« ! , . . . , « „ aus A, für das A = K(a) bzw. A = K ^ , . . . , « „ ) 
i s t , h e i ß t dann ein primitives Element bzw. primi-
tives Elementsystem von A bzgl. K. 

Speziell ist also der Körper K(x) der rationalen Funktionen 
über K von einer Unbestimmten x einfach über K und der Körper 
K ( x l t . . . , xn) der rationalen Funktionen über K von n Unbestimm-
ten xlt..., xn endlich über K. Natürlich besagt Def. 19 nicht etwa, 
daß jede einfache bzw. endliche Erweiterung von dieser Art ist; 
denn a bzw. ¡Xj, . . . , « „ brauchen keine Unbestimmten zu sein. Da 
uns gerade dieser letztere Fall in der Folge ausschließlich beschäf-
tigen wird, gehen wir nachher unter B. auf das Gegenteil zu U n -
b e s t i m m t e genauer ein. 

Wir fügen noch folgende Bemerkungen an, die die in Def. 18 
eingeführte Adjunktion, sowie die in Def. 19 eingeführte Ein-
fachheit und Endlichkeit mit der bereits in 1, Def. 7, Zusatz [24] 
eingeführten relativen Isomorphie in Beziehung setzen: 

Sind die durch Adjunktion entstehenden Erweiterungen 
A = K(M) und A' = K(M') isomorph bzgl. K und sind bei 
einem Isomorphismus bzgl. K zwischen ihnen die Mengen 
M und M' einander zugeordnet, so sind durch Angabe der 
Zuordnungen 

aus M \ 
, ß ' , . . . aus M 7 

die Zuordnungen für alle übrigen Elemente von A und A' 
zwangsläufig bestimmt, nämlich gemäß den Bedingungen für 
einen Isomorphismus bzgl. K (vgl. 1, Satz 9 und Zusatz, 
Def. 7 und Zusatz [23, 24], sowie die angeschlossenen Be-
merkungen) zu 

( i . ) 

l ) Die in dieser Formulierung gegenüber Def. 18 vorliegende Abweichung 
Ist nur scheinbar, da die rationalen Funktionen über K jedes Teilsystems VOD 
«J . ,, a n unter denen von . . a n vorkommen. 
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(2\ g(a,ß,--;V) g(»',ß',-- -,/) 

h(oc,ß,...,yj^h(oc',ß',...,y') ' 

Zur Beschreibung des Isomorphismus (2.) genügt es daher 
vollständig, die Zuordnungen (1.) anzugeben, wovon wir im 
folgenden häufig Gebrauch machen werden. Zur Vereinfachung 
der Ausdrucksweise dabei definieren wir: 

Definition 20. S i n d A = K(M) u n d A' = K(M') i s o -
m o r p h bzg l . K u n d s i n d b e i e i n e m I s o m o r p h i s m u s 
bzgl . K z w i s c h e n i h n e n d ie M e n g e n M u n d M' g e m ä ß 
(1.) e i n a n d e r z u g e o r d n e t , so h e i ß t d e r v o l l e I s o -
m o r p h i s m u s (2.) durch die Zuordnungen (1.) erzeugt, 
u n d A u n d A' h e i ß e n auf Grund der Zuordnungen (1.) 
i s o m o r p h bzg l . K. 

Sind insbesondere A und A' einfache bzw. endliche, bzgl. K 
isomorphe Erweiterungen von K, so läßt sich ein Isomorphismus 
bzgl. K zwischen ihnen durch eine einzige bzw. endlich viele Zu-
ordnungen 

ot <x' bzw. a1 <~* <Xj,. . ., <xT >- <Xf 
zweier primitiver Elemente a ;e t ' bzw. zweier primitiver Element-
systeme 0 4 , . . . , a r ; a ' v . . . ,«!• von A und A' erzeugen. Natürlich 
braucht aber dann nicht für bel iebige primitive a , und <x\ durch 
<Xj «--»• Oi'i ein Isomorphismus bzgl. K zwischen A und A' erzeugt 
zu werden, sondern nur, wenn die <x\ zu den «i gee igne t bestimmt 
werden. 

B. (Separable) algebraische Elemente, (separable) alge-
braische Erweiterungen 1). 

*Definition 21. E i n Element <x e i n e r E r w e i t e r u n g 
A v o n K h e i ß t (separabel) algebraisch ü b e r K, w e n n es 
W u r z e l e i n e s ( s e p a r a b l e n ) P o l y n o m s a u s K i s t ; 
i s t e s n i c h t a l g e b r a i s c h ü b e r K, s o h e i ß t es 
transzendent ü b e r K. 

Nach 1, § 4 (vgl. insbesondere die dortige Erläuterung zu Def. 9 
[38]) besagt t r a n s z e n d e n t über K dasselbe wie U n b e s t i m m t e 
über K, so daß a lgebra i sch über K das Gegenteil zu Un-

') Wenn im folgenden s e p a r a b e l in Klammern beigefügt ist, soll der Text 
sowohl durchweg ohne diesen als auch durchweg mit diesem Zusatz gelesen 
werden. 
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bestimmte über K ist. — Algebraische Elemente (vorläufig 
allerdings hypothetische) haben uns schon in II beschäftigt. 

Satz 63. I s t « ( s e p a r a b e l ) a l g e b r a i s c h ü b e r K, so 
e x i s t i e r t e in u n d n u r e in i r r e d u z i b l e s P o l y n o m 
/(») i n K, d a s « z u r W u r z e l h a t ( u n d d i e s e s i s t s e p a -
r a b e l ) . 

B e w e i s : a.) Nach Def. 21 ist <x Wurzel eines (separablen) 
Polynoms f(x) aus K, nach Satz 45 [39] also mindestens 
eines der (separablen — Def. 17, Zusatz [48]) irreduziblen 
Faktoren von f(x) in K. 

b.) Nach Satz 52 [43] kann oc nicht Wurzel zweier ver-
schiedener irreduzibler Polynome aus K sein. 

Definition 22. D a s P o l y n o m f(x) a u s S a t z 63 h e i ß t 
das zu a gehörige irreduzible Polynom a u s K, s e i n 
G r a d n a u c h d e r Grad von a ü b e r K ( B e z e i c h n u n g : 
» = [» : K]). 

Aus Satz 51 [43] ergibt sich ohne weiteres: 
Satz 64. D a n n u n d n u r d a n n , w e n n « E l e m e n t 

a u s K i s t , i s t [<% : K] = 1. 
Ferner gilt: 
Satz 65. I s t A ^ K ^ K u n d d a s E l e m e n t oc a u s A 

( s e p a r a b e l ) a l g e b r a i s c h ü b e r K, so i s t oc a u c h ( sepa-
r a b e l ) a l g e b r a i s c h ü b e r K u n d d a s z u g e h ö r i g e i r r e -
d u z i b l e P o l y n o m a u s K T e i l e r des z u g e h ö r i g e n i r r e -
d u z i b l e n P o l y n o m s a u s K, a l so s p e z i e l l 

[oc : K] ^ [oc : K]. 
B e w e i s : Die Behauptungen ohne „separabel" ergeben 

sich ohne weiteres aus Satz 53 [43], Ist zudem oc separabel 
über K, so ist es nach Satz 63, 58 [47] nur einfache Wurzel 
des zugehörigen irreduziblen Polynoms in K, also erst recht 
desjenigen in K, und daher nach Satz 59 [48], Def. 21 sepa-
rabel auch über K. 
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•Definition 23. E ine Erweiterung A von K he iß t 
(separabel) algebraisch über K, wenn jedes ih re r Ele-
men te (separabel) a lgebra i sch über K i s t ; is t sie 
n i c h t a l g e b r a i s c h ü b e r K, so h e i ß t sie transzenpent 
über K. 

Die einfache Erweiterung Kfz) ist transzendent über K, weil 
nach obigem die Unbestimmte x transzendent über K ist. Ent-
sprechendes gilt für die endliche Erweiterung K (a^, . . . , xn). Alge-
braische Erweiterungen weiden wir im folgenden ausführlich 
kennenlernen. 

Über die Abhängigkeit der Def. 23 von den Körpern K und A 
haben wir, analog zu Satz 61 [52], 65, nach Satz 65 unmittelbar: 

Satz 66. I s t A ^ KSi K und A über K (separabel) 
a lgebra i sch , so ist auch A über K und n a t ü r l i c h K 
über K (separabel) a lgebra isch . 

Die Umkehrung (analog zu Satz 62 [52]) können wir erst später 
(Satz 86 [72], Satz 92 [83]) beweisen, nachdem wir sie für die 
anschließend unter C. definierte, spezielle Klasse algebraischer Er-
weiterungen bewiesen (Satz 71 [59]) und diese genauer kennen 
gelernt haben werden (Satz 84 [72], Satz 91 [83]). 

C. Erweiterungen endlichen Grades. 
Wir setzen zunächst in Analogie zu den in 1, Def. 23, 24 

[69] eingeführten Begriffen fest: 
*Definition 24. 1.) n E l e m e n t e « j , . . . ,<%„ einer Er -

wei te rung A von K he ißen linear abhängig bzgl. K, 
wenn eine l i n e a r e homogene Re la t ion 

n 
2 ak<xk = 0 k=1 

mit Koe f f i z i en t en ak aus K b e s t e h t , die n ich t sämt-
l ich 0 s ind , ande rn fa l l s linear unabhängig bzgl. K. 

2.) Ein E l e m e n t « aus A he iß t linear abhängig von 
bzgl. K, wenn es eine l inea re homogene 

Dar s t e l l ung 
n 

<x= 2 ak<xk k=1 
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m i t K o e f f i z i e n t e n «j aus K b e s i t z t , a n d e r n f a l l s 
linear unabhängig von«! , . . . , « „ bzgl. K. 

Unter Hinweis auf die Beweise in 1, § 10 stellen wir fest, 
daß sich die dortigen Sätze 38,39, 41, 42 [70, 71] sinngemäß 
auf die in Def. 24 erklärten Begriffe übertragen, wenn man für 
die dortigen Linearformen (Vektoren) in K Elemente einer 
Erweiterung A von K setzt. 

Nunmehr definieren wir die uns interessierende, spezielle 
Klasse algebraischer Erweiterungen folgendermaßen: 

*Definition 25. E i n e E r w e i t e r u n g A von K h e i ß t 
von endlichem Grade ü b e r K, wenn ein end l i ches 
M a x i m a l s y s t e m bzgl . K l i n e a r u n a b h ä n g i g e r E le -
m e n t e von A e x i s t i e r t . J e d e s solche M a x i m a l -
s y s t e m « j , . . . ,«„ h e i ß t e ine Basis von A bzgl. K und 
die e i n d e u t i g b e s t i m m t e A n z a h l n der Grad von A 
über K ( B e z e i c h n u n g : n — [A : K]). 

Die Bezeichnung Basis soll ausdrücken, daß dann jedes 
Element a aus A von <xx,.. ,,<xn linear abhängig ist, also eine 
Basisdarstellung 

<x = -I + an<xn 
mit Koeffizienten a1,..., an aus K besitzt. Nach 1, Satz 41 [71] 
ist diese Basisdarstellung eindeutig. Umgekehrt folgt nach 
diesem Satz aus der Eindeutigkeit der Basisdarstellung durch 
«D . . . , ocn deren lineare Unabhängigkeit und aus der Möglichkeit 
für jedes <* deren Maximaleigenschaft. Daher gilt: 

Zusatz zu Definition 25. Die Forderung von Def. 25 
läßt sich auch dahin aussprechen, daß alle Elemente 
von A eine eindeutige Basisdarstel lung durch endlich 
viele solche besitzen sollen. 

Der folgende Satz zeigt, was aus Def. 25 zunächst nicht er-
sichtlich ist, daß die Erweiterungen endlichen Grades eine 
spezielle Klasse algebraischer Erweiterungen sind und noch 
etwas mehr: 

Satz 67. I s t A von e n d l i c h e m Grade ü b e r K, so 
i s t A a l g e b r a i s c h ü b e r K. G e n a u e r : 

I s t [A : K] = n, so i s t j edes E l e m e n t a. aus A alge-
b r a i s c h ü b e r K von e inem Grade [<x : K]:£ n. 
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Beweis : Dann sind die w + 1 Elemente aP = e, oc1 = cc, 
<x2,...,«" linear abhängig (Def. 25). Es besteht also eine 
Relation 

a0 + « j a + • — | - ana.n = 0 
mit Koeffizienten ak aus K, die nicht sämtlich 0 sind (Def. 24). 
Diese besagt, daß « Wurzel eines Polynoms f(x) aus K von 
höchstens w-tem Grade ist. Da dann das zu « gehörige irredu-
zible Polynom J(x) aus K als Teiler von f(x) ebenfalls höch-
stens den Grad n hat, ist OL algebraisch über K von einem 
Grade ^ n (Def. 21, 22 [54, 55]). 

Eine der Einschränkungen, die den algebraischen Erweite-
rungen A von K durch die Forderung, von endlichem Grade über K 
zu sein, auferlegt wird, besteht hiernach darin, daß es in A keine 
Elemente beliebig hohen Grades über K gibt. Diese Einschränkung 
ist aber zur Endlichkeit des Grades von A im allgemeinen nicht 
hinreichend1) (vgl. jedoch den späteren Satz 91, Zusatz [83]). 
Daß es überhaupt algebraische Erweiterungen gibt, die n i c h t 
von endlichem Grade sind, zeigt der Körper aller algebraischen 
Zahlen über P, in dem ja Elemente beliebig hohen Grades vor-
kommen (siehe dazu den späteren Satz 123 [137]). 

Wir beweisen ferner: 
Satz 68. I s t A von end l i chem Grade ü b e r K, so 

i s t A end l i ch ü b e r K. 
Bewe i s : Ist o^, . . . , « „ eine Basis von A, so gehört ver-

möge der Basisdarstellung jedes Element aus A zu dem Inte-
gritätsbereich !<[«! , . . . , «„]. Da nun andererseits 

K ^ K K , . . . , <xn] ^ K K , . . . , « „ ) ^ A 
ist, folgt A = K[«!, . . . , « „ ] = K(«!, - . .,«„), also die End-
lichkeit von A über K. 

In den weiteren Sätzen stellen wir fest, wie die in Def. 25 
erklärten Begriöe von den Körpern K und A abhängen: 

Satz 69. D a n n und n u r d a n n , wenn A = K i s t , 
ist [A : K] = 1. 

Bewe i s : a.) Ist A = K, so ist das allein aus e bestehende 
L) Gegenbeispiele ergeben sich aus S t e l n i t z , I .e . (1, Lit.-Verz. I). 
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System Basis von A bzgl. K, weil j a dann jedes a aus A die 
eindeutige Basisdarstellung a = a - e besitzt. Also ist dann 
[A : K] = 1. 

b . ) Ist [A : K] = 1, so ist nach Satz 67 [« : K] ^ 1 also 
= 1 für jedes a aus A, also nach Satz 64 [55] jedes tx aus 
A Element von K, d. h. A = K. 

Satz 70 . I s t A S ; K S ; K und A ü b e r K von end-
l i c h e m G r a d e , so i s t a u c h A ü b e r K u n d K ü b e r K 
von e n d l i c h e m G r a d e , und es g i l t [A : K] i S [A : K], 
[K : K] ^ [A : K], 

B e w e i s : Ist [ A : K] = n, so sind mehr als n Elemente 
von A linear abhängig bzgl. K, also a fortiori bzgl. K, und mehr 
als w Elemente von K als solche von A linear abhängig bzgl. K. 
Daher existiert beidemal ein endliches Maximalsystem von 
höchstens w linear unabhängigen Elementen. 

Von besonderer Wichtigkeit für die Folge ist die nach-
stehende Umkehrung von Satz 70, die gleichzeitig die dortigen 
Gradrelationen präzisiert: 

Satz 71 . I s t A S : K S : K und A ü b e r K sowie K ü b e r 
K von e n d l i c h e m G r a d e , s o i s t a u c h A ü b e r K von 
e n d l i c h e m G r a d e und [A : K] = [A : K] • [K : K]. 

B e w e i s : Ist [A : K] = m und eine Basis 
von A bzgl. K, ferner [K : K] = j und ö c L , . . . , ecj eine Basis 
von K bzgl. K, so zeigen wir, daß die mj Elemente 
oaxk (i — 1 , . . . , m; h = 1 , . . . , j) eine Basis von A bzgl. 
K bilden. 

a.) Da jedes « aus A eine Darstellung 
m _ 

oc = 2J dpi 
_ i = 1 _ 

mit ä ( aus K hat und diese ä< aus K ihrerseits Darstellungen 

äi = 2 aiklxk (i = 1 , . . . , » » ) 
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mit a i k aus K haben, so hat jedes oc aus A eine Darstellung 
m j 

<x = J2 J j aikoiiKk. i=l k=1 
Somit ist jedes« aus A von den öck linear abhängig bzgl. K. 

b.) Aus 
m j 

2 J£ a,koijlxk = 0 i=l k=1 
folgt zunächst wegen der linearen Unabhängigkeit der oc{ bzgl. 
K, daß 

j _ 
2! aiktxk = 0 (i = l , . . . , m ) 
k=1 _ 

ist, und daraus wegen der linearen Unabhängigkeit der txk 
bzgl. K, daß 

aile = 0 (i = 1, m; k = 1 , . . j ) 
ist. Somit sind die « ¡ « i linear unabhängig bzgl. K. 

Aus a.) und b.) folgt, daß die mj Elemente rXi öck ein Maxi-
malsystem bzgl. K linear unabhängiger Elemente von A 
bilden, was die Behauptung ergibt. 

Speziell gilt nach Satz 71 unter Berücksichtigung von 
Satz 69: 

Satz 72. Sind A und A v o n end l i chem G r a d e ü b e r 
K und i s t A ^ A, so i s t d a n n und nu r d a n n A = A, 
wenn [A : K] = [Ä : K] i s t . 

D. Konjugierte Erweiterungen, konjugierte Elemente. 
Wie in 1, bei Def. 7, Zusatz [24] ausgeführt wurde, sind 

zwar bzgl. K isomorphe Erweiterungen A1 und A2 von K aus 
nicht zu unterscheiden, doch kann eine solche Unterscheidung 
von einer sie enthaltenden Erweiterung A aus notwendig 
werden. Wir definieren in dieser Hinsicht die folgende Äqui-
valenzrelation: 

•Definition 26. Zwei bzgl . K i s o m o r p h e K ö r p e r Ax 
und Aa zwischen K u n d A h e i ß e n auch konjugiert 
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bzgl. K. Bei einem I somorph i smus bzgl. K zugeord-
nete E lemen te und «2 he ißen dann ebenfa l l s kon-
jugiert bzgl. K. 

Analog wie in Def. 18 [50] spielt auch hier A nur die Rolle 
eines Hi l fskörpers , der zwar die Relation \ und A2 konju-
giert ermöglicht, aber ohne sie zu beeinflussen durch irgendeine 
Aj und A2 enthaltende Erweiterung A von K ersetzt werden kann. 
Ist ohne Bezugnahme auf einen solchen Hilfskörper A von bzgl. K 
konjugierten Körpern At, A2 die Rede, so soll damit insbesondere 
stets gesagt sein, daß überhaupt eine Erweiterung A existiert, die 
sowohl At als auch A2 enthält. Als Beispiel wirklich verschiedener, 
konjugierter Erweiterungen von K seien etwa die n in K(xlt..., xn) 
enthaltenen Körper K(xx) K(xn) genannt, in denen z.B. 

Q (nn \ Q (X } 
xlt..., xn, allgemein rj-H, • •., ni konjugierte Elemente sind. 

Für konjugierte, über K algebraische Elemente gilt nach 
den Ausführungen zu 1, Def. 7, Zusatz [24] ersichtlich die 
folgende Tatsache: 

Satz 73. Is t oi ein über K a lgebra isches E l e m e n t 
einer E r w e i t e r u n g A von K und f(x) das zugehör ige 
i r r eduz ib le Po lynom aus K, so sind alle z u « kon-
j u g i e r t e n E l e m e n t e aus A ebenfa l ls Wurze ln von 
f ( x ) . 

§ 8. Stammkörper. 
Wir führen in diesem Paragraphen den ersten Schritt zur 

Konstruktion der Wurzeln eines Polynoms f(x) aus K aus, 
indem wir durch tatsächliche Konstruktion die Existenz einer 
speziellen Erweiterung von K beweisen, in der sich von f(x) 
ein Linearfaktor abspaltet. Überdies werden wir eine Über-
sicht über alle solchen Erweiterungen erhalten. Methodisch 
werden unsere Entwicklungen ganz analog zu den in 1, § 4 
geführten Existenz- und Eindeutigkeitsbeweisen sein1), nur 
daß wir hier die Hauptarbeit schon im voraus geleistet haben, 

») Der Existenz- und Eindeutigkeitsbeweis für K(z) in 1, § 4 ist in der Tat 
nichts anderes als der für /(z) = 0 geführte Beweis dieses Paragraphen. 
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indem -wir in § 2 den Restklassenkörper K(:r, mod. f(x)) für 
ein irreduzibles Polynom f(x) konstruierten. Darauf stützt 
sich nämlich unser jetziger Existenzbeweis. 

Nach Satz 45 [39] dürfen wir ohne Einschränkung f(x) 
als irreduzibel voraussetzen. Unser Hauptsatz lautet dann: 

Satz 74. Es sei/(a;)ein i r r eduz ib les Po lynom vom 
Grade n aus K. Dann ex i s t i e r t eine E r w e i t e r u n g Z 
von K mit den E i g e n s c h a f t e n : 

(I.) f(x) h a t in Z eine Wurzel oc, also eine Zer-
legung f(x)= (x — oc) y(x). 

(II.) Z is t e in fach über K u n d « p r i m i t i v e s Ele-
ment von Z, d. h. es ist Z = K(a). 

(III.) Z is t a lgebra isch von endl ichem Grade 
über K; es ist näml ich a 0 , « 1 , . 1 eine 
Basis von Z, also [Z : K] = n. H i e r n a c h ist 
auch Z = K[<%]. 

I s t Z* i rgende ine (I.), (II.) genügende E r w e i t e r u n g 
von K u n d « * die in (I.), (II.) vor l i egende Wurzel von 
f(x),so is t Z* zu Z auf Grund der Zuordnung«*-«-^oc 
i somorph bzgl. K (und h a t daher auch die Eigen-
s c h a f t (III.)). Der E r w e i t e r u n g s t y p u s von K ist also 
du rch (I.), (II.) e indeu t ig be s t immt . 

a.) Exis tenzbeweis . 
Der Restklassenkörper K(x, mod. f(x)) enthält in Gestalt 

der speziellen, durch Elemente a aus K gelieferten Restklassen 
{«} einen Teilbereich K\ der vermöge der Zuordnung 

(1.) {a}*~*a 
ein zu K isomorpher Körper ist. 

Da nämlich, weil das Polynom f(x) keine Einheit ist, a=b 
mod. j(x) mit a—b gleichbedeutend ist, ist (1.) eine eineindeutige 
Zuordnung zwischen K' und K, die nach der Definition des Rechnens 
mit Restklassen auch die Isomorphiebedingungen erfüllt. 

Analog wie in 1, Bew. zu Satz 10, d) [29] und 11, d) [35] 
können wir daher, indem wir die Elemente des Teilkörpers K' 
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durch die ihnen nach (1.) zugeordneten von K unter Beibe-
haltung aller Verknüpfungsbeziehungen ersetzen, einen zu 
K(z, mod. / (x)) isomorphen Körper 2 bilden, der K selbst als 
Teilkörper enthält. Dieser Körper 1 hat dann, wie wir jetzt 
zeigen werden, die Eigenschaften (I.)—(III.). 

(I.) Betrachten wir die Normaldarstellung 
f(x) =af + cijX™—1 + • • • + a» 

als Relation zwischen den Elementen j(x), x, a l t . . a n aus 
K[z], so besagt sie nach 1, Satz 8 [22] das Bestehen der ent-
sprechenden Relation 

{/(«)} = {«}" + W } + ••• + {«»} 
zwischen den zugehörigen Restklassen mod. f(x), also Ele-
menten aus K(a, mod. /(a;)). Da nun f(x) = 0 mod. f(x), 
also {/(«)} die Null von K(x, mod. j(x)) ist, gilt in 
K (x, mod. /(x)) 

{x}n+{a1}{x}n~1+••• + &„} = (). 
Führen wir dann in dieser Relation den Übergang (1.) von 
K (x, mod. f(x)) zu 2 aus und geben dabei dem nicht zu K' 
gehörigen, also beizubehaltenden Element {»} die neue Be-
zeichnung oc, so folgt in Z die Relation 

«» + ai«"-1 -| f- an = 0 , d. h. /(<%) = 0. 
Es ist also das Element oc = {x} aus T Wurzel von j(x). 

Es kam uns bei diesem Beweis, durch den die vorher n i c h t 
v o r h a n d e n e Wurzel <x g e s c h a f f e n wird, auf größtmögliche 
begriffliche Schärfe an. Kürzer, aber weniger präzis, ließe sich 
unser Gedankengang so aussprechen: Weil die Restklasse x mod. f(x) 
der Relation f(x) = 0 mod. f(x) genügt, ist sie Wurzel von f(x) in 
K(x, mod. f(x))1). 

(II.) Sei ß ein nicht zu K gehöriges Element von 2 , das 
somit nach Konstruktion von 2 eine Restklasse mod. f(x) ist. 
Ist h(x) irgendein Element aus dieser Restklasse, also 
ß = {h(x)}, so folgt durch Zurückgehen auf die Normaldar-

Man wende gegen den obigen Beweis nicht ein, daß er „trivial" sei und 
„gar nichts Neues" liefere. Denn dann muß man denselben Einwand auch gegen 
die Konstruktion der ganzen Zahlen aus den natürlichen und der rationalen aus 
den ganzen erheben. 
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Stellung 
00 

h(x) = 2, et xh 

in K[a;], und die daraus folgende Relation 

{h(x)} = ¿0{ek}{xk}k 

in K(x, mod. f(x)), das Bestehen der Relation 

ß = {A( x)} = i Q ck{xf = i o = Ä(«) 

in Z. Falls ß zu K gehört, gilt natürlich Entsprechendes (mit 
einem h(x) vom Grade 0). Hiernach erschöpft schon der in 
Z enthaltene Teilintegritätsbereich K[a], umsomehr also der 
ebenfalls in Z enthaltene Teilkörper K(a) alle Elemente ß von 
Z (Def. 19 [52]), d. h. es ist Z = K[a] = K(a). 

(III.) Durch Benutzung des reduzierten Restsystems von 
Satz 27 [26] folgt aus dem Beweis für (II.), daß man in den 
Darstellungen ß = h(a) die h(x) eindeutig in der Form 

c0 + exx H h cn—i x11-1 

annehmen darf, daß also alle ß aus Z eindeutig linear- homogen 
durch ot0,«.1,.. .,<xn~1 mit Koeffizienten aus K darstellbar 
sind. Somit ist tx°, tx1,.. .,ocn—1 eine Basis von Z (Def. 25, 
Zusatz [57]) und daher [Z : K] = n. 

b.) E i n d e u t i g k e i t s b e w e i s . 
Es sei Z* eine (I.), (II.) genügende Erweiterung von K 

und ix* die in (I.), (II.) vorliegende Wurzel von / (x) . Wir 
zeigen dann zunächst, daß der in Z* enthaltene Teilintegritäts-
bereich K[a*] zu K (x, mod. f(x)) auf Grund der Zuordnung 

(2.) ß* {h(x)}, wenn ß* = h(ot*), 
isomorph ist. Es sind nämlich erfüllt: 1, §2, (&), (<5'.) [17] 
nach Def. 19 [52]; 1, § 2, (e.), (e'.) [17], weil aus ß* = ß% 
also Äi(«*) = h2(a.*) nach Satz 53 [43] wegen /(a*) = 0 
folgt /(a;) | hj^x) — hz(x), d. h. \ ( x ) = h2(x) mod. f(x), also 
{Kix)} = {h2(x)}, und weil diese Schlußweise auch in um-
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gekehrter Richtung ausführbar ist; 1, § 2, (3.), (4.) [23] nach 
den Rechenregeln für Restklassen. 

Somit ist, da K (x, mod. f(x)) ein Körper ist, auch der Inte-
gritätsbereich K[«*] ein Körper und daher mit seinem Quo-
tientenkörper K («*) = Z* identisch. Es stellt also (2.) einen 
Isomorphismus zwischen Z* und K (x, mod. f(x)) dar. Da 
nun nach a.) (oder wegen der Anwendbarkeit des eben Ge-
zeigten auf Z für Z*) die Zuordnung 

(3.) ß —> {h(x)}, wenn ß = /»(<%), 
ein Isomorphismus zwischen Z und K (x, mod. f(x)) ist, ist 
Z* zu Z isomorph bzgl. K auf Grund der durch Kombination 
von (2.) und (3.) entstehenden Zuordnung 

ß* ß, wenn ß* = Ä(«*), ß = h{oc), 
bei der in der Tat die Elemente von K je sich selbst zuge-
ordnet sind, und die durch die im Satz genannte Zuordnung 
oi* -<—>- ix erzeugt wird. 

Damit ist Satz 74 bewiesen. Wie wir später sehen werden, 
kann eine Erweiterung von K verschiedene Körper Z mit den 
Eigenschaften (I.), (II.) von Satz 74 enthalten. Daher defi-
nieren wir hier, abweichend gegenüber der den best immten 
Artikel verwendenden Formulierung der Def. 8—10 in 1 
[31, 38, 39]: 

*Deflnition 27. Jede Erweiterung Z von K mit den 
Eigenschaften (I.), (II.) und daher auch (III.) von 
Satz 74 heißt ein Stammkörper fü r f(x) über K. 

Aus Satz 74 ergibt sich dann: 
Satz 76. Hat das irreduzible Polynom /(x) aus K 

in einer Erweiterung A von K eine Wurzel« , so ent-
hält A einen Stammkörper fü r f(x), nämlich K(<%). 

Beweis: K(«) hat die Eigenschaften (I.), (II.) von 
Satz 74. 

Hiernach übersehen wir die Gesamtheit aller Erweiterungen 
von K, in denen ein irreduzibles f(x) aus K eine Wurzel hat, 
jedenfalls soweit nur der Erweiterungstypus in Frage kommt: 

H a s s e , Höhere Algebra. II . 5 
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Abgesehen von bzgl. K isomorphen sind es nämlich alle und 
nur die Erweiterungen eines Stammkörpers für f(x). Die 
Stammkörper selbst repräsentieren also den engs ten der-
artigen Erweiterungstypus. 

§ 9. Allgemeine Theorie der Erweiterungen 2. Einfache 
und endliche algebraische Erweiterungen. 

Wir leiten in diesem Paragraphen mittels der Ergebnisse 
des § 8 einige wichtige Beziehungen zwischen den in § 7 ein-
geführten allgemeinen Begriffen her. 

A. Einfache algebraische Erweiterungen. 
Im ersten Teil des Satzes 74 [62] wurde festgestellt, daß die 

Stammkörper über K einfach und algebraisch von endlichem 
Grade sind. Umgekehrt ergibt sich nun aus dem zweiten Teil 
dieses Satzes unmittelbar: 

Satz 76. I s t A e i n f a c h über K und i s t ein pr i -
m i t i v e s E l e m e n t oc von A a l g e b r a i s c h vom Grade n 
über K, so i s t A = K (a) S t a m m k ö r p e r für das zu oc 
gehör ige i r r e d u z i b l e P o l y n o m w-ten Grades f(x) 
aus K. E s i s t also dann A a l g e b r a i s c h von end-
l i c h e m Grade , n ä m l i c h vom Grade n ü b e r K. 

Insbesondere gilt hiernach folgende Relation zwischen den 
beiden in Def. 22 [55] und Def. 25 [57] unabhängig von-
einander erklärten Graden: 

Satz 77. D e r Grad e ines a l g e b r a i s c h e n E l e m e n t s 
ot über K i s t g le i ch dem Grad des zugehör igen 
S t a m m k ö r p e r s K(«) über K: 

[oc: K]= [K(«):K]. 
Die Aussage von Satz 76 läßt sich dahingehend ver-

schärfen, daß auch die Separabilität einbezogen wird. Dazu 
leiten wir zunächst das folgende K r i t e r i u m f ü r die Se-
p a r a b i l i t ä t her: 

Satz 78. I s t K von der C h a r a k t e r i s t i k p, so i s t 
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ein über K a l g e b r a i s c h e s E l e m e n t « dann und nur 
dann s e p a r a b e l über K, wenn K(« p ) = K(«) i s t . 

B e w e i s : a.) Es s e i « separabel. Ist dann 
j(x) s f + a, xn-x -1 |-a» 

das zu <x gehörige, nach Satz 63 [55] separable, irreduzible 
Polynom, so ist 

/ x ( a ; ) = x + a\ -\ 1- avn 

das zu <xp gehörige irreduzible Polynom. 
Erstens ist nämlich nach Satz 44 [37] {^(xP) = f(oc)p = 0. 

Zweitens ist f^x) irreduzibel; denn aus h(x) \ f^x) folgt 
/i(sp)!/1(icp) = f(x)p (Satz 44), wegen der Irreduzibilität von 
f(x) also h(zp) = j(xf mit 0 ^ r p, durch beiderseitige 
Ableitungsbildung weiter 0 =rf'(x) (Satz 57 [46]), und 
daraus r = 0 oder p — weil f'(x) 0 ist (Def. 17 [47]) — 
also h(xv) = f(x)° ~ e oder h(af>) = }(x)p = f1(aß>), und somit 
h(x)=e oder h(x) = f^x). 

Hiernach ist 
[ « : K ] = n = [ « P : K ] , 

also nach Satz 77 
[ K ( « ) : K ] = [ K ( « f ) : K ] , 

und daher nach Satz 72 [60] 
K(«) = K(o»»). 

b.) Es s e i « inseparabel. Dann ist das zu oc gehörige irre-
duzible Polynom inseparabel (Satz 63 [55]), also von der 
Gestalt f(x)=f0(xi>) (Def. 17 [47]). Hierbei ist f0(x) das 
zu txp gehörige irreduzible Polynom. 

Denn erstens ist fQ(otp) = / (« ) = 0. Zweitens ist j0(x) irre-
duzibel, weil aus h(x) \ f0(x) folgt h(xp) \ f0(ccP) = f(x) und 
f(x) irreduzibel vorausgesetzt ist. 

Hiernach ist 
[ « : K] = ?[<**> : K ] > [ « ? : ! < ] , 

also nach Satz 77 
[ K ( « ) : K ] > [ K ( « » ) : K ] , 

5 * 
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und somit nach Satz 72 [60] 
K(«) > K(<xf). 

Wenn K(a) = K(<xJ') ist, muß daher tx separabel sein. 
Wir beweisen nunmehr die angekündigte Verschärfung 

von Satz 76: 
Satz 79. I s t K v o n d e r C h a r a k t e r i s t i k p, u n d 

w i r d in S a t z 76 » s e p a r a b e l ü b e r K v o r a u s g e s e t z t , 
so i s t a u c h A = K ( a ) s e p a r a b e l ü b e r K. 

B e w e i s : Gemäß Def. 23 [56] ist zu zeigen, daß jedes 
Element ß aus K(oc) separabel ist. Nach dem Kriterium von 
Satz 78 kann das gezeigt werden, indem aus der nach der 
Voraussetzung richtigen Relation K(öcP) = K(«) die ent-
sprechende Relation K(ßp) = K(/S) gefolgert wird. 

Sei dazu 
[K(«):KG8)] = m , [K(ß): K] = j, 

[K(«) : K(ßp)] = [K(« p ) : KQ3P)] = m', [K(ß*) : K] = f 
gesetzt. Dann ist nach Satz 71 [59] 

mj = m'f 
und nach Satz 70 [59] 

mrS lm ' , f ^ j. 
Ist nun 

<p(x) = xm + oc1 xm~1 + \-<xm 

das zu oc gehörige irreduzible Polynom in «(/?) (vgl. Satz 77), 
dessen Koeffizienten gemäß Satz 74, ( I I I . ) [62] und Satz 76 
in der Form 

j ' - i , 
<xk=2 aikß (k = 0,..m — 1) 

i—O 
darstellbar sind, so folgt aus der Relation cp(a) = 0 durch 
Potenzieren mit p nach Satz 44 [37], daß txv Wurzel des 
Polynoms 

tp^x) =xm + oc[ xm-1 H 1- «m 
vom Grade m mit den Koeffizienten 

o c ' k = J 2 a l ß v l (fc = 0 , . . . , m - l ) 
i = 0 
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aus K(ßp) ist. Das zu ocp gehörige irreduzible Polynom in 
K(ßp) ist dann nach Satz 53 [43] ein Teiler von <px{x). Dar-
aus folgt für seinen Grad (vgl. Satz 77) 

m' »i . 
Nach den obigen Relationen ergibt sich damit 

m' = m, also j' = j , 
d. h. nach Satz 72 [60] in der Tat K{ßp) = K(ß). 

Nach Satz 76 sind für eine einfache Erweiterung A von K 
nur die beiden folgenden Fälle möglich: Entweder liegen die 
Verhältnisse von Satz 76 vor. Oder aber jedes primitive 
Element a, von A, also auch A selbst, ist transzendent über K; 
dann hat jedes solche « den Charakter einer Unbestimmten 
über K (siehe bei Def. 21 [54]), und A = K(«) ist vom Er-
weiterungstypus des Körpers K(®) der rationalen Funktionen 
einer Unbestimmten x über K1) . Satz 76 besagt hiernach 
(siehe auch Satz 79): 

Satz 80. Die B e g r i f f e Stammkörper für ein (sepa-
rables) irreduzibles Polynom u n d einfache (separable) 
algebraische Erweiterung d e c k e n s ich (ebenso a u c h 
die B e g r i f f e Körper der rationalen Funktionen einer 
Unbestimmten u n d einfache transzendente Erweiterung). 

H i n s i c h t l i c h der S e p a r a b i l i t ä t g i l t g e n a u e r , d a ß 
j e d e s i r r e d u z i b l e P o l y n o m , f ü r das eine e i n f a c h e 
s e p a r a b l e a l g e b r a i s c h e E r w e i t e r u n g S t a m m k ö r p e r 
i s t , s e p a r a b e l i s t . 

Diese Begriffe sind also nur methodisch unterschieden, insofern 
bei S t a m m k ö r p e r n an die Entstehung aus einem bestimmten 

x) Die einfachen Erweiterungen sind das genaue Analogon zu den (von der 
identischen verschiedenen) zyklischen Gruppen (siehe Def. 12 [30] und Def. 19 
[52]). Die hier resultierende Unterscheidung der einfachen Erweiterungen in 
algebraische, die dann ^ K (x, mod. f(x)) mit f(x) 0, e und von endlichem 
Grade (Grad von f(z)) sind, und transzendente, die dann ~ K (x, mod. f(x)) 
mit f{x) = 0 und von unendlichem Grade sind, entspricht der im Anschl. an 
Satz 33 [32] getroffenen Unterscheidung der (von der identischen verschie 
denen) zyklischen Gruppen in solche, die " mit / 0, 1 und dann von end-
licher Ordnung (Betrag von /) sind, und solche, die ^ mit t = 0 und dann 
von unendlicher Ordnung sind. 
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irreduziblen Polynom /(x) gedacht ist, während e infache alge-
b r a i s c h e E r w e i t e r u n g frei von einer derartigen Bezugnahme 
auf ein bestimmtes f(x), d. h. auf ein bestimmtes primitives Element 
<x ist. Diese letztere, allgemeinere Auffassung ist deswegen nützlich, 
weil sie es als naturgemäß erscheinen läßt, neben dem speziellen 
f(x) und dessen Wurzel a, durch die ein Stammkörper erzeugt wird, 
auch andere seiner Elemente auf ihre Eigenschaft als primitive 
Elemente zu untersuchen, was anschließend geschieht. 

Ist A eine einfache algebraische Erweiterung von K und n 
ihr Grad, so ist jedes Element ß aus A algebraisch über K, 
und zwar nach Satz 67 [57] von einem Grade iS n. Da 
nun nach Satz 77 ¡ß: K] = [K(/3): K] ist, erhalten wir unter 
Anwendung von Satz 71 [59] und Satz 72 [60] genauer: 

Satz 81. I s t A e ine e i n f a c h e a l g e b r a i s c h e Er-
w e i t e r u n g v o m Grade n über K und ß ein E l e m e n t 

Yh 
aus A v o m Grade j über K, so i s t j\n und m= — 

1 
der Grad v o n A über K(ß). 

I n s b e s o n d e r e i s t ß dann und nur dann p r i m i -
t i v e s E l e m e n t v o n A, w e n n es v o m Grade n über 
K ist . 

Wir heben noch die aus Satz 74, (II.) und (III.) [62] 
folgende bemerkenswerte Tatsache hervor: 

Satz 82. Für ein a l g e b r a i s c h e s E l e m e n t <x über 
K g i l t K[<x] = K(a). 

Dieser gegenüber transzendenten Elementen abweichende Um-
stand, der natürlich für das Rechnen mit einem algebraischen 
Element sehr willkommen ist, geht vermöge der in § 8 geleisteten 
Zurückführung von K(<x) auf den Restklassenkörper K(x, mod. f(x)) 
für das <x zugehörige f(x) letzten Endes auf den Satz 28 [27] zurück, 
dessen Beweis, verbunden mit der Zurückführung des § 8, auch 
die praktische Handhabung jenes Umstandes beim Rechnen mit 
einem algebraischen Element lehrt (Beseitigung aller vorkommen-
den, nicht zu K gehörigen Nennerl). 

B. Endliche algebraische Erweiterungen. 
Wir beweisen zunächst in Analogie zu Satz 76 [66]: 
Satz 83. I s t A e n d l i c h über K und i s t ein pri-
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m i t i v e s E l e m e n t s y s t e m « j , . . v o n A a l g e b r a i s c h 
über K, so i s t A = !<(%,. . . ,« r ) a l g e b r a i s c h von 
end l i chem Grade übe r K. 

Beweis : Die von K zu A führende simultane Adjunktion 
von « 1 , . . o i r kann durch die sukzessiven Adjunktionen 
K = A0, A o ^ j ) = Av A1(a2) = A 2 , . . A r _ ! ( a f ) = A r = A 
ersetzt werden (Satz 62 [52]). Dabei ist für i = 1,..., r 
<%i algebraisch über A{_i (Satz 65 [55]), also A * von end-
lichem Grade über A;_i (Satz 76 [66]), also A von end-
lichem Grade über K (Satz 71 [59]) und dann auch alge-
braisch über K (Satz 67 [57]). 

Eine zu Satz 79 [68] analoge Verschärfung von Satz 83 
durch Einbeziehung der Separabilität kann erst später 
(Satz 90 [80]) bewiesen werden. 

Für endliche Erweiterungen A = K(<x1,.. ,,<xr) sind außer den 
beiden Extremen: oc1,...,<xr algebraisch über K und 04, . . . , <xr 
transzendent über K, die den beiden einzigen Möglichkeiten bei den 
einfachen Erweiterungen entsprechen, natürlich noch weitere 
Möglichkeiten vorhanden, daß nämlich die otj teils algebraisch, teils 
transzendent über K sind. Nur der erstgenannte, in Satz 83 vor-
liegende Fall interessiert uns hier, weil allein in ihm A algebraisch 
über K sein kann und es nach Satz 83 auch ist; diesem Fall wenden 
wir uns des weiteren zu. 

Nachdem wir in Satz 83 festgestellt haben, wann eine end-
liche Erweiterung algebraisch ist, untersuchen wir jetzt um-
gekehrt, wann eine algebraische Erweiterung endlich ist. 
Während nun aus den algebraischen Erweiterungen durch die 
Forderung der E i n f a c h h e i t nach Satz 80 [69] die spe-
ziel le Klasse derjenigen herausgehoben wird, die von end-
lichem Grade sind und in denen eine Basis der besonderen 
Form oc0 ,«1 , . . .,ixn~1 (also aus den ersten w Potenzen eines 
einzigen Elements oc) existiert, wird aus den algebraischen 
Erweiterungen durch die Forderung der E n d l i c h k e i t genau 
die Klasse a l le r Erweiterungen endlichen Grades heraus-
gehoben. Aus den Resultaten von Satz 67, 68 [57, 58] 
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einerseits und Satz 83 andererseits ergibt sich nämlich un-
mittelbar: 

Satz 84. Die B e g r i f f e endliche algebraische Erwei-
terung u n d Erweiterung endlichen Grades d e c k e n sich. 

Durch sukzessive Anwendung von Satz 82 auf die im 
Beweis von Satz 83 auftretende Kette einfacher algebraischer 
Erweiterungen erhalten wir ferner die folgende Verallgemeine-
rung des erstgenannten Satzes: 

Satz 86. F ü r e n d l i c h v ie le ü b e r K a l g e b r a i s c h e 
E l e m e n t e « j , . . . , a r e ine r E r w e i t e r u n g von K g i l t 
K K , . . .,<*,] = K f o , . . . , « , ) . 

Satz 83 erlaubt übrigens in Verbindung mit Satz 71 [59] 
noch, die nach Satz 66 [56] angekündigte Umkehrung dieses 
Satzes zu beweisen1): 

Satz 86. I s t A ^ K ^ K u n d A ü b e r K, K ü b e r K 
a l g e b r a i s c h , so i s t a u c h A ü b e r K a l g e b r a i s c h . 

Bewe i s : Sei a ein Element aus A und 
<p(x) = xr + x1 xT~1 - f • • • + ocr das zugehörige irreduzible 
Polynom aus K. Es ist dann einerseits tx algebraisch über 
K ( « ! , . . . ,a r ) , also K ( « j , . . . , « „ « ) von endlichem Grade 
über K K , . . ,,txr) (Satz 76 [66]), andererseits s ind«! , . . .,<xr 

algebraisch über K, also ist K ( a l 5 . . . , rxT) von endlichem 
Grade über K (Satz 83). Somit ist auch K ( a 1 ( . . . , « , , « ) von 
endlichem Grade über K (Satz 71 [59]), also tx alge-
braisch über K (Satz 67 [57]). Daher ist auch A algebraisch 
über K (Def. 23 [56]). 

§ 10. Wurzelkörper. 
Wir konstruieren in diesem Paragraphen die Wurzeln 

eines Polynoms f(x) aus K, indem wir durch wiederholte An-
wendung der Stammkörperkonstruktion des § 8 die Existenz 
einer speziellen Erweiterung von K beweisen, in der f(x) voll-

') Ohne Einbeziehung der Separabilität. — Dies kann erst später (Satz 92 
[83]) geschehen. 
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ständig in Linearfaktoren zerfällt. Überdies werden wir eine 
Übersicht über alle derartigen Erweiterungen erhalten. 

Unser zu Satz 74 [62] analoger Hauptsatz lautet: 
Satz 87. Es sei f(x) ein P o l y n o m aus K. D a n n 

e x i s t i e r t eine E r w e i t e r u n g W von K mi t den 
E i g e n s c h a f t e n : 

(I.) f(x) z e r f ä l l t in W in L i n e a r f a k t o r e n : 
f(x) = (x—Äj) • • • (x—Otf). 

(II.) W is t end l i ch ü b e r K und ocv . . . ,oc r ein 
p r i m i t i v e s E l e m e n t s y s t e m , d. Ii. es i s t 
W = K K , . . . , 4 

(III.) W i s t also a l g e b r a i s c h von end l i chem 
Grade ü b e r K, und auch W = K [ « ! , . . . , « , ] . 

I s t W * i r g e n d e i n e (I.), (II.) (und d a n n auch 
(III.)) g e n ü g e n d e E r w e i t e r u n g von K und s ind 
oc*,...,<x? die W u r z e l n von f(x) in W * , so i s t .W* 
zu W bei gee igne t e r R e i h e n f o l g e der k*, . . .,<x* auf 
Grund der Z u o r d n u n g e n 

ÖCj OC-y1 « . • j OCf ^ OCf 
i s o m o r p h bzgl. K. Der E r w e i t e r u n g s t y p u s von W 
is t also d u r c h (I.), (II.) e i n d e u t i g b e s t i m m t . 

a.) E x i s t e n z b e w e i s . 
Wir kommen in folgenden r Schritten zum Ziel, deren 

schematische Andeutung genügen mag: 
1.) f(x) = f(x), Piix) Primfaktor in K, Zx Stamm-

körper zu Pi(x) über K, o^ Wurzel von J>i{x) in ^ n a l s o 

f(x)= (x —oc,) tp^x) in I l 5 Z j = K K ) . 
2.) (piix) = n2(x) (piix), 7Z2(X) Primfaktor in Z2 

Stammkörper zu n2(x) über oc2 Wurzel von n2(x) in Z2, 
also <px{x)= (x—oc2) 9?2(x) in Z2, Z2 = ^ ( « j ) , 

f(x)= (x—ocj) (x—oc2) <p2(x) in Z2, Z2 = K f o . a s ) . 

r . ) . . . f(x)= (x — a j ) . . . (x — « r ) i n Tr, Z r = K(a„ ...,ar). 
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Die durch diese r Schritte erreichte Erweiterung Z, = W 
hat die behaupteten Eigenschaften. 

b.) E i n d e u t i g k e i t s b e w e i s . 
Es sei W * eine (I.), (II.) genügende Erweiterung von K, 

und es seien «*, . . . , « * die Wurzeln von j(x) in W*. Wir 
zeigen dann in den folgenden r Schritten, daß eine Kette 
von Körpern zwischen K und W * : 

K ^ I i ^ Z * ^ - Z s S W * 
existiert, die je zu den entsprechenden Körpern der Kette 
aus a.) bei geeigneter Reihenfolge der oc*, ..ix* auf Grund 
der Zuordnungen des Satzes isomorph bzgl. K sind. 

1.) Der in K gelegene Primfaktor px(x) von /(») ist nach Satz 
25 [24] ein Produkt aus gewissen der Primfaktoren x — a * , . . . , 
x — ac* von f(x) in W*. Es hat also pt{x) eins der tx*,..., tx* 
zur Wurzel, und wir dürfen deren Reihenfolge so annehmen, 
daß ocf Wurzel von p^x) ist. Nach Satz 74, 75 [62, 65] 
enthält dann W * den Stammkörper Zf = K(a*) für p^x ) 
über K, und dieser ist auf Grund der Zuordnung tx* 
zu Z 1 isomorph bzgl. K. 

2.) In ZJ gilt eine Zerlegung f(x)= (x—tx*) (p*(x). Da 
jtx\ 

sich die Koeffizienten von <p*(x) = — - aus tx* und 
X £Xj 

denen von f(x) in derselben rationalen Weise berechnen (vgl. 
f l x ) die Bemerkung nach Satz 13 [18]), wie die von ^(x) = 

X Äj 
aus tx1 und denen von f(x), so sind die Koeffizienten von 
<pf(x) und (p-i(x) einander bei dem Isomorphismus a f 
zwischen Zf und Z t zugeordnet. Nach den Ausführungen 
zu 1, Def. 7, Zusatz [24] ist also das dem Primfaktor n2(x) 
von (px(x) bei diesem Isomorphismus zugeordnete Polynom 
ti${x) ein Primfaktor von <p*(x) in Z f , der dann ein Produkt 
aus gewissen der Primfaktoren x — o c f , . . . , x—oc* von 
<p*(x) in W * ist. Es hat also n%(x) eins der o c * , z u r 
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Wurzel, und wir dürfen deren Reihenfolge so annehmen, daß 
Wurzel von n$(x) ist. Dann enthält W* den Stainm-

körper Z* = Zf (a f ) = K ^ . a f ) für nf(x) über I* , und 
dieser ist nach den Ausführungen zu 1, Def. 7, Zusatz zum 
Stammkörper Z2 für n2(x) über Zj auf Grund der Zuordnung 
<x% > oc2 verbunden mit dem Isomorphismus af a1 
zwischen den Teilkörpern Zf und isomorph bzgl. K. 

r . ) . . . W* enthält den Körper Z* = K(txf , . . ., ajf), 
und dieser ist zu Z r = !<(«! , . . . ,« , ) auf Grund der Zu-
ordnungen ocf •!->•«!,.. <—>ocr isomorph bzgl. K. 

Da nach (II.) Z* = W*, Z, = W ist, ergibt der Schritt 
r.) die Behauptung. 

Damit ist Satz 87 bewiesen. In Analogie zu Def. 27 [65] 
definieren wir hier, zunächst ebenfalls mit dem u n b e s t i m m -
ten Artikel: 

*Definition 28. J e d e E r w e i t e r u n g W von K mi t 
den E i g e n s c h a f t e n (I.), (II.) und d a h e r a u c h (III.) 
von Sa tz 87 h e i ß t ein Wurzelkörper f ü r f(x) ü b e r K. 

Aus Satz 87 ergibt sich dann, analog zu Satz 75 [65]: 
Satz 88. Z e r f ä l l t das P o l y n o m f(x) aus K in 

e iner E r w e i t e r u n g A von K in L i n e a r f a k t o r e n : 
f(x) = (x—«i) • • • (x — a r ) , so e n t h ä l t A e inen Wur -
ze lkö rpe r f ü r }(x), n ä m l i c h K ^ , . . . , o c T ) . 

Beweis : K ^ , . . . ,oc r) hat die Eigenschaften (I.), (II.) 
von Satz 87. 

Hiernach übersehen wir die Gesamtheit aller Erweiterun-
gen von K, in denen ein Polynom f(x) aus K in Linearfaktoren 
zerfällt, jedenfalls soweit nur der Erweiterungstypus in Frage 
kommt: Abgesehen von bzgl. K isomorphen sind es nämlich 
alle und nur die Erweiterungen eines Wurzelkörpers für /(x). 
Die Wurzelkörper selbst repräsentieren also den engs t en 
derartigen Erweiterungstypus. 

Während nun in der Def. 27 [65] der Stammkörper für 
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ein irreduzibles f(x) eine Formulierung mit be s t immtem 
Artikel deshalb nicht angängig ist, weil ein Wurzelkörper 
W = K(a 1 , . . . , cxn) für f(x) nach Satz 75 [65] die n Stamm-
körper = !<(%),.. . , 1 ^ = K(«n) enthält, die nach unseren 
späteren Ausführungen sehr wohl verschieden sein können, 
haben wir für Wurzelkörper nach Satz 50 [42]: 

Satz 89. Un te r der Vorausse tzung von Satz 88 
e n t h ä l t A außer dem Wurze lkörpe r K(«!, . . . , « r ) f ü r 
j(x) ke inen wei te ren solchen. 

Da also hiernach in keiner Erweiterung von K zwei ver-
schiedene Wurzelkörper für f(x) vorkommen können, dürfen 
wir (wie beim Quotientenkörper — vgl. 1, Satz 10, Zusatz [30]) 
schlechthin von dem Wurzelkörper zu j(x) reden, und somit 
auch von den Wurzeln von f(x) ohne ausdrückliche Nennung 
einer sie enthaltenden Erweiterung. Geht man dabei, wie es 
im folgenden öfter geschehen wird, von einer Wurzel <x von 
f(x), also von einem Stammkörper 2 = K(«) eines der Prim-
faktoren p(x) von f(x) aus, so darf, wie aus dem Beweis zu 
Satz 87, a.) 1.) ohne weiteres zu entnehmen ist, der Wurzel-
körper W = K(a x , . . . , xr) von f(x) so angenommen werden, 
daß er oc, also S = K(ÖC) enthält. 

Wir sehen damit prinzipiell ab von der N a t u r der Wurzeln, 
auf die wir für den Spezialfall eines Grundkörpers aus Zahlen in 
der Digression des folgenden § 11 nur aus historischen Gründen 
eingehen, haben vielmehr nur die S t r u k t u r (den Erweiterungs-
typus) des aus ihnen entspringenden Wurzelkörpers im Auge, deren 
Untersuchung die weiteren Abschnitte gewidmet sind. 

Durch die Konstruktionen in §§8, 10 ist das Auflösungs-
problem algebraischer Gleichungen, wie es in der Einleitung 
formuliert und erläutert wurde, vollständig gelöst. Für unsere 
weiteren Betrachtungen sind demnach die Wurzeln eines 
Polynoms nicht mehr als U n b e k a n n t e , d.h. zu bes t im-
mende E l emen te , sondern als durch die Konstruktionen 
in §§8, 10 gegebene, völlig b e s t i m m t e E l e m e n t e an-
zusehen. 
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§ 11. Der sog. Fundamentalsatz der Algebra. 
Wie schon im Anschluß an Def. 18 [51] hervorgehoben wurde, 

kann man die Existenzbeweise der §§ 8, 10 nicht dadurch um-
gehen, daß man eine Wurzel tx bzw. die Wurzeln « j , . . , , a r von 
J(x) „von unten her" zum Grundkörper K adjungiert. Nur wenn 
man vorher auf irgendeine Weise in den Besitz einer Erweiterung 
von K gelangt ist, in der f(x) einen Linearfaktor hat bzw. in Linear-
faktoren zerfällt, kann man diesen einfacheren Weg einschlagen. 
Das geschieht nun in der bisherigen Literatur meist auf Grund des 
sog. F u n d a m e n t a l s a t z e s der Algebra . Dieser besagt nämlich, 
daß im Körper der komplexen Zahlen jedes Polynom aus einem 
Zahlkörper in Linearfaktoren zerfällt, insbesondere also auch jedes 
Polynom aus dem engstmöglichen Zahlkörper P. Hiernach wird 
durch die e inmal ige Konstruktion des komplexen Zahlkörpers 
und Nachweis dieser Tatsache über ihn die Existenz der Wurzeln 
al ler algebraischen Gleichungen mit Zahlkoeffizienten bewiesen. 

Dieser zuerst von Gauß bewiesene Satz gehört nun aber nicht 
mehr in die Algebra im heutigen Sinne —, selbst wenn man unter 
diese wie am Schluß von 1, Einl. alles das einbegreift, was aus den 
Körperaxiomen (d.h. den a l lgemeinen Rechengese tzen der 
rationalen Zahlen) oder einem Teil von ihnen (Ring, Integritäts-
bereich, Gruppe) gefolgert werden kann, also nicht nur lediglich 
den speziellen Sätzekomplex über die Auflösung von Gleichungen. — 
Jener Satz bedarf nämlich zum Beweise Hilfsmittel aus der Analysis 
(Grenzwert, Stetigkeit), mögen diese, wie in manchen der äußerst 
zahlreichen Beweise, auch auf ein noch so kleines Maß zurück-
gedrängt seinJ). Auch reicht die Tragweite des sog. Fundamental-
satzes der Algebra nicht über die speziellen Zahlkörper hinaus, was 
ihm ebenfalls von unserem in 1, Einleitung formulierten Stand-
punkt aus seine f u n d a m e n t a l e Rolle für die Algebra nimmt (vgl. 
den zweiten und dritten Absatz von 1, Einl.)2). Wir durften daher 
mit Recht den Gaußschen sog. Fundamentalsatz der Algebra aus 

' ) Wie einfach der Beweis unter voller Ausnutzung analytischer (kom-
plex-funktionentheoretischer) Hilfsmittel wird, und wie naturgemäß sich der 
Satz in die komplexe Funktionentheorie einreiht, kann man nachlesen bei 
K. K n o p p , Funktionentheorie I, 9. Aufl. 1957, § 28, Satz 3, S. 115 und 
§ 35, S. 141 (Slg. Göschen 668). 

a) Allerdings haben E. A r t i n und 0 . S c h r e i e r [Algebraische Konstruk-
tion reeller Körper, Abh. a. d. Math. Sem. d. Univ. Hamburg 5 (1926)] das Feld 
der Algebra dadurch erweitert, daß sie auch die a l l g e m e i n e n A n o r d n u n g s -
g e s e t z e der rationalen Zahlen in den Kreis algebraischer (axiomatischer) Be-
trachtungen gezogen haben. Der sog. Fundamentalsatz der Algebra als spe-
zieller Satz über den komplexen Zahlkörper ordnet sich dann einem entsprechen-
den Satz über eine allgemeine Klasse von Körpern unter und erhält in diesem 
neuen, erweiterten Gewände erneut Bürgerrecht in der modernen Algebra. 
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unserer Darstellung verweisen und dafür den von Kronecker 
ersonnenen und von Ste ini tz ausgebauten Existenzbeweis der 
§§8, 10 für die Wurzeln algebraischer Gleichungen aufnehmen, 
der auf ganz abstrakter und damit viel weiter tragender Grund-
lage steht. 

Steini tz hat übrigens, und das ist wohl sein Hauptverdienst 
auf algebraischem Gebiete, bewiesen, daß analog, wie zu den Zahl-
körpern der komplexe Zahlkörper, so auch zu jedem Grundkörper 
K Erweiterungen A existieren, in denen gleichzeitig alle Polynome 
aus K in Linearfaktoren zerfallen und daß der engstmögliche solche 
Körper A, ebenso wie unsere Stammkörper und Wurzelkörper, bis 
auf Isomorphismen bzgl. K durch K eindeutig bestimmt ist, nämlich 
als Körper aller algebraischen Elemente über K. Dieser 
Körper A hat überdies die Eigenschaft, daß keine echten algebra-
ischen Erweiterungen von A existieren, daß also auch jedes Polynom 
aus A in A in Linearfaktoren zerfällt. Steinitz nennt ihn daher 
algebraisch abgeschlossen. Im Spezialfall des Grundkörpers 
P ist A der Körper aller algebraischen Zahlen. Da sich der Steinitz-
sche Existenzbeweis für A auf die speziellen Existenzbeweise der 
§§ 8, 10 stützen muß, kann man diese nicht etwa, ausgehend von 
der Existenz von A, umgehen. 

Um Mißverständnissen anläßlich der bei Satz 89 einge-
führten Redeweise mit bes t immtem Artikel zu begegnen, sei 
hier noch ausdrücklich auf folgendes hingewiesen: Unsere Existenz-
beweise in §§ 8—10 liefern für den Spezialfall, daß K ein Zahlkörper 
ist, keineswegs die Existenz der Wurzeln eines Polynoms aus K 
und ihrer rationalen Funktionen über Kais komplexe Zahlen, 
sondern lediglich als a b s t r a k t e Rechenelemente . Inwieweit 
man diese Elemente dann Zahlen nennen kann, kommt auf den 
nicht universell feststehenden Umfang des Begriffs Zahl an. Um 
sie aber dem Begriff komplexe Zahl unterordnen zu können, 
wäre über unsere Existenzbeweise hinaus erst zu zeigen, daß sie 
in der Form a + bi darstellbar sind, wo i eine Wurzel des Polynoms 
x2 + 1 ist und a, b Elemente eines solchen Körpers sind, der zu 
einem Teilkörper des reellen Zahlkörpers isomorph ist. Ein solcher 
Nachweis würde allgemein auf den Beweis des sog. Fundamental-
satzes der Algebra (bzw. dessen a. S. 77, Anm. 2 erwähnter Ver-
allgemeinerung) hinauslaufen. Nur für den speziellen Fall des 
Polynoms x3 + 1 selbst, in einem Körper K aus reellen Zahlen, 
liegt er unmittelbar auf der Hand: Ist i eine Wurzel dieses in K 
irreduziblen Polynoms in einem Stammkörper 7. über K (der übri-
gens dann gleichzeitig Wurzelkörper mit der Zerlegung 
x* + 1 == (x — i) (x + i) ist), so haben nach Satz 74 [62] die 
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Elemente von 2 eindeutige Darstellungen a + Ii mit Zahlen a, l 
aus K, und das Rechnen mit diesen Elementen verläuft wegen der 
Gleichung t2 = — 1 isomorph zum bekannten Rechnen mit den 
komplexen Zahlen. Cauchy , der Begründer der k o n k r e t e n kom-
plexen Funktionentheorie, ist der erste gewesen, der vom reellen 
Zahlkörper K ausgehend diesen a b s t r a k t e n Weg zur Einführung 
des „imaginären" i gegangen ist 1) , und der somit den Grundstein 
gelegt hat zu dem durch K r o n e c k e r und S t e i n i t z auf breitere 
Grundlage gestellten und bis in die neueste Zeit in stetem Wachs-
tum begriffenen Bau der a b s t r a k t e n Algebra . 

IY. Die Struktur der Wurzelkörper 
algebraischer Gleichungen. 

Wir leiten in diesem Abschnitt zunächst (§§ 12,13) einige 
mit den bisherigen Mitteln zugängliche Eigenschaften der 
Wurzelkörper her, führen sodann (§§ 14—16) als neues Hilfs-
mittel gewisse, durch die Erweiterungen endlichen Grades 
bestimmte, endliche Gruppen, ihre G a l o i s g r u p p e n ein, und 
entwickeln schließlich (§§ 17,18) auf dieser Grundlage die 
Galo i ssche Theor i e , durch die man dann die Struktur der 
Wurzelkörper vollständig beherrscht, wie es in der Einleitung 
als Hauptziel dieses Bandes hingestellt wurde. 

Dabei haben wir uns durchweg auf s e p a r a b l e Polynome 
und Erweiterungen zu beschränken. Für i n s e p a r a b l e 
Polynome und Erweiterungen erfährt die im folgenden zu ent-
wickelnde Theorie, wie S t e i n i t z gezeigt hat, wesentliche Ab-
weichungen, auf die wir hier des knappen Raumes halber 
nicht eingehen können. 

§ 12. Einfachheit und Separabilität der Wurzelkörper 
separabler Polynome, allgemeiner der endlichen alge-
braischen Erweiterungen mit scparablem primitivem 

Elementsystem. 
Die in der Überschrift dieses Paragraphen genannte, für 

*) C a u c h y führte die komplexen Zahlen nach dem Schema des Existenz-
beweises in § 8, also als Restklassen mod. x2 + 1, speziell i als die Rest-
klasse x mod. z2 + 1 ein. (Exerc. d'anal. et de phys. math. 4 (1847), S. 87.) 
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die Folge grundlegende Eigenschaft der Wurzelkörper sepa-
rabler Polynome kommt allgemein den endlichen algebraischen 
Erweiterungen mit separablem primitivem Elementsystem zu, 
zu denen ja die Wurzelkörper separabler Polynome gehören 
(Satz 87 [73]). 

Im Beweis müssen wir uns aus methodischen Gründen auf 
Grundkörper K mit u n e n d l i c h v i e l e n E l e m e n t e n be-
schränken. Diese Einschränkung kann man indes auf anderem 
Wege als in Wahrheit überflüssig erkennen (siehe Schluß von 
§ 20 [134ff.]). Daher dürfen wir den folgenden Satz, sowie alle 
weiteren auf ihn gestützten, ohne sie formulieren. 

Der zu beweisende Satz, den man nach seinem Entdecker 
den Abelschen Satz nennt, lautet: 

Satz 90. J e d e e n d l i c h e a l g e b r a i s c h e E r w e i t e r u n g 
A v o n K m i t s e p a r a b l e m p r i m i t i v e m E l e m e n t s y s t e m , 
i n s b e s o n d e r e a lso de r W u r z e l k ö r p e r j e d e s s e p a -
r a b l e n P o l y n o m s f(x) au s K i s t e i n f a c h a l g e b r a i s c h 
und s e p a r a b e l ü b e r K, a lso S t a m m k ö r p e r f ü r ein 
s e p a r a b l e s i r r e d u z i b l e s P o l y n o m g(x) au s K. 

B e w e i s 1 ) : Es sei A = K ( a j , . . .,ocr), wo txv...,(xT 

separabel algebraisch über K sind. Für r = 1 ist dann nichts 
mehr zu beweisen (Satz 76, 79 [66, 68]). 

a.) r = 2. 
Seien f j x ) , f2(x) die zu ocv cx2 gehörigen, nach der Voraus-

setzung und Satz 63 [55] separablen, irreduziblen Poly-
nome aus K, ferner W der Wurzelkörper für das Polynom 
li(x)j2(x) a u s K u n d 

n, v, 
h(x) = I I ( x — tx1Vl), f2(x) = 1 7 ( x — oc2J 

t>l=l ra=l 
die Zerlegungen von fx(x) und f2(x) in W in Linearfaktoren. 
Es ist dann ocx eines der ÖC1Vi, oc2 eines der tx2iV Ferner sind 

*) Dieser Beweis wurde bisher fast immer unter Anwendung des S a t z e s 
von d e n s y m m e t r i s c h e n F u n k t i o n e n (siehe den späteren Satz 131 [153]) 
geführt. Der Grundgedanke des im Text gegebenen, ohne jenen Satz aus-
kommenden Beweises wurde aber schon von G a l o i s zu dem entsprechenden 
Zwecke verwandt. 
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die oc!„, und die «2v, je untereinander verschieden (Satz 58 
[47]). 

Daher sind die nxn2 linearen Funktionen 
&viv,{x) = oc1Vi + x<x2vi 

aus W [ x ] sämtlich voneinander verschieden, weil ja zwei von 
ihnen sieh entweder im Koeffizienten der Unbestimmten x oder 
im von x freien Koeffizienten unterscheiden. Wenn also, wie 
wir hier voraussetzen, K u n e n d l i c h v i e l e E l e m e n t e be-
sitzt, so existiert nach Satz 49 [41] (angewandt auf W fü r K, 
K für M) ein Element a =t= 0 in K, so daß die n^ Elemente 

= ftvtJa) = « + a » 2 , , 
sämtlich voneinander verschieden sind. 

Es sei nun 
# = a + aoc2 

das dem System (« l v i ,«2 V J = («i,«2) entsprechende Element 
unter den #„ l I V Dann bilden wir das Polynom <p(x) gemäß 1 ) 
(— ay (p{x) ' 

= 11 (& — «lv, + ax)) = n ( K + Mi) — («l», + ax)) 

= n ((# - OX) - « i O = / ( 0 - «*). I>1=1 
Die e r s t e r e Darstellung läßt erkennen, daß <p(x) zwar 
die Wurzel oc2 hat — entsprechend dem Linearfaktor 
# — —, dagegen keine der von tx2 verschiedenen 
Wurzeln oc2vl von f2(x) zur Wurzel ha t ; denn sonst folgte ja 
die Gleichheit von &—tx1-{-aoc2 mit einem « ] V l +a« 2 v a , 
wo («i, t > oc2,,) 4= ( « u «2), entgegen unserer Konstruktion der 
ftvtv,2)- Die l e t z t e r e Darstellung lehrt, daß <p(x) ein Poly-
nom aus K ( # ) ist. 

") Der vorgesetzte Faktor (— o)n» bewirkt, daß <p(z) ein P o l y n o m wird, 
d . h . den höchsten Koeffizienten e bekommt. 

') Wie man sich leicht überzeugt, wird für diesen Schluß und damit für den 
ganzen Beweis die Separabilität von nicht benötigt. Ein Analogon zu Satz 90 
gilt daher auch, wenn nur alle bis auf eins der primitiven Elemente separabel 
sind. Indessen werden wir von diesem (für die Theorie der inseparablen Er-
weiterungen wesentlichen) Umstand keinen Gebauch zu machen haben. 

H a s s e , Höhere Algebra. I I . Q 
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Wegen dieser beiden Eigenschaften von <p(x) ist der 
größte gemeinsame Teiler (9o(x), f2(x)) einerseits gleich dem 
einzigen gemeinsamen Linearfaktor x—oc2 (Satz 21 [22]), 
andererseits ein Polynom in K(#) (Satz 24,14 [23,18]). Da-
her gehört « 2 zu K(#), somit auch tx1 = — atx2, d. h. es ist 
A = Kf«!, oc2) ^ K(#). Da umgekehrt •& = + aoc2 zu 
A = !<(«!, a 2 ) gehört, ergibt sich also, daß A = !<(%, oc2) 
= K(t?) einfach algebraisch über K ist. 

Um zu zeigen, daß A = K(#) auch separabel über K ist, 
genügt es nach Satz 78, 79 [66, 68], im Falle der Charakte-
ristik p aus den nach der Voraussetzung richtigen Relationen 

in K(a^), <x2 in K(<x£) 
die entsprechende Relation 

0 in K(# p ) 
zu folgern. Nun ergibt die Potenzierung mit p der Darstel-
lungen v o n « ! undoc2 als Elemente aus K [ # ] nach Satz 44 [37] 

in K(# p ) , « ! in K ( # " ) . 
Daraus ergibt sich zusammen mit den beiden obigen Rela-
tionen weiter 

« ! in K ( ^ ) , « 2 in K(0") 
und somit in der Tat auch 

-&(=oc1 + aoc2) in K ( # p ) . 
Damit sind die Behauptungen des Satzes für r = 2 be-
wiesen. 

b.) r > 2 . 
Dann folgen die Behauptungen durch vollständige In-

duktion. Seien sie schon bis r — 1 bewiesen, so ist also 
K ( « x , . . .,OT_I) = K ( « r _ i ) mit einem geeigneten über K 
separablen algebraischen « r _ i . Nach Satz 02 [52] ist dann 
A = K ( « 1 , . . . , « f _ i ,öc r ) = K(öc r_i,« r) , und somit nach dem 
Beweise a.) A einfach algebraisch und separabel über K, d. h. 
die Behauptung ist auch für r richtig. 

Das aus diesem Beweise leicht zu entnehmende weitere Resultat, 
daß man ein primitives Element & von A = K(a 1 ; . . . , <xr) speziell 
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unter den linearen Komposita a1a1 + • • • + aTar eines primitiven 
Elementsystems « j , . . ,,<xr vorfindet, ist für die Konstruktion eines 
solchen 4 in konkreten Fällen nützlich. 

D a nach Def . 19 [52] eine einfache algebraische Erwei te-
rung a fort ior i endlich algebraisch ist, besagt Satz 90 in Ver-
b indung m i t Satz 80 [69] und 84 [72] insbesondere: 

Satz 91 . D i e B e g r i f f e separable E r w e i t e r u n g end-
l i chen Grades, endl iche separable a lgebraische Er-
we i t erung , e in fache separable a lgebraische E r w e i t e r u n g , 
S tammkörper für e in separables irreduzibles P o l y n o m 
d e c k e n s i c h . 

H i n s i c h t l i c h d e s l e t z t e r e n g i l t g e n a u e r , d a ß 
jedes i r r e d u z i b l e P o l y n o m , f ü r d a s e i n e s o l c h e E r -
w e i t e r u n g S t a m m k ö r p e r i s t , s e p a r a b e l i s t . 

Wir fügen diesem Satz im Anschluß an die Bemerkung nach 
Satz 67 [58] noch an: 

Zusatz. Mi t den B e g r i f f e n v o n S a t z 91 d e c k t s i ch 
a u c h n o c h de r B e g r i f f separable algebraische Erweiterung 
mit beschränkten Elementgraden, u n d zwar i s t d a n n de r 
f ü r e ine so l che E r w e i t e r u n g A v o n K v o r h a n d e n e „ M a x i -
m a l g r a d " e ines E l e m e n t s v o n A ü b e r K g l e i ch dem 
G r a d e v o n A ü b e r K. 

B e w e i s : Sei•& ein Element aus A vom Maximalgrade. Wäre # 
nicht primitives Element von A und dementsprechend ß ein nicht 
rational durch & darstellbares Element von A, so wäre 

K ^ K ( 0 ) < K ( & , ß ) < A 
(Satz 60 [52]), und da K(0, ß) = K(#') gesetzt werden kann 
(Satz 90), [0 : K] < [& ' : K] (Satz 72, 77 [60, 66]) entgegen dei 
Maximalbestimmung des Grades von Also ist & primitives Ele-
ment von A und daher A = K(#) einfach algebraisch über K, sowie 
[A : K] = [» : K]. 

Jetzt kann auch die für den Fall der Charakteristik p noch aus-
stehende Verschärfung von Satz 86 [72] durch Einbeziehung der 
Separabilität erfolgen: 

Satz 92. I s t A J í K 5: K u n d A ü b e r K, K ü b e r K s e p a -
r a b e l a l g e b r a i s c h , so i s t a u c h A ü b e r K s e p a r a b e l a l g e -
b r a i s c h . 

B e w e i s : Sei a ein Element aus A und f(x) das zugehörige 
(gemäß Satz 86 [72] vorhandene) irreduzible Polynom aus K. 

6* 
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Es sei dann s der größte Exponent, für den noch f(x) = f0(xps) mit 
einem Polynom f0(x) aus K ist. f0(x) ist dabei wegen der Irreduzi-
bilität von j(x) irreduzibel und wegen der Maximaleigenschaft von 
s separabel. 

Da nach Voraussetzung a , txv,..., a p s — 1 separabel über K sind, 
ist nun nach Satz 78 [6ti] 

K(«) = K(«f) = • • • = iT(aPs). 
Hiernach (siehe auch Satz 82 [70]) besitzt « eine Darstellung 

ot = ?>(aP*) = , <* i . . . . . « r ) . 
wo <p(x) ein Polynom in x über K ist, das sich auch als ganze 
rationale Funktion h (x, txv ..., <xr) über K von x und den zu K 
gehörigen Koeffizienten <xi von q> auffassen läßt. Da aber die a ; 
nach Voraussetzung und txps als Wurzel von f0(x) über K separabel 
sind, ergibt Satz 90, daß auch a über K separabel ist. Daher ist A 
separabel über K (Def. 23 [£6]). 

§ 13. Normalität der Wurzelkörper und ihrer primitiven 
Elemente. Galoissche Resolventen. 

1.) Eine weitere wichtige Eigenschaft der Wurzelkörper (be-
liebiger Polynome) ist die in der folgenden Definition genannte: 

•Definit ion 29. E i n e E r w e i t e r u n g N v o n K h e i ß t 
normal (oder galoissch) ü b e r K, w e n n j e d e zu N b z g l . K 
k o n j u g i e r t e E r w e i t e r u n g N* m i t N i d e n t i s c h i s t , d. h. 
(vgl . De f . 26 [60]) w e n n a u s A ^ N ^ K, A ^ N * ^ K 
u n d N* i s o m o r p h zu N bzg l . K s t e t s f o l g t N* = N. 

In teilweiser Analogie zu Satz 66,70 [56,59] haben wir hier: 
Satz 93. I s t N S : K ^ K u n d N n o r m a l ü b e r K, so 

i s t N n o r m a l a u c h ü b e r K. 
B e w e i s : Jede mit N bzgl. K konjugierte Erweiterung 

N* von K ist gemäß Def. 26 [60] auch eine mit N bzgl. K 
konjugierte Erweiterung von K. 

Es braucht aber weder, wie in Satz 66,70 [56, 59], dann 
auch K über K, noch umgekehrt, wie in Satz 71, 86 [59, 72], mit 
N über K und K über K auch N über K normal zu sein. Beispiele 
dafür kann man mittels des in § 17 zu beweisenden Fundamental-
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satzes bilden, der gleichzeitig den tieferen Grund für diese Tat-
sachen erkennen läßt. 

Wir beweisen nun: 
Satz 94. Der W u r z e l k ö r p e r W eines P o l y n o m s 

f(x) i s t n o r m a l ü b e r K. 
B e w e i s : Es sei /(x) = (x—ax) • • • (x — aT) und 

W = !<(<%!,.. Diese beiden Relationen für txt,..., txr 

bleiben nach Def. 26 [60] und den Ausführungen zu 1, Def. 7, 
Zusatz [24] beim Übergang zu einem mit W bzgl. K konju-
gierten Körper W * für die zu ihnen konjugierten Elemente 
a j f , e r h a l t e n . W * ist also ebenfalls Wurzelkörper zu 
/(«) und somit nach Satz 89 [76] mit W identisch, d. h. W 
ist normal über K. 

2.) Um die Bedeutung der Normalität für eine einfache 
algebraische Erweiterung A näher kennenzulernen, müssen 
wir uns zunächst in jedem Falle einen Überblick über die 
sämtlichen konjugierten zu A verschaffen, sei A normal oder 
nicht. Wir erreichen dies dadurch, daß wir A als Stamm-
körper eines irreduziblen Polynoms j(x) darstellen (Satz 76 
[66]) und dann als Teilkörper des Wurzelkörpers W von f(x) 
studieren (siehe das im Anschluß an Satz 89 Gesagte [76]). 
In dieser Hinsicht haben wir nach Satz 74, 75 [62, 65] und 
gemäß Def. 26 [60] (vgl. auch das schon vor Satz 89 [76] 
Gesagte) unmittelbar: 

Satz 95. Es sei f(x) ein i r r e d u z i b l e s P o l y n o m in 
K,a eine W u r z e l von f(x), A = K(<x) der zugehö r ige 
S t a m m k ö r p e r u n d ß = h(tx)irgendein E l e m e n t a u s A . 
Sind d a n n « ! , . . ,,ocr die W u r z e l n von /(«), so e n t h ä l t 
der (ex, a lso A = K(«) e n t h a l t e n d e ) W u r z e l k ö r p e r 
W = !<(«!,. . .,ocT) von j(x) die r S t a m m k ö r p e r 

Aj = K(<%,) A , = K(«, ) . 
Diese s ind zu A = K(a) k o n j u g i e r t , und zwar wird 
in i hnen d u r c h 

ß\ = M«l)> • • ßr = 
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je ein Sys tem zu ß = h(<x) k o n j u g i e r t e r E l e m e n t e 
r e p r ä s e n t i e r t . 

In den Bezeichnungen dieses Satzes ist <x i r g e n d e i n e der 
Wurzeln a,-, A der entsprechende der Körper Aj und ß das ent-
sprechende der Elemente ßi. Wir treffen aber hier und bei ähn-
lichen Betrachtungen im folgenden (siehe auch schon im Beweis zu 
Satz 90 [80]) keine feste Verabredung darüber, welches der <x{ 
gleich « sein soll, weil dadurch eine im Hinblick auf die NichtUnter-
scheidbarkeit der txit A{, von K aus (1, bei Def. 7, Zusatz [24]) 
ganz imberechtigte Unsymmetrie geschaffen würde1). 

Nach Satz 95 sind speziell die oci sämtlich konjugiert zu tx. 
Umgekehrt folgt aus Satz 73 [61]: 

Satz 96. Es liege der S a c h v e r h a l t von Sa tz 95 
vor. Dann sind die Wurze ln av .. .,(xr die einzigen 
k o n j u g i e r t e n zu oc i nne rha lb W oder i rgende ine r 
E r w e i t e r u n g von W . 

Die k o n j u g i e r t e n zu einem a lgebra i schen Ele -
men t sind also mit den Wurzeln des zugehör igen 
i r reduz ib len Po lynoms iden t i sch . 

Wir sagen daher im folgenden auch kürzer die k o n j u g i e r t e n 
zu a für „die Wurzeln des zu tx gehörigen irreduziblen Polynoms". 

Für die Ai gilt Entsprechendes; denn ein zu A konju-
gierter Körper (innerhalb irgendeiner Erweiterung von W ) 
ist nach einer analogen Schlußweise, wie im Beweis zu Satz 94, 
ebenfalls Stammkörper für j{x), entsteht also durch Adjunk-
tion einer Wurzel von j(x), d. h. eines oci (Satz 50 [42]): 

Satz 97. Es liege der S a c h v e r h a l t von Satz 95 
vor. Dann sind die Körpe r A x , . . . , A r die einzigen 
k o n j u g i e r t e n zu A i n n e r h a l b W oder i rgende ine r 
E r w e i t e r u n g von W . 

Bezüglich der ßi können wir das Entsprechende vorläufig des-
halb noch nicht aussprechen, weil ja in W oder in Erweiterungen 
von W außer den Ai noch andere Erweiterungen von K enthalten 
sein und diese dann das Vorhandensein von den ßi verschiedener 

In der Literatur findet man vielfach die Verabredung « = « , . 
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zu ß konjugierter Elemente bewirken könnten (siehe dazu Def. 26 
[60]). Wir kommen darauf nachher (Satz 103 [91]) zurück. 

3.) Auf Grund der in 2.) festgestellten Tatsachen können 
wir nunmehr der Bedeutung der Normalität für einfache 
algebraische Erweiterungen und damit insbesondere auch 
der Bedeutung des Zusammentreffens von Einfachheit und 
Normalität für die Wurzelkörper separabler Polynome, nach-
gehen. Es ist zweckmäßig, der Def. 29 die folgende, auf sie ge-
stützte Definition zur Seite zu stellen: 

•Definition 30. E i n E l e m e n t •& h e i ß t normal (oder 
galoissch) ü b e r K, w e n n der K ö r p e r K(#) n o r m a l ü b e r 
K i s t . 

Ein über K normales Element ist von selbst auch algebraisch 
über K, da für ein über K transzendentes Element x nach der Be-
merkung hinter Def. 26 [60] von K(x) verschiedene konjugierte 
existieren. 

Durch Kombination von Def. 19 [52] und Def. 30 ergibt 
sich dann ohne weiteres: 

Satz 98. E s sei N e ine e i n f a c h e a l g e b r a i s c h e E r -
w e i t e r u n g von K. I s t N n o r m a l ü b e r K, so i s t j e d e s 
p r i m i t i v e E l e m e n t von N n o r m a l ü b e r K. I s t u m -
g e k e h r t ein p r i m i t i v e s E l e m e n t v o n N n o r m a l ü b e r 
K, so i s t N n o r m a l ü b e r K. 

Dieser Satz ist vom bisherigen Standpunkt natürlich 
tautologisch mit Def. 29, 30, sagt also vorläufig nichts Neues 
aus. Wir können ihm aber unter Beibehaltung seines Wort-
lautes dadurch einen neuen, mehr besagenden Inhalt geben, 
daß wir den Begriff N o r m a l e l e m e n t auf eine andere Weise 
charakterisieren. Das geschieht, auf Grund der in 2.) fest-
gestellten Tatsachen, in dem folgenden Satz: 

Satz99. E s s e i en & ein a l g e b r a i s c h e s E l e m e n t ü b e r 
K, q(x) da s zu # g e h ö r i g e i r r e d u z i b l e P o l y n o m aus 
K u n d se ine W u r z e l n — die k o n j u g i e r t e n 
zu I s t n o r m a l ü b e r K, so g i l t : 

(I.) K(#) = . . . , d . h . de r W u r z e l k ö r p e r 
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v o n q(x) f ä l l t m i t e i n e m S t a m m k ö r p e r v o n 
q(x) z u s a m m e n . 

(II .) K ( ^ ) = • • • = K(0 , ) , d . h . d i e d e n k o n j u -
g i e r t e n zu •& e n t s p r e c h e n d e n k o n j u g i e r t e n 
S t a m m k ö r p e r v o n q(x) f a l l e n z u s a m m e n . 

(III .) = ? 1 ( 0 ) , . . . , = gn(-&), d . h . d i e k o n j u -
g i e r t e n zu •& g e h ö r e n zu K(#). 

U m g e k e h r t f o l g t a u s (I.) o d e r (II .) o d e r (III .) , d a ß 
& n o r m a l ü b e r K i s t . 

B e w e i s : a.) Ist •& normal über K, so folgt nach Def. 29, 
30 und Satz 95 zunächst (II.), und daraus (I.) nach Satz 60 
[52], sowie (III .) nach Def. 18 [50] und Satz 82 [70], 

b.) Aus ( I I I . ) oder (I.) folgt zunächst K(#) und 
daraus (II.) nach Satz 72 [60], Es genügt also zu zeigen, daß 
aus (II.) die Normalität von & folgt. Das ist aber nach Satz 97 
und Def. 29, 30 der Fall. 

Satz 99 besagt insbesondere, daß mit •& auch alle seine 
konjugierten normal bzw. nicht normal über K sind. Da-
her ist es sinnvoll, festzusetzen: 

Zusatz zu Definition 30. E i n Po lynom q(x) a u s K 
h e i ß t normal ( ode r galoissch) ü b e r K, w e n n es e r s t e n s 
i r r e d u z i b e l i s t , u n d w e n n z w e i t e n s e i n e s e i n e r 
W u r z e l n & n o r m a l ü b e r K i s t . 

Satz 99 läßt wegen seiner schon geschilderten Bedeutung für 
die Aussagen in Satz 98 erkennen, welche Einschränkung die Forde-
rung der Normalität für eine einfache algebraische Erweiterung N 
von K bedeutet: Jedes primitive Element i) von N muß den Be-
dingungen (I.)—(III.) genügen; umgekehrt reicht schon eine dieser 
Bedingungen für nur ein primitives Element •& zur Normalität von 
N hin. 

Die Form (I.) jener Einschränkung zeigt, daß in Umkehrung 
zu Satz 90, 94 [80, 85] auch jede einfache (separable) normale Er-
weiterung von K Wurzelkörper für ein (separables) Polynom aus K 
ist. Im Falle der Separabilität ist genauer jedes Polynom, für das 
eine solche Erweiterung Wurzelkörper ist, separabel; denn gemäß 
Satz 63 [55] und Def. 17, Zusatz [48] kann ein separables Ele-
ment nur von separablen Polynomen Wurzel sein. 
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Die Form (II.) weist eine bemerkenswerte Analogie zu den ent-
sprechend benannten Begriffen der Gruppentheorie auf (1, §9, ins-
besondere Satz31 [64]). Der in §17 zu beweisende Fundamental-
satz wird diese f o r m a l e Analogie als Ausfluß eines sachlichen 
Zusammenhangs erkennen lassen. 

Die Form (III.) ist am greifbarsten und wird in konkreten 
Fällen zweckmäßig zur Feststellung der Normalität benutzt. 

Nach dem über (I.) Gesagten gilt in Analogie zu Satz 91 [83]: 
Satz 100. D i e B e g r i f f e Wurzelkörper eines separablen 

Po lynoms f (x ) , separable normale Erweiterung endlichen 
Grades, endliche separable normale Erweiterung, ein-
fache separable normale Erweiterung, Stammkörper für 
ein separables normales Po lynom q ( x ) d e c k e n s i ch . 

G e n a u e r i s t jedes P o l y n o m f(x), f ü r d a s e i n e 
s o l c h e E r w e i t e r u n g W u r z e l k ö r p e r i s t , u n d jedes 
n o r m a l e P o l y n o m <7(0;), f ü r d a s s i e S t a m m k ö r p e r i s t , 
s e p a r a b e l . 

Diese Begriffe sind also nur methodisch voneinander unter-
schieden. (Vgl. das in dieser Hinsicht bei Satz 80 Gesagte [69].) 

Um bei der in den folgenden Paragraphen auseinanderzu-
setzenden Galo i s schen Theor i e , die sich mit der genaueren 
Struktur der in Satz 100 charakterisierten Erweiterungen befaßt, 
auch dem Wortlaute nach weder auf ein bestimmtes Polynom noch 
auf ein bestimmtes primitives Element oder primitives Element-
system Wert zu legen, entwickeln wir diese als Theor ie der s epa -
r ab l en n o r m a l e n E r w e i t e r u n g e n end l i chen Grades und 
schalten nur vorläufig ein, wie sich die darzulegenden Verhältnisse 
gestalten, wenn man das Entspringen einer solchen Erweiterung 
als Wurzelkörper eines bestimmten Polynoms oder als Stamm-
körper eines bestimmten normalen Polynoms hervorhebt. 

4.) Zur Vorbereitung der letzteren Untersuchungen 
fassen wir die im vorigen und in diesem Paragraphen erhal-
tenen Resultate über die St ruktur des Wurzelkörpers eines 
separablen Polynoms (Satz 90, 94, 98, 99) in folgendem Satz 
zusammen und geben anschließend eine in dieser Hinsicht 
grundlegende Definition: 

Satz 101. E s s e i e n f(x) e in s e p a r a b l e s P o l y n o m 
a u s K u n d « ] , s e i n e W u r z e l n . D a n n e x i s t i e r t 
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i n s e i n e m W u r z e l k ö r p e r W == K ^ , . . . , « , ) e i n p r i -
m i t i v e s E l e m e n t 

& = h(<xv...,«,), 
so d a ß a l s o W = K ( # ) i s t u n d d e m g e m ä ß D a r s t e l -
l u n g e n 

<*1 = • • .) « r = 
b e s t e l l e n . J e d e s s o l c h e # i s t n o r m a l ü b e r K, d. h . i s t 
q(x) d a s z u g e h ö r i g e i r r e d u z i b l e P o l y n o m a u s K u n d 
s i n d s e i n e W u r z e l n — d i e k o n j u g i e r t e n 
z u •&—, so b e s t e h e n D a r s t e l l u n g e n 

* Def in i t i on 31 . J e d e s g e m ä ß S a t z 101 z u j(x) b e -
s t i m m t e N o r m a l p o l y n o m q(x) ( g e l e g e n t l i c h a u c h 
e i n z u g e h ö r i g e s •&) h e i ß t e i n e Galo i ssche R e s o l v e n t e 
f ü r f(x) b z g l . K. 

Die Bezeichnung R e s o l v e n t e entstammt der älteren Literatur 
und soll zum Ausdruck bringen, daß die Gleichung f ( x ) 0 als 
g e l ö s t anzusehen ist, wenn die Resolvente q(x) _i 0 gelöst ist. 
Denn nach Satz 101 ergeben sich ja die Wurzeln von /(x) durch 
rationale Rechnung aus einer Wurzel von q(x). Die dabei zugrunde 
liegende Vorstellung eines A u f l ö s u n g s p r o z e s s e s für die Glei-
chung f(x) " 0 können und wollen wir uns aber hier nicht zu eigen 
machen. Denn erstens ist — abgesehen von dem Spezialfall, wo q(x) 
den Grad 1 hat, wo also f(x) in K in Linearfaktoren zerfällt — die 
Gleichung f(x) -•= 0 entweder e b e n s o w e n i g l ö s b a r wie die Glei-
chung q{x) ^ 0 (nämlich durch kein r a t i o n a l e s R e c h e n v e r -
f a h r e n ) oder e b e n s o g u t l ö s b a r (nämlich durch die K o n s t r u k -
t i o n e n in §§ 8,10), und zweitens kann aus entsprechenden Grün-
den, wie den in der Einleitung für 1.) angeführten, prinzipiell kein 
rationales Rechenverfahren existieren, um die Koeffizienten einer 
Galoisschen Resolvente q(x) aus denen von /(x) zu bestimmen. Für 
uns hat vielmehr die Galoissche Resolvente eine lediglich t h e o r e -
t i s c h e Bedeutung, indem ihre Wurzel & den Wurzelkörper 
K ( a ! , . . .,oi r) in die „einfache" Gestalt K(#) zu setzen gestattet. 

Aus Satz 99, (I.) ergibt sich noch ohne weiteres: 
Satz 102. D a n n u n d n u r d a n n , w e n n f(x) e in N o r m a l -

p o l y n o m i s t , i s t es G a l o i s s c h e R e s o l v e n t e f ü r s ich 
s e l b s t . 

Aus diesem Grunde nennt man, wie in Def. 29, 30 [84,87 ] gesagt, 
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die normalen Polynome gelegentlich auch galoissche Polynome und 
dementsprechend die normalen Erweiterungen, die ja, sofern sie 
einfach sind, Stammkörper galoisscher Polynome sind, auch 
galoissche Erweiterungen. Dabei wird das Wort g a l o i s s c h klein 
geschrieben, weil es anders als in Def. 31 nicht mehr auf G a l o i s 
hinweist, sondern nur noch ein mit n o r m a l gleichbedeutendes 
Eigenschaftswort ist (ähnlich wie a b e l s c h in 1, Def. 13 [50]). 

5.) Wir kommen jetzt auf die auf S. 87 zurückgestellte 
Frage nach den sämtlichen konjugierten zu ß = h(<x) zurück. 
Analog zu Satz 96,97 [86] beweisen wir, allerdings nur für 
separables f(x): 

Satz 103. E s l iege de r S a c h v e r h a l t von S a t z 95 
[85] v o r , u n d es sei ü b e r d i e s /(x) s e p a r a b e l . D a n n 
s ind die E l e m e n t e ßv . . . , ßT d ie e i n z i g e n zu ß k o n -
j u g i e r t e n i n n e r h a l b W oder i n n e r h a l b i r g e n d e i n e r 
E r w e i t e r u n g von W . 

B e w e i s : Sei ß* ein zu ß konjugiertes Element (in einer 
Erweiterung von W ) . Nach Satz 73 [61] ist dann ß* Wurzel 
desselben irreduziblen Polynoms in K wie ß. Nach Satz 74, 
75 [62, 65] ist daher der zugehörige Stammkörper K(ß*) 
auf Grund der Zuordnung ß ß* zum Stammkörper K(ß) 
isomorph bzgl. K. 

Gemäß Satz 101 sei nun W = K($). Ferner seien q(x) 
und q>(x) die zu d gehörigen irreduziblen Polynome in K und 
K{ß). Dann ist <p{x) | q{x) (Satz 53 [43]); und W = K(#) 
= K(ß, ist Stammkörper zu <p{x) über K(ß) (Satz 75 [65]). 

Durch den genannten Isomorphismus bzgl. K geht q(x) in 
sich über, während aus <p(x) ein Polynom <p*(x) mit den fol-
genden Eigenschaften entsteht: <p*(x) ist irreduzibel in 
K(ß*); es ist <p*(x) | q(x) (also sind die Wurzeln von <p*(x) 
unter denen von q(x) enthalten, d. h. gewisse der konju-
gierten zu •&); ist •&* eine Wurzel von <p*(x), so ist (vgl. 
Satz 101, 99) W = K(#*) = K(ß*, •&*) Stammkörper zu 
<p*(x) über K(/?*). 

Nach den Ausführungen zu 1, Def. 7, Zusatz [24] erzeugen 
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daher (analog wie im Beweis zu Satz 87 unter b.) [74]) die 
Zuordnungen ß •>—*• ß*, •& > &* einen Isomorphismus bzgl. 
K von W zu sich selbst (einen sogen. A u t o m o r p h i s m u s 
bzgl. K von W — siehe des näheren den folgenden § 14); oder, 
anders gesagt, bei dem durch •& > ß* erzeugten Isomorphis-
mus von W = K(#) = K(#*) zu sich selbst ist ß ß*. Bei 
diesem Isomorphismus ist nun dem (gemäß Satz 101 darge-
stellten) Element « = &(#) das Element tx* = k(§*) zu-
geordnet, das nach Satz 96 [86] eins der oti sein muß. Das 
dem Element ß zugeordnete Element ß* hat dann wegen der 
Darstellung ß = h(») die durch jenen Isomorphismus ent-
stehende Darstellung ß* = h(a.*), ist also in der Tat eins der 
ßi= *(«<)• 

Aus Satz 103 folgt mit Hinsicht auf Satz 96 [86] und Satz 68 
[47], daß die v e r s c h i e d e n e n unter den ßi die Wurzeln des zu ß 
gehörigen irreduziblen Polynoms g(x), d. h. d i e k o n j u g i e r t e n 
z u ß im dort eingeführten Sinne sind. Häufig findet man als d i e 
k o n j u g i e r t e n zu ß auch d i e s ä m t l i c h e n ßi bezeichnet; i. a. 
sind das die Wurzeln von g(x), jede eine gewisse Anzahl von Malen 
gesetzt. Näheres darüber werden wir in Satz 113 [111] kennenlernen. 

§ 14. Die Automorphismengruppe eines Erweiterungs-
bereichs. 

Wir bereiten in diesem Paragraphen die im folgenden zu 
machende Anwendung der Gruppentheorie auf die Struktur-
untersuchung der normalen Erweiterungen endlichen Grades 
vor, indem wir die in Frage kommenden Gruppen einführen. 
Um zu den Elementen dieser Gruppen zu gelangen, erinnern 
wir daran, wie wir in 1, § 2 aus dem für Mengen definierten 
Begriff e i n e i n d e u t i g e Z u o r d n u n g durch Hinzunahme der 
beiden auf die Verknüpfungen bezüglichen Forderungen (3.), 
(4.) [23] den auf Bereiche bezüglichen Begriff I s o m o r p h i s -
m u s bildeten. Ganz analog schaffen wir jetzt aus dem in 1, §16 
für Mengen definierten Begriff Permutation den entsprechen-
den auf B e r e i c h e bezüglichen Begriff A u t o m o r p h i s m u s 1 ) : 

1) Der Begriff A u t o m o r p h i s m u s läßt sich ebenso wie I s o m o r p h i s m u s 
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Definition 32. E ine P e r m u t a t i o n eines Bereiches 
B, d.h. also eine e ine indeu t ige Zuordnung mi t be-
s t i m m t e r Z u o r d n u n g s r i c h t u n g von B zu sich selbst 
(Beze ichnung-») he iß t ein Automorphismus von B, 
wenn sie auße rdem zu den in B de f in i e r t en Ver-
k n ü p f u n g e n in den Beziehungen s t e h t : 

(1.) aus a-+ a!, b^b' fo lg t a + a' + V , 
(2.) aus b-+b' fo lg t ab-*a'b', 

d.h. wenn sie den I somorph iebed ingungen [1, §2, 
(3.), (4.) [23]] genügt . 

Hiernach übertragen sich die an 1, Def. 35 [104] geknüpften 
Bemerkungen über Permutationen sinngemäß auf Automor-
phismen. 

In anderer Gegenüberstellung wie oben verhalten sich 
auch die beiden Mengenbegriffe e i n e i n d e u t i g e Z u o r d n u n g , 
P e r m u t a t i o n zueinander wie die beiden Bereich-Begriffe 
I somorph i smus , A u t o m o r p h i s m u s , d.h. Au tomor -
phismus von B bedeutet soviel wie I somorph i smus von 
B zu sich se lbs t mit b e s t i m m t e r Zuordnungs r i ch -
tung. 

Daher übertragen sich auch die an 1, Def. 7 [24] geknüpften 
Bemerkungen über Isomorphismen sinngemäß auf Automorphismen. 

Aus 1, Satz 56, 57 [105] ergibt sich nun mittels 1, Satz 19 
[55] ohne weiteres: 

Satz 104. Die A u t o m o r p h i s m e n eines Bere i chesB 
bi lden eine Gruppe , wenn u n t e r dem P r o d u k t 
zweier A u t o m o r p h i s m e n von B ihr P r o d u k t a l s P e r -
m u t a t i o n e n , d. h. der durch ihre Nache inande raus -
f ü h r u n g e n t s t e h e n d e A u t o m o r p h i s m u s von B ver-
s t anden wird. Der Typus dieser Gruppe i s t durch 
den Typus des Bereiches B e indeu t ig bes t immt . 

Wir bezeichnen mit aA das durch Anwendung des Automorphis-
mus A aus dem Elemente o entstehende Element. (1.) und (2.) 

(1, Def. 17 [56]) auch für Gruppen einführen; doch brauchen wir das hier 
nicht. 
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können dann auch in die Form gesetzt werden: 
(1.) (a + i)A=aÄ + bA, (2.) (ab)Ä = aAbA. 

Nach der Erklärung des Automorphismenprodukts gilt ferner 
(3.) (aA)B = aAB . 

Geht a durch alle Automorphismen aus einer Automorphismen-
menge 2JI in ein- und dasselbe Element über, so bezeichnen wir 
dieses sinngemäß mit a m . 

Nach Satz 104 besitzt jeder Bereich mindestens den iden-
t ischen Automorphismus a->-a. Daß weitere Automorphismen 
nicht notwendig vorhanden zu sein brauchen, zeigt das Beispiel der 
Primbereiche I", P, Pp. Da nämlich, wie für Isomorphismen, auch 
für jeden Automorphismus eines Integritätsbereiches 0-» 0, e-» e 
gilt (vgl. das in 1 bei Def. 7 [24] Gesagte), so sind für die genannten 
Bereiche nach (1.), (2.) alle übrigen Übergänge zwangsläufig zu 
a-* a festgelegt. Beispiele für Bereiche (Körper) mit von der Eins-
gruppe verschiedenen Automorphismengruppen werden wir im 
folgenden ausführlich kennenlernen. 

Ebenso wie wir für das Studium der Erweiterungsbereiche 
B eines Bereiches B 0 den schärferen Begriff Isomorphismus 
von B bzgl. B 0 brauchten, haben wir auch hier den schärferen 
Begriff Automorphismus von B bzgl. B 0 heranzuziehen: 

Zusatz zu Definition 32 . I s t B e in E r w e i t e r u n g s -
b e r e i c h v o n B0, so h e i ß e n d i e j e n i g e n A u t o m o r p h i s -
men von B, b e i d e n e n j e d e s E l e m e n t v o n B 0 i n s i c h 
ü b e r g e h t , die Automorphismen von B bzgl. B 0 . 

A u t o m o r p h i s m u s von B bzg l . B 0 b e d e u t e t a l s o 
s o v i e l wie I s o m o r p h i s m u s v o n B z u s i c h s e l b s t b z g l . 
B 0 m i t b e s t i m m t e r Z u o r d n u n g s r i c h t u n g . 

Daher übertragen sich die an 1, Def. 7, Zusatz [24] geknüpften 
Bemerkungen über relative Isomorphismen sinngemäß auf relative 
Automorphismen. Ist ferner, entsprechend zu den Ausführungen 
vor Def. 20 [53], A = K(M) und führt ein Automorphismus A von 
A bzgl. K die Menge M in M' über, so daß also auch A = K (NT) 
ist, so wird, wie dort, A schon durch Angabe der von M zu M' füh-
renden Substitutionen 

R R> («'ß'--- a u s M \ 
P P '•••\oc',ß',... aus W) 

vollständig beschrieben. Analog zu Def. 20 [54] definieren wir in 
dieser Hinsicht wieder: 
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Definition 38. Ein Automorphismus bzgl. K von 
A = K(M) heißt durch die bei ihm s ta t t f indenden 
S u b s t i t u t i o n e n der Elemente aus M erzeugt. 

Insbesondere kann dabei M = M' sein; dann stellen jene Sub-
stitutionen eine Permutation von M dar, und A wird durch d ie se 
P e r m u t a t i o n von M erzeugt. 

Mittels 1, Satz 19 [55] folgt schließlich aus Satz 104 ohne 
weiteres: 

Zusatz zu Satz 104. Die Au tomorph i smen von B 
bzgl. B0 b i lden eine U n t e r g r u p p e der Gruppe a l ler 
Au tomorph i smen von B. Der Typus dieser U n t e r -
g ruppe is t du rch den E r w e i t e r u n g s t y p u s von B 
e indeut ig be s t immt . 

Nach dem oben Bemerkten ist diese Untergruppe die volle Auto-
morphismengruppe von B, wenn B ein Integritätsbereich (Körper) 
und B0 sein Primintegritätsbereich (Primkörper) ist, dagegen die 
Einsgruppe, wenn B mit B0 zusammenfällt. 

§ 15. Die Galoisgruppe einer separablen normalen Er-
weiterung endlichen Grades. 

Wir wenden jetzt die Begriffe des § 14, insbesondere den 
Zusatz zu Satz 104, auf eine normale Erweiterung N endlichen 
Grades von K an, die dann (wenn separabel) nach Satz 100 [89] 
auch einfach algebraisch über K ist. Zu Ehren von Galois , 
der die weitgehende Bedeutung der Automorphismengruppe 
für diesen Fall zuerst erkannte1), hat man die folgende Be-
zeichnung eingeführt: 

*Deflnition 34. Die Gruppe @ der Au tomorph i s -
men bzgl. K einer normalen Erweiterung N endlichen 
Grades von K he iß t die Galoisgruppe von N bzgl. K. 

I s t speziel l © abelsch oder zykl isch , so h e i ß t 
auch N abelsch oder zyklisch über K. 

*) Allerdings nicht in der hier gegebenen abstrakten Gestalt-, sondern in 
der konkreten Darstellung von § 16. — E. G a 1 o i s fiel am 30. Mai 1832 im Alter 
von 20 Jahren im Duell. Am Vorabend seines Todes schrieb er einen langen 
Brief an einen Freund, in dem er (u. a.) dem der Pariser Akademie bereits ein-
gereichten ersten Entwurf seiner Theorie der algebraischen Gleichungen weitere 
wichtige Resultate anreihte. Der Brief Ist In seinen Werken abgedruckt. 
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Diese Galoisgruppe übersehen wir im Falle eines sepa-
r a b l e n N auf Grund des folgenden Satzes vollständig: 

Satz 105. Es seien N eine separable normale Er-
weiterung vom Grade n über K, # ein primit ives Ele-
ment von N und ...,•&„ seine konjugier ten . Dann 
ist die Galoisgruppe © von N endlich von der Ord-
nung n, und ihre n Automorphismen werden durch 
die n Subst i tu t ionen (i = 1 , . . . , n) erzeugt, 
führen also jedes Element ß = h(ß) aus N in die n 
konjugier ten ßi = h(&i) über. 

Beweis: a.) Da ein Automorphismus bzgl. K von N nach 
Def. 32, Zusatz [94] auch als Isomorphismus bzgl. K von N 
zu sich selbst (mit bestimmter Zuordnungsrichtung) ange-
sehen werden kann, führt er nach Def. 26 [60] jedes Element 
aus N in ein konjugiertes über, speziell also •& in ein 
(Satz 96 [86]) und dann die ß = h(ft) in $ = h(ß{). Es gibt 
somit höchstens die im Satz angegebenen n Möglichkeiten für 
einen Automorphismus bzgl. K von N. 

b.) Umgekehrt führt jede dieser n Möglichkeiten nach 
Satz 95 [85] zu einem Isomorphismus bzgl. K von N = K (#) 
zu einem seiner n konjugierten Stammkörper K(#j), nach 
Satz 99, (II.) [88] also von N zu sich selbst, und liefert daher 
nach Def. 32, Zusatz einen Automorphismus bzgl. K von N. 

Aus a.) und b.) ergeben sich die Behauptungen des Satzes, 
wenn man noch hinzunimmt, daß wegen der Separabilität 
von N die w konjugierten zu als die Wurzeln 
des zu & gehörigen irreduziblen Polynoms, untereinander ver-
schieden sind (Satz 58 [47]), also auch die durch die w Sub-
stitutionen erzeugten n Automorphismen. 

Um die Nacheinanderausführung der durch die Substitutionen 
erzeugten Automorphismen, d. h das Rechnen in der Galois-

gruppe © zu übersehen, ist es zweckmäßig, die Elemente von ® 
durch Übergang zu einer isomorphen Gruppe in eine besser greifbare 
Gestalt zu setzen, als es die bisherigen Automorphismen sind, oder, 
wie man in der Gruppentheorie sagt, eine geeignete Darste l lung 
von © zu geben. Das geschieht durch den folgenden Satz: 
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Satz 106. Es mögen die Vorausse t zungen und Be-
ze i chnungen von Satz 105 g e l t e n ; f e rner sei 

das zu # gehör i g e , i r r eduz ib l e P o l y n o m aus K und ge -
mäß Satz 99, ( I I I . ) [88] 

(1.) ( < = 1 , . . . , » ) . 
Dann w i r d in der Menge % der durch die g((x) r epräsen-
t i e r t en Res tk lassen mod. q(x) durch die Fes t s e t zung 

(2.) {?<} X {gk} = { g j , w e n n {g^x))} = { S j ( x ) } 
e ine unbeschränkte und e indeu t i g e V e r k n ü p f u n g er-
k l ä r t , die zu © v e r m ö g e der Z u o r d n u n g e n 

(3.) — {&(«)} ( *= l , . . . ,n ) 
i s omorph ist. 

B e w e i s : Es sei zunächst an die eineindeutige Zuordnung (3.) 
(S. 65) zwischen den Elementen aus N und den Restklassen 
mod. q(x) erinnert. 

a.) Da g^ig/,(•&)) aus gt(&) durch &->• gk(&), also aus durch 
ß-ie entsteht, ist es nach Satz 105 ebenfalls ein &i und daher dann 

9i(gkW) = 0,(0), {9i(gk(x))} = Somit wird durch (2-) 
eine Verknüpfung in % unbeschränkt und eindeutig erklärt. 

b.) Da die wegen der Separabilität von K verschieden sind, 
sind auch die { g^ verschieden. Somit ist (3.) eine eineindeutige 
Zuordnung zwischen © und %. 

c.) Da durch Nacheinanderausführung der durch •!} und 
& ->• erzeugten Automorphismen erst # in = und dann 
dies weiter in g j ß ^ ) = g^g^ f t ) ) = ? ( (# ) = übergeht, also zu-
sammengenommen der durch & -*• &i erzeugte Automorphismus 
resultiert, entspricht bei der Zuordnung (3.) der Multiplikation 
in © die durch (2.) definierte Verknüpfung in Somit ist bei (3.) 
auch die Isomorphiebedingung (1, Satz 23 [56]) erfüllt. 

Aus a.), b.), c.) folgen die Behauptungen. 
Die in Satz 106 angegebene Dars t e l lung der Ga lo i s -

g ruppe © als Subs t i tu t i onsg ruppe g ganzer r a t i o n a l e r 
Funk t i onen mod. q(x) ist bei gegebenem q(x) (für die Anwen-
dung auf den Wurzelkörper eines separablen Polynoms j ( x ) also 
bei gegebener Galoisscher Resolvente dieses Polynoms) und ge-
gebenen Darstellungen (1.) der praktischen Rechnung ohne weiteres 
zugänglich. Man reduziert dazu zweckmäßig die g^x) auf ihren ein-
deutig bestimmten Rest mod. q(x) von niedrigerem als dem n-ten 
Grade (Satz 13, 27 [16, 26]; siehe insbesondere die Bemerkung 

Hasse, Höhere Algebra. II. 7 



98 IV. Die Struktur der Wurzelkörper algebraischer Gleichungen. 

hinter Satz 13) und bekommt dann ein vollständiges Bild der Ver-
knüpfungen innerhalb g (also auch derer innerhalb ©), wenn man 
dasselbe für alle g^g^x)) tut. In der bisherigen Literatur wird 
meist diese Darstellung g von © für die Definition der Galoisgruppe 
verwendet. Das hat aber den Nachteil, daß man sich dabei auf ein 
bestimmtes p r i m i t i v e s E l e m e n t & bezieht. Man hat dann also 
nachzuweisen, daß für alle primitiven Elemente &, •&' , . . . iso-
morphe Gruppen resultieren. Unsere nur von den Kör -
pe rn N und K abhängige Definition hat den Vorteil, diesen Um-
stand dadurch von vornherein in Evidenz zu setzen, daß sie einen 
Schritt tiefer eindringt, nämlich alle Gruppen Ç, Ç ' , . . . als Dar-
stellungen ein- und derselben Gruppe ©, der Automorphismen-
gruppe von N bzgl. K, erscheinen läßt. 

§ 16. Die Galoisgruppe eines separablen Polynoms. 
Wenn man die Methoden des § 15 anwenden will, um zu einer 

konkreten Darstellung der Galoisgruppe © des Wurzelkörpers W 
eines separablen Polynoms /(x) aus K zu gelangen, so braucht man 
dazu die Kenntnis einer Galoisschen Resolvente q(x) für /(x), auf 
die man dann die Sätze 105,106 anwenden kann. Da nach Satz 102 
[90] f(x) selbst i. a. keine Galoissche Resolvente für sich selbst 
ist, und da man ferner nach dem bei Def. 31 [90] Bemerkten eine 
solche nicht durch ein rationales Rechenverfahren aus /(x) her-
leiten kann, ist es also von Interesse, eine konkrete Darstellung 
von © anzugeben, die sich nicht auf eine Galoissche Resolvente 
q(x) für /(x), sondern lediglich auf /(x) und seine Wurzeln stützt. 

Wir definieren zunächst: 
*Definition 35. U n t e r der Galoisgruppe eines Polynoms 

/(x) aus K v e r s t e h t m a n die G a l o i s g r u p p e © s e i n e s Wurze l -
k ö r p e r s W über K. 

I s t spez ie l l ® abe l sch oder zyk l i s ch , so h e i ß t (wie W 
n a c h Def. 34 [95]) auch /(x) abelsch oder zyklisch übe r K. 

Wir beweisen nun den folgenden Satz, der die gewünschte Dar-
stellung der Galoisgruppe von W, oder, wie wir jetzt sagen können, 
der Galoisgruppe eines separablen Polynoms f(x) gibt: 

Satz 107. Die G a l o i s g r u p p e © eines s e p a r a b l e n Po ly -
noms f(x) aus K i s t i s o m o r p h zur G r u p p e der d u r c h 
die A u t o m o r p h i s m e n aus © g e l i e f e r t e n P e r m u t a t i o n e n 
der v e r s c h i e d e n e n u n t e r den W u r z e l n . . . , <xr von f(x). 
Diese P e r m u t a t i o n e n lassen sich auch d a d u r c h c h a r a k -
t e r i s i e r e n , d a ß bei i h r e r A n w e n d u n g j ede b e s t e h e n d e 
g a n z r a t i o n a l e Bez i ehung 
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/ ( « ! , . . . , a r ) = 0 
z w i s c h e n den W u r z e l n v o n /(x) r i c h t i g b l e i b t . 

B e w e i s : 1.) Wir zeigen zunächst, daß s i ch© überhaupt als 
Permutationsgruppe iß der verschiedenen <xv . . . , a - unter den 
Wurzeln oclt..., <xr darstellen läßt. 

a.) Bei einem Automorphismus A bzgl. K des Wurzelkörpers W 
von f(x) geht nach Satz 105 [96] jede der Wurzeln von f(x) in ein 
konjugiertes Element, also nach Satz 73 [61] wieder in eine Wurzel 
von f(x) über. Da A als eineindeutige Zuordnung verschiedene Ele-
mente in verschiedene überführt, erfahren somit die verschiedenen 
oc j , . . . , a- durch A eine eindeutig bestimmte Permutation P. 

b.) Da W = K(ÄJ txr) = K ^ <x~) ist, wird^. durch P 
erzeugt (Def. 33 [95]), und es entsprechen daher verschiedenen A 
auch verschiedene P. Somit ist die Zuordnung zwischen der Galois-
gruppe © von W und der Menge iß der durch ihre Automorphismen 
bewirkten Permutationen P der oclt..., <%? eineindeutig. 

c.) Da für Automorphismen wie für Permutationen die Multi-
plikation als Nacheinanderausführung erklärt ist, ist bei dieser Zu-
ordnung auch die Isomorphiebedingung (1, Satz 23 [56]) erfüllt. 

Nach a.), b.), c.) ist 9ß eine zu © isomorphe Permutations-
gruppe. 

2.) Wir zeigen jetzt, daß die Permutationen aus iß durch die im 
Satz genannte Eigenschaft charakterisiert sind. 

a.) Daß jede bestehende Relation / (a j , . . . , « , ) = 0 bei An-
wendung der Permutationen aus iß richtig bleibt, ist klar. Denn 
die Anwendung einer solchen kommt nach 1.) der Anwendung des 
durch sie erzeugten Automorphismus aus ® gleich, und hierbei ist 
dies ja nach Def. 32, Zusatz [94] und den Ausführungen zu 1, Def. 7, 
Zusatz [24] der Fall. 

b.) Es sei gemäß Satz 101 [89] fr ein primitives Element von W, 
q(x)= ( x — • • • ( x — # „ ) die zugehörige Galoissche Resol-
vente für f(x) und 

a„ = (v = 1, . . . , r ) , 
# = ?!(«!, . . ., <Xr) . 

Die Galoisgruppe © von W besteht dann nach Satz 105 [96] aus 
den durch die Substitutionen (i = 1 , . . . , n) erzeugten Auto-
morphismen. Ist nun f * 1 ' •'"'»• ^ eine Permutation d e r a , . . . , <x-, 

V i j ) • • •! <Xiy/ 
bei der jede bestehende Relation f(ixv .. .,<xr) = 0 richtig bleibt, 

und werden durch f * 1 ' " ' , ) X t A ,jje ¿ u r c h sie bewirkten Übei-\<xiv . . .,<xifJ 
7 « 
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gänge für die volle Reihe oclt..rxr bezeichnet, so gehen die spe-
ziellen Relationen 

«„= K(h(aV • • ••otr)) (v=l, . . . , f ) , 
g(Ä(a 1 , . . . ,« r ) ) = 0 

bei ihrer Anwendung in die Relationen 
ociv — kr(h(«iv ..., ocir)) (v = 1, . . . , r), 

i ( Ä ( « ö , . . . , « l r ) ) = 0 
über, die somit ebenfalls richtig sind. Wegen der letzteren ist also 
h(oiiv . . ., <xíj) = eins der konjugierten zu so daß wegen der 
ersteren Relationen = fc„(#j) aus otr = kv{&) durch den Auto-

/ ot ,. .., <Xf \ 
morphismus & ->• entsteht. Die Permutation ( ) . . o t i - j 
entspringt daher wirklich gemäß 1.) aus einem Automorphismus 
aus © und gehört mithin zu iß. 

Damit ist Satz 107 bewiesen. Er leistet übrigens vom prak-
tischen Standpunkt aus nicht ebensoviel, wie der auf die Kenntnis 
einer Galoisschen Resolvente von f(x) gestützte Satz 106 [97]. Denn 
die Entscheidung darüber, welche Permutationen die Eigenschaft 
von Satz 107 haben, kann ohne Kenntnis einer Galoisschen Resol-
vente von /(x) i. a. nicht in endlich vielen Schritten getroffen werden. 
Wir vermerken als Folge aus Satz 107 noch: 

Satz 108. I s t / (x ) ein separab les Po lynom vom Grade 
r a u s K und r die Anzahl der ve rsch iedenen u n t e r seinen 
Wurze ln , so is t der Grad n seines Wurze lkö rpe r s W über 
K ein Tei ler von r! (also ers t r e c h t von r!). 

Beweis : n ist nach Satz 105 [96] gleichzeitig die Ordnung der 
Galoisgruppe ® von W. Da nun nach Satz 107 die zu © isomorphe 
Permutationsgruppe iß Untergruppe der symmetrischen Gruppe ©7 
von f Elementen ist, ist nach 1, Satz 25, 58 [59,107] n | f!. 

§ 17. Der Fundamentalsatz der Galoisschen Theorie. 
Der große Nutzen, den die Betrachtung der Galoisgruppe 

© einer separablen normalen Erweiterung N endlichen Grades 
von K bietet, besteht darin, daß nian mit ihrer Hilfe einen 
genauen Einblick in die Struktur des Erweiterungstypus von 
N erhält. Sie ermöglicht es nämlich, die von K zu N führenden 
Bausteine, d. h. die zwischen K und N liegenden Körper, in 
ihren gegenseitigen Beziehungen vollständig zu übersehen, 
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wenn man nur die Struktur von ©, insbesondere die sämt-
lichen Untergruppen von @ in ihren gegenseitigen Bezie-
hungen kennt. Da © eine endliche Gruppe ist, ist das letztere 
eine, wenigstens in jedem konkreten Fall, in endlich vielen 
Schritten zu bewältigende Aufgabe. 

1.) Wir beweisen den folgenden Fundamentalsatz der 
Galoisschen Theorie: 

Satz 109. Es sei N eine separable normale Er-
weiterung vom Grade n über K und © ihre Galois-
gruppe von der Ordnung«. Dann besteht eine ein-
eindeutige Zuordnung zwischen den sämtlichen in 
N enthal tenen Erwei terungskörpern A von K und 
den sämtlichen ((£ enthal tenden 1 ) ) Untergruppen 
ip von ©, die durch jede der beiden folgenden, fü r 
einander zugeordnete A und § geltenden Tatsachen 
(Ia), (Ib) vollständig festgelegt wird: 

(Ia) § besteht aus allen und nur den Automor-
phismen aus ©, die jedes Element aus A in-
var iant lassen. 

(Iaa) § ist also die Galoisgruppe \>on N bzgl. A, 
und daher ist die Ordnung m von § (der Index 
von 6 in §) gleich dem Grade von N über A 
und der Index j von ^ in © gleich dem Grade 
von A über K. 

(Ib) A besteht aus allen und nur den Elementen 
aus N, die bei jedem Automorphismus aus § 
invar iant bleiben. 

Für diese eineindeutige Zuordnung gilt über-
dies, wenn gleich indizierte A und ip einander zu-
geordnet s ind: 

(II) Ist A Erweiterungskörper von A 'vom Grade k 
über A', so ist § Untergruppe von vom In-
dex k in und umgekehrt . 

' ) (5 bezeichnet, wie in I , die identische Untergruppe (Einsgruppe). Bezüglich 
dieses an sich überflüssigen Zusatzes vgl. die angeschlossenen Bemerkungen. 
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(III) Sind A, A k o n j u g i e r t e E r w e i t e r u n g s k ö r p e r 
von K, so sind § k o n j u g i e r t e U n t e r g r u p p e n 
von © und umgekehr t . G e n a u e r : E n t s t e h t A 
aus A durch den A u t o m o r p h i s m u s S, so en t -
s t eh t § aus § durch T r a n s f o r m a t i o n mi t dem 
E l e m e n t S und umgekehr t . 

(IV) I s t A Norma lkö rpe r über K, so i s t § Normal -
te i le r von © und umgekehr t . 

(V) Im Fa l l e (IV) i s t (neben dem in (Iaa) Gesagten) 
die F a k t o r g r u p p e ©/§ i somorph zur Galois-
g ruppe von A bzgl. K, indem die Ausübung 
aller A u t o m o r p h i s m e n einer Res tk l a s se von 
® nach Jp auf die E l emen te aus A immer ein-
und dense lben A u t o m o r p h i s m u s von A bzgl. K 
l ie fe r t . 

Wegen der E i n e i n d e u t i g k e i t der durch (Ia) oder 
(Ib) c h a r a k t e r i s i e r t e n Zuo rdnung is t i n sbesonde re 
die Anzahl der Körper A zwischen K und N endlich. 

Bemerkungen: Zum besseren Verständnis dieses Satzes und 
seines Beweises werde die eineindeutige Zuordnung (Ia), (Ib) durch 
die nachstehende Fig. 1 veranschaulicht, in der auf gleicher Höhe 

stehende Körper und Gruppen einan-
der zugeordnet sein sollen. Speziell 
sind nach (Ia) K und ©, nach (Ib) 
N und © einander zugeordnet1), und 
es entspricht daher immer dem „bzgl. 

>nK" das „in ©" und dem „in N" das 
„bzgl. 6", wie wir es in der Formu-
lierung des Satzes möglichst deutlich 
zum Ausdruck zu bringen versuchten. 
Nach (II) entspricht femer dem „Auf-
steigen" von K zu N das „Absteigen" 
von ® zu @ und den relativen Graden Mg. 1. 

Es ist also nicht, wie man zunächst meinen möchte, N seiner Galois-
gruppe ® zugeordnet. Vielmehr ist £> die G a l o i s g r u p p e von N bzgl. des 
© z u g e o r d n e t e n K, ebenso wie $ die Ga lo i sg ruppe von N bzgl. des 
$ z u g e o r d n e t e n A ist. 
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n, m, j , k der Körper die relativen Indizes n, m, j, k der entspre-
chenden Gruppen, wobei zweckmäßig auch die Ordnungen der 
Gruppen als Indizes (von © in ihnen) aufgefaßt werden. Durch 
(III) und (IV) rechtfertigt sich, wie in der Bern, zu Satz 99, (II.) 
[89] angekündigt, die gleiche Wahl der Benennungen normal 
und kon jug ie r t in Körper- und Gruppentheorie (vgl. jetzt auch 
die Bern, bei Satz 93 [84]). In (III)—(V) kann (analog zu (II)) 
das spezielle zugeordnete Paar K, © durch irgendein zugeordnetes 
Paar A', ersetzt werden *), wie sich durch Anwendung des ganzen 
Satzes auf A' als Grundkörper und (gemäß (Iaa)) als Galois-
gruppe von N bzgl. A' ohne weiteres ergibt (vgl. dazu auch Satz 66, 
70 [56, 69]). Dann erscheint (Iaa) als Spezialfall von (V), indem 
in (V) © und § durch § und © und demgemäß K und A durch A 
und N ersetzt werden können. In der Tat ist ja es 

Tei lbewei s (I). 
Um zu zeigen, daß durch (Ia), (Ib) ein und dieselbe ein-

eindeutige Zuordnung zwischen allen A und allen § ge-
liefert wird, genügt es, folgendes festzustellen: 
( l a ) j edem A i s t g e m ä ß (Ia) e i n d e u t i g e i n ^ z u g e o r d -

net (Beze ichnung A-»-§), 
( l b ) j e d e m ^ i s t gemäß ( I b ) e i n d e u t i g e i n A z u g e o r d -

net (Beze i chnung A), 
(2a) aus f o l g t § - * A , 
(2b) aus f o l g t 
Denn dann ist für die nach (2a), (2b) dasselbe besagenden 
eindeutigen Zuordnungen (la), ( lb ) das Erfülltsein von 1, 
§2, (<5.), (e.) [17] durch (la), von 1, §2, (<5'.), ( e \ ) [17] 
durch ( lb) garantiert. 

(1 a) Das ist klar, weil nach 1, Satz 19 [55] und der Defini-
tion des Automorphismenprodukts (Satz 104 [93]) die 
Menge § derjenigen Automorphismen aus ©, die jedes Ele-
ment aus A invariant lassen, eine Untergruppe von © ist. 

Dabei ist, wie in (Iaa) festgestellt, !Q die Galoisgruppe von 
Fig. 1 entspricht einem solchen Fall, wo dies auch für (III) möglich ist, 

indem A, A konjugiert sogar bzgl. A' und $ konjugiert sogar bzgl. ange-
nommen sind. 
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N bzgl. A (Def. 34 [95]) und daher die Ordnung von § 
gleich dem Grade von N über A (Satz 105 [96]) und der In-
dex von $Q in @ gleich dem Grade von A über K (Satz 71 [59] 
und 1, Satz 25 [59]). 

(1 b) Das ist klar, weil nach 1, Satz 6 [19] und den Be-
dingungen für Automorphismen bzgl. K [Def. 32, (1.), (2.) 
[93] und Zusatz [94]] die Menge A derjenigen Elemente 
aus N, die bei allen Automorphismen aus § invariant bleiben, 
ein K enthaltender Teilkörper von N ist. 

( 2 a ) Sei A-+ § gemäß ( la ) . Dann bilden wir A ge-
mäß ( l b ) und A->-§ gemäß ( la ) . Es gehören dann die 

f Elemente aus A 
1 Automorphismen aus ig, 

. . . , f ( la) bei ,5 invariant sind 1 
weil sie nach i ; T , ' . " T . . !•, 

l ( lb) die Elemente von A invariant lassen J 

nach I 1 zu der Gesamtheit | 0 I aller solchen 
l ( I a ) j 1 § J _ 

fElemente aus N 1 , , . f A ^ A l , 
i , , . f , d. h. es ist < „ - — f . Aus der 
[ Automorphismen aus © J [ § g § J 
ersteren dieser Relationen folgt [N : A] ^ [N : Ä] (Satz 70 
[59]), aus der letzteren dagegen [N : A] ig [N : A], weil 
§ nach (Iaa) die Galoisgruppen von N bzgl. A, sind, deren 
Ordnungen nach Satz 105 [96] gleich den Graden von N 
über A, Ä sind. Somit ergibt sich [N : A] = [N : A], d. h. 
A = Ä (Satz 72 [60]) und nach Wahl von Ä daher A 
gemäß ( lb ) , wie in (2a) behauptet. 

( 2b ) Sei A gemäß ( lb ) . Dann bilden wir A-+ ig ge-
mäß ( la ) . 

Einerseits folgt dann wie eben § ^ Daraus ergibt sich 
für die Ordnungen m, m von § 
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Andererseits bilden wir mittels eines primitiven Elements •& 
von N das Polynom 

tp(x) =(x — &Ai) •••(x— ftAJ, 
wo Av ..., Am die Automorphismen aus § sind. Seine Koef-
fizienten sind symmetrische ganze rationale Funktionen der 
Wurzeln = 1 , . . m ) - Bei Anwendung eines Auto-
morphismus A aus § gehen die in die (ßAß)Ä = ^a^a 
über, erfahren also nur eine Permutation (1, Satz 16 [52]). 
Die Koeffizienten von y(x) sind daher bei allen Automorphis-
men A aus ig) invariant und gehören somit gemäß (Ib) zu A. 
ip(x) ist also ein Polynom in A; es hat # = als Wurzel, 
und sein Grad ist gleich der Ordnung m von .£). Daraus folgt 

[N : A] = [K(0) : A] = [A(0) : A] = [0 : A] ^ m 
(Satz 61, 77 [52, 66], Def. 22 [55], Satz 53_ [43]). Nach 
(Iaa) und Satz 105 [96] folgt aber aus daß [N : A] 
= m ist. Somit ergibt sich 

m^Lm. 
Zusammengenommen folgt also m = m, d. h. § = £), 

und nach Wahl von § daher gemäß (la), wie in (2b) 
behauptet. 

Aus m = [N : A] = [K(#): A] = m folgt übrigens in Hin-
blick auf Satz 77 [66] und Def. 22 [55] noch, daß y>(x) das zu & 
gehörige irreduzible Polynom in A ist. 

Wir bezeichnen nunmehr die eindeutigen Zuordnungen 
( la) , ( lb) , die nach (2a), (2b) in ein und dieselbe einein-
deutige Zuordnung zwischen allen A und allen zusammen-
fallen, durch A «-+ 

T e i l b e w e i s (II). 
a.) Ist A • * - - A ' « — > • § ' und A S i A ' , so lassen nach 

( l a ) die Automorphismen aus § speziell die Elemente des 
Teilkörpers A' von A invariant, gehören also nach ( la ) zu der 
Gesamtheit aller solchen Automorphismen aus ©. Somit 
ist dann § 
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b.) Ist A «--* A' <—• und § fg so bleiben nach 
(Ib) die Elemente aus A' speziell bei den Automorphismen 
aus der Untergruppe § von invariant, gehören also nach 
(Ib) zu der Gesamtheit A aller solchen Elemente aus N. So-
mit ist dann A i ä A'. 

Daß beidemal der Grad von A über A' gleich dem Index 
von § in ist, ergibt sich unmittelbar aus (Iaa), wenn man 
dort A ' , ö ' statt K, © setzt. 

Tei lbeweis (III). 
Dazu bemerken wir zunächst, daß ein Körper A zwischen 

K und N durch einen Automorphismus S von N bzgl. K in 
einen zu ihm bzgl. K isomorphen, also konjugierten Körper 
As zwischen K und N übergeht, wie sich ohne weiteres aus 
Def. 32, Zusatz [94] und Def. 26 [60] ergibt. 

Ist nun A «-> As <—* .<ps und ß ein Element aus A, ßs 

das zugeordnete aus As, so folgt aus ß^ = ß, daß 
I ß ) = ß = ß = ß , 

also ßs bei der zu § konjugierten Untergruppe S-1 § 8 von © 
invariant ist. Somit ist ST1 !qS fS <gs. Da As wegen SST1 = E 
durch S~'1 wieder in A übergeht, folgt ebenso S$$sS~1 

oder auch §s ^ § 8. Somit ist = S"1 § 8, d. h. 
Ag *-* S~1 OqS. Um den Beweis von (III) zu vollenden, haben 
wir also in Hinsicht auf die Eineindeutigkeit unserer Zuord-
nung nur noch festzustellen, daß durch 8~1§ S bzw. Ag alle 
konjugierten zu § in © bzw. A in N repräsentiert werden, 
wenn 8 die Gruppe © durchläuft. 

a.) Für § ist das nach 1, Def. 21 [62] unmittelbar klar. 
b.) Für A ergibt es sich so: Wird A = K(/3) gesetzt, so 

ist As = K(ßs). Durchläuft nun S die Gruppe so 
durchläuft ßs alle konjugierten zu ß (Satz 105 [96]), also 
As alle konjugierten zu A (Satz 97 [86]). 
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Teilbeweis (IV). 
Da nach (III) und wegen der Eineindeutigkeit unserer Zu-

ordnung das Zusammenfallen der konjugierten zu A und das 
Zusammenfallen der konjugierten zu § für ein zugeordnetes 
Paar A *-*• § sich gegenseitig bedingen, ergibt sich (IV) un-
mittelbar aus Satz 99, (II.) [88] einerseits und 1, Satz 31 
[64] andererseits. 

Teilbeweis (V). 
Es sei A Jp und gemäß (IV) A Normalkörper über K, 

§ Normalteiler von ©. Jeder Automorphismus S aus @ be-
wirkt dann wegen A s = A (vgl. Teilbeweis (III)) einen Auto-
morphismus P bzgl. K von A , und da jedes Element von A 
bei § invariant ist, wird so durch alle Automorphismen einer 
Restklasse ¡qS ein und derselbe Automorphismus P von A 
bewirkt. Umgekehrt entspringt jeder Automorphismus P 
bzgl. K von A auf diese Weise aus einen Automorphismus 8 
aus ©; denn ist ß ein primitives Element von A , so ist nach 
Satz 105 [96] ßp eines der konjugierten zu ß, und es existiert 
daher, wiederum nach Satz 105, ein Automorphismus S aus 
der ß in ßp überführt und somit für die Elemente aus A = K(ß) 
den Automorphismus P bewirkt. Hiernach sind den sämt-
lichen Restklassen von © nach d. h. den Elementen der 
Faktorgruppe ©/§ , eindeutig die sämtlichen Elemente der 
Galoisgruppe von A bzgl. K zugeordnet. Diese Zuordnung ist 
dann auch eineindeutig, weil die Ordnung von d. h. der 
Index von § nach (Iaa) gleich dem Grad von A , nach Satz 105 
also gleich der Ordnung der Galoisgruppe von A ist. Schließ-
lich erfüllt die betrachtete Zuordnung nach der Erklärung der 
Restklassenmultiplikation (1, Satz 22 [56]) auch die Iso-
morphiebedingung (1, Satz 23 [56]). Somit ist die Galois-
gruppe von A bzgl. K zur Faktorgruppe isomorph und 
entsteht aus ihr auf die in (V) angegebene Weise. 

Damit ist der Fundamentalsatz vollständig bewiesen. 
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Beachten wir, daß sich bei der in ihm angegebenen einein-
deutigen Zuordnung nach (II) alle Enthaltensein-Relationen 
und daher auch auf solche bezügliche Maximal- und Minimal-
eigenschaften in umgekehrter Folge entsprechen, so erhalten 
wir die folgenden weiteren Eigenschaften jener Zuordnung: 

Satz 110. Is t im Sinne von Satz 109 
Aj. . . . , A r 

und bezeichnet [• • •] den Durchschni t t , {• • •} das 
Kompositum für Körper und Gruppen1) , so gilt 

[A t , . . . , Ar] — . . . , , 
{A„ . . . , Ar] « ..., $r]. 

Insbesondere gilt also nach der bei Satz 62 [52] ge-
machten Bemerkung: 

Zusatz. S ind« x , . . . ,« r Elemente aus N und ist im 
Sinne von Satz 109 

K K ) . . , K(«r) 
so gilt 

K(«!, . . . ,«,) -->- . . 
2.) Die Anwendung des Fundamentalsatzes auf die 

Strukturuntersuchung der Erweiterung N von K ist nach dem 
eingangs Bemerkten so zu denken, daß man aus der als be-
kannt anzusehenden2) Struktur der Galoisgruppe © von N 
bzgl. K Schlüsse über die Struktur von N über K zieht. Um 
so den zu untersuchenden Schri t t von K nach N durch 
Einfügung einer Zwischenkörperkette 

K = A0 < Ax < • • • < As = N 
in eine Folge einfacherer Schri t te zu zerlegen, hat man 
ausgehend von einer Untergruppenkette 

die Ai als die zugeordneten Zwischenkörper zu den Unter-
gruppen ipj zu bestimmen. Das sukzessive Vordringen von 

' ) Vgl. hierzu I, Satz 7 [20], Def. 5 [20], Satz 21 [55], Def. 15 [56], ins-
besondere die im Anschl. an Def. 5 gegebene Charakterisierung von Durch-
schnitt und Kompositum. 

*) Vgl. Satz 106 [97], jedoch auch die Bern, vor Def. 35 [98] und nach 
Satz 107 [100], 
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K nach N ist dann, wenn man die Zwischenstufen A; je als 
neue Grundkörper ansieht, mit einer sukzessiven R e d u k t i o n 
der Galoisgruppe @ von N bzgl. K auf die Untergruppen 
verbunden, die ja nach (Iaa) die Galoisgruppen von N bzgl. 
der Aj sind. Der volle Schritt von K nach N ist zurückgelegt, 
wenn @ vollständig, d.h. auf © reduziert ist. Wählt man ins-
besondere die so, daß Normalteiler von !q. ist, so ist 
nach (IV) A i + 1 Normalkörper über Aj, und die diesem 
Schritt entsprechende Galoisgruppe ist ¡QjiQi+1. 

Um eine Reduktion der Galoisgruppe © von N auf eine 
Untergruppe § im angegebenen Sinne zu leisten, hat man den 
§ zugeordneten Teilkörper A von N zu bestimmen. Dies 
wird zwar durch die Zuordnungsvorschrift (Ib) geleistet, aber 
dadurch allein beherrscht man den Körper A nicht in dem 
Maße, wie etwa durch Angabe eines primitiven Elements ß 
von A. Für ein solches führen wir die folgende Definition ein: 

Definition 36. I s t im S inne von S a t z 109 A 
u n d i s t A = K(/?), d. h. i s t ß ein p r i m i t i v e s E l e m e n t 
des § z u g e o r d n e t e n A, so h e i ß t ß ein zu § gehöriges 
Element aus N. 

Auf die Bestimmung eines solchen ß aus einem primitiven 
Element & von N gehen wir hier nicht ein (siehe darüber 3, § 17, 
Aufg. 4). Wir leiten nur nachstehend eine Reihe von Tatsachen 
her, die in dieser Hinsicht von theoretischer Bedeutung sind. 

Weil natürlich auch umgekehrt j edes Element ß aus N zu 
einer gewissen Untergruppe § von © gehört, nämlich der gemäß 
K(ß) = A <—»• § (eindeutig) bestimmten, so stellen diese Tat-
sachen überdies eine Erweiterung und gruppentheoretische Ver-
tiefung der früher gemachten Aussagen über die konjugierten eines 
algebraischen Elements (Satz 95, 96, 103 [85, 86, 91]) dar. 

Satz 111. U n t e r den V o r a u s s e t z u n g e n von S a t z 
109 sei ß ein zu r U n t e r g r u p p e § von © g e h ö r i g e s 
E l e m e n t aus N, u n d j der I n d e x von § sowie 

@ = ®Si + • • ' + 
die v o r d e r e Z e r l e g u n g von @ n a c h Bei A n w e n -
d u n g der A u t o m o r p h i s m e n S au s @ e n t s t e h t d a n n 
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immer durch al le Automorphismen aus einer R e s t -
k lasse ein und dasselbe k o n j u g i e r t e zu ß, 
und die den j R e s t k l a s s e n $¡)S ,..., igSj e n t s p r e c h e n -
den k o n j u g i e r t e n sind vone inander 

verschieden; oder, wie man kurz sagt , das E l e m e n t 
ß i s t bei § i n v a r i a n t und bei © j -wer t ig . 

Insbesondere i s t also 
(1.) g(x)= (x — ß^) • • • — 

das zu ß gehörige i r reduzib le P o l y n o m in K. 
Beweis : Da gemäß Def. 36 die Elemente von A = K(ß) 

bei den Automorphismen aus § invariant bleiben, gilt speziell 
ß§ = ß und daher ß^s = ßs für jedes S aus Die ßs stellen 
nun sämtliche konjugierte zu ß dar (Satz 103, 105 [91, 96]). 
Weil ferner nach Satz 109 A = K(ß), also ß den Grad j hat, 
gibt es im ganzen genau j verschiedene konjugierte zu ß 
(Satz 96, 58 [86, 47]). Da aber nach dem bereits Gezeigten 
unter den ßs höchs tens die j Elemente ß§Sv(v = 1 , . . j ) 
voneinander verschieden sind, können unter diesen keine 
gleichen mehr vorkommen, was die Behauptung ergibt. 

Satz 111 läßt sich auch umkehren: 
Satz 112. Unter den Vorausse tzungen von Sa tz 

109 sei ß ein bei der Untergruppe § von © vom 
I n d e x j i n v a r i a n t e s , bei © j -wer t iges E l e m e n t aus 
N. Dann ist ß ein zu § gehöriges E l e m e n t . 

B e w e i s : Ist K(/3) = A d. h. ß ein zu gehöriges 
Element, so ist nach (Ia) zunächst § ig ig', weil die Elemente 
aus A = K(ß) nach der Voraussetzung sicherlich bei § in-
variant sind. Ferner ist nach Satz 111 ß bei © j'-wertig, wo 
f den Index von bezeichnet. Gemäß der Voraussetzung 
ist also f = j, d. h. = und somit ß ein zu § gehöriges 
Element, wie behauptet. 

Bemerkenswert sind die beiden Grenzfälle von Satz 111, 
112: 
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Zusatz . U n t e r den V o r a u s s e t z u n g e n von S a t z 
109 i s t e in E l e m e n t ß aus N d a n n u n d nur d a n n ein 
p r i m i t i v e s E l e m e n t von N , wenn es b e i © M-wert ig 
i s t , und d a n n u n d n u r d a n n ein E l e m e n t von K, 
wenn es b e i © 1 - w e r t i g ( i n v a r i a n t ) i s t 1 ) . 

Die in Satz 111 ausgesprochenen Resultate lassen sich 
(nach Satz 94 [85]) auf den in Satz 95 [85] zugrunde gelegten 
Sachverhalt anwenden, wenn wieder (wie schon in Satz 103 
[91]) das irreduzible Polynom f(x), dessen Stammkörper 
A = K ( a ) und Wurzelkörper W = K(txv . . .,ccr) studiert 
werden, als zudem separabel vorausgesetzt wird. Wir be-
weisen in dieser Hinsicht, in Ergänzung zu Satz 95 und 
Satz 103: 

Satz 1 1 3 . E s l i e g e der S a c h v e r h a l t von S a t z 95 
[85] v o r , und es se i ü b e r d i e s )(%) s e p a r a b e l . I s t 
dann 

[ K ( « ) : K ( 0 ) ] = k , [K(ß):K ] = j, 
a l s o 

k j = [ K ( « ) : K ] = r , 
so z e r f a l l e n die zu ß k o n j u g i e r t e n E l e m e n t e 
ßlt...,ßr in j v e r s c h i e d e n e S e r i e n von j e fc e in -
a n d e r g l e i c h e n . 

I n s b e s o n d e r e i s t a l so 
~g(x) = (x — ßl) ''' (x — ßr) 

ein P o l y n o m in K, das m i t dem zu ß g e h ö r i g e n i r r e -
d u z i b l e n P o l y n o m g(x) in K in der B e z i e h u n g s t e h t 

'g(x)=9(xf-
B e w e i s : Wir wenden auf x, und damit auf ß = h(oc), alle 

Automorphismen der Galoisgruppe © von W an. Es sei 
(außer den bereits im Satz eingeführten Gradbezeichnungen 

' ) Diese Tatsachen ergeben sich am einfachsten direkt aus dem im Funda-
mentalsatz festgestellten Zusammenfallen der Zuordnungen ( Ia ) und ( Ib ) , 
wenn man zum Ausdruck bringt, daß K und ® nicht nur (wie schon in den dort 
angeschlossenen Bemerkungen hervorgehoben, trivialerweise) gemäß (Ia) , 
sondern auch gemäß ( Ib) zugeordnet sind, und ebenso N und G nicht nur gemäß 
( Ib ) , sondern auch gemäß ( Ia) . 
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ir, der Körperreihe W ^ K) 
l = [ W : K(<x)], m = [ W : KQS)], w = [ W : K ] , 

also 
Ik = m, mj = n. 

Nach Satz 111 entsteht nun einerseits a u s « durch Anwendung 
von ® 2-mal die Reihe der r verschiedenen zu <x konjugierten 
txv . . .,ocr (Satz 58 [47]) und daher aus ß ebenfalls i-mal die 
Reihe der konjugierten ßlt..., ßr; andererseits entsteht aber 
aus ß durch @ nach Satz 111 m-mal die Reihe der j ver-
schiedenen zu ß konjugierten. Daher muß die (1-mal gesetzte) 

Reihe ßv ..., ßr gerade Tc = y - m a l diese verschiedenen kon-

jugierten repräsentieren, wie behauptet. 
Analog dem Zusatz zu Satz 111, 112 folgt aus Satz 113 

noch: 
Zusatz. E s l i e g e d e r S a c h v e r h a l t v o n S a t z 9 5 [85] 

v o r , u n d es sei ü b e r d i e s f(x) s e p a r a b e l . D a n n i s t 
e in E l e m e n t ß a u s A d a n n u n d n u r d a n n e in p r i m i -
t i v e s E l e m e n t v o n A , w e n n d i e k o n j u g i e r t e n 
ß1,...,ßr a l l e v o n e i n a n d e r v e r s c h i e d e n s i n d , u n d 
d a n n u n d n u r d a n n ein E l e m e n t v o n K, w e n n d i e s e 
k o n j u g i e r t e n a l l e e i n a n d e r g l e i c h s i n d . 

Im Anschluß an Satz 111 stellen wir ferner fest : 
Satz 114. E s sei i m S i n n e v o n S a t z 109 [101] 

A E s sei f e r n e r & ein zu ® g e h ö r i g e s u n d ß 
ein zu § g e h ö r i g e s E l e m e n t a u s N , a l so N = K(#) 
u n d A = K(/?). E s s e i en s c h l i e ß l i c h Av . .., Am d i e 
E l e m e n t e v o n § u n d . . . , igSj d i e v o r d e r e n R e s t -
k l a s s e n v o n © n a c h D a n n g e h ö r e n d ie j k o n j u -
g i e r t e n E l e m e n t e j e zu d e n j k o n j u g i e r t e n 

U n t e r g r u p p e n S^1 SgSv. 
F e r n e r i s t 
(2.) = — - - • — 

zu # g e h ö r i g e i r r e d u z i b l e P o l y n o m a u s A. D a s 
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zu § g e h ö r i g e i r r e d u z i b l e P o l y n o m q{x) au s K be-
s i t z t d ie Z e r l e g u n g 

( 3 . ) q ( x ) = • • • i p i s i x ) , 

wo 
( 4 . ) y ( x ) = ( x - # ) . . . ( x - # ) 

(V = 1, • • j ) . 
D a b e i s i n d die F a k t o r e n y>§S]i(x) die zu ip(x) k o n j u -
g i e r t e n , a l so e b e n f a l l s i r r e d u z i b l e n P o l y n o m e in 
den k o n j u g i e r t e n K ö r p e r n 

V = K t f W z u A -
I s t i n s b e s o n d e r e § N o r m a l t e i l e r von ©, a l so A 

N o r m a l k ö r p e r ü b e r K, so s t e l l t d e m n a c h (3.) d ie 
Z e r l e g u n g v o n q(x) in se ine i r r e d u z i b l e n F a k t o r e n 
(4.) im K ö r p e r A dar . D iese s ind a l so d a n n s ä m t -
l i ch von g l e i c h e m G r a d e und s e t z e n s ich de r Zer-
l e g u n g v o n © n a c h § e n t s p r e c h e n d aus den L i n e a r -
f a k t o r e n von q(x) z u s a m m e n . 

Bewe i s : Die Behauptung über die folgt aus (III). 
Die Behauptung über ip(x) wurde bereits im Teilbeweis (I) 
zu Satz 109 unter (2b) gezeigt. Durch Anwendung der Auto-
morphismen Sv auf Ag = A, f^(x) = ip(x) folgt schließlich, 
daß die (») Polynome aus den sind. 

Ist N der Wurzelkörper eines separablen Polynoms f(x) aus 
K, also q(x) eine Galoissche Resolvente für /(x), so hat man in der 
älteren Literatur für die in Satz 111,114 geschilderten Verhältnisse 
folgende Ausdrucksweise (zu der aber Entsprechendes wie zu 
Def. 31 [90] zu sagen ist): 

Die Galoisgruppe ® des Polynoms f(x) aus K wird durch 
Adjunktion einer zur Untergruppe § (Index j, Ordnung m) ge-
hörigen Irrationalität ß aus N, d. h. bei Zugrundelegung von 
A = K(ß) als Grundkörper, auf § reduziert. Diese Adjunktion 
wird ermöglicht durch Lösung der Resolvente j-ten Grades (1.) 
und bewirkt eine Zerfällung (3.) der Galoisschen Resolvente q(x) in 
irreduzible Faktoren m-ten Grades (4.), die den j konjugierten 

H a s s e , Höhere Algebra. II. 8 
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Körpern zu A = K(ß) angehören. Nach der Adjunktion von ß 
bleibt zur Bestimmung einer Wurzel & der Galoisschen Resolvente 
q(x) noch die Resolvente m-ten Grades (2.), die Galoissche Resol-
vente von f(x) bzgl. A, zu lösen, die sich als der dem Körper A 
entsprechende unter den Faktoren (4.) von q{x) ergibt. Ist ins-
besondere § Normalteiler von ©, so ist A = K(ß) Normalkörper 
über K und die Resolvente (1.) Galoissche Resolvente für sich selbst 
mit der Galoisgruppe ©/.£>. 

Die konjugierten ß z u ß sind zu den konjugierten Unter-
gruppen S¿~1 íqSv von § gehörige Irrationalitäten aus N. Die gleich-
zeitige Adjunktion al ler konjugierten ß.§sv, d. h. a l ler Wurzeln 
der Hilfsgleichung (1.) reduziert somit nach Satz 110, Zusatz [108] 
die Galoisgruppe ® auf den Durchschnitt [6 ' f 1 . . . , S f 1 §6')] 
aller zu § konjugierten Untergruppen, d. h. nach 1, Satz 33 [651 
auf einen Normalteiler von ©, wie es nach Satz 94 [85] und 
Satz 109, (IV) [102] auch sein muß. 

3.) Es sei schließlich bemerkt, daß man den Fundamental-
satz auch zur Strukturuntersuchung einer b e l i e b i g e n (nicht 
notwendig normalen) separablen Erweiterung A endlichen 
Grades von K verwenden kann. Denn ist A = K(«) und sind 

oir, die konjugierten zu <x, so ist A Teilkörper des Nor-
malkörpers N = K(«j, . . . . , otr) über K. Ist dann © dessen 
Galoisgruppe, Jp die A zugeordnete Untergruppe, so stehen 
die Gruppen zwischen @ und § in eineindeutiger Zuordnung 
mit den Eigenschaften von Satz 109 [101] zu den Körpern 
zwischen K und A. Der Beweis von Satz 113 [111] ist ein 
Beispiel für diese Behandlungsweise. 

A. Loewy1) hat des weiteren sogar gezeigt, daß man den 
ganzen Gedankengang der Galoisschen Theorie von vornhere in 
für eine bel iebige endliche separable algebraische Erweiterung 
A = K K , . . . , <xr) (wo also atlt... <xr nicht notwendig die Wurzeln 
eines Polynoms sind), nicht nur für eine normale, durchführen 
kann. An Stelle der Automorphismen und P e r m u t a t i o n e n 
treten dann I somorphismen und sog. T r a n s m u t a t i o n e n (ein-
eindeutige Zuordnungen mit bestimmter Zuordnungsrichtung der 

>) N e u e e l e m e n t a r e B e g r ü n d u n g und E r w e i t e r u n g der G a l o i s -
s c h e n T h e o r i e , Sitzungsber. d. Heidelb. Ak. d. Wiss., Math.-Nat.-Wiss. Kl. 
1925. 
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a l , . . a r zu einem System je konjugierter txlv ,..., arv , vgl. den 
Beweis von Satz 90 [80]), die nicht mehr eine Gruppe, sondern 
ein sog. Gruppoid bilden. Auf diese Weise gelangte Loewy 
übrigens ebenfalls zu einer von dem Satz von den symmetrischen 
Funktionen unabhängigen Begründung der Galoisschen Theorie 
(vgl. die erste Anm. zum Beweis von Satz 90). 

§ 18. Abhängigkeit vom Grundkörper. 
Durch den Fundamentalsatz der Galoisschen Theorie und 

die daran geknüpften Ausführungen wird die Frage beant-
wortet, wie die Struktur einer separablen normalen Erweite-
rung N von endlichem Grade eines Grandkörpers K beein-
flußt wird, wenn man von K zu einer in N e n t h a l t e n e n 
Erweiterung A von K als Grundkörper übergeht. Wir wenden 
uns jetzt noch der Frage zu, wie sich die Verhältnisse gestalten, 
wenn man den Grundkörper K durch eine bel iebige Erweite-
rung K von K ersetzt. Diese Frage entspringt, wie die Be-
trachtungen am Schluß von § 17, aus dem Bestreben, eine 
vorgelegte Erweiterung N der angegebenen Art von K aus 
in möglichst einfachen Schritten zu erreichen oder — und 
darin liegt die Verallgemeinerung gegenüber § 17 — auch nur 
einzufangen. Man hat dabei vornehmlich im Auge, diesen 
Schritten irgendeine allgemeine Einfachheitsbedingung auf-
zuerlegen, die mit dem vorgegebenen N nichts zu tun hat, 
z. B., wie wir es in V durchführen werden, die Bedingung, 

n 
durch Adjunktion von Wurze ln ]/a im speziellen Sinne des 
Wortes zustande zu kommen. 

1.) Ist N der Wurzelkörper W eines Polynoms 
f(x) = (x— • • • ( x — X r ) aus K, so hat man bei Über-
gang zu einer Erweiterung K von K als Grundkörper auch 
den Wurzelkörper W = K ^ , . . . , ocT) von /(x) über K durch 
den erweiterten Wurzelkörper W = K(« x , . . . , ocr) von 
/(x) über K zu ersetzen, und nach Satz 60 [52] ist dann und 

8* 
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nur dann W = W , wenn K ^ W ist, wenn also der Fall des 
vorigen Paragraphen vorliegt. Da nach Satz 100 [89] jede 
Erweiterung N von K der angegebenen Art als Wurzelkörper 
W eines Polynoms f ( x ) aus K darstellbar ist, läßt sich auf diese 
Weise erklären, was unter der B e t r a c h t u n g von N ü b e r 
e ine r E r w e i t e r u n g K von K als G r u n d k ö r p e r zu 
verstehen ist, nämlich der Übergang zu der Erweiterung 
N = W von K. Diese Erklärung scheint zunächst abhängig 
von der Wahl des Polynoms f ( x ) zu sein. Wir beweisen jedoch: 

Satz 115. I s t N e ine s e p a r a b l e n o r m a l e E r w e i t e -
r u n g e n d l i c h e n G r a d e s von K u n d K e ine b e l i e b i g e 
E r w e i t e r u n g von K, so l egen die W u r z e l k ö r p e r 
ü b e r K a l l e r P o l y n o m e aus K, f ü r die N der W u r -
z e l k ö r p e r ü b e r K i s t , s ä m t l i c h ein u n d d i e s e l b e 
s e p a r a b l e n o r m a l e E r w e i t e r u n g N e n d l i c h e n G r a -
des von K f e s t . 

Bewe i s : Es seien 

f ( x ) = (x — oia) • • • ( X — O i r ) , 

j*(x)= (x—oc*) • • • (x—<x*) 
zwei Polynome aus K, für die N der Wurzelkörper über K ist, 
und N, N* die Wurzelkörper für f ( x ) , f * ( x ) über K. Da dann 
N* = . .,0t*,) ^ K ( « * , . . . , « * ) = N = K ( V . . , « , ) 
ist, enthält N* einerseits K, andererseits . . ,,ocr, also auch 
K K , . . . , ocT) = N, d. h. es ist N* ^ N. Ebenso folgt 
N ^ N*. Somit ist N = N*. 

Die demnach von der Wahl des Polynoms f ( x ) unab-
hängige Erweiterung N von K ist natürlich separabel und 
normal von endlichem Grade über K (Satz 100 [89]). 

Die Erweiterung N von K aus Satz 115 ist durch die Eigen-
schaft, Wurzelkörper über K für alle Polynome aus K zu sein, 
für die N Wurzelkörper über K ist, in demselben Sinne ein-
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deutig1) bestimmt, wie der Wurzelkörper eines Polynoms 
gemäß Satz 87, 89 [73, 76], d. h. irgend zwei solche Er-
weiterungen von K sind bzgl. K isomorph, und keine Er-
weiterung von K enthält zwei verschiedene solche Erweite-
rungen. Wir können daher definieren: 

Definition 37. Die durch K, N, K e i n d e u t i g be -
s t i m m t e E r w e i t e r u n g N von K aus S a t z 115 h e i ß t 
die Erweiterung N von K betrachtet über K als Grund-
körper. 

Es ist für uns wichtig, diese Erweiterung N noch auf eine 
andere Weise zu charakterisieren: 

Satz 116. I s t u n t e r den V o r a u s s e t z u n g e n von 
S a t z 115 N die E r w e i t e r u n g N von K b e t r a c h t e t 
über K als G r u n d k ö r p e r , so g i l t : 

1.) N e n t h ä l t N, 
2.) ke in K ö r p e r zwischen K und N a u ß e r N 

s e l b s t e n t h ä l t N. 
N i s t durch 1.), 2.) e i n d e u t i g b e s t i m m t . 
B e w e i s : a.) Daß 1.), 2.) für N gelten, folgt unmittelbar 

aus der zur Definition benutzten Eigenschaft von N sowie 
aus der Minimaleigenschaft der Wurzelkörper (Satz 88 [75]). 

b.) Es habe die Erweiterung N* von K die Eigenschaften 
1.), 2.). Dann enthält N* nach 1.) die Wurzeln <xv .. ,,txr 

jedes Polynoms f(x) aus K, für das N der Wurzelkörper über 
K ist, also auch den Körper N aus Satz 115. Es ist dann also 
N ein Körper zwischen K und N*, der N enthält, und daher 
N = N*, weil 2.) für N* vorausgesetzt ist. 

1) Diese Eindeutigkeit ist wesentlich beingt durch die Normalität von N. 
Für beliebige Erweiterungen endlichen Grades A = K(Ä! , . . <*r), wo <xu . . , ar 

nicht notwendig d i e Wurzeln e i n e s Polynoms aus K sind, würde sich bei Be-
trachtung über K die Unterscheidung der konjugierten zu Ä = K (a a r ) 
notwendig machen. 
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Die Eigenschaften 1.), 2.) besagen, daß N der engste N 
und K enthaltende Teilkörper von N, also das K o m p o s i t u m 
{N, K} ist. 

Da hierbei N selbst als der zum Zustandekommen des Kom-
positums {N, K} = N erforderliche, N und K gemeinsam ent-
haltende Hilfskörper (Körper K von 1, Def. 5 [20]) anzusehen ist, 
kann N nicht von vornherein als das Kompositum {N, K} de-
f i n i e r t werden. Vielmehr wird die Darstellung von N als Kom-
positum {N, K} erst durch die gemäß Satz 115 ausgeführte Kon-
s t r u k t i o n von N ermöglicht, und die bestimmte Ausdrucksweise 
„das Kompositum {N, K}" erst durch die in Satz 115 bewiesene 
eindeutige Bestimmtheit von N allein durch N und K. Wir geben 
diesem logischen Verhältnis, daß die Körper N und K vor der 
gemäß Satz 115 vollzogenen Komposition voneinander „frei", 
d. h. nicht in einer gemeinsamen Erweiterung enthalten sind, im 
Anschluß an Def. 37 wie folgt Ausdruck: 

Zusatz zu Definition 37. D i e im S i n n e v o n S a t z 
115 und Def . 37 v e r s t a n d e n e E r w e i t e r u n g N v o n K, 
b e t r a c h t e t über K als Grundkörper , h e i ß t auch das 
freie Kompositum v o n N und K ( B e z e i c h n u n g 
{N, K}). 

Zum besseren Verständnis sei noch angefügt, daß man das 
freie Kompositum von vornherein als das gewöhnliche Kompositum 
von N und K definieren kann, wenn man von der durch Steinitz 
bewiesenen Existenz und Eindeutigkeit des Körpers A aller alge-
braischen Elemente über K (siehe § 11) Gebrauch macht. Denn 
dann kann dieser Körper A, der auch den Körper A aller alge-
braischen Elemente über K, also insbesondere den Körper N enthält, 
als Hilfskörper für die Komposition von N und K zugrunde gelegt 
werden *). 

') Dasselbe geht dann auch für eine beliebige algebraische Erweiterung A 
von K, und sogar eindeutig, da die „von unten her", d. h. bei freier Komposition 
durch ein Satz 115 verallgemeinerndes Verfahren, nicht zu unterscheidenden 
konjugierten zu A = {A, K} „von oben her", d. b. innerhalb A von vornherein 
unterschieden sind. 
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Die in Satz 116 erhaltene Charakterisierung der Erweite-
rung N von K betrachtet über K als f re ies K o m p o s i t u m 
{N, K} ist für uns deshalb wichtig, weil sie zeigt, daß der 
in Satz 115 und Def. 37 eingehende Grundkörper K in Wahr-
heit nur die Rolle eines Hilfskörpers spielt. Da nämlich in 
Satz 116,1.), 2.) von K gar nicht die Rede ist, gilt: 

Satz 117. I s t N eine s epa rab l e no rmale E rwe i t e -
rung endl ichen Grades von K, K eine E r w e i t e r u n g 
von K und N die E r w e i t e r u n g N von K b e t r a c h t e t 
über K, so is t N auch die E r w e i t e r u n g N von K* 
b e t r a c h t e t über K, wenn K* i rgende inen gemein-
samen Te i lkörper von N und K beze ichne t , über 
dem N sepa rabe l und no rma l von endl ichem Grade 
ist . 

Insbesondere kann also auch der weiteste gemein-
same Teilkörper von N und K, d. h. der Durchschnitt [N, K] 
als Grundkörper angesehen werden, für den ja die erforder-
lichen Bedingungen erfüllt sind (Satz 70,92,93 [59, 83,84]). 
Um weiterhin mit den Bezeichnungen von § 17 in Einklang 
zu kommen, schreiben wir jetzt A statt K, so daß N = {N, A} 
ist, setzen A = [N, A] und veranschaulichen 
die in Betracht zu ziehenden Körper und 
ihre Beziehungen zueinander, in sinngemäßer 
Ausdehnung der in Fig 1 zu Satz 109 [102] 
verwendeten zeichnerischen Veranschau-
lichung, durch die nebenstehende Fig. 2. 
Nach Satz 117 hat dann N die Eigenschaft 
von Satz 115 auch für A als Grundkörper. 
Ferner gilt wegen der Symmetrie des Kom. 
positums {N, A} in N und A : K 

Satz 118. Sind N und Ä separab le 
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n o r m a l e E r w e i t e r u n g e n e n d l i c h e n G r a d e s v o n K, 
so i s t d a s f r e i e K o m p o s i t u m N = {N, A } s o w o h l 
d i e E r w e i t e r u n g N v o n K b e t r a c h t e t ü b e r A a l s 
a u c h d ie E r w e i t e r u n g A v o n K b e t r a c h t e t ü b e r N. 
E s i s t d a n n a l so N s o w o h l ü b e r A a l s a u c h ü b e r 
N s e p a r a b e l u n d n o r m a l v o n e n d l i c h e m G r a d e . 

2.) Wir beweisen nunmehr den folgenden Hauptsatz, der 
unsere eingangs gestellte Frage vollständig beantwortet : 

Satz 119. E s se i N e i n e s e p a r a b l e n o r m a l e E r -
w e i t e r u n g e n d l i c h e n G r a d e s v o n K u n d @ d i e 
G a l o i s g r u p p e v o n N bzg l . K. F e r n e r se i A i r g e n d -
e ine E r w e i t e r u n g v o n K u n d 

N = {N, Ä}, A = [N, Ä ] . 
S c h l i e ß l i c h sei § d i e d e m K ö r p e r A z w i s c h e n K 
u n d N z u g e o r d n e t e U n t e r g r u p p e v o n 

(I) D a n n i s t d i e G a l o i s g r u p p e § v o n N b zg l . A 
i s o m o r p h z u r G a l o i s g r u p p e § v o n N b zg l . A. E s 
l a s s e n s i c h n ä m l i c h d i e A u t o m o r p h i s m e n a u s § 
u n d § e r z e u g e n : 

a.) D u r c h e in u n d d i e s e l b e n S u b s t i t u t i o n e n 
i r g e n d e i n e s p r i m i t i v e n E l e m e n t s # v o n N b zg l . A 
(also speziell eines solchen von N bzgl. K). 

b.) Durch ein und dieselben Permutationen der 
Wurzeln <xu...,«, irgendeines Polynoms <p(x) aus A, 
für das N der Wurzelkörper über A ist (also speziell eines 
solchen aus K, für das N der Wurzelkörper über K ist). 

I n s b e s o n d e r e i s t h i e r n a c h (Fig. 3) 
[ N : Ä] = [N: A ] , 

u n d w e n n A v o n e n d l i c h e m G r a d e ü b e r A i s t , a u c h 
[ N : N ] = [ Ä : A ] . 

(II) O r d n e t m a n d ie K ö r p e r A* z w i s c h e n A u n d 
N u n d d i e K ö r p e r A* z w i s c h e n A u n d N auf G r u n d 
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des u n t e r (I) b e s c h r i e b e n e n I s o m o r p h i s m u s zwi-
schen § u n d § u n d g e m ä ß Sa t z 109 [101] e i n a n d e r 
zu , so i s t da s e ine e i n e i n d e u t i g e Z u o r d n u n g zwi-
schen den A* u n d A*, be i de r d ie ^Relationen „ e n t -

Fig. Fig. i. 

h a l t e n , k o n j u g i e r t , n o r m a l " , sowe i t sie s ich auf 
e i n a n d e r z u g e o r d n e t e K ö r p e r u n d G r u n d k ö r p e r der 
a n g e g e b e n e n A r t b e z i e h e n , e i n a n d e r e n t s p r e c h e n . 
Bei d i e s e r Z u o r d n u n g i s t ü b e r d i e s (Fig. 4) 

A* = [N, A*], _N = {N,Ä*}, 
A = [A*^A], A* = {A*, A}. 

( I I I ) I s t spez i e l l A n o r m a l ü b e r K, so i s t a u c h A 
n o r m a l ü b e r K (aber nicht notwendig umgekehrt). 

T e i l b e w e i s (I). 
a.) r). Es sei d ein primitives Element von N bzgl. A und 

ip(x) bzw. y>(x) das zugehörige irreduzible Polynom aus A 
bzw. A. Dann ist zunächst y>(%) ein Teiler von ip(x) (Satz 53 

') Man vergegenwärtige sich zu diesem Beweis, daß die Elemente von N zu N 
gehören (Satz 116,1 [11?]), also mit denen von K in rechnerische Beziehungen 
gesetzt werden können. Ohne das Vorhandensein einer gemeinsamen Erweite-
rung von N und A wäre das unzulässig. Es könnte dann z. B. das Polynom v{x) 
nicht wie im Text definiert werden. 
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[43]). Da ferner ip{x) in N in Linearfaktoren zerfällt (Satz 93 
[84]; 98 [87]; 99, (III.) [88]), ist %p(x) ein Produkt aus 
gewissen dieser Linearfaktoren, also auch Polynom in N. 
Somit gehört yi(x) sogar zum Durchschnitt A = [N, A]. 
Wegen der Irreduzibilität von ip(x) ist also yj(x)~ y(x). 

Aus Ñ = { N , Ä } = ( A ( 0 ) , Ä } = folgt ferner, 
daß {) auch primitives Element von N bzgl. A ist. 

Hieraus und aus der zuvor bewiesenen Tatsache rj>{x) = ip(x) 
ergibt sich die Behauptung (I) a.) nach Satz 105 [96], 

b.) Ist N der Wurzelkörper von <p(x)= (x — o^) • • • (a; — a r ) 
über A, also N der Wurzelkörper von (p(x) über A (Satz 115,117), 
so werden nach Satz 107 [98] die Automorphismen der Galois-
gruppe § bzw. § erzeugt durch diejenigen Permutationen der ver-
schiedenen unter den <xlt..., <xr, bei deren Anwendung jede be-
stehende ganz-rationale Beziehung x( a i ' • • •> <*r) = 0 bzw. 
x(au ..., <xr) = 0 mit Koeffizienten aus A bzw. A in eine ebenfalls 
richtige übergeht. Die Gruppen iß bzw. dieser Permutationen, 
die zu © bzw. § isomorph sind, sind wegen der durch a.) bewiesenen 
Isomorphie von § und § auch zueinander isomorph, haben also 
insbesondere die gleiche, endliche Ordnung. Da nun die Permu-
tationen aus ip die genannte, auf den Körper A bezügliche Eigen-
schaft a fortiori für den Teilkörper A haben, weil die Relationen 

. . . , OÍt) = 0 unter den Relationen "^(«j , . . . , <xr) = 0 vor-
kommen, ist iß iS ijä und somit nach obigem iß = iß, wie unter 
(I) b.) behauptet. 

Die unter (I) genannten Gradrelationen ergeben sich ohne 
weiteres aus Satz 109, (Iaa) [101], bzw. doppelter Anwendung von 
Satz 71 [59] gemäß Fig. 3. 

T e i l b e w e i s (II). 
Der erste Teil der Behauptung (II) ist nach (I) und Satz 

109 [101] klar. Sei ferner A*, A* ein demgemäß zugeordnetes 
Körperpaar. Wir schließen dann unter Ausnutzung der elemen-
taren Eigenschaften von Durchschnitt und Kompositum so: 

Erstens ist A* = [N, Ä*]. Sind nämlich §* , die 
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A*, A* zugeordneten Untergruppen von Jp, § und •& ein pri-
mitives Element von N bzgl. A, also nach dem Beweis für 
(I) a.) auch von N bzgl. A, so besteht A* bzw. A* nach unserer 
Zuordnungsvorschrift in ( I I ) und nach Satz 109, (Ib) [101] 
aus allen rationalen Funktionen über A bzw. A von die bei 
§ * bzw. § * invariant sind. Nach (I) a.) ist daher A * A*, 
und somit auch A* iS [N, A*]. Da umgekehrt die Elemente 
des Durchschnitts [N, A * ] als solche von N rationale Funk-
tionen von # über A sind und als solche von A* bei ig* in-
variant sind, sind sie nach (I) a.) b e i § * invariant, d. h. es ist 
auch [N, A*] ^ A*. Zusammengenommen ergibt sich also 
A* = [N, X * ] , wie behauptet. 

Zweitens folgt N = (N, A* } trivialerweise aus 

Drittens folgt A = [A*, A] trivialerweise aus 
A ^ [A*, Ä ] ^ J N , Ä ] = A. 

Viertens ist A* = {A* , A}. Aus der zuvor bewiesenen 
Relation A * ^ A* folgt nämlich jedenfalls Ä * ^ {A* , Ä} . 
Wäre nun A* > {A* , A}, so ergäbe die Ausführung der im 
ersten Teil von ( I I ) festgestellten eineindeutigen Zuordnung 
mittels des unter „erstens" bereits als gültig erwiesenen 
Durchschnittsmechanismus auch 

A* = [ N , Ä * ] > [ N , { A * , A } ^ 
während doch trivialerweise A* [N, {A* , A} ] ist. 

Durch die letzteren Nachweise rechtfertigt sich die Art, wie 
in Fig. 4 die Querverbindung zwischen A* und A* gezogen ist. 

T e i l b e w e i s (III) . 

Ist neben N auch A normal über K, so sind die konjugierten 
bzgl. K zu einem primitiven Element des Durchschnitts 
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A = [N,Ä] nach Satz_98 [87]; 99, (III.) [88]; 103 [91] 
sowohl in N als auch in A, also auch im Durchschnitt A ent-
halten. Nach denselben Sätzen ist daher dann A normal über 
K. Damit ist Satz 119 bewiesen. 

3.) Das in Satz 119 unter (I) ausgesprochene Resultat 
besagt im Anschluß an die Ausführungen in § 17, 2.) [108], 
daß die Galoisgruppe © von N bzgl. K durch Übergang zu 
einer be l iebigen Erweiterung A von K als Grundkörper 
ebenso reduziert wird, wie durch Übergang zu dem Durch-
schnitt A = [N, A], d.h. dem in N e n t h a l t e n e n Teil A 
von A. 

Da hiernach die Adjunktion von nicht in N enthaltenen Ele-
menten zu K den Aufbau von N nicht weiter fördert als die Adjunk-
tion von geeigneten in N enthaltenen Elementen zu K, nennt man 
nach K r o n e c k e r die ersteren (soweit über K algebraisch) a k z e s -
s o r i s c h e I r r a t i o n a l i t ä t e n , die letzteren n a t ü r l i c h e Irra-
t i o n a l i t ä t e n für die Erweiterung N von K. Daß man trotz der in 
Satz 119, (I) erhaltenen Ergebnisse bei gewissen Untersuchungen 
akzessorische Irrationalitäten heranziehen muß, liegt daran, daß 
sehr wohl die Adjunktion einer akzessorischen Irrationalität einer 
vorgeschriebenen Einfachheitsbedingung genügen kann, während 
dies für die Adjunktion einer gemäß Satz 119, (I) äquivalenten 
natürlichen Irrationalität nicht der Fall ist. 

Das in Satz 119, (II) ausgesprochene Resultat besagt, daß 
der nach Übergang zu A als Grundkörper zum Einfangen von 
N noch zu machende Schritt von A nach N [vgl. Satz 116, 
2.)] dem Schritt von A nach N in jeder für uns in Frage 
kommenden Hinsicht äquivalent ist, und daß überdies dabei 
jedes im Sinne von Satz 119, (II) einander zugeordnete 
Körperpaar A* und A* die Rollen von A und A übernehmen 
kann. 

Legt man nun in Verallgemeinerung der Ausführungen in 
§ 17, 2.) [108] eine beliebige Erweiterungskette 

(1.) K = A0 < Ä j < Ä2 < • • • < Ä r 
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zugrunde, so entspricht dem eine Kette 
(2.) K = A 0 ^ A ^ - A r ^ N 

von Körpern zwischen K und N, deren Zustandekommen 
wir durch die nachstehende Fig. 5 veranschaulichen. 

Nach der sukzessiven Konstruktion ist dabei 
(3.) N i = { N i = 1 , Äi}, _ Ä f ^ = 2 [ N i - i , A d , 

und es sind die Körper A¿l—1), A|* 2 ) , . . . , A ^ , A j die 
A i ~ 1 ) im Sinne von Satz 119, (II) zugeordneten Teilkörper 
von Ni_ i , N i _ 2 , . . . , Nj, N. 

Aus Satz 119, (III) folgt, daß dabei Af < - 1 ) über Af_ i , 
also nach Satz 119, (II) auch Aj über Ai_ i normal ist, wenn 
Ai über A j _ i normal ist (aber nicht notwendig umgekehrt). 
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Durch sukzessive Anwendung von Satz 119, (II) unter 
Berücksichtigung der Minimaleigenschaft des Kompositums 
(1, hinter Def. 5 [21] oder 2, Satz 116, 2.)) und der Maximal-
eigenschaft des Durchschnitts (1, hinter Def. 5) ergibt sich 
ferner leicht, daß in jedem Parallelogramm unserer schema-
tischen Figur (mag es eine „Grundmasche" sein oder aus 
mehreren „Grundmaschen" zusammengesetzt) der Körper 
links unten der Durchschnitt und der Körper rechts oben das 
Kompositum der beiden Körper links oben und rechts unten 
ist. Insbesondere bestehen also neben den rekursiven Dar-
stellungen (3.) auch die alle Zwischenschritte überschlagenden 
Darstellungen 

(4.) N ^ N . Ä i } , A i = [ N , Ä i ] , 
aus denen nach Satz 119, (I) folgt, daß das sukzessive Auf-
steigen zu den Grundkörpern der Kette (1.) mit einer sukzessi-
ven Reduktion der Galoisgruppe © von N bzgl. K auf die der 
Kette (2.) nach dem Fundamentalsatz zugeordnete Unter-
gruppenkette 

(5.) © = 
verbunden ist. Nach (4.) und den Eigenschaften von Kompo-
situm und Durchschnitt ist dann und nur dann, wenn einmal 
A, = N und damit A r = Nr ist, d. h. wenn gemäß (5.) die 
Galoisgruppe © auf = ® reduziert ist, A r 2 i N, d. h. N, 
wie es als Ziel vorschwebte, durch die Kette (1.) eingefangen. 

Y. Auflösbarkeit algebraischer 
Gleichungen durch Wurzelzeichen. 
Die in IV entwickelte Theorie verdankt ihre Entstehung 

und bildet demgemäß die Grundlage für die Behandlung der 
schon zu Beginn von § 18 erwähnten, berühmten Frage, 
u n t e r welchen Bedingungen eine a lgebra i sche 
Gle ichung durch Wurze lze ichen a u f l ö s b a r ist . 
Deren Beantwortung für Grundkörper der Charakteristik 0 
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ist der vorliegende, letzte Abschnitt gewidmet. Wir präzi-
sieren dazu zunächst die Frage durch die De f in i t i on der 
A u f l ö s b a r k e i t du rch Wurze lze ichen (§ 19), ent-
wickeln sodann als notwendige Hilfsmittel die Theorie der 
K r e i s t e i l u n g s k ö r p e r (§ 20) sowie der re inen und der 
zykl i schen E r w e i t e r u n g e n von P r i m z a h l g r a d (§ 21) 
und leiten darauf durch Anwendung der in IV behandelten 
Galoisschen Theorie ein gruppentheoretisches K r i t e r i u m 
f ü r die A u f l ö s b a r k e i t du rch Wurze lze ichen her 
(§ 22). Schließlich skizzieren wir noch den durch die Galois-
sche Theorie gelieferten Beweis für die auf anderem Wege 
zuerst von A b e l gefundene N i c h t a u f l ö s b a r k e i t du rch 
Wurze lze ichen der a l lgemeinen a lgebra i schen Glei-
chung höheren als v i e r t e n Grades (§ 23). 

In § 20 fügen wir einen kurzen Abriß der Theorie der end-
lichen Körper an und beseitigen dabei insbesondere die in 
dieser Hinsicht im Beweis von Satz 90 [80] noch gebliebene 
Unvollständigkeit. 

§ 19. Definition der Auflösbarkeit durch Wurzelzeichen. 
Wir geben in diesem Paragraphen eine exakte Formu-

lierung dafür, was unter der Ausdrucksweise durch Wurze l -
zeichen a u f l ö s b a r zu verstehen ist. Der aus den Elementen 

n 
geläufige Begriff J/a, wo a ein Element eines Körpers K und 
n eine natürliche Zahl ist, wird dort bekanntlich als Lösung 
der Gleichung xn — a == 0 erklärt. Wegen der hierbei i. a. 

n 

vorliegenden Mehrdeutigkeit wollen wir die Bezeichnung ]/a 
nicht verwenden, operieren vielmehr an Stelle des Wurzel-
zeichens mit der zugehörigen Gleichung: 

Definition 38. Ein Polynom der Form xn — a he iß t 
rein. 

Damit die zu Eingang dieses Abschnitts gestellte Frage nicht 
trivial wird, hat man natürlich neben der in ihr genannten Operation 
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des Wurzelziehens auch die, von diesem Standpunkte aus unter-
geordneten, vier elementaren Rechenoperationen mit in den Kreis 
der zulässigen Operationen aufzunehmen1). Mit einer Wurzel oc 
eines reinen Polynoms gelten dann also auch alle ihre rationalen 
Funktionen über dem Grundkörper K, d. h. alle Elemente von 
K(a) als bekannt. Der Sinn unserer Frage geht aber noch weiter: 
Es wäre unsystematisch, wenn man der Operation des Wurzel-
ziehens nach e i n e m solchen Schritt Halt gebieten wollte. Viel-
mehr ist es vernünftig, weiter auch die Wurzeln reiner, dem so 
erreichten Körper K(<x) angehöriger Polynome als bekannt anzu-
sehen usf. Unsere Frage kommt dann also darauf hinaus, unter 
welchen Bedingungen man die Wurzeln, d. h. den Wurzelkörper 
eines Polynoms / (x) aus K oder allgemeiner irgendeine Erweiterung 
A von K durch von K ausgehende s u k z e s s i v e 2 ) Adjunktion von 
Wurzeln reiner Polynome erreichen oder einfangen kann. Hieraus 
ergibt sich leicht eine Reduktion bezüglich der in Betracht zu 
ziehenden Wurzelzeichen: Ist nämlich x" — a ein reines Polynom 
aus K von zusammengesetztem Grade n = n-^n^ und « eine seiner 
Wurzeln, so ist a"' = o^ eine Wurzel des reinen Polynoms xn'- — a 
aus K und weiter oc eine Wurzel des reinen Polynoms xn* — tx1 aus 
K(« j ) . Somit kann man sich auf die sukzessive Adjunktion von 
Wurzeln reiner Polynome von Primzahlgrad beschränken. J e nach 
Geschmack kann nun hierbei noch die Einschränkung hinzugefügt 
werden, daß diese Polynome in dem jeweils erreichten Körper 
irreduzibel sein sollen oder nicht. Da die irreduziblen Polynome 
die einfachsten Bausteine für die Konstruktion algebraischer Er-
weiterungen sind, erscheint es theoretisch richtiger, diese Be-
schränkung aufzunehmen3). Wir definieren demgemäß: 

* Definition 39. E i n e Erweiterung A von K h e i ß t 
rein über K, wenn sie durch A d j u n k t i o n e iner 
W u r z e l e ines i r r e d u z i b l e n re inen P o l y n o m s aus K 
h e r l e i t b a r is t . 

Sonst wären eben nur die reinen Gleichungen durch Wurzelzeichen auf-
lösbar. 

Nicht nur durch s i m u l t a n e . Das besagt liier (anders als bei Satz 62 [52]) 
mehr, denn ¡x kann sehr wohl Wurzel eines reinen Polynoms aus einer Erweite-
rung K von K sein, ohne doch Wurzel eines reinen Polynoms aus K zu sein. 

3) Tatsächlich ist die in Satz 127 [144] gegebene Antwort auf unsere Frage (für 
Grundkörper der Charakteristik 0) von dieser Beschränkung unabhängig, wie sich 
aus den späteren Sätzen 123,126 [137. 141] leicht ergibt. Gerade in Hinsicht 
auf Satz 126 erscheint es mir aber richtiger, die Irreduzibilität zu fordern, da 
die „gröbere" Fragestellung an der algebraisch interessanten „feineren" Struktur 
der Kreisteilungskörper ganz vorbeisieht. 
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•Definition 40. Eine Erweiterung endlichen Grades 
A von K heißt durch Wurzelzeichen auflösbar über K, 
wenn eine Erwei terungsket te 

K = 7 \ 0 <7 \ j_< •• • < Ä f m i t Ä r ^ A 
exist ier t , in der Aj rein und von Primzahlgrad 
über A¿_i ist. 

Ein Polynom f(x) aus K heißt durch Wurzelzeichen 
auflösbar über K, wenn sein Wurzelkörper über K es ist. 

§ 20. Kreisteilungskörper. Endliche Körper. 
Um die Frage nach der Auflösbarkeit durch Wurzelzeichen 

behandeln zu können, haben wir die Theorie des speziellen reinen 
Polynoms xn — e vorauszuschicken, dessen Wurzeln im Falle 
des rationalen Grundkörpers P, wenn man sie gemäß dem sog. 
Fundamentalsatz der Algebra als komplexe Zahlen darstellt, 
die Teilung der Peripherie des Einheitskreises in n gleiche 
Teile leisten. In Hinsicht auf unsere Anwendungen wollen wir 
uns hier nicht auf diesen Spezialfall P beschränken, sondern 
allgemeinere Grundkörper K zulassen, nennen aber in An-
lehnung an jenen Spezialfall auch allgemein xn — e = 0 die 
Kreisteilungsgleichung und ihren Wurzelkörper Tn den 
Kreisteilungskörper für n über K. Über die Wurzeln der 
Kreisteilungsgleichung für n über K, die sog. m-ten Einheits-
wurzeln über K, beweisen wir dann zunächst den folgenden 
Satz: 

Satz 120. Es sei K ein Körper, dessen Charakte-
rist ik 0 oder eine nicht in w aufgehende Primzahl 
ist. Dann bilden die n-ten Einheitswurzeln über K 
bezüglich der Mult ipl ikat ion eine zyklische Gruppe 
3 der Ordnung n. Es existieren also n verschiedene 
w-te Einheitswurzeln über K, die sich als die Po-
tenzen 

Hasse , Höhere Algebra. II. 9 
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einer u n t e r i hnen , e iner sog. primitiven n-ten Ein-
heitswurzel C> da r s t e l l en lassen. 

Beweis: Es seien f j , . . d i e Wurzeln von fn(x) = off1—e. 
Dann ist die Ableitung 

W = » 1 ^ = 1 = 0 (¿ = 1 , . . . , » ) , 
weil natürlich Ci =4= 0> a^so nach der Voraussetzung über die 
Charakteristik von K dann auch 14= 0 ist (Satz 43 [37])_ 
Nach Satz 56 [46] sind also die n Wurzeln C4 voneinander 
verschieden. Da ferner aus £* = e, f" = e folgt (££k)n = e, 
bilden die n verschiedenen n-ten Einheitswurzeln eine abel-
sche Gruppe 3 der Ordnung n (1, Satz 20 [55] angewandt 
auf die multiplikative Gruppe der Elemente =j= 0 des Kreis-
teilungskörpers T„). 

Nach Satz 34 [32] hat dann jedes Element von 3 einen 
bestimmten Teiler wi; von n als Ordnung. Es sei nun £ ein 
Element aus 3 von möglichst hoher Ordnung m. Wir haben 
zu zeigen, daß m = n ist, woraus ja folgt, daß die n Potenzen 

. . 1 verschieden sind und somit die Gruppe 3 er-
schöpfen. Sei dazu p eine beliebige Primzahl und werde (gemäß 
Satz 12, 22 [14, 22]) 

m - - p^m, rrii = p^räi mit (m, p) = 1, (m;, p) = 1 
gesetzt. Dann haben offenbar ^ d i e Ordnungen p l , m, 

also nach Satz 35 [32] v'x die Ordnung p%m. Wegen der 
Maximalauswahl von m ist somit p^m ' i p"m, d. h. (ii ^ ¡i. 
Es enthält also mj jede Primzahl p höchstens in der Potenz, 
in der p in m vorkommt, d. h. es ist m» | m (Satz 20 [22]) 
und somit tm = e. Die n verschiedenen n-ten Einheitswurzeln 
^ sind also sämtlich Wurzeln des Polynoms m-ten Grades 
xm — e. Daraus folgt m~2in (Satz 48 [41]), was mit m \ n 
zusammen m = n und damit unsere Behauptung ergibt. 

Nach Satz 37 [34] (vgl. auch das zu Satz 31 [30] Ge-
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sagte) haben wir noch ohne weiteres: 
Zusatz. I s t £ eine primit ive n- te Einheitswurzel 

über K, so sind alle und nur die Potenzen £m , die 
den (p(n) primen Restklassen m mod. n entsprechen, 
ebenfalls primitiv. 

Hierauf beruht die in folgendem Satz enthaltene Be-
stimmung der Galoisgruppe des Kreisteilungskörpers T„: 

Satz 121. I s t K ein Körper wie in Satz 120 und £ 
eine primit ive n-te Einheitswurzel über K, so ist 
das Polynom 

9n(x)^nn(x-cm), 
m=* 0 

(m, n)=l 
dessen Wurzeln die <p(n) verschiedenen primitiven 
Einheitswurzeln sind, ein Polynom in K. I s t 

gn(x) = U ( x - n m 

der zu £ gehörige irreduzible (nach Satz 59 [48] 
separable, nach Satz 99, (III) [88] normale) F a k t o r 
von gn(x), so repräsentieren diem eine Untergruppe 
9ßn der primen Restklassengruppe 9ßn mod. n. Die 
Galoisgruppe ©n des (separablen, normalen) Kreis-
tei lungskörpers T„ ist dann zu dieser Gruppe 
isomorph auf Grund der Zuordnung des durch 
£-*£ m erzeugten Automorphismus von Tn zu der 
Restk lasse m mod. n. 

Insbesondere ist also T„ abelsch (Def. 34 [95]) 
und ferner der Grad von T n über K ein Teiler von 
<p(n) (Satz 105 [96]). 

Beweis: a.) Da nach Satz 107 [98] ein Automorphismus 
von T„ bzgl. K einerseits die n verschiedenen Wurzeln £,; von 
xn — e nur untereinander vertauscht, andererseits deren 
Potenzdarstellungen £ i = £ ,—1 invariant läßt, geht £ durch ihn 
wieder in eine primitive n-te Einheitswurzel über, so daß auch 

9* 
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die <p(n) verschiedenen primitiven w-ten Einheitswurzeln 
durch ihn nur untereinander vertauscht werden. Hiernach 
sind die Koeffizienten von g (a;) bei allen Automorphismen 
von T„ bzgl. K invariant und gehören somit zu K (Satz 112, 
Zusatz [111]). 

b.) Da T„ = K ( t ° , . . £ n - 1 ) = K(C), also eine primitive 
H-te Einheitswurzel über K gleichzeitig auch primitives Ele-
ment von Tn bzgl. K ist, können (Satz 105 [96]) die Auto-
morphismen von T„ bzgl. K durch die ihnen entsprechenden 
Substitutionen von £ beschriebenw erden. Hat also gn(x) die 
Bedeutung aus dem Satze, so wird die Galoisgruppe ©„ von T„ 
bzgl. K durch die Substitutionen £ - *£ m dargestellt, und ihre 
Elemente sind hierdurch der Menge der durch die m reprä-
sentierten primen Restklassen mod. n eineindeutig zu-
geordnet. Da nun £-• £"" und £->-£"" nacheinander ausgeführt 
£—>• (C'p = C"11"1' ergeben, kommt bei dieser Zuordnung die 
Multiplikation in ©„ auf die Multiplikation der Restklassen in5ß„ 
hinaus. Daher ist diese Zuordnung isomorph und eine zu 
©n isomorphe Untergruppe von 9ßre. 

Bei der Untersuchung der Auflösbarkeit durch Wurzel-
zeichen spielen gemäß Def. 40 [129] die Einheitswurzeln von 
Primzahlordnung n = p eine besondere Rolle. Wir beweisen 
für diesen Fall in Erweiterung des Satzes 121: 

Satz 122. Es sei p eine Pr imzahl und K ein Kör-
per mit von p verschiedener Charakter is t ik . Dann 
ist der Kreis te i lungskörper Tp zyklisch über K von 
einem in p — 1 aufgehenden Grade. 

Beweis: Nach Satz 121 ist der Grad vonT p über K ein 
Teiler von <p(p) und die Galoisgruppe ©p von T p bzgl. K 
isomorph zu einer Untergruppe der primen Restklassen-
gruppe Nun bilden die Restklassen mod. p nach Satz 28 
[27] sogar einen Körper, den Primkörper Pp (Def. 13 [35], 



20. Kreisteilungskörper. Endliche Körper. 133 

Satz 41 [36]). Die <p(p) Elemente von sind dann die 
p — 1 von Null verschiedenen Elemente von Pp (Satz 17 [20]) 
und sind als solche Wurzeln der Kreisteilungsgleichung 
zP- i — e ^ O (Satz 29 [29]), also die sämtlichen (p — l)-ten 
Einheitswurzeln über Pp. Nach Satz 120 [129] bilden sie 
somit bezüglich der Multiplikation eine zyklische Gruppe. 
Daher ist nach Satz 36 [33] also auch die Untergruppe 
f P, d. h. & p zyklisch und also Tp zyklisch über K (Def. 34 [95]) 
von einem in p — 1 aufgehenden Grade. 

Trivialerweise folgt übrigens aus Satz 44 [37]: 
Zusatz. Hat K die Charakter is t ik p, so ist 

xv — e={x — e f , also e die einzige p-te Einheitswurzel 
über K, und Tp = K. 

Es ist bemerkenswert, wie die abstrakte Körpertheorie, 
durch die ohne weitere Schwierigkeiten mögliche Ausdehnung 
des in der Zahlentheorie gewöhnlich nur für den Grundkörper 
P bewiesenen Satzes 120 [129] auch auf Pp, auf einfachste 
Weise zu dem Schluß führt, daß die prime Restklassengruppe 

zyklisch ist, oder, wie man in der Zahlentheorie sagt, daß 
eine primitive Wurzel mod. p existiert, nämlich eine solche 
ganze Zahl r, daß für jedes zu p prime ganze m eine Potenz-
darstellung 

m= r? mod. p {¡j, = 0 , . . . , p — 2) 
besteht. 

Wir fügen noch eine Bemerkung über den Spezialfall des Kreis-
teilungskörpers Tp über dein rationalen Grundkörpei* P an. Mit 
zahlentheoretischen Hilfsmitteln (Eisenstein-Schönemann-
scher Satz, siehe 3, § 20, Aufg. 6) zeigt man, daß das Polynom 

gJx) ^ s x " - 1 + x" - 2 + • • • + x + 1 p x — 1 
aus Satz 121 in P irreduzibel ist, also Tp den Grad <p{p) = p — 1 
über P hat. Ist nun p — 1 = 2'' (v 0) eine Potenz von 2, so 
kann nach Satz 109 [101] Tp von P aus durch sukzessive Adjunktion 
quadratischer Irrationalitäten erreicht werden, weil dann die nach 
Satz 122 zyklische Galoisgruppe von Tp bzgl. P die Ordnung 2" 
hat und folglich nach Satz 36 [33] eine Untergruppenkette 
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derar t besitzt, daß Untergruppe vom Index 2 von ist . K a n n 
umgekehr t ~TV von P aus durch sukzessive Adjunkt ion quadra-
tischer Irrat ional i tä ten erreicht (oder auch nur eingefangen) werden, 
so enthäl t die Gruppe @ nach den Ausführungen in § 17, 2.) [108] 
und § 18, 3.) [124] eine Untergruppenket te der eben beschriebenen 
Art1) , und somit ist dann ihre Ordnung p — 1 eine Potenz von 2. 
Daraus ergibt sich das berühmte 

Resul ta t von Gauß. D a s r e g u l ä r e p - E c k f ü r e i n e 
P r i m z a h l p i s t d a n n u n d n u r d a n n m i t Z i r k e l u n d 
L i n e a l k o n s t r u i e r b a r , w e n n p e i n e P r i m z a h l v o n d e r 
F o r m 2" + 1 i s t . 

Man weiß bis heute nicht, ob die mi t p = 2, 3, 5 , 17 , 257, 65537 
beginnende Folge der Primzahlen dieser Form abbricht oder nicht. 
(Siehe hierzu auch 3, § 20, Aufg. 14 .15. ) 

Auf analoge Weise werden wir aus Satz 122 im nächsten Para-
graphen als das hauptsächlichste Ziel der Digression dieses Para-
graphen die Auflösbarkeit von Tp durch Wurzelzeichen über be-
s t immten Grundkörpern K folgern. 

Auf Grund von Satz 120 [129] kann je tz t mi t Leichtigkeit 
gegeben werden: 

Kurzer Abriß der Theorie der endl ichen Körper. 
A. Wir haben bereits endliche Körper , d. h. solche aus nur 

endlich vielen Elementen, kennengelernt, nämlich fü r jede Prim-
zahl p den Pr imkörper Pp (Restklassenkörper mod. p) aus genau 
p Elementen (§ 4). 

Sei jetzt E ein beliebiger endlicher Körper. Dann ist auch der 
in E enthal tene Pr imkörper endüch, also nicht zum rationalen 
Zahlkörper isomorph. Daher gilt (Satz 41 [36]): 

(I) D i e C h a r a k t e r i s t i k v o n E i s t e i n e P r i m z a h l p. 
Nach dem im Anschluß an Satz 41 Gesagten kann dann E 

als Erwei terung des Pr imkörpers Pp angesehen werden. Trivialer-
weise ist dabei E von endlichem Grade über Pp (Def. 25 [57]). 
Aus der eindeutigen Darstel lung <% = a1tx1 + • • • + am<xm der Ele-
mente ot aus E durch eine Basis oclt..., cxm von E bzgl. Pp mi t 
Koeffizienten alt..., am aus Pp folgt dann : 

( I I ) I s t [ E : P p ] = m, so h a t E g e n a u pm E l e m e n t e . 
Wir verallgemeinern je tz t die fü r den Pr imkörper Pp selbst im 

Beweis zu Satz 122 angewandte Schlußweise auf E. Die multi-
plikative Gruppe der von Null versclriedenen Elemente von E 
(1, § 6, Beisp. 1 [53]) h a t nach ( I I ) die Ordnung pm — 1. Diese 

>) Für den allgemeinen Fall des Einfangens siehe den ausführlichen 
Beweis zu dem späteren Satz 127. Teil a)f Änm. 1 [145]. 
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pm — 1 von Null verschiedenen Elemente genügen daher der Glei-
chung xpm~~1 — e =s= 0 (Satz 34 [32]), sind also die sämtlichen 
(pm— l)-ten Einheitswurzeln über Pp, und daher ist die aus ihnen 
gebildete Gruppe zyklisch (Satz 120): 

(III) I s t [ E : P p ] = m, so is t E der Kre i s t e i l ungs -
kö rpe r T p m ^ über Pp. 

Die von Nul l ve r sch iedenen E l e m e n t e von E sind 
die Wurze ln der Gle ichung xp ~1 — e i O , die sämt l i chen 
E l emen te von E also die Wurze ln der Gle ichung 
xpW—x = Q. 

In E ex i s t i e r t ein p r im i t i ve s E l e m e n t g d e r a r t , daß 
die pm—1 von Nul l ve r sch iedenen E l e m e n t e von E 
als die Po t enzen 

e° = e, e\...,QPm-2 
d a r s t e l l b a r sind. 

Umgekehrt gilt: 
(IV) F ü r bel iebiges m i s t der Kre i s t e i l ungskö rpe r 

Tptn_1 über Pp ein endl icher Körpe r mi t [Tpm_i:Pj,] = »». 
Denn T ist als Erweiterung endlichen Grades des endlichen 

Körpers Pp (Satz 83 [70]) selbst ein endlicher Körper (Def. 25, 
Zusatz [57]). Dieser hat genau pm Elemente; seine Elemente 
werden nämlich bereits durch Null und die pm — 1 Wurzeln von 
xvm—l— ^ (1. Ii. durch die pm Wurzeln von xpm—x erschöpft; denn 
diese pm Wurzeln bilden bereits einen Körper, weil aus oJ'm = <x, 
ßpm = ß nicht nur (wie im Beweis zu Satz 120) folgt <aßfm = aß 

/<x\pm 

und (falls ß 4= 0) =°ß' s o n d e r n n a c h Satz 44 [37] auch 

(a ± ßfm = oc±ß. Nach (II) folgt daher p [ T p n L 1 : PP] = pm, 
d. h. in der Tat [T : Pp] = m. 

Da durch die Elementanzahl pm die Charakteristik p und der 
Grad m eindeutig bestimmt sind, gilt nach (III) und (IV): 

(V) F ü r jede E l e m e n t a n z a h l der Form pm g ib t es 
genau einen endl ichen K ö r p e r t y p u s , näml ich den 
Kre i s t e i l ungskö rpe r T »»_! ü b e r P . 

Ferner gilt: 
(VI) Die Te i lkörper von Tp»>—i sind alle und nur die 

Körper T p / i _ j mi t n \ m , und es is t dabei 

[T pm_i: T ^ ^ ] = --. 
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Denn einerseits ist, wenn T ^ ^ g j Tp»»_i ¡st, nach Satz 71 [59] 
fn 

<« = = Pp] I [Tpm- i : P J = und [T : T / 1_1] = -- • 
Andererseits ist, wenn ^ | m ist und dementsprechend m = p/i' 
gesetzt wird, 

p m _ l = p « ' ' _ l = (p" —1) (p^i" ' -1) + • • • + ^ + 1), 
also p*1 — 1 | p m — 1, und daher T p i i _ 1 T p m _ 1 , da dann die 

— l)-ten Einheitswurzeln unter den (pm — l)-ten vorkommen. 
Durch (V) und (VI) ist eine vollständige Übersicht über alle 

endlichen Körpertypen und ihre gegenseitigen Beziehungen ge-
wonnen. 

B. Sei jetzt E = T m _ j ein endlicher Grundkörper und H eine 
endliche Erweiterung von E. Trivialerweise ist dann zunächst H 
von endlichem Grade n über E (Def. 25 [57]) und daher wieder 
ein endlicher Körper (Def. 25, Zusatz [57]), der nach (VI) die 
Form H = T p m n _ 1 hat. Ist dann q ein primitives Element von H 
im Sinne von (III), so ist g erst recht primitives Element im Sinne 
von Def. 19 [52] von H bzgl. jedes Teilkörpers. Also: 

(VII) H i s t e i n f a c h übe r E. 
Hiermit ist die im Beweis von Satz 90 [80] zurückgebliebene 

Unvollständigkeit beseitigt. 
Da die Charakteristik p von H in der Ordnungszahl pm" — 1 

der Einheitswurzeln, die H bilden, nicht aufgeht, gilt ferner nach 
dem in Satz 121 [131] Bemerkten: 

(VIII) H is t s e p a r a b e l übe r E. 
Schließlich gilt nach Satz 94 [85]: 
(IX) H i s t n o r m a l über E. 
Daher sind die Sätze der Galoisschen Theorie auf die Er-

weiterung H von E anwendbar. Wenn auch eine Übersicht über 
die Körper zwischen H und E durch (VI) bereits ohne Verwendung 
der Galoisschen Theorie gewonnen ist — es sind alle und nur die 
T p m v _ i mit v | ii —, so interessiert doch theoretisch die Fest-
stellung: 

(X) H is t zyk l i s ch über E. 
Die G a l o i s g r u p p e von H bzgl. E b e s t e h t n ä m l i c h 

aus den P o t e n z e n des A u t o m o r p h i s m u s 
A\a.-+oPm f ü r j edes <x aus H, 

m i t A" = E, d .h . aus den n A u t o m o r p h i s m e n 
A:a -+oipm" f ü r j edes tx aus H (v = 0,1,..., n — 1). 
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Nach Satz 44 [37] [siehe auch schon die Schlußweise im 
Beweis zu (IV)] sind das nämlich in der Tat Automorphismen von 
H, bei denen jedes Element von E als Wurzel von xpm—x in-
variant bleibt, also Automorphismen von H bzgl. E. Diese n 
Automorphismen von H bzgl. E sind ferner voneinander ver-
schieden, weil für ein primitives Element Q von H (im Sinne von 
(III)) die sämtlichen Potenzen Q1 (i = 1 , . . . , pmn — 1), also ins-
besondere die n Potenzen Qpmv (v — 0 , 1 , . . . , n — 1) voneinander 
verschieden sind. Also sind es alle n = [ H : E] Automorphismen 
der Galoisgruppe von H bzgl. E (Satz 105 [96]). 

§ 21. Reine und zyklische Erweiterungen von Prim-
zahlgrad. 

Zur Behandlung der Frage nach der Auflösbarkeit durch 
Wurzelzeichen haben wir den speziellen Entwicklungen des 
vorigen Paragraphen noch die Theorie der irreduziblen reinen 
Polynome von Primzahlgrad an die Seite zu stellen, auf die 
sich ja die Def. 40 [129] der Auflösbarkeit durch Wurzelzeichen 
stützt. Wir beweisen zunächst den folgenden Satz über die 
Irreduzibilität eines reinen Polynoms von Primzahlgrad: 

Satz 123. E s sei p e i n e P r i m z a h l u n d xp— a e in 
r e i n e s P o l y n o m m i t a=j=0 a u s K. D a n n e n t h ä l t de r 
W u r z e l k ö r p e r W d i e s e s P o l y n o m s d e n K r e i s t e i -
l u n g s k ö r p e r TP ü b e r K, u n d es s i n d n u r d ie f o l g e n -
d e n b e i d e n F ä l l e m ö g l i c h : 

a.) v? — a h a t e i n e W u r z e l in K, d. h. a i s t e ine 
p - t e P o t e n z in K. D a n n i s t xP — a r e d u z i b e l in K 
u n d W = T„. 

b.) s? — a h a t k e i n e W u r z e l in K, d. h. a i s t k e i n e 
p - t e P o t e n z in K. D a n n i s t & — a i r r e d u z i b e l in K 
u n d s o g a r in T p , u n d ü b e r d i e s n o r m a l ü b e r T p , 
a l so W r e i n v o m G r a d e p ü b e r TP . 

B e w e i s : Es s e i e n « ! , . . ,,ocP die Wurzeln von x'p — a und 
« eine von ihnen. Aus a? = a folgt dann, weil a 4= 0, also 
auch (* 4= 0 ist. 
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X \r 0? iXP X X Xr, 
- e = 

V « / OiP Oi Ot 
x oCjN Ix «p\ 

> cn ex, 1 \ oc oc } 
Nach dem Einsetzungsprinzip (1, Satz 12 [40], angewandt 
auf I [x'] mit I = W[a;] und die Einsetzung x' — ax) darf 
hierin ixx für x gesetzt werden, so daß 

(x— — ) • • • (x — 

\ (XI \ <x 

resultiert. Die Quotienten — sind also die p-ten Einheits-
oc 

wurzeln über K, d. h. es ist W ^ Tp. Ist ferner £ eine primitive 
p-te Einheitswurzel (Satz 120 [129]; — falls K die Charakte-
ristik p hat, f = e [Satz 122, Zusatz]), so gilt bei geeigneter 
Reihenfolge 

oit = f l « (i = 1 , . . . , p). 
a.) Liegt nun « in K, so liegen hiernach die «i in Tp , d. h. 

es ist W Tp und somit nach obigem W = T,,. 
b.) Liegt aber keins der « in K, und wäre dann 

h(x)=x'-\ h«0 ( l ^ r ^ p —1) 
ein irreduzibler Faktor von xP — «in K, so hätte £ a0 als Pro-
dukt von gewissen v Faktoren a ; eine Darstellung 

+ a0 = fo?. 
Wird nach Satz 14, 17 [18, 20] vv' = 1 + kp gesetzt, so 
folgte wegen ocp = a 

( ± 0») = f « « , 

so daß wegen a 4= 0 die Wurzel tx„' = « = ¡.° 
a" 

doch in K läge. Also ist dann xP — a irreduzibel in K und 
somit K(«) vom Grade p über K. Wird nun in den gemachten 
Schlüssen h(x) als irreduzibler Faktor von xp — « i n Tp ange-
nommen, so folgte, daß oc und somit K(«) in T p enthalten 
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wäre. Tp hätte also ein Multiplum von p zum Grade über K, 
während doch nach Satz 121 [131] dieser Grad ein Teiler von 
p — 1 ist. Somit ist dann xP — a auch in Tp irreduzibel und 
nach Satz 99, (III.) [88]) überdies normal über Tp, also nach 
Satz 99, (I.) W = Tv{oi) und daher rein vom Grade p über 
Tp (Def. 39 [128]). 

Für die Frage nach der Auflösbarkeit durch Wurzelzeichen 
hat uns naturgemäß der Fall b.) des Satzes 123 besonders zu 
interessieren. Wenn K die Charakteristik p hat, ist dann 
& —a ein inseparables irreduzibles Polynom (Def. 17 [47]). 
Seine einzige Wurzel ot ist p-fach. Im Sinne unserer durch-
gängigen Beschränkung auf separable Erweiterungen schließen 
wir diese Möglichkeit im folgenden aus, indem wir bei der Be-
trachtung reiner Erweiterungen vom Primzahlgrad p die 
Charakteristik von K als von p verschieden voraussetzen. 
Dann ist xP — a (und allgemeiner jedes irreduzible Polynom 
aus K vom Grade p) a fortiori separabel (Def. 17). 

Ferner ist xP — a im Falle b.) i. a. nicht über K, wohl aber 
über Tp normal, so daß es für die beabsichtigte Anwendung 
zweckmäßig erscheint, vor der Adjunktion einer Wurzel eines 
reinen Polynoms xp •— a vom Primzahlgrad p jeweils erst eine 
primitive p-te Einheitswurzel £ zu K zu adjungieren, also 
zunächst zu dem erweiterten Grundkörper K = K(£) = Tp 
überzugehen, der mit dem Körper Tp = {Tp, K} (Def. 37, 
Zusatz [118]) der p-ten Einheitswurzeln über K zusammen-
fällt. 

In dieser Hinsicht ist der nachstehende, aus Satz 123 ohne 
weiteres folgende Satz für uns von Interesse (in dem K so-
zusagen mit dem eben genannten K zu identifizieren ist): 

Satz 124. Is t p eine Primzahl und K ein Körper 
mit von p verschiedener Charakter is t ik , der die 
p-ten Einheitswurzeln über K enthä l t , so ist jede 
reine Erweiterung p-ten Grades A von K normal 
(separabel und zyklisch) über K. 
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Daß A als separable normale Erweiterung vom Primzahlgrade 
p z y k l i s c h über K ist, ist trivial. Denn seine Galoisgruppe 
bzgl. K hat nach Satz 105 [96] die Primzahlordnung p und muß 
daher nach Satz 34 [32] mit der Periode jedes ihrer von E ver-
schiedenen Elemente zusammenfallen. 

In Umkehrung zu Satz 124 beweisen wir nun den für 
unsere Anwendung grundlegenden Satz: 

Satz 125. I s t p eine P r i m z a h l und K ein Körper 
mit von p versch iedener C h a r a k t e r i s t i k , der die 
p - t e n E i n h e i t s w u r z e l n über K e n t h ä l t , so ist j e d e 
normale E r w e i t e r u n g ¡o-ten Grades A von K 
(a f o r t i o r i separabe l , zykl i sch und) rein über K. 

Beweis : Es sei A ein primitives Element der zyklischen 
Galoisgruppe von A bzgl. K, # ein primitives Element von 
A bzgl. K und £ eine primitive p-te Einheitswurzel über K 
Dann bilden wir die sog. Lagrangesche Resolvente von />: 

* = öx+r1^ + • • • + • 
Wenn dies Element« aus A von Null verschieden ist, schließen 
wir folgendermaßen: 

Durch Anwendung von A auf tx entstellt wegen Av = E, 
CP = e und der Invarianz des Elements f aus K bei A 

= +• • •+r(r~1}#AP 
= +r1^ + • • • + i ) c = « c , 

also durch wiederholte Anwendung von A 
ciÄ v = 

Hiernach sind die infolge der Annahme « 4= 0 voneinander 
verschiedenen Elemente « , « £ , . . 1 die konjugierten zu 
« bzgl. K, d. h. es ist 

g(x) = (x—a) (%—ocfl • • • (x—a£p_1) 
das zu « gehörige irreduzible Polynom aus K, und o, ist ein 
primitives Element von A (Satz 111, 112 [109, 110] nebst 
Zusatz). Aus 

xp-e = (x-e)(x-£)- • -ix-t"-1) 
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folgt nun wie im Beweis zu Satz 123 
g ( x ) = aP — <xv, 

und somit ist 
g ( x ) = x? — a 

mit a = ocp in K, also cc Wurzel des irreduziblen reinen Poly-
noms o f f l — a aus K. Dalier ist dann in der Tat A = K(<%) rein 
über K (Def. 39 [128]). 

Wir zeigen nun, daß man durch passende Wahl der primitiven 
p-ten Einheitswurzel 'Q erreichen kann, daß a 0 ist. Wäre 
nämlich für jede der p — 1 primitiven p-ten Einheitswurzeln 'C 
(v = 1 , . . . , p — 1) die zugehörige Lagrangesche Resolvente 
{*v = 0, so bestände das Gleichungssystem 

« , = S V r " v = 0 (*- = i 
/1=0 

Multipliziert man dessen v-te Gleichung mit f " und summiert 
über v, so folgte nach Vertauschung der Summationsfolge 

®—l / p—1 \ 

f!=0 J 

Da nun 
P y 1 ( t : f ' ~ l ' Y = 1 — e t ¿ ' P v 

" ' \ p e — e für n ' = f i mod. p 

ist, weil im ersteren Falle ** primitive p-te Einheitswurzel, also 

Wurzel von — • -— = xp~1 + xp~2 + • • • + x + e ist, während 
x — e 

im letzteren Falle (p — l)-mal der Summand e steht, so resul-
tierten auf diese Weise die Relationen 

5 = (<"' = 0 , 1 , . . p — 1). 
o 

Da K nicht die Charakteristik p hat, wären also alle é A p ' einander 
gleich, was für ein primitives Element # von A nach Satz 112, 
Zusatz [111] nicht der Fall ist. 

Wir wenden zum Schluß noch die vorstehenden Resultate 
an, um die Auflösbarkeit durch Wurzelzeichen von T P über 
bestimmten Grundkörpern K zu beweisen: 

Satz 126. E s se i p e i n e P r i m z a h l u n d K ein 
K ö r p e r , d e s s e n C h a r a k t e r i s t i k 0 oder e i n e P r i m -
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zahl > p ist. Dann ist der Kreisteilungskörper Tp 
durch Wurzelzeichen auflösbar über K, und über-
dies existiert sogar eine Körperket te 

K = Ä„ < Äx < • • • < Ä, mit Ä, ^ T p , 
in der Ai nicht nur (gemäß Def. 40 [129]) rein von 
Primzahlgrad, sondern auch normal über A,-_i ist. 

Beweis: Wir wenden vollständige Induktion an und 
setzen dazu die Behauptungen für alle Primzahlen < p (und 
alle dabei nach der Formulierung des Satzes zulässigen Grund-
körper) als bereits bewiesen voraus. Es sei nun d der nach 
Satz 122 [132] in p — 1 aufgehende Grad von Tv über K und 
^ = Vi"" " Vr die Zerlegung von d in (nicht notwendig ver-
schiedene) Primzahlen pk. Weil nach Voraussetzung die 
Charakteristik von K, wenn =f= 0, auch größer als jede dieser 
Primzahlen ist, existiert dann nach der Induktionsannahme 
zunächst eine Körperkette 

K = A0 < Äj < • • • < Äri mit Ari ^ T p ^ 
in der A* rein und normal von Primzahlgrad über A,_i ist, 
ferner (jetzt von Ari statt K als Grundkörper ausgehend) eine 
Körperkette 

Är±< Ä,1+1 < • • • < Ä r , mit T P j i ) , 
in der A,1+l- rein und normal von Primzahlgrad über A,1+i_i 
ist, usf., zusammengenommen also eine Körperkette 

K = Ä 0 < Ä 1 < - - - < \ mit Arv ^ T P i , . . . , ~YPv, 
in der durchweg Aj rein und normal von Primzahlgrad über 
A»_i ist. Es sei nun Tv der Kreisteilungskörper für p über 
t\Tv und d sein nach Satz 119 [120] in d aufgehender Grad 
über Ar„. Dann existiert nach ganz entsprechenden Schlüssen 
wie beim Eesultat von Gauss [133/34] (Satz 36,109,122 [33, 

l) Der Krelßteilungskörper T^ für p, über A f j enthält natürlich den Kreis-
teilungskörper T_ für pt über K. 
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101, 132]) eine_Körperkette 
7\rv < Ä r H_i < • • • < Ä r = Tp, 

in der A,„+» normal von Primzahlgrad über ATv+i—i ist. Die 
sukzessiven Grade in dieser letzten Kette sind als Teiler 
von d gewisse der Primzahlen pk. Da nun in den Arv+i nach 
Konstruktion die p^-ten Einheitswurzeln enthalten sind, ist 
nach dem — wegen der Voraussetzung über die Charakte-
ristik von K — (vgl. auch Satz 42 [37]) anwendbaren 
Satz 125 ATv+i rein über A r v +{_i. Die volle Kette 

K = Ä0 < • • • < Ä r = T p 

rat somit, wenn man noch bedenkt, daß Tp iS T p ist, alle für 
die Behauptungen des Satzes erforderlichen Eigenschaften. 

Da für die kleinste Primzahl p = 2 die Behauptungen 
wegen T 2 = K trivialerweise zutreffen, ist hiermit der Satz 
durch vollständige Induktion bewiesen. 

§ 22. Kriterium für die Auflösbarkeit durch Wurzel-
zeichen. 

Um das in diesem Paragraphen herzuleitende Kriterium 
für die Auflösbarbeit durch Wurzelzeichen bequem aus-
sprechen zu können, stellen wir die folgende Definition voran: 

*Definition 41. E i n e s e p a r a b l e n o r m a l e E r w e i t e -
r u n g N von e n d l i c h e m Grade eines K ö r p e r s K h e i ß t 
metazyklisch ü b e r K, wenn eine Z w i s c h e n k ö r p e r -
K e t t e 

K = A0 < A j < • • • < ÄT = N 
d e r a r t e x i s t i e r t , d a ß Aj n o r m a l von P r i m z a h l g r a d 
übe r Af_i i s t , oder — was n a c h dem F u n d a m e n t a l -
sa t z der G a l o i s s c h e n Theo r i e das se lbe b e s a g t —, 
wenn die G a l o i s g r u p p e © von N bzgl. K eine 
O n t e r g r u p p e n k e t t e 

® = §0 > & > • • • > = e 
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d e r a r t e n t h ä l t , d a ß N o r m a l t e i l e r v o n P r i m z a h l -
i n d e x v o n i i s t . 

Ein sepa rab le s Polynom f(x) aus K h e i ß t m e t a -
zykl isch übe r K, wenn sein Wurze lkö rpe r metazyklisch 
über K i s t . 

Der Ausdruck me tazyk l i s ch rührt daher, daß dann die 
einzelnen Schritte A¡ über A ¿_1 bzw. zyklisch sind. Man 
nennt übrigens Gruppen ® von der in Def. 41 angegebenen Art 
ebenfalls metazyklisch. 

Wir beweisen nun das folgende Kriterium für die Auflös-
barkeit durch Wurzelzeichen normaler Erweiterungen end-
lichen Grades, wobei wir uns wegen der im vorigen Para-
graphen für Primzahlcharakteristiken zutage getretenen Kom-
plikationen auf Grundkörper der Charakteristik O beschränken, 
so daß also insbesondere die Voraussetzung der Separabilität 
trivialerweise stets erfüllt is t : 

Satz 127. E i n e n o r m a l e E r w e i t e r u n g N v o n e n d -
l i c h e m G r a d e ü b e r e i n e m K ö r p e r K d e r C h a r a k t e -
r i s t i k 0 i s t d a n n u n d n u r d a n n d u r c h W u r z e l z e i c h e n 
a u f l ö s b a r , w e n n sie m e t a z y k l i s c h i s t . 

Ein Polynom f(x) aus K i s t also dann und n u r dann 
durch Wurze lze ichen a u f l ö s b a r , wenn es m e t a z y k l i s c h 
ist . 

B e w e i s : a.) Es sei N durch Wurzelzeichen auflösbar über 
K. Gemäß Def. 40 [129] existiert dann eine Körperkette 

_ K = < Ä ; < • • • < Ä ; mit Ä ; ^ N , 
jn der A< rein vom Primzahlgrade p¿ über A¡_ i ist. Nach 
Satz 126 existiert (ähnlich wie im Beweise jenes Satzes) eine 

Körperkette 
K = Ä0 < 7 \ x < • • • < Ä s mit T P i , . . . , TVT , 

in der A¿ (rein und) normal von Primzalilgrad über A j _ i ist. 
Es sei nun «,• eine Folge von Elementen aus den AI derart, daß 
«i Wurzel eines reinen irreduziblen Polynoms xVi — aus 
Ä/—i, also A¿ = A¿_i(a<) und A'r = K ( « 1 , . . . , « , ) ist. En t -
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weder ist a?1 — auch irreduzibel in As; dann ist sein Wurzel-
körper A 8 + i über A, nach Satz 123 [137] und wegen TVl A, 
(rein und) normal vom Primzahlgrade p1 über As und zudem 
A s + i = A«(«i). Oder es ist xP1 — % reduzibel in As; dann ist 
nach demselben Satze Ag + i = A, und zudem A,+i = As(«i). 
Ebenso schließt man, daß der Wurzelkörper As+2 von a?» — a2 

über A s + i entweder (rein und) normal vom Primzahlgrade p2 

über A»+i oder = A s + i und beidemal zudem As+2 = As+i(öc2) 
ist, usf. So ergibt sich bei Fortgehen bis zu As+r bei nur 
einmaliger Zählung mehrfach hintereinander auftretender 
Körper eine Körperkette 

K== Äq_< Ai < • • • < Ä ? mit N _ 
(letzteres wegen A 7 = A,^,...,^) ^ K ( a 1 , . . . , a r ) = A ^ N ) , 
in der durchweg Ai (rein und) normal von Primzahlgrad über 
Ai_i ist. Dieser Kette entspricht nach den Ausführungen in 
§ 18, 3.) (vgl. Fig. 5 [125]) eine Zwischenkörperkette 

in der Ai normal über Aj_i ist, und zwar von Primzahlgrad, 
falls nicht Ai = Ai_i ist (und somit Aj ausgelassen werden 
kann); denn der Grad [Aj: A,-_i] ist als Teiler des Primzahl-
grades [A»: Aj_i] entweder 1 oder eben diese Primzahl1) 
Gemäß Def. 41 ist dann N metazyklisch über K. 

b.) Es sei N metazyklisch über K. Gemäß Def. 41 existiert 
dann eine Zwischenkörperkette 

K = A 0 < A 1 < - - < A r = N , 
in der Ai normal vom Primzahlgrad p,- über At-_i ist. Wie 
unter a.) existiert eine Körperkette 

K = A0 < Ä j < • • • < Ä, mit Ä„ ̂  T P i , . . T P r , 
*) Derselbe Schluß wurde übrigens — ohne daß es ausdrücklich hervor-

gehoben wurde — schon in dem Beweise des Resultats von Gauß in § 20 1134] 
für die dort auftretenden Primzahlgrade 2 gemacht. 

B a s s e , Höhere Algebra. I I . 1 0 
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in der Ai rein (und normal) von Primzahlgrad über A;_ i ist. 
Es sei nun eine Folge von Elementen aus den A» derart, daß 

Wurzel eines normalen Polynoms gt(x) vom Primzahlgrad 
Pi a u s A I _ i , a lso A< = A I _ 1 ( I ? I ) u n d N = A , = K ( ? ? 1 , . . . , dr) 

ist. Entweder ist g±{x) irreduzibel und somit auch normal in 
AS; dann ist sein Wurzelkörper A S + I = AS(I?1) über A» wegen 
TPL 5S A„ nach Satz 125 [140] rein (und normal) vom Prim-
zahlgrad über AS. Oder es ist g^x) reduzibel in AS; dann 
is t A > + I = AS(I91) = AS , wei l d a n n [ A S + I : A S ] e inerse i t s 

< pL ( iS wegen der Normalität von gt(x) in A0 und sogar 
< wegen der Reduzibilität in A,), andererseits ein Teiler von 
p1 (nach Satz 119 [120], angewandt auf K = A0, N = A1; 

Ä = ÄS , N = A S + I ) , a l so [ A S + I : A„] = 1 jst. E b e n s o 

schließt man, daß der Wurzelkörper A s + 2 = A s + i ( $ 2 ) von 
g.z(x) über A S + I entweder rein (und normal) vom Primzahl-
grad über A S + I oder = A S + I ist, usf. So ergibt sich durch 
Fortgehen bis zu AS + R bei nur einmaliger Zählung mehrfach 
hintereinander auftretender Körper eine Körperkette 

K = 7\,< • • • < Ä ? mit Ä ? ^ N 

(letzteres wegen Ä? = . . 0 , ) ^ . . . , #R) = N), 
in der durchweg Aj rein (und normal) von Primzahlgrad über 
AJ_i ist. Gemäß Def. 40 [ 129] ist dann N durch Wurzelzeichen 
auflösbar über K. 

Wie aus jedem der beiden Teilbeweise ersichtlich ist, gilt auch 
allgemein eine entsprechende Verschärfung, wie sie schon in dem 
speziellen Satz 126 [141] erhalten wurde: 

Zusatz . I s t u n t e r den V o r a u s s e t z u n g e n v o n S a t z 
127 N d u r c h W u r z e l z e i c h e n a u f l ö s b a r ü b e r K, so 
e x i s t i e r t s o g a r e i n e K ö r p e r k e t t e 

K = X0 < \ < • • • < Ä r m i t A r ^ N , 
i n der A4 n i c h t n u r ( g e m ä ß D e f . 40) r e i n v o n P r i m z a h l -
g r a d , s o n d e r n a u c h n o r m a l ü b e r A<—l i s t . 



22. Kriterium für die Auflösbarkeit durch Wurzelzeichen. 147 

Durch Satz 127 in Verbindung mit dem schon in Def. 41 Ge-
sagten wird unsere zu Beginn dieses Abschnitts gestellte Frage 
entschieden, unter welchen Bedingungen eine algebraische Gleichung 
(x) = 0 in einem Grundkörper K der Charakteristik 0 durch 
Wurzelzeichen auflösbar ist1), wann also ihre Wurzeln durch 
Rechenausdrücke darstellbar sind, die mittels der vier elementaren 
Rechenoperationen und der Operation des Wurzelziehens gebildet 
sind. Stellt man die etwas andere Frage, wann eine Wurzel eines 
irreduziblen Polynoms f{x) aus K auf diese Weise darstellbar ist, 
so kommt das auf die Frage nach der Auflösbarkeit durch Wurzel-
zeichen einer beliebigen Erweiterung A endlichen Grades von K 
hinaus, die umgekehrt auch nicht allgemeiner ist, weil jede solche 
Erweiterung A als Stammkörper eines irreduziblen Polynoms f(x) 
aufgefaßt werden kann. Wir führen in dieser Hinsicht an, daß die 
Bedingungen hierfür genau dieselben sind, wie für die oben be-
handelte Frage, daß nämlich eine beliebige Erweiterung 
endlichen Grades A von K dann und nur dann durch 
Wurzelzeichen auf lösbar is t , wenn dies für die zu-
gehörige normale Erweiterung N (den Wurzelkörper 
irgendeines irreduziblen Polynoms j(x), für das A Stammkörper 
ist) der F a l l ist. Daß mit N auch A durch Wurzelzeichen auf-
lösbar ist, ist klar. Umgekehrt zeigt man durch Übergang von 
einer Körperkette gemäß Def. 41 für A zu deren konjugierten, daß 
mit A auch alle konjugierten Erweiterungen durch Wurzelzeichen 
auflösbar sind, woraus sich dann leicht die Auflösbarkeit durch 
Wurzelzeichen von N ergibt. 

Beispiele durch Wurzelzeichen auflösbarer algebraischer 
Gleichungen über Grundkörpern der Charakteristik 0. 
1.) Alle Gleichungen zweiten, dr i t t en , vierten 

Grades. 
Deren Galoisgruppen sind nämlich isomorph zu Untergruppen 

der symmetrischen Gruppen ©2, ©3, ©4 (Satz 107 [98]). Die 
letzteren erweisen sich aber (samt ihren sämtlichen Untergruppen) 
leicht als metazyklisch. 

2.) Alle zyklischen und allgemeiner abelschen Glei-
chungen, speziell also nach Satz 121 [131] die al lgemeine 
Kreiste i lungsgleichung xn—1 = 0. 

Nach Satz 36 [33] ist nämlich jede endliche zyklische Gruppe 
metazyklisch. Auf die allgemeine Theorie der endlichen abelschen 

1) Genau genommen liegt übrigens keine E n t s c h e i d u n g der Frage 
Bondern nur eine Z u r ü c k f ü h r u n g auf die Aufstellung und Untersuchung der 
Galoisgruppe vor. 

10«" 
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Gruppen, aus der insbesondere leicht folgt, daß diese Gruppen 
sämtlich metazyklisch sind, können wir hier nicht näher eingehen1). 

§ 23. Existenz nicht durch Wurzelzeichen auflösbarer 
algebraischer Gleichungen. 

Die Existenz nicht durch Wurzelzeichen auflösbarer Glei-
chungen wurde durch Abel entdeckt, der zuerst die U n m ö g -
l i c h k e i t bewies, die a l l geme ine G l e i c h u n g h ö h e r e n 
als v i e r t e n Grades d u r c h W u r z e l z e i c h e n a u f z u -
lösen. Wir wollen in diesem letzten Paragraphen einen 
modernen Beweis dieses Abelschen Satzes skizzieren. 

Zunächst definieren wir: 
Definition 42. I s t K„ = K(a;1 , . . . , xn) der K ö r p e r 

der r a t i o n a l e n F u n k t i o n e n von n U n b e s t i m m t e n 
xv . . x n ü b e r K, so h e i ß t das P o l y n o m 

(1.) fn{x)=xn + x1xn~1-] \-xn 
über K„ das allgemeine Polynom n-ten Grades über K. 

Dieses a l l g e m e i n e Polynom w-ten Grades über K ist als 
eine „unbestimmte" Zusammenfassung aller spez ie l l en 
Polynome n-ten Grades über K anzusehen, die ja aus ihm 
durch E i n s e t z u n g irgendwelcher E l e m e n t s y s t e m e 
av...,an aus K f ü r die U n b e s t i m m t e n xv..., x„ 
über K gewonnen werden können. 

Wir betrachten nun die Zerlegung in Linearfaktoren 
(2.) Ux)=xn + x ^ - 1 + • • • + Xn= (x - f j ) • • • (x — £„) 
des allgemeinen Polynoms w-ten Grades über K in seinem 
Wurzelkörper W n = K ^ f j , . . | „ ) . Denkt man sich die n 
Linearfaktoren rechts ausmultipliziert, so müssen nach 1, 
Satz 11 [32] die Koeffizienten gleich hoher Potenzen von x 
links und rechts übereinstimmen. So erhält man das Formel-
system 2) 

1) Wir verweisen deswegen auf 3, § 3 Aufg. 9—20 und bezüglich weiterer 
Sätze über metazyklische Gruppen auf das Buch von S p e i s e r (1, Lit.-Verz. 16). 

s) Wir bezeichnen hier, abweichend von der Festsetzung in 1, S. 42 die 
Gleichheit in K n = K(zv xn) und in der algebraischen Erweiterung 
Wn = KM(£1( . . . , i n ) nur mit = , um = der Gleichheit bei Hinzunahme weiterer 
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'®i = - ( f i + • • • + f . ) 

(3.) + in—1in 

= ( - ! ) " I i •in 
oder zusammengefaßt 

x, = (— 1)" 2J & • • • (v = l , . . . , n), 

wo die Summe rechts über alle ^ W j Kombinationen r-ter Ord-
nung (1, §16 [108]) der Ziffern 1 , . . . , n zu erstrecken ist. Nach 
diesen Formeln ist speziell 

(4.) WM = K „ ( l ! , . . . , £n) = K f o , . . x n ; Slt..., |„) 
= K ( f x , . . £ „ ) • 

Neben der bisherigen von (1.) über (2.) zu (3.) und (4.) 
führenden Auffassungsweise kann man aucli umgekehrt von 
(4.), d. h. dem Körper W „ = K ( £ j , . . . , £„) der rationalen 
Funktionen von n jetzt als Unbestimmte vorausgesetzten 
I i , . . . , f B über K ausgehen, dann xv ..., xn durch die 
Formeln (3.) als Elemente dieses Körpers WM und fn(x) durch 
die Formel (2.) als Polynom in dem Teilkörper 
K» = K f o , . . . , xn) von W , = K d u . . . , I») definieren, wo-
bei dann W„ wieder der Wurzelkörper zu fn(x) über Kn ist 
und die Darstellungen (4.) besitzt. Allerdings steht bei dieser 
letzteren Auffassungsweise die Frage offen, ob das so ge-
bildete Polynom fn(x) das allgemeine Polynom n-ten Grades 
über K ist. Da die genannte zweite Auffassungsweise für die 
beabsichtigte Anwendung handlicher ist, ist es für uns von 
Bedeutung, diese Frage in bejahendem Sinne zu beantworten: 

Satz 128. I s t = K f o , . . . , f . ) der K ö r p e r der 
r a t i o n a l e n F u n k t i o n e n von n U n b e s t i m m t e n 

ü b e r K, so h a b e n die d u r c h die F o r m e l n 
(3.) d e f i n i e r t e n E l e m e n t e xv . . x n au s W„ e b e n f a l l s 

Unbestimmten (etwa x in (].) und (2.) sowie x v . . x n im Beweise des folgenden 
Satzes 128) vorzubehalten. 
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den C h a r a k t e r von n U n b e s t i m m t e n ü b e r K 1 ) , d. h. 
der T e i l k ö r p e r K„ = K ^ , . . . , xn) v o n W „ = K G ^ , . . . , £„) 
is t e b e n f a l l s vom E r w e i t e r u n g s t y p u s des K ö r p e r s 
der r a t i o n a l e n F u n k t i o n e n von n U n b e s t i m m t e n 
über K. I n s b e s o n d e r e i s t dann also das durch (2.) 
d e f i n i e r t e Polynom/„(a; ) über K„ das a l l g e m e i n e P o l y -
nom n - t e n Grades über K. 

B e w e i s : Es ist zu zeigen, daß die Normaldarstellungen 
(1, Def. 9 [38]) der Elemente des Integritätsbereiches 
«[KJ, ..., xn] durch xv...,xn eindeutig sind, und dazu 
genügt es nachzuweisen, daß aus einer Relation 

(50 _ g{x1,..Xn) = 0 , 
wo g(xv ..., xn) eine ganze rationale Funktion von n Unbe-
stimmten x v . . . , x n über K ist, die Relation 

(6.) g(xv . . . , xn)= 0 
folgt. Diesen Nachweis führen wir durch doppelte voll-
ständige Induktion2), erstens nach der Anzahl n der Unbe-
stimmten, zweitens nach dem Grade vn von g in xn. 

Für n = 1 ist xt = — £ v also die Behauptung ersichtlich 
auf Grund des vorausgesetzten Unbestimmtencharakters von 
I i richtig. Sei sie schon bis n — 1 bewiesen. Dann sei 

vn _ 
(7.) g(xv ..., xn) = 2x\ gk(xv . . x n _ x ) 

die (aus der Normaldarstellung durch Zusammenfassung fol-
gende) Darstellung von g als ganze rationale Funktion von 
xn über K [ i 1 5 . . . , also speziell 

(8.) g(xv ..., xn_t, 0) = g0{xv ..., xn_{). 
Setzt man nun in (5.) £ n = 0, so entsteht nach dem Ein-
setzungsprinzip (1, Satz 12 [40]), das wegen des Unbe-
stimmtencharakters von $ n anwendbar ist, die Relation 

(9.) g(xi, 0) = 0 , 

Vgl. 1, Def. 9 [38] nebst anschließender Erläuterung. 
*) Den Gedanken, In diesem Beweise d o p p e l t e vollständige Induktion 

anzuwenden, verdanke ich einer brieflichen Hitteilung von P h . F u r t w ä n g l e r . 
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wo x[,..x'n—i aus x n _ i durch die Einsetzung 
= 0 in (3.) hervorgehen; setzt man dann in (8.) 

( S j , . . x n — i ) = {¡¡ei,. • . , «n—i), so folgt aus (9.) nach dem 
Einsetzungsprinzip weiter die Relation 

(10.) • • •> %h—i) = 0. 
Da nun x'v ..., nach ihrer Erklärung für £ v . . . , 
die entsprechende Bedeutung haben, wie xv ..., x„ für 
Si, • •. , so ergibt sich aus (10.) nach der gemachten 
ersten Induktionsannahme die Relation 

?o(®i> •• - , » „ _ ! ) = 0 , 
also nach (7.) weiter die Relation 

(11.) g(xv ..., xn)= xn 2'ax*ngk+1 (xv ..., x ^ ) 

= xng^{xv..., xn), 
wo . . . , x„) wieder eine ganze rationale Funktion von 
xv . . . ,xn über K ist, die (falls vn > 0) in xn den Grad 
vn — 1 hat. 

Ist nun der Grad vn = 0, so ist <7(1)(%) • • •> = 0 und 
also die Behauptung (6.) nach (11.) richtig. Sei sie (für das 
betrachtete feste n) schon bis zum Grade v„ — 1 bewiesen, 
so ist, weil aus (11.) durch die Einsetzung (5^, . . . , « „ ) = 
( » j , . . . , xn) die Relation 

g(xj,..xn) = xng(xv ..., x„) 
und aus dieser nach (5.) und wegen xn =f= 0 weiter die Relation 

gm(xv . . . , z„) = 0 
folgt, nach dieser zweiten Induktionsannahme 

gtVfc,.. .,xn)=0, 
woraus die Behauptung (6.) nach (11.) folgt. Hiermit ist die 
Behauptung des Satzes durch doppelte vollständige Induk-
tion bewiesen. 

Aus Satz 128 läßt sich übrigens auch leicht die umgekehrte 
Tatsache folgern, daß die ausgehend 

von Unbestimmten . . . , xn 
durch (2.) definierten Elemente f , . . ,,|n den Charakter von 
Unbestimmten über K haben. Wir brauchen das jedoch hier nicht. 
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Wir beweisen nunmehr: 
Satz 129. Das a l lgemeine P o l y n o m w-ten Grades 

über K is t s e p a r a b e l und seine G a l o i s g r u p p e bzgl. 
K„ is t zur s y m m e t r i s c h e n G r u p p e <&„ i somorph . 

Beweis: Gemäß Satz 128 denken wir uns das allgemeine 
Polynom n-ten Grades fn (x) über K nach der vor Satz 128 be-
sprochenen zweiten Auffassungsweise, d.h. vom Wurzelkörper 
W„ = K ( £ l t . . a u s g e h e n d durch die Formeln (3.), 
(2.) gebildet. Daß zunächst fn (x) separabel ist, folgt dann 
ohne weiteres aus der Verschiedenheit seiner als n Unbe-
stimmte über K gewählten Wurzeln . . . , £ „ (Satz 59, Zu-
satz [481). Es sei ferner ( 1 ' ' ' " \ irgendeine Permutation 

W - • • h l 
aus <S„. Nach 1, Satz 10, 11 [26, 32] ist dann K ( £ f l , . . £ „ ) 
zu K ( f j , . . . , ¿„) auf Grund der Zuordnungen 

£1 * iii> • • • •! in " * 
isomorph bzgl. K. Da aber die Formeln (3.) symmetrisch in 
£ v . . . ,£„ sind, entsprechen bei dieser Zuordnung die Elemente 
x l t . . . , xn und somit alle Elemente von K„ = !<(%,.. . , x„) 
sich selbst, so daß die genannte Isomorphie sogar bzgl. K„ 
gilt. Da 

W„ = K ( i 1 , . . . , i M ) = K ( i i l , . . „ £«J 
ist, erzeugt also jede Permutation aus <Bn einen Auto-
morphismus von W n bzgl. Kn und wird daher umgekehrt 
durch einen solchen Automorphismus im Sinne von Satz 
107 [98] geliefert. Aus diesem Satz ergibt sich daher mit 
Rücksicht auf die bereits hervorgehobene Verschiedenheit 
der Wurzeln . . . , daß die Galoisgruppe von W n , d.h. 
die von fn(x) bzgl. Kn zur symmetrischen Gruppe ©„ iso-
morph ist. 

Aus Satz 129 ergibt sich übrigens speziell: 
Satz 130. Das a l l g e m e i n e P o l y n o m w- ten G r a d e s 

ü b e r K i s t i r r e d u z i b e l in Kn. 
Bewe i s : Ist fn(x) das zu einer Wurzel | von fn(x) gehörige 
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irreduzible Polynom in K„, so ist einerseits f n ( x ) \ f n ( x ) (Satz 63 
[43]), andererseits /n( i () = 0 für jede Wurzel von f n ( x ) (Satz 73 
]61 "1, 129), also wegen der Verschiedenheit der Wurzeln auch 

f n ( x ) | t n ( x ) (Satz 47 [40]). Beides zusammen ergibt/„(x)=/ J 1(x), 
wie behauptet. 

Wir verweilen noch einen Augenblick bei den Formeln (3.), wieder 
unter der vor Satz 128 [149] besprochenen zweiten Auffassungs-
weise. Man nennt dann die Elemente x l t . . . , x n aus K ( | x , . . . , f r e) 
die symmetrischen Grundfunktionen der Unbestimmten 
S l t . . . , I«. Allgemein nennt man ferner eine rationale Funktion 
über K der U n b e s t i m m t e n . . . , £ „ s y m m e t r i s c h in . . . , 
wenn sie bei allen Permutationen der n Elemente f j , . . . , £ „ in 
sich übergeht. Durch Anwendung der Sätze 107, 112 [98, 110] 
nebst Zusatz ergibt sich dann aus Satz 129 unmittelbar: 

Satz 131. E ine r a t i o n a l e F u n k t i o n übe r K der Un-
b e s t i m m t e n £ v [d.h. ein E l e m e n t aus K ^ , . . . , f r e)] 
i s t d a n n u n d n u r d a n n s y m m e t r i s c h , wenn sie r a t i o n a l e 
F u n k t i o n übe r K der s y m m e t r i s c h e n G r u n d f u n k t i o n e n 
x l t . . . , x n von . . i s t [d.h. ein E l e m e n t aus dem 
T e i l k ö r p e r K ^ , . . . , x n ) von . . . , f „ ) ist]. 

Die tiefer liegende Aussage dieses Satzes, nämlich die durch 
„nur dann" ausgedrückte, die also aussagt, daß jede symmetrische 
rationale Funktion über K von . . . , £ „ eine rationale Funktion 
über K von x x , . . . , x n ist, ist eine Teilaussage des unter dem Namen 
Satz von den symmetrischen Funktionen bekannten Theorems, 
das bisher fast immer der Galoisschen Theorie zugrunde gelegt wurde 
(vgl. die erste Anm. zum Bew. von Satz 90 [80]). Dieses Theorem 
geht insofern noch über die Aussage von Satz 131 hinaus, als es 
weiterhin behauptet: 

1.) Jede ganze rationale symmetrische Funktion über K von 
f j , . . . , ist eine ganze rationale Funktion von x x , . . . , x n . 

2.) Das letztere gilt auch noch, wenn an Stelle des K ö r p e r s K 
ein I n t e g r i t ä t s b e r e i c h I steht. 

Diese weiteren Aussagen können aber nicht, wie Satz 131, aus 
der Galoisschen Theorie gefolgert werden1). 

Wir kehren nunmehr zu der eigentlichen Aufgabe dieses 
Paragraphen zurück, die wir jetzt auf Grund von Satz 129 in 

Auf einen — mir von Ph. Furtwängler mitgeteilten — Beweis der Aus-
sagen 1), 2.), der ganz analog, wie der Beweiß von Satz 128, mit doppelter voll-
ständiger Induktion geführt wird, kann hier nicht eingegangen werden: siehe 
3, § 23, Aufg. 3. 
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Angriff nehmen können. Da die symmetrische Gruppe <5„ für 
n > 1 stets den Normalteiler %n vom Index 2 hat (1, Satz 63 
[113]), ergibt sich eine Reduktion des Wurzelkörpers 
W„ = K n d i , . . . , in) vom Grade nl über K„ auf einen 

m! 
Körper vom Grade —- über einem aus K„ durch Adjunktion 

¿i 
einer Quadratwurzel entstehenden Körper V„: 

Satz 132. Der W u r z e l k ö r p e r W„ = K « ^ , . . . , £„) 
des a l lgemeinen Po lynoms w-ten Grades (w > 1) 
über K bes i t z t einen Te i lkörper V„ vom Grade 2 über 
K,j. Dieser wi rd , fa l l s K n ich t die C h a r a k t e r i s t i k 2 
h a t , du rch A d j u n k t i o n des E l emen te s 

zu K„ gewonnen, das Wurzel eines r e inen Poly-
noms x2 — d vom zwei ten Grade aus K„ ist1) . 

Beweis : Daß V„ = Kn(<5) der %, zugeordnete Körper 
zwischen Kn und W„ ist, folgt gemäß Satz 112,129 [110,152] 
daraus, daß <3 bei den geraden Permutationen von . . . , S„ 
invariant ist, bei den ungeraden dagegen sein Vorzeichen 
ändert (1, Satz 65 [116]), und daß <5 =# 0 (siehe 3, Teil 1, 
§ 19, Aufg. 4), also nach der Annahme über die Charakteristik 
ö =|= — 6 ist. Hiernach ist ferner d2 = d bei allen Permuta-
tionen von £ v . . . , £ n invariant, also Element aus K„ (Satz 112, 
Zusatz [111]). 

Das Element d = d 2 , das natürlich sogar zu K [ | x , . . . , f«] 
gehört, also eine ganze rationale Funktion über K der Wurzeln 
in ..., Sn ist, heißt die Diskriminante von f»(x) . 

Nun beweist man in der Gruppentheorie, daß f ü r w=j= 4 
die a l t e r n i e r e n d e Gruppe 2tn ke inen e c h t e n Normal -
t e i l e r b e s i t z t 2 ) , u n d d a ß % l d e r e i n z i g e N o r m a l -

' ) Hinsichtlich des Falles, daß K die Charakteristik 2 hat, siehe 3, § 23, 
Aufg. 20. 

') Speiser , 1. c. (1, Lit.-Verz. 16), Satz 94. Siehe auch 3, § 23, Aufg. 13, 14. 

«5 
i s , i i • • • i r 1 

1 £ t 2 . . . t " - 1 
J- sn bw sn 

.n—1 
n 
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n\ 
te i ler von i s t 1 ) . Da—- f ü r n ^ 4 keine Primzahl ist, 

& 

kann also für w > 4 keine Untergruppenkette von <5„ der in 
Def. 41 [143] genannten Art existieren, so daß dann ©„ nicht 
metazyklisch ist. Nach Satz 127 [144] ergibt sich so das 

Resultat von Abel. Das a l lgemeine Po lynom 
w-ten Grades über einem Körper K der C h a r a k t e r i -
s t ik 0 is t f ü r n > 4 n ich t durch Wurzelzeichen auf -
lösbar. 

Durch diesen Satz ist die Existenz nicht durch Wurzel-
zeichen auflösbarer Gleichungen zunächst nur für die beson-
deren Grundkörper K„ von Def. 42 [148] sichergestellt. Eine 
weitere Frageist dann, ob es in einem gegebenen Grund-
körper K speziel le , d.h. in K selbst gelegene n ich t durch 
Wurze lze ichen a u f l ö s b a r e Gle ichungen j eden Gra-
des w > 4 gibt . Diese Frage beantwortet sich für den 
Spezialfall des rationalen Grundkörpers P bejahend durch den 

Irreduzibilitätssatz von Hilbert2). I s t g{x\ xv ..., xn) 
eine ganze r a t i o n a l e F u n k t i o n der U n b e s t i m m t e n 
x\ xv ..., xn über P, die ein in Pn= P(xv ..., x„) 
i r reduz ib les Po lynom von x i s t , so g ib t es unend l i ch 
viele E l e m e n t s y s t e m e av..., a„ aus P, so daß 
g(x; av ..., an) in P i r r eduz ibe l ist . 

Aus diesem Satz ergibt sich die Lösung der zuvor aufge-
worfenen Frage für den Grundkörper P folgendermaßen: 
Sind I j , . . . , die Wurzeln des allgemeinen Polynoms 
w-ten Grades f„(x) = xn + x1xn~1 + • — b xn über P, so ist 
nach Satz 112, Zusatz [111] und Satz 129 [152] 

# = b c„!„ 
primitives Element des Wurzelkörpers WM = . . ., 

1) Das folgt dann aus dem sog. J o r d a n s c h e n S a t z ( S p e i s e r , ebenda 
Satz 27) in Verbindung mit der evidenten Nichtexistenz von Normalteilern von 
<&n der Ordnung 2. Siehe auch i , §23, Aufg. 16. 

' ) D. H i l b e r t , Über die Irreduzibilität ganzer rationaler Funktionen mit 
ganzzahligen Koeffizienten, Journ. f. d. reine u. angew. Math. 110, 1892. 
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bzgl. P„ = P(a ; 1 , . . . , xn), wenn die Koeffizienten cv aus P„ 

so gewählt werden, daß alle Permutationen ^ j der f v ver-

schiedene konjugierte 
•&i = H h cn£in 

ergeben. Wir denken uns die cv in dieser Weise gewählt, und 
zwar, was nach Satz 49 [41] möglich ist, sogar als Elemente 
aus dem Integritätsbereich I~n = P f « ! , . . . , xn]. Dann ist 

n i 
g(x; X i , . . x n ) = I I (x — l - l 

eine Galoissche Resolvente von W „ bzgl. P„ und genügt den 
Voraussetzungen des Hilbertschen Irreduzibilitätssatzes. Es 
gibt also unendlich viele Elementsysteme av ..., an aus P 
derart, daß g(x\ a l 7 . . a n ) irreduzibel in P ist. Die Wurzel-
körper W über P der diesen Systemen ..., an entsprechen-
den speziellen }(x) haben dann, weil es in ihnen je ein Element 
& des Grades n! gibt, den höchstmöglichen Grad w! über P 
(Satz 108 [100]) und somit eine zu <5n selbst isomorphe 
Galoisgruppe (Satz 107 [98]). Nach den Ausführungen 
dieses Paragraphen sind also diese f(x) für w > 4 nicht durch 
Wurzelzeichen auflösbar. Wir haben daher: 

Korol lar . Es g i b t in P f ü r j e d e n G r a d n u n e n d -
l i ch v i e l e a l g e b r a i s c h e G l e i c h u n g e n , d e r e n Ga lo i s -
g r u p p e zu i s o m o r p h i s t (sog. G l e i c h u n g e n o h n e 
Affekt), i n s b e s o n d e r e a l so f ü r j e d e n G r a d n > 4 
u n e n d l i c h v i e l e n i c h t d u r c h W u r z e l z e i c h e n a u f l ö s -
b a r e a l g e b r a i s c h e G l e i c h u n g e n . 

Ob dies Resultat auch für allgemeine Grundkörper K, so-
wie für irgendwelche Untergruppen von ©» als vorgeschriebene 
Galoisgruppen gilt, ist bis heute, abgesehen von einfachen 
Fällen, unentschieden. 
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Geisteswissenschaften 
Philosophie 

Einführung in die Philosophie von H. Leisegang f . 6 . Auflage. 146 Sei-
ten. 1966 . (281 ) 

Hauptprobleme der Philosophie von G. Simmel f . 8 . , unveränderte 
Auflage. 177 Seiten. 1964. (500) 

Geschichte der Philosophie 
I : D i e g r i e c h i s c h e P h i l o s o p h i e von W. Capelle. 1. Teil. Von 

Thaies bis Leukippos. 3., erweiterte Auflage. Etwa 135 Seiten. 
1966. (857) 

I I : D i e g r i e c h i s c h e P h i l o s o p h i e von W.Capelle. 2. Teil. Von 
der Sophistik bis zum Tode Piatons. 3., stark erweiterte Auf-
lage. E t w a 144 Seiten. 1966. In Vorbereitung (858) 

I I I : D i e g r i e c h i s c h e P h i l o s o p h i e von W. Capelle. 3. Teil. Vom 
Tode Piatons bis zur Alten Stoa. 2 . , stark erweiterte Auflage. 
132 Seiten. 1954. (859) 

I V : D i e g r i e c h i s c h e P h i l o s o p h i e von W.Capelle. 4. Teil . Von 
der Alten Stoa bis zum Eklektizismus im 1. J h . v. Chr. 2., stark 
erweiterte Auflage. 132 Seiten. 1954. (863) 

V : D i e P h i l o s o p h i e d e s M i t t e l a l t e r s von J. Koch. In Vor-
bereitung. (826) 

V I : V o n d e r R e n a i s s a n c e b i s K a n t von K. Schilling. 234 Seiten. 
1954. (394/394a) 

V I I : I m m a n u e l K a n t von G. Lehmann. In Vorbereitung. (536) 
V I I I : D i e P h i l o s o p h i e d e s 19. J a h r h u n d e r t s von G. Lehmann. 

1. Teil. 151 Seiten. 1953. (571) 
I X : D i e P h i l o s o p h i e des 19. J a h r h u n d e r t s von G. Lehmann. 

2. Teil. 168 Seiten. 1953. (709) 
X : D i e P h i l o s o p h i e im e r s t e n D r i t t e l d e s 20. J a h r h u n -

d e r t s 1. Teil von G. Lehmann. 128 Seiten. 1957. (845) 
X I : D i e P h i l o s o p h i e im e r s t e n D r i t t e l des 20. J a h r h u n d e r t s 

2. Teil von G. Lehmann. 114 Seiten. 1960. (850) 
Die geistige Situation der Zeit (1931) von K. Jaspers. 6. Abdruck der 

im Sommer 1932 bearbeiteten 5. Auflage. 211 Seiten. 1965. (1000) 
Erkenntnistheorie von G. Kropp. 

l . T e i l : A l l g e m e i n e G r u n d l e g u n g . 143 Seiten. 1950. (807) 
Formale Logik von P. Lorenzen. 3. , durchgesehene und erweiterte Auf-

lage. 184 Seiten. 1966. (1176/1176a) 
Philosophisches Wörterbuch von M. Apel f . 5. , völlig neu bearbeitete 

Auflage von P. Ludz. 315 Seiten. 1958. (1031/1031 a) 
Philosophische Anthropologie. Menschliche Selbstdeutung in Geschichte 

und Gegenwart von M. Landmann. 2., durchgesehene Auflage. 
223 Seiten. 1964. (156/156a) 

Pädagogik, Psychologie, Soziologie 
Geschichte der Pädagogik von Herrn. Weimer 17. Auflage von Heinz 

Weimer. 184 Seiten. 1967. (145/145a) 
Therapeutische Psychologie. Ihr Weg durch die Psychoanalyse von 

W. M. Kranefeldt. Mit einer Einführung von C. G. Jung. 3. Aul-
lage. 152 Seiten. 1956. (1034) 
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G E I S T E S W I S S E N S C H A F T E N 

Allgemeine Psychologie von Th. Erismann +. 4 Bände. 
I : O r u n d p r o b l e m e . 3. Auflage. 146 Seiten. 1965. (831) 

I I : O r u n d a r t e n d e s p s y c h i s c h e n G e s c h e h e n s . 2., neubear-
bei tete Auflage. 248 Seiten. 1959. (832/832 a) 

I I I : E x p e r i m e n t e l l e P s y c h o l o g i e u n d i h r e G r u n d l a g e n . 
1.Teil . 2., neubearbeitete Auflage. 112 Seiten, 7 Abbildungen. 
1962.(833) 

IV: E x p e r i m e n t e l l e P s y c h o l o g i e u n d i h r e G r u n d l a g e n . 
2. Teil. 2., neubearbeitete Auflage. 199 Seiten, 20 Abbildungen. 
1962. (834/834a) 

Soziologie. Geschichte und Hauptprobleme von L. von Wiese. 7. Auflage. 
176 Seiten. 1964. (101) 

Ideengeschichte der sozialen Bewegung des 19. und 20. Jh. von W. Hof-
mann. 243 Seiten. 1962. (1205/1205 a) 

Sozialpsychologie von P . R. Hofstätter. 2. Auflage. 191 Seiten, 18 Ab-
bildungen. 1964. (104/104a) 

Psychologie des Berufs- und Wirtschaftslebens von W. Moede t. 
190 Seiten, 48 Abbildungen. 1958. (851/851a) 

Industrie- und Betriebssoziologie von R. Dahrendorf. 3. Auflage. 142 Sei-
ten. 3 Figuren. 1965. (103) 

Wirtschaftssoziologie von F. Fürstenberg. 122 Seiten. 1961. (1193) 
Einführung in die Sozialethik von H.-D. Wendland. 144 S. 1963. (1203) 

Religion 
Jesus von M. Dibelius f . 4. Auflage, mit einem Nachtrag von W. G. 

Kümmel. 140 Seiten. 1966. (1130) 
Paulus von M. Dibelius t. Nach dem Tode des Verfassers herausge-

geben und zu Ende geführ t von W. G. Kümmel. 3., durchgesehene 
Auflage. 156 Seiten. 1964. (1160) 

Luther von F. Lau. 2., verbesserte Auflage. 153 Seiten. 1966 (1187) 
Melanchthon von R. Stupperich. 139 Seiten. 1960. (1190) 
Zwlngll von F. Schmidt-Clausing. 119 Seiten. 1965. (1219) 
Sören Kierkegaard. Leben u. Werk von H. Ger des. 134Seiten. 1966.(1221) 
Einführung In die Konfessionskunde der orthodoxen Kirchen von 

K.Onasch. 291 Seiten. 1962. (1197/1197 a) 
Geschichte des christlichen Gottesdienstes von W.Nagel. 215 Seiten. 

1962. (1202/1202 a) 
Geschichte Israels. Von den Anfängen bis zur Zerstörung des Tempeis 

(70 n.Chr.) von E.L. Ehrlich. 2.Aufl. 1966.1 nVorbereitung. (231 /231 a) 
Römische Religionsgeschichte von F. Altheim. 2 Bände. 2., umgearbei-

te te Auflage. 
I: G r u n d l a g e n u n d G r u n d b e g r i f f e . 116 Seiten. 1956. (1035) 

I I : D e r g e s c h i c h t l i c h e A b l a u f . 164 Seiten. 1956. (1052) 
Die Religion des Buddhismus von D. Schlingloff. 2 Bände. 

I: D e r H e i l s w e g d e s M ö n c h s t u m s . 122 Seiten, 11 Abbildungen, 
I Karte . 1962. (174) 

I I : D e r H e i l s w e g f ü r d i e W e l t . 129 Seiten, 9 Abbildungen, 
1 Kar te . 1963. (770) 
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G E I S T E S W I S S E N S C H A F T E N 

Musik 
Musikästhetik von H.J.Moser. 180 Seiten. Mit zahlreichen Noten-

beispielen. 1953. (344) 
Systematische Modulation von R. Hernried. 2. Auflage. 136 Seiten. Mit 

zahlreichen Notenbeispielen. 1950. (1094) 
Der polyphone Satz von E. Pepping. 2 Bände. 

I : D e r c a n t u s - f i r m u s - S a t z . 2. Auflage. 233 Seiten. Mit zahl-
reichen Notenbeispielen. 1950. (1148) 

I I : Ü b u n g e n im d o p p e l t e n K o n t r a p u n k t u n d im K a n o n . 
137 Seiten. Mit zahlreichen Notenbeispielen. 1957. (1164/1164a) 

Allgemeine Musiklehre von H. J. Moser. 2., durchgesehene Auflage. 
155 Seiten. Mit zahlreichen Notenbeispielen. 1955. (220/220a) 

Harmonielehre von H. J. Moser. 2 Bände. 
I : 109 Seiten. Mit 120 Notenbeispielen. 1954. (809) 

I I : In Vorbereitung. (810) 
Die Musik des 19. Jahrhunderts von W. Oehlmann. 180 Seiten. 1953. 

(170 ) 
Die Musik des 20. Jahrhunderts von W. Oehlmann. 312 Seiten. 1961. 

(171/171 a> 
Technik der deutschen Gesangskunst von H. J. Moser. 3. , durchgesehene 

und verbesserte Auflage. 144 Seiten, 5 Figuren sowie Tabellen und 
Notenbeispiele. 1954. (576/576a) 

Die Kunst des Dirigierens von H. W. von Waltershausen f . 2., vermehrte 
Auflage. 138 Seiten. Mit 19 Notenbeispielen. 1954. (1147) 

Die Technik des Klavierspiels aus dem Geiste des musikalischen Kunst-
werkes von K. Schubert t• 3 . Auflage. 110 Seiten. Mit Notenbei-
spielen. 1954. (1045) 

Kunst 
Stilkunde von H. Weigert. 2 Bände. 3., durchgesehene und ergänzte 

Auflage. 
I : V o r z e i t , A n t i k e , M i t t e l a l t e r . 136 Seiten, 94 Abbildungen. 

1958. (80) 
I I : S p ä t m i t t e l a l t e r u n d N e u z e i t . 150 Seiten, 88 Abbildungen. 

1958. (781) 
Archäologie von A. Rumpf. 3 Bände. 

I : E i n l e i t u n g , h i s t o r i s c h e r Ü b e r b l i c k . 143 Seiten, 6 Ab-
bildungen, 12 Tafeln. 1953. (538) 

I I : D i e A r c h ä o l o g e n s p r a c h e . Die antiken Reproduktionen. 
136 Seiten. 7 Abbildungen, 12 Tafeln. 1956. (539) 

I I I : In Vorbereitung. (540) 

Geschichte 
Einführung in die Geschichtswissenschaft von P. Kirn. 4., durchgesehene 

Auflage. 127 Seiten. 1963. (270) 
Einführung In die Zeltgeschichte von B. Scheurig. 101 Seiten. 1962. 

(1204) 
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G E I S T E S W I S S E N S C H A F T E N 

Zeitrechnung der römischen Kaiserzeit, des Mittelalters und der Neuzeit 
für die Jahre 1—2000 n. Chr. von H. Lietzmann t. 3. Auf lage, durch-
gesehen von K.Aland. 130 Seiten. 1956. (1085) 

Kultur der Urzeit von F. Behn. 3 Bände. 4. Auf lage der Kultur der 
Urzeit Bd. 1—3 von M. Hoernes. 

I : D i e v o r m e t a l l i s c h e n K u l t u r e n . (Die Steinzeiten Europas. 
Gleichartige Kulturen in anderen Erdteilen.) 172 Seiten, 48 Ab -
bildungen. 1950. (564) 

I I : D i e ä l t e r e n M e t a l l k u l t u r e n . (Der Beginn der Metall-
benutzung, Kupfer- und Bronzezeit in Europa, im Orient und 
in Amerika. ) 160 Seiten, 67 Abbildungen. 1950. (565) 

I I I : D i e j ü n g e r e n M e t a l l k u l t u r e n . (Das Eisen als Kultur-
metall, Hal lstatt-Latene-Kultur in Europa. Das erste Auf-
treten des Eisens in den anderen Weltte i len. ) 149 Seiten, 
60 Abbildungen. 1950. (566) 

Vorgeschichte Europas von F. Behn. Völl ig neue Bearbeitung der 
7. Auf lage der „Urgeschichte der Menschheit" von M. Hoernes. 
125 Seiten, 47 Abbildungen. 1949. (42) 

Der Eintritt der Germanen in die Geschichte von J. Hailer f . 3. Auf lage, 
durchgesehen von H. Dannenbauer. 120 Seiten, 6 Kartenskizzen. 
1957. (1117) 

Von den Karolingern zu den Staufern. Die altdeutsche Kaiserzeit 
(900—1250) von J. Halter f . 4., durchgesehene Auf lage von 
H. Dannenbauer. 142 Seiten, 4 Karten. 1958. (1065) 

Von den Staufern zu den Habsburgern. Auflösung des Reichs und 
Emporkommen der Landesstaaten (1250 —1519) von J. Haller f. 
2., durchgesehene Auf lage von H. Dannenbauer." 118 Seiten, 
6 Kartenskizzen. 1960. (1077) 

Deutsche Geschichte im Zeitalter der Reformation, der Gegenreforma-
tion und des dreißigjährigen Krieges von F. Härtung. 2., durch-
gesehene Auflage. 128 Seiten. 1963. (1105) 

Deutsche Geschichte von 1648—1740. Politischer und geistiger Wieder-
aufbau von W. Treue. 120 Seiten. 1956. (35) 

Deutsche Geschichte von 1713—1806. Von der Schaffung des euro-
päischen Gleichgewichts bis, zu Napoleons Herrschaft von W. Treue. 
168 Seiten. 1957. (39) 

Deutsche Geschichte von 1806—1890. Vom Ende des alten bis zur 
Höhe des neuen Reiches von W. Treue. 128 Seiten. 1961. (893) 

Deutsche Geschichte von 1890 bis zur Gegenwart von W. Treue. In 
Vorbereitung. (894) 

Quellenkunde der Deutschen Geschichte im Mittelalter (bis zur Mitte 
des 15. Jahrhunderts) von K. Jacob f . 3 Bände. 
I : E i n l e i t u n g . A l l g e m e i n e r T e i l . D i e Z e i t d e r K a r o l i n g e r . 

6. Auf lage, bearbeitet von H. Hohenleutner. 127 Seiten. 1959. 
(279) 

I I : D i e K a i s e r z e i t (911-1250). 5. Auf lage, neubearbeitet von H. 
Hohenleutner. 141 Seiten. 1961. (280) 

I I I : D a s S p ä t m i t t e l a l t e r ( vom Interregnum bis 1500). Heraus-
gegeben von F. Weden. 152 Seiten. 1952. (284) 
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G E I S T E S W I S S E N S C H A F T E N 

Geschichte Englands von H. Preller. 2 Bände. 
I : bis 1815. 4., s tark umgearbei tete Auflage. Etwa 135 Seiten, 

7 S tammtafe ln , 2 Kar ten . 1966. Im Druck. (375) 
I I : V o n 1815 b i s 1910. 2., völlig umgearbeitete Auflage. 118 Seiten, 

1 Stammtafe l , 7 Kar ten . 1954. (1088) 
Römische Geschichte von F. Altheim. 4 Bände. 2., verbesserte Auflage. 

I : B i s z u r S c h l a c h t b e i P y d n a (168 v. Chr.). 124Sei ten. 
1956. (19) 

I I : B i s z u r S c h l a c h t b e i A c t i u m (31 v. Chr.). 129 Seiten, 
1956.(677) 

I I I : B i s z u r S c h l a c h t a n d e r M i l v i s c h e n B r ü c k e (312 n. Chr.). 
148 Seiten. 1958. (679) 

IV: B i s z u r S c h l a c h t a m Y a r m u k (636 n. Chr.). In Vorberei-
tung . (684) 

Geschichte der Vereinigten Staaten von Amerika von O. Graf zu Stolberg-
Wernigerode. 192 Seiten, 10 Karten. 1956. (1051/1051a) 

Deutsche Sprache und Literatur 
Geschichte der Deutschen Sprache von H. Sperber. 5., neubearbeitete 

Auflage von P . von Polenz. 136 Seiten. 1966. (915) 
Deutsches Rechtschreibungswörterbuch von M. Gottschald f . 2., ver-

besserte Auflage. 269 Seiten. 1953. (200/200 a) 
Deutsche Wortkunde. Kulturgeschichte des deutschen Wortschatzes 

von A. Schirmer. 5. Auflage von W. Mitzka. 125 Seiten. 1965. (929) 
Deutsche Sprachlehre von W. Hofstaetter. 10. Auflage. Völlige Um-

arbei tung der 8. Auflage. 150 Seiten. 1960. (20) 
Stimmkunde f ü r Beruf, Kunst und Heilzwecke von H. Biehle. 111 Sei-

ten . 1955.(60) 
Redetechnik. E inführung in die Rhetorik von H. Biehle. 2., erweiterte 

Auflage. 151 Seiten. 1961. (61) 
Grundlagen der Sprecherziehung von J. Jesch 1966. In Vorbereitung 

(1122/1122a) 
Deutsches Dichten und Denken von der germanischen bis zur staufischen 

Zelt von H. Naumann f . (Deutsche Literaturgeschichte vom 
5.—13. Jah rhunder t . ) 3., verbesserte Auflage. 1966. (1121) 

Deutsches Dichten und Denken vom Mittelalter zur Neuzeit von G.Müller 
(1270 bis 1700). 3., durchgesehene Auflage. 159 Seiten. In Vor-
bereitung. (1086) 

Deutsches Dichten und Denken von der Aufklärung bis zum Realismus 
(Deutsche Literaturgeschichte von 1700—1890) von K . Vietor f . 
3., durchgesehene Auflage. 159 Seiten. 1958. (1096) 

Deutsche Heldensage von H. Schneider. 2. Auflage, bearbei tet von 
R. Wisniewski. 148 Seiten. 1964. (32) 

Der Nibelunge N6t U Auswahl. Mit kurzem Wörterbuch herausgegeben 
von K. Langosch. 11., durchgesehene Auflage. 166 Seiten. 1966. (1) 

Kudrun und Dietrich-Epen in Auswahl mit Wörterbuch von O. L. Jiric-
zek. 6. Auflage, bearbeitet von R. Wisniewski. 173 Seiten. 1957. (10) 

Wolfram von Eschenbach. Parzlfal. Eine Auswahl mit Anmerkungen 
und Wörterbuch von H. Jantzen. 3. Auflage, bearbei tet von H. Kolb. 
128 Seiten. 1966. (921) 
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G E I S T E S W I S S E N S C H A F T E N 

Hartmann von Aue. Der arme Heinrich nebst einer Auswahl aus der 
„Klage" dem „Gregorius" und den Liedern (mit einem Wörter -
verzeichnis) herausgegeben von F.Maurer. 96 Seiten. 1958. (18) 

Gottfried von Straßburg. Tristan und Isolde in Auswahl herausgegeben 
von F. Maurer. 2. Auflage. 142 Seiten. 1965. (22) 

Die deutschen Personennamen von M. Gottschald t. 2., verbesserte 
Auflage. 151 Seiten. 1955. (422) 

Althochdeutsches Elementarbuch. Grammat ik und Tex te von H. Nau-
mann f und W. Betz. 4., verbesserte und vermehr te Auflage. 
183 Seiten. 1966. (1111/1 l i l a ) 

Mittelhochdeutsche Grammatik von H. de Boor und R. Wisniewski. 4., 
verbesserte und ergänzte Auflage. 150 Seiten. 1965. (1108) 

Indogermanisch, Germanisch 
Indogermanische Sprachwissenschaft von H. Krähe. 2 Bände. 

I : E i n l e i t u n g u n d L a u t l e h r e . 5. Auflage. 110 Seiten.1966. (59) 
I I : F o r m e n l e h r e . 4., neubearbei tete Auflage. 100 Seiten.1963. (64) 

Sanskrit-Grammatik mit sprachvergleichenden Erläuterungen von 
M. Mayrhofer. 2., völlig neu bearbei te te Auflage. 110 Seiten. 
1965. (1158/1158a) 

Altirische Grammatik von J. Pokorny. 2. Auflage. I n Vorberei tung. (896 
Gotisches Elementarbuch. Grammat ik . Texte mit Übersetzung und 

Erläuterungen von H. Hempel. 4., neubearbei tete Auflage. 169 Sei-
ten . 1966. (79/79a) 

Altnordisches Elementarbuch. Einführung, Grammat ik , Texte (zum 
Teil mit Übersetzung) und Wörterbuch von F. Ranke. 3., völlig 
umgearb. Auflage vo nD. Hofmann. E twa 180 Seiten. 1967. Im 
Druck. (1115/1115a) 

Germanische Sprachwissenschaft von H. Krähe. 3 Bände. 
I : E i n l e i t u n g u n d L a u t l e h r e . 6. Auflage. 147 Seiten. 1966. 

(238) 
I I : F o r m e n l e h r e . 5., verbesserte Auflage. 149 Seiten. 1965. (780) 

I I I : W o r t b i l d u n g s l e h r e von W. Meid. E twa 240 Seiten. 1966. 
(1218/1218a/1218b) 

Englisch, Romanisch 
Altenglisches Elementarbuch. Einführung, Grammat ik , Texte mit Über-

setzung und Wörterbuch von M. Lehnert. 6., verbesserte Auflage. 
178 Seiten. 1965. (1125) 

Mittelenglisches Elementarbuch von H. Weinstock. 1967. In Vorbe-
rei tung (1226/1226a) 

Historische neuenglische Laut- und Formenlehre von E. Ekwall. 4., 
verbesserte Auflage. 150 Seiten. 1965. (735) 

Englische Phonetik von H. Mutschmann f . 2. Auflage, bearbeitet von 
G. Scherer. 127 Seiten. 1963. (601) 

Englische Literaturgeschichte von F. Schubel. 4 Bände. 
I : D i e a l t - u n d m i t t e l e n g l i s c h e P e r i o d e . 163Seiten. 1954.(1114) 

I I : V o n d e r R e n a i s s a n c e b i s z u r A u f k l ä r u n g . 160 Seiten. 
1956. (1116) 

I I I : R o m a n t i k u n d V i k t o r i a n i s m u s . 160 Seiten. 1960. (1124) 
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G E I S T E S W I S S E N S C H A F T E N 

Beowulf von M. Lehnert. Eine Auswahl mit Einführung, teilweiser 
Übersetzung, Anmerkungen und etymologischem Wörterbuch. 4., 
verbesserte Auflage. 135 Seiten. 1966. (1135) 

Shakespeare von P. Meißner f . 2. Auflage, neubearbei tet von M. Leh-
nert. 136 Seiten. 1954. (1142) 

Romanische Sprachwissenschaft von H. Lausberg. 4 Bände. 
I : E i n l e i t u n g u n d V o k a l i s m u s . 2., durchgesehene Auflage. 

211 Seiten. 1963. (128/128a) 
I I : K o n s o n a n t i s m u s . 2. Auflage. 1966. Im Druck. (250) 

I I I : F o r m e n l e h r e . 1. Teil. 99 Seiten. 1962.(1199) 
I I I : F o r m e n l e h r e . 2. Teil. S. 99—260. 1962. (1200/1200a) 
IV: W o r t l e h r e . In Vorbereitung. (1208) 

Griechisch, Lateinisch 
Griechische Sprachwissenschaft von W. Brandenstein. 3 Bände. 

I : E i n l e i t u n g , L a u t s y s t e m , E t y m o l o g i e . 160 Seiten. 1954. 
(117) 

I I : W o r t b i l d u n g u n d F o r m e n l e h r e . 192 Seiten. 1959. (118/ 
118a) 

I I I : S y n t a x I .E in le i tung . Die Flexibilien. 145 Seiten. 1966. (924/ 
924a) 

Geschichte der griechischen Sprache. 2 Bände 
I : B i s z u m A u s g a n g d e r k l a s s i s c h e n Z e i t von O. Hoff-

mann f . 3. Auflage, bearbei tet von A. Debrunner f . 156 Seiten. 
1953.(111) 

I I : G r u n d f r a g e n u n d G r u n d z ü g e d e s n a c h k l a s s i s c h e n 
G r i e c h i s c h von A. Debrunner f . 144 Seiten. 1954.(114) 

Geschichte der griechischen Literatur von W. Nestle. 2 Bände. 3. Auf-
lage, bearbei tet von W. Liebich. 
I: 144 Seiten. 1961. (70) 

I I : 149 Seiten. 1963. (557) 
Grammatik der neugriechischen Volkssprache von J. Kalitsunakis. 

3., wesentlich erweiterte und verbesserte Auflage. 196 Seiten. 1963. 
(756/756a) 

Neugriechisch-deutsches Gesprächsbuch von J. Kalitsunakis. 2. Auf-
lage, bearbei tet von A. Steinmetz. 99 Seiten. 1960. (587) 

Geschichte der lateinischen Sprache von F. Stolz und A. Debrunner f . 
4., s tark umgearbei tete Auflage von W. P. Schmid. 145 Seiten. 
1966. (492/492 a) 

Geschichte der römischen Literatur von L. Bieler. 2., verbesserte Auf-
lage. 2 Bände. 
I : D i e L i t e r a t u r d e r R e p u b l i k . 160 Seiten. 1965. (52) 

I I : D i e L i t e r a t u r d e r K a i s e r z e i t . 133 Seiten. 1965. (866) 

Orientalistik, Slavistik 
Die Kellschrift von B. Meissner. 3. Auflage, neubearbeitet von K. Ober-

huber. Etwa 150 Seiten. 1966. (708/708a/708b) 
Die Hieroglyphen von A. Erman. 3. Auflage, neu bearbeitet von 

O. Krückmann. 1966. Irl Vorbereitung. (608 608a/608b) 
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GEISTESWISSENSCHAFTEN 

Hebräische Grammatik von R. Meyer. 3 Bände. 
I: Ei nl ei t u n g , S c h r i f t - u n d L a u t lehre. 3., neubearbeitete Auf-

lage. 120 Seiten. 1966. (763/763a/763b) 
I I : F o r m e n l e h r e und F l e x i o n s t a b e l l e n . 3. Auflage. In Vor-

bereitung. (764/764 a/764b) 
I I I : S a t z l e h r e . In Vorbereitung (765/765a/765b) 

Hebräisches Textbuch zu G. Beer-R. Meyer, Hebräische Grammatik 
von R. Meyer. 170 Seiten. 1960. (769/769 a) 

Slavische Sprachwissenschaft von H. Bräuer. 2 Bände. 
I : E i n l e i t u n g , L a u t l e h r e . 221 Seiten. 1961. (1191/1191 a ) 

Vergleichende Geschichte der slavischen Literaturen von D. Tschiiewskij. 
2 Bände. 1966. In Vorbereitung. 
I : E i n f ü h r u n g . Anfänge des slavischen Schrifttums bis zum 

Klassizismus. (1222/1222a) 
I I : R o m a n t i k b i s z u r M o d e r n e . (1223/1223a) 

Russische Grammatik von E. Berneker f . 6., verbesserte Auflage von 
M. Vasmer f . 155 Seiten. 1961. (66) 

Polnische Grammatik von N. Damerau. Etwa 140 Seiten. 1967. (942/ 
942a) 

Erd- und Länderkunde, Kartographie 
Afrika von F. Jaeger. Ein geographischer Überblick. 2 Bände. 3. Auflage. 

I : Der L e b e n s r a u m . 179 Seiten, 18 Abbildungen. In Vorberei-
tung. (910) 

I I : M e n s c h und K u l t u r . 155 Seiten, 6 Abbildungen. In Vor-
bereitung. (911) 

Australien und Ozeanien von H. J. Krug. 176 Seiten, 46 Skizzen. 1953. 
(319) 

Kartographie von V. Heissler. 2. Auflage. 213 Seiten, 125 Abb., 8 An-
lagen. 1966. (30/30 a) 

Volkswirtschaft, Statistik, Publizistik 
Allgemeine Betriebswirtschaftslehre von K.Mellerowicz. 4 Bände. 

11. und 12., durchgesehene Auflage. 
I : 224 Seiten. 1964. (1008/1008a) 

I I : 188 Seiten. 1966. (1153/1153a) 
I I I : 260 Seiten. 1963. (1154/1154a) 
IV: 209 Seiten. 1963. (1186/1186a) 

Allgemeine Volkswirtschaftslehre von A. Paulsen. 4 Bände. 
I : G r u n d l e g u n g , W i r t s c h a f t s k r e i s l a u f . 7. Auflage. 159 Sei-

ten, 11 Abbildungen. 1966. (1169) 
I I : H a u s h a l t e , U n t e r n e h m u n g e n , M a r k t f o r m e n . 7. Auflage. 

172 Seiten, 31 Abbildungen. 1966. (1170) 
I I I : P r o d u k t i o n s f a k t o r e n . 5. Auflage. 198 Seiten, 24 Abbildun-

gen. 1966. (1171) 
IV: G e s a m t b e s c h ä f t i g u n g , K o n j u n k t u r e n , W a c h s t u m . 4., 

neubearbeitete und ergänzte Auflage. 188 Seiten. 1966.(1172) 
Übungsaufgaben mit Lösungen zur Allgemeinen Volkswirtschaftslehre 

I/II von A. Paulsen von W. Wedig. Etwa 160 Seiten. 1966. (1227/ 
1227 a) 
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G E I S T E S W I S S E N S C H A F T E N 

Geschichte der Volkswirtschaftslehre von S. Wendt. 182 S. 1961. (1194) 
Allgemeine Volkswirtschaftspolitik von H. Ohm. 2 Bände. 

I : S y s t e m a t i s c h - T h e o r e t i s c h e G r u n d l e g u n g . 2., verbesser-
te und ergänzte Auf lage. 137 Seiten, 6 Abbildungen. 1965. 
(1195) 

I I : D e r v o l k s w i r t s c h a f t l i c h e G e s a m t o r g a n i s m u s a l s O b -
j e k t d e r W i r t s c h a f t s p o l i t i k . In Vorbereitung. (1196) 

Finanzwissenschaft von H. Kolms. 4 Bände. 
I : G r u n d l e g u n g , ö f f e n t l i c h e A u s g a b e n . 3., verbesserte Auf -

lage. 165 Seiten. 1966. (148) 
I I : E r w e r b s e i n k ü n f t e , G e b ü h r e n und B e i t r ä g e , A l l g e -

m e i n e S t e u e r l e h r e . 3., verbesserte Auf lage. 154 Seiten. 1966. 
(391) 

I I I : B e s o n d e r e S t e u e r l e h r e . 2., verbesserte und ergänzte Auf -
lage. 178 Seiten. 1966. (776/776a) 

IV : ö f f e n t l i c h e r K r e d i t . Ö f f e n t l i c h e r H a u s h a l t . F i n a n z -
a u s g l e i c h . 191 Seiten. 1964. (782/782a) 

Finanzmathematik von M.Nicolas. 192 Seiten, 11 Tafeln, 8 Tabellen 
und 72 Beispiele. 1959. (1183/1183a) 

Programmierung von Datenverarbeitungsanlagen von H. J. Schneider, 
D. Jurksch. Etwa 128 Seiten, 8 Tabellen, 11 Abbildungen. 196?. 
(1225/1225 a) 

Lineare Programmierung von H. Langen. Etwa 200 Seiten. (1206/1206a) 
Buchhaltung und Bilanz von E. Kosiol. 170 Seiten. 1964. (1213/1213a) 
Industrie- und Betriebssoziologie von R. Dahrendorf. 3. Auflage. 142 

Seiten, 3 Figuren. 1965. (103) 
Wirtschaftssoziologie von F. Fürstenberg. 122 Seiten. 1961. (1193) 
Psychologie des Berufs- und Wirtschaftslebens von IV. Moedef. 190 Sei-

ten, 48 Abbildungen. 1958. (851/851 a ) 
Einführung in die Arbeitswissenschaft von H. H. Hilf. 169 Seiten, 57 Ab -

bildungen. 1964. (1212/1212a) 
Allgemeine Methodenlehre der Statistik von J. Pfanzagl. 2 Bände. 

I : E l e m e n t a r e M e t h o d e n u n t e r b e s o n d e r e r B e r ü c k s i c h -
t i g u n g d e r A n w e n d u n g e n in den W i r t s c h a f t s - und 
S o z i a l w i s s e n s c h a f t e n . 3., neubearbeitete Auflage.266Seiten, 
50 Abbildungen. 1966. (746/746 a ) 

I I : H ö h e r e M e t h o d e n u n t e r b e s o n d e r e r B e r ü c k s i c h t i g u n g 
d e r A n w e n d u n g e n in N a t u r w i s s e n s c h a f t e n , M e d i z i n 
und T e c h n i k . 2., verbesserte Auflage. 315 Seiten, 41 Abbil-
dungen. 1966. (747/747 a ) 

Zeltungslehre von E. Dovifat. 2 Bände. 5., neubearbeitete Auf lage. 
I : T h e o r e t i s c h e und r e c h t l i c h e G r u n d l a g e n — N a c h r i c h t 

und M e i n u n g — S p r a c h e und F o r m . 149 Seiten. 1966. 
Im Druck. (1039) 

I I : R e d a k t i o n — D i e S p a r t e n : V e r l a g und V e r t r i e b , 
W i r t s c h a f t und T e c h n i k — S i c h e r u n g d e r ö f f e n t l i c h e n 
A u f g a b e . 168 Seiten. 1966. Im Druck. (1040) 
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Naturwissenschaften 

Mathematik 

Geschichte der Mathematik von J. E. Hofmann. 4 Bände. 
I : Von den A n f ä n g e n bis zum A u f t r e t e n von F e r m a t 

und D e s c a r t e s . 2., verbesserte und vermehrte Auflage. 
251 Seiten. 1963. (226/226 a) 

I I : Von F e r m a t und D e s c a r t e s bis zur E r f i n d u n g des 
C a l c u l u s und bis z u m A u s b a u der neuen M e t h o d e n . 
109 Seiten. 1957. (875) 

I I I : Von den A u s e i n a n d e r s e t z u n g e n um den C a l c u l u s b i s 
zur f r a n z ö s i s c h e n R e v o l u t i o n . 107 Seiten. 1957. (882) 

IV: G e s c h i c h t e der M a t h e m a t i k der n e u e s t e n Z e i t von 
N. Stuloff. In Vorbereitung. (883) 

Mathematische Formelsammlung von F.O. Ringleb. 8., verbesserte Auf-
lage. Etwa 320 Seiten, 40 Figuren. 1967. (51/51 a) 

Vierstellige Tafeln und Gegentafeln für logarithmisches und trigono-
metrisches Rechnen in zwei Farben zusammengestellt von H. Schu-
bert und R. Haussner. 3., neubearbeitete Auflage von J. Erlebach. 
158 Seiten. 1960. (81) 

Fünfstellige Logarithmen mit mehreren graphischen Rechentafeln und 
häufig vorkommenden Zahlenwerten von A. Adler. 4. Auflage, 
überarbeitet von J. Erlebach. 127 Seiten, 1 Tafel. 1962. (423) 

Arithmetik von P. B. Fischer t. 3. Auflage von H. Rohrbach. 152 Seiten, 
19 Abbildungen. 1958. (47) 

Höhere Algebra von H. Hasse. 2 Bände. 5., neubearbeitete Auflage. 
I : L i n e a r e G l e i c h u n g e n . 150 Seiten. 1963. (931) 

I I : G l e i c h u n g e n h ö h e r e n G r a d e s . 158 Seiten, 5 Figuren. 1966. 
(932) 

Aufgabensammlung zur höheren Algebra von H. Hasse und W. Klobe. 
3., verbesserte Auflage. 183 Seiten. 1961. (1082) 

Elementare und klassische Algebra vom modernen Standpunkt von 
W. Krull. 2 Bände. 

I : 3., erweiterte Auflage. 148 Seiten. 1963. (930) 
I I : 132 Seiten. 1959. (933) 

Lineare Programmierung von H. Langen. Etwa 200 Seiten. (1206/1206 a) 
Algebraische Kurven und Flächen von W. Burau. 2 Bande. 

I : A l g e b r a i s c h e K u r v e n der E b e n e . 153 Seiten, 28 Abbil-
dungen. 1962. (435) 

I I : A l g e b r a i s c h e F l ä c h e n 3. G r a d e s und Raumkurven 3. und 
4. Grades. 162 Seiten, 17 Abbildungen. 1962. (436/436 a) 

Einführung in die Zahlentheorie von A. Schobt. Überarbeitet und 
herausgegeben von B. Schoeneberg. 4. Auflage. 128 Seiten. 1966. 
(1131) 

Formale Logik von P. Lorenzen. 3., durchgesehene und erweiterte Auf-
lage. 184 Seiten. 1966. (1176/1176a) 
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NATURWISSENSCHAFTEN 

Topologie von W. Franz. 2 Bände. 
I : A l l g e m e i n e T o p o l o g i e . 2., verbesserte Auflage. 144 Seiten, 

9 Figuren. 1966. (1181) 
I I : A l g e b r a i s c h e T o p o l o g i e . 153 Seiten. 1966. (1182/1182a> 

Elemente der Funktionentheorie von K. Knopp f . 7. Auflage. 144 Seiten, 
23 Figuren. 1966. (1109) 

Funktionentheorie von K. Knopp t. 2 Bände. 11. Auflage. 
I : G r u n d l a g e n der al l g e m e i n e n T h e o r i e der a n a l y t i s c h e n 

F u n k t i o n e n . 144 Seiten, 8 Figuren. 1965. (668) 
I I : A n w e n d u n g e n und W e i t e r f ü h r u n g der a l l g e m e i n e n 

T h e o r i e . 130 Seiten, 7 Figuren. 1965. (703) 
Aufgabensammlung zur Funktionentheorie von K. Knopp f . 2 Bände. 

I : A u f g a b e n zur e l e m e n t a r e n F u n k t i o n e n t h e o r i e . 7. Auf-
lage. 135 Seiten. 1965. (877) 

I I : A u f g a b e n zur h ö h e r e n F u n k t i o n e n t h e o r i e . 6. Auflage. 
151 Seiten. 1964. (878) 

Differential- und Integralrechnung von M. Barner. (Früher Witting). 
4 Bände. 
I : O r e n z w e r t b e g r i f f , D i f f e r e n t i a l r e c h n u n g . 2., durchge-

sehene Auflage. 176 Seiten, 39 Figuren. 1963. (86) 
Gewöhnliche Differentialgleichungen von G. Hoheisel. 7., neubearbeitete 

und erweiterte Auflage. 142 Seiten. 1965. (920/920a) 
Partielle Differentialgleichungen von G. Hoheisel. 4., durchgesehene 

Auflage. 128 Seiten. 1960. (1003) 
Aufgabensammlung zu den gewöhnlichen und partiellen Differential-

gleichungen von G. Hoheisel. 4., neubearbeitete Auflage. 153 Seiten. 
1964. (1059/1059a) 

Integralgleichungen von G. Hoheisel. 2-, neubearbeitete und erweiterte 
Auflage. 112 Seiten. 1963. (1099) 

Mengenlehre von E. Kamke. 5. Auflage. 194 Seiten, 6 Figuren. 1965. 
(999/999 a) 

Gruppentheorie von L. Baumgartner. 4., erweiterte Auflage. 190 Seiten, 
3 Tafeln. 1964. (837/837 a) 

Ebene und sphärische Trigonometrie von G. Hessenbergt. 5. Auflage, 
durchgesehen von H. Kneser. 172 Seiten, 60 Figuren. 1957. (99) 

Darstellende Geometrie von W. Haack. 3 Bände. 
I : Die w i c h t i g s t e n D a r s t e l l u n g s m e t h o d e n . G r u n d - und 

A u f r i ß e b e n f l ä c h i g e r K ö r p e r . 5. Auflage. 113 Seiten, 120 
Abbildungen. 1965. (142) 

I I : K ö r p e r mi t k r u m m e n B e g r e n z u n g s f l ä c h e n . K o t i e r t e 
P r o j e k t i o n e n . 4., durchgesehene Auflage. 129 Seiten, 86 Ab-
bildungen. 1965. (143) 

I I I : A x o n o m e t r i e und P e r s p e k t i v e . 3. Auflage. 129 Seiten, 
100 Abbildungen. 1965. (144) 

Analytische Geometrie von K. P. Grotemeyer. 3., neubearbeitete Auf-
lage. 218 Seiten, 73 Abbildungen. 1964. (65/65a) 

Nichteuklidische Geometrie. Hyperbolische Geometrie der Ebene von 
R. Baldusf. 4. Auflage, bearbeitet und ergänzt von F. Löbell. 
158 Seiten, 75 Figuren. 1964. (970/970a) 
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N A T U R W I S S E N S C H A F T E N 

Differentialgeometrie von K . Strubecker. 3 Bände. 
I : K u r v e n t h e o r i e d e r E b e n e und des R a u m e s . 2., erweiterte 

Auflage. 253 Seiten, 45 Figuren. 1964. (1113/1113a) 
I I : T h e o r i e d e r F l ä c h e n m e t r i k . 195 Seiten, 14 Figuren. 1958. 

(1179/1179a) 
I I I : T h e o r i e d e r F l ä c h e n k r ü m m u n g . 254 Seiten, 38 Figuren. 

1959. (1180/1180a) 
Variationsrechnung von L. Koschmieder. 2 Bände. 2. , neubearbeitete 

Auflage. 
I : D a s f r e i e u n d g e b u n d e n e E x t r e m e i n f a c h e r G r u n d -

i n t e g r a l e . 128 Seiten, 23 Figuren. 1.962. (1074) 
I I : A n w e n d u n g k l a s s i s c h e r V e r f a h r e n a u f a l l g e m e i n e 

F r a g e n d e s E x t r e m s . — N e u e r e u n m i t t e l b a r e V e r -
f a h r e n . In Vorbereitung. (1075) 

Einführung In die konforme Abbildung von L. Bieberbach. 6. Auflage. 
Etwa 180 Seiten, 42 Figuren. 1966. In Vorbereitung. (768 /768a) 

Vektoren und Matrizen von S . Valentiner. 4. Auflage. ( I I . , erweiterte 
Auflage der „Vektoranalysis" ) . Mit Anhang: Aufgaben zur Vektor-
rechnung von H. König. 206 Seiten, 35 Figuren. 1967. ( 3 5 4 / 3 5 4 a ) 

Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie von H. Bauer. 
2 Bände. 
I : 154 Seiten. 1964. (1216/1216a) 

I I : In Vorbereitung. (1217) 
Versicherungsmathematik von F. Böhm. 2 Bände. 

I : E l e m e n t e d e r V e r s i c h e r u n g s r e c h n u n g . 3. , vermehrte 
und verbesserte Auflage. Durchgesehener Neudruck. 151 Seiten. 
1953. (180) 

I I : L e b e n s v e r s i c h e r u n g s m a t h e m a t i k . Einführung in die 
technischen Grundlagen der Sozialversicherung. 2., verbesserte 
und vermehrte Auflage. 205 Seiten. 1953. (917 /917a) 

Finanzmathematik von M.Nicolas. 192 Seiten, 11 Tafeln, 8 Tabellen 
und 72 Beispiele. 1959. (1183/1183a) 

Kinematik von H. R. Müller. 171 Seiten, 75 Figuren. 1963. (584/584 a ) 

Physik 
Einführung In die theoretische Physik von W. Döring. 5 Bände. 

I : M e c h a n i k . 3., verbesserte Aufl. 125 Seiten, 23 Abb. 1 9 6 5 . ( 7 6 ) 
I I : D a s e l e k t r o m a g n e t i s c h e F e l d . 2., verbesserte Auflage. 

132 Seiten, 15 Abbildungen. 1962. (77) 
I I I : O p t i k . 2., verbesserte Auflage. 117 Seiten, 32 Abbildungen. 

1963. (78) 
I V : T h e r m o d y n a m i k . 2. , verbesserte Auflage. 107 Seiten, 9 Ab-

bildungen. 1964. (374) 
V : S t a t i s t i s c h e M e c h a n i k . 2., umgearbeitete Auflage. 117 Sei-

ten, 10 Abbildungen. 1966. (1017) 
Mechanik deformierbarer Körper von M. Pasler. 199 Seiten, 48 Ab-

bildungen. 1960. (1189/1189a) 
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N A T U R W I S S E N S C H A F T E N 

Atomphysik von K . Bechert, Ch. Gerthsenf und A. Flammersfeld. 
7 Bände. 4., durchgesehene Auflage. 
I : A l l g e m e i n e G r u n d l a g e n . 1. Teil von A. Flammersfeld. 

124 Seiten, 35 Abbildungen. 1959. (1009) 
I I : A l l g e m e i n e G r u n d l a g e n . 2. Teil von A.Flammersfeld. 

112 Seiten, 47 Abbildungen. 1963. (1033) 
I I I : T h e o r i e d e s A t o m b a u s . 1. Teil von K. Bechert. 148 Seiten, 

16 Abbildungen. 1963. (1123/1123a) 
I V : T h e o r i e des A t o m b a u s . 2. Teil von K. Bechert. 170 Seiten, 

14 Abbildungen. 1963. (1165/1165a) 
Differentialgleichungen der Physik von F. Sauter. 4. , durchgesehene 

und ergänzte Auflage. 147 Seiten, 16 Figuren. 1966. (1070) 
Physikalische Formelsammlung von G. Mahler. t. Fortgeführt von 

K. Mahler. Neubearbeitet von H. Graewe. 11. Auflage. 167 Seiten, 
69 Figuren. 1963. (136) 

Physikalische Aufgabensammlung mit Ergebnissen von G. Mahler f . 
Fortgeführt von K. Mahlcr. Neubearbeitet von H. Graewe. 12. Auf-
lage. 141 Seiten. 1964. (243) 

Chemie 

Geschichte der Chemie in kurzgefaßter Darstellung von G. Lockemann. 
2 Bände. 2. Auflage. 
I : V o m A l t e r t u m b i s z u r E n t d e c k u n g d e s S a u e r s t o f f s . 

142 Seiten, < Bildnisse. In Vorbereitung. (264) 
I I : V o n d e r E n t d e c k u n g d e s S a u e r s t o f f s b i s z u r G e g e n -

w a r t . 151 Seiten, 16 Bildnisse. In Vorbereitung (265/265a) 
Anorganische Chemie von W. Klemm. 13. Auflage. 255 Seiten, 34 Ab-

bildungen. 1964. (37/37a) 
Organische Chemie von W. Schlenk jun. 10., erweiterte Auflage. 273 

Seiten, 16 Abbildungen. 1965. (38/38a) 
Physikalische Methoden in der Organischen Chemie von G. Kresze. 

2 Bände. 
I : 119 Seiten, 65 Abbildungen. 1962. (44) 

I I : 164 Seiten. 1962. (45 /45a) 
Allgemeine und physikalische Chemie von W. Schulze. 2 Bände. 

I : 6. , verbesserte Auflage. 139 Seiten, 10 Figuren. 1964. (71) 
I I : 6., verbesserte Auflage. 178 Seiten, 37 Figuren. 1966. (698/698a) 

Molekülbau. Theoretische Grundlagen und Methoden der Struktur-
ermittlung von W. Schulze. 123 Seiten, 43 Figuren. 1958. (786) 

Einfache Versuche zur allgemeinen und physikalischen Chemie von 
E. Dehn. 371 Versuche mit 40 Abbildungen. 272 Seiten. 1962. 
(1201/1201 a) 

Physikalisch-chemische Rechenaufgaben von E. Asmus. 3. , verbesserte 
Auflage. 96 leiten. 1958. (445) 

Maßanalyse. Theorie und Praxis der klassischen und der elektrochemi-
schen Titrierverfahren von G. Jander und /C. F. Jahr. 11., durch-
gesehene Auflage, mitbearbeitet von H. Knoll. 359 Seiten, 56 Fi-
guren. 1966. (221/221 a) 

15 



NATURWISSENSCHAFTEN 

Qualitative Analyse von H. Hofmann u. G. Jander. 2., durchgesehene 
und verbesserte Auflage. 308 Seiten, 5 Abbildungen. 1963. 
(247/247 a) 

Stöchiometrische Aufgabensammlung von W. Bahrdt t und R. Scheer. 
Mit den Ergebnissen. 8., durchgesehene Auflage. 119 Seiten. 1964. 
(452) 

Elektrochemie von K. Vetter. 2 Bände. 
I : In Vorbereitung. (252) 

I I : In Vorbereitung. (253) 
Geochemie von K. H. Wedepohl. 220 Seiten, 26 Abbildungen, 37 Ta-

bellen. 1966. (1224/1224 a/1224 b) 
Kristallchemie von J. Zemann. 144 Seiten, 90 Abbildungen. 1966. 

(1220/1220a) . 
lectanologie 

Die Chemie der Kunststoffe von K. Hamann, unter Mitarbeit von 
W. Funke und H. D. Hermann. 2. Aufl. 143 Seiten. 1966. In Vor-
bereitung. (1173/1173a) 

Warenkunde von K. Hassak und E. Beutel f . 2 Bände. 
I : A n o r g a n i s c h e W a r e n sowie K o h l e und Erdöl . S .Auf-

lage. Neubearbeitet von A. Kutzelnigg. 119 Seiten, 18 Figuren. 
1958. (222) 

II: O r g a n i s c h e W a r e n . 8. Auflage. Vollständig neu bearbeitet 
von A. Kutzelnigg. 157 Seiten, 32 Figuren. 1959. (223) 

Die Fette und öle von Th. Klug. 6., verbesserte Auflage. 143 Seiten. 
1961. (335) 

Die Seifenfabrikation von K. Braun f . 3., neubearbeitete und ver-
besserte Auflage von Th. Klug. 116 Seiten, 18 Abbildungen. 1953. 
(336) 

Thermische Verfahrenstechnik von H. Bock. 3 Bände. 
I : E i g e n s c h a f t e n und V e r h a l t e n der rea len S t o f f e . 184 Sei-

ten, 28 Abbildungen. 1963. (1209/1209 a) 
II: F u n k t i o n und B e r e c h n u n g der e l e m e n t a r e n G e r ä t e . 

195 Seiten, 54 Abbildungen. 1964. (I210/1210a) 
I I I : F l i e ß b i l d e r , ihre F u n k t i o n und ihr Z u s a m m e n b a u aus 

G e r ä t e n . 224 Seiten, 67 Abbildungen. 1965. (1211/1211 a) 
Textilindustrie von A. Blümcke. 

h S p i n n e r e i und Z w i r n e r e i . 111 Seiten, 43 Abbildungen. 1954. 
(184) . 

Biologie 
Einführung in die allgemeine Biologie und ihre philosophischen Grund-

und Grenzfragen von M. Hartmann. 2., unveränderte Auflage. 
132 Seiten, 2 Abbildungen. 1965. (96) 

Hormone von G. Koller. 2., neubearbeitete und erweiterte Auflage. 
187 Seiten, 60 Abbildungen, 19 Tabellen. 1949. (1141) 

Fortpflanzung Im Tier- und Pflanzenreich von J. Hämmerling. 2., 
ergänzte Auflage. 135 Seiten, 101 Abbildungen. 1951. (1138) 

Geschlecht und Geschlechtsbestimmung im Tier- und Pflanzenreich von 
M. Hartmann. 2., verbesserte Auflage. 116 Seiten, 61 Abbildungen, 
7 Tabellen. 1951. (1127) 
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N A T U R W I S S E N S C H A F T E N 

Symbiose der Tiere mit pflanzlichen Mikroorganismen von P. Buchner. 
2., verbesser te und v e r m e h r t e Auf lage . 130 Seiten, 121 Abb i ldungen . 
1949. (1128) 

Grundriß der allgemeinen Mikrobiologie von W. u. A. Schwartz. 2 Bände . 
2., verbesser te und e rgänz te Auf lage . 
1: 147 Sei ten, 25 Abbi ldungen . 1960. (1155) 

I I : 142 Sei ten, 29 Abbi ldungen . 1961.(1157) 

Botanik 
Entwicklungsgeschichte des Pflanzenreiches von H. Heil. 2. Auf lage . 

138 Seiten, 94 Abbi ldungen , 1 Tabel le . 1950. (1137) 
Morphologie der Pflanzen von L. Geitler. 3., umgea rbe i t e t e Auf lage . 

126 Sei ten, 114 Abbi ldungen . 1953. (141) 
Pflanzengeographie von L. Dielst. 5., völlig neu bearbe i t e te Auflage 

von F. Mattick. 195 Seiten, 2 K a r t e n . 1958. (389/389a) 
Die Laubhölzer. K u r z g e f a ß t e Beschre ibung der in Mi t t e leuropa ge-

de ihenden L a u b b ä u m e und S t r ä u c h e r von F.W. Neger f und 
E. Münch f . 3., du rchgesehene Auf lage , herausgegeben v o n B. Hu-
ber. 143 Seiten, 63 Figuren, 7 Tabe l len . 1950. (718) 

Die Nadelhölzer (Koniferen) und übrigen Gymnospermen von F. W. 
Negerf und E. M tinch t . 4. Auf läge, durchgesehen und e rgänz t 
von B. Huber. 140 Sei ten, 75 Figuren) 4 Tabel len , 3 K a r t e n . 1952. 
(355) 

Pflanzenzüchtung von H. Kuckuck. 2 B ä nde . 
I : G r u n d z ü g e d e r P f l a n z e n Z ü c h t u n g . 3., völlig u m g e a r b e i t e t e 

u n d erwei te r te Auf lage . 132 Sei ten, 22 Abbi ldungen . 1952. 
(1134) 

I I : S p e z i e l l e g a r t e n b a u l i c h e P f l a n z e n z ü c h t u n g ( Z ü c h t u n g 
von Gemüse, Obst und Blumen) . 178 Sei ten, 27 Abbi ldungen . 
1957. (1178/1178a) 

Zoologie 
Entwicklungsphysiologie der Tiere von F. Seidel. 2 Bände . 

I : E i u n d F u r c h u n g . 2. Auf lage . E t w a 160 Sei ten, 61 Abbi l -
dungen . 1966 (1162) 

I I : K ö r p e r g r u n d g e s t a l t u n d O r g a n b i l d u n g . 2. Auflage. In 
Vorbe re i tung (1163) 

Vergleichende Physiologie der Tiere von K. Herier. 2 Bände . 4. Auf lage 
der , ,T ie rphys io logie" . 

I : S t o f f - u n d E n e r g i e w e c h s e l . Neu bea rbe i t e t von K . Urich. 
158 Sei ten, 61 Abbi ldungen . 1966. (972/972a) 

I I : B e w e g u n g u n d R e i z e r s c h e i n u n g e n . Neu bea rbe i t e t von 
G. Birukow. In Vorbere i tung . (973) 

Das Tierreich 
I : E i n z e l l e r , P r o t o z o e n von E. Reichenow. 115 Sei ten. 59 Ab-

b i ldungen . 1956. (444) 
I I : S c h w ä m m e u n d H o h l t i e r e von H. J. Hannemann. 95 Sei-

t en , 80 Abbi ldungen . 1956. (442) 
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NATURWISSENSCHAFTEN 

I I I : W ü r m e r . P lat t - , Hohl-, Schnurwürmer, Kamptozoen, Ringel-
würmer, Protracheaten, Bärtierchen, Zungenwurmer von 
S . Jaeckel. 114 Seiten, 36 Abbildungen. 1955. (439) 

IV, 1: K r e b s e von H. E. Gruner und K. Deckert. 114 Seiten, 43 Ab-
bildungen. 1956. (443) 

IV, 2 : S p i n n e n t i e r e (Trilobitomorphen, Fühlerlose) u n d T a u -
s e n d f ü ß l e r von A.Kaestner. 96 Seiten, 55 Abbildungen. 
1955. (1161) 

IV, 3 : I n s e k t e n von H. von Lengerken. 2 . ,neubearbei tete Auflage. 
140 Seiten, 59 Abbildungen. 1966. (594) 

V : W e i c h t i e r e . Urmollusken, Schnecken, Muscheln und Kopf-
füßer von S . Jaeckel. 92 Seiten. 34 Figuren. 1954. (440) 

V I : S t a c h e l h ä u t e r . Tentakulaten, Binnenatmer und Pfeilwürmer 
von S . Jaeckel. 100 Seiten, 46 Abbildungen. 1955. (441) 

V I I , 1 : M a n t e l t i e r e , Schädellose, Rundmäuler von H. Fechter. 
In Vorbereitung. (448) 

V I I , 2 : F i s c h e von D. Lüdemann. 130 Seiten, 65 Abbildungen. 
1 9 5 5 . ( 3 5 6 ) 

V I I , 3 : L u r c h e (Chordatiere) von K. Herter. 143 Seiten, 129 Abbil-
dungen. 1955 . (847) 

V I I , 4 : K r i e c h t i e r e (Chordatiere) von K . / i e r i e r . 2 0 0 S e i t e n , 142 Ab-
bildungen. 1960. (447/447 a) 

V I I , 5 : V ö g e l (Chordatiere) von H.-A. Freye. 156 Seiten, 69 Figu-
ren. 1 9 6 0 . ( 8 6 9 ) 

V I I , 6 : S ä u g e t i e r e (Chordatiere) von Th. Haltenorth. In Vorberei-
tung. (282) 

Land- und Forstwirtschaft 
Landwirtschaftliche Tierzucht. Die Züchtung und Haltung der land-

wirtschaftlichen Nutztiere von H. Vogel. 139 Seiten, 11 Abbildun-
gen. 1 9 5 2 . ( 2 2 8 ) 

Kulturtechnische Bodenverbesserungen von 0. Fauser. 2 Bände. 5. , 
verbesserte und vermehrte Auflage. 
I : A l l g e m e i n e s , E n t w ä s s e r u n g . 127 Seiten, 4 9 Abbildungen. 

1 9 5 9 . ( 6 9 1 ) 
I I : B e w ä s s e r u n g , Ö d l a n d k u l t u r , F l u r b e r e i n i g u n g . 159 Sei-

ten, 71 Abbildungen. 1961. (692) 
Agrikulturchemie von K. Scharrer. 2 Bände. 

I : P f l a n z e n e r n ä h r u n g . 143 Seiten. 1953. (329) 
I I : F u t t e r m i t t e l k u n d e . 192 Seiten. 1956. ( 3 3 0 / 3 3 0 a ) 

Geologie, Mineralogie, Kristallographie 
Geologie von F. Lotze. 3. , verbesserte Auflage. 179 Seiten, 80 Abbil-

dungen. 1965. (13/13 a) 
Mineral- und Erzlagerstättenkunde von H. Huttenlocher f . 2 Bande. 

2., neubearbeitete Auflage von P. Ramdohr. 
I : 137 Seiten, 40 Abbildungen, 2 Tabellen. 1965. ( I 0 1 4 / 1 0 1 4 a ) 

I I : 135 Seiten, 41 Abbildungen. 1965. (1015/1015a) 
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N A T U R W I S S E N S C H A F T E N 

Allgemeine Mineralogie. 11., erweiterte Auf lage der „Minera'.ogie" von 
R. Brauns t, neubearbeitet von K. F. Chudoba. 152 Seiten, 143 
Textf iguren, 1 Tafel , 3 Tabellen. 1963. (29/29a) 

Spezielle Mineralogie. 11., erweiterte Auf lage der „Minera log ie" von 
R. Brauns t, bearbeitet von K. F. Chudoba. 193 Seiten, 127 Text -
figuren, 6 Tabellen. 1964. (31/31a) 

Petrographie (Gesteinskunde) von W. Bruhns t. Neubearbeitet von 
P. Ramdohr. 6., erweiterte Auflage. 141 Seiten, 21 Figuren. 1966. 
(173) 

Geochemie von K. H. Wedepohl. 220 Seiten, 26 Abbildungen, 37 Ta-
bellen. 1966. (1224/1224a/1224b) 

Kristallchemie von J. Zemann. 144 Seiten, 90 Abbildungen. 1966. 
(1220/1220a) 

Kristallographie von W. Bruhns t - 6. Auflage, neubearbeitet von 
P. Ramdohr. 115 Seiten, 164 Abbildungen. 1965. (210) 

Einführung in die Kristalloptik von E. Buchwald. 5., verbesserte 
Auf lage. 128 Seiten, 117 Figuren. 1963. (6I9/619a) 

Lötrohrproblerkunde. Mineraldiagnose mit Lötrohr und Tüpfelreak-
tion von M. Henglein. 4., durchgesehene und erweiterte Auf lage. 
108 Selten, 12 Figuren. 1962. (483) 
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Technik 
Graphische Darstellung in Wissenschaft und Technik von M. Pirani. 

3., erweiterte Auflage bearbeitet von J. Fischer unter Benutzung 
der von /. Runge besorgten 2. Auflage. 216 Seiten, 104 Abbildun-
gen. 1957. (728 /728a) 

Technische Tabellen und Formeln von W. Müller. 5. , verbesserte und 
erweiterte Auflage von E.Schulze. 165 Seiten, 114 Abbildungen, 
99 Tafeln. 1962. (579) 

Einführung in die Arbeitswissenschaft von H. H. Hilf. 164 Seiten, 
57 Abbildungen. 1964. (1212/1212a) 

Grundlagen der Straßenverkehrstechnik. Theorie der Leistungsfähigkeit 
von E. Engel. 101 Seiten, 55 Abbildungen. 1962. (1198) 

Elektrotechnik 
Grundlagen der allgemeinen Elektrotechnik von 0. Mohr. 3. Auflage. 

260 Seiten, 136 Bilder, 14 Tafeln. 1965. (196/196a) 
Die Gleichstrommaschine von K. Humburg. 2 Bände. 2., durchgesehene 

Auflage. 
I : 102 Seiten, 59 Abbildungen. 1956. (257) 

II : 101 Seiten, 38 Abbildungen. 1956. (881 ) 
Die Synchronmaschine von W. Putz. 92 Seiten, 64 Bilder. 1962. (1146) 
Induktionsmaschinen von F. Unger. 2. , erweiterte Auflage. 142 Seiten, 

49 Abbildungen. 1954. (1140) 
Die komplexe Berechnung von Wechselstromschaltungen von H. H. 

Meinke. 3. , neubearb. Aufl. 185 S. , 126 Abb. 1965. (1156/1156a) 
Theoretische Grundlagen zur Berechnung der Schaitgeräte von F. Kessel-

ring. 4. Auflage. In Vorbereitung. (711 /711a) 
Einführung In die Technik selbsttätiger Regelungen von W. zur Megede. 

3., durchgesehene Aufl. 180 S., 86 Abb. 1966. In Vorb. ( 7 1 4 / 7 1 4 a ) 
Elektromotorische Antriebe von W. Meyer. In Vorbereitung. (827/827 a) 
Überspannungen und Überspannungsschutz von G. Frühauf. Durch-

gesehener Neudruck. 122 Seiten, 98 Abbildungen. 1950. (1132) 
Elektrische Höchstspannungs-Schaltanlagen. Für Freiluft und Innen-

anordnung von G. Meiners und K.-H. Wiesenewsky. 138 Seiten, 
58 Abbildungen. 1964. (796/796a) 

Transformatoren von W. Schäfer. 4 . , überarbeitete und ergänzte Auf-
lage. 130 Seiten, 73 Abbildungen. 1962. (952) 

Maschinenbau 
Thermische Verfahrenstechnik von H. Bock. 3 Bände. 

I : E i g e n s c h a f t e n u n d V e r h a l t e n d e r r e a l e n S t o f f e . 184 Sei-
ten, 28 Abbildungen. 1963. (1209/1209 a) 

I I : F u n k t i o n und B e r e c h n u n g d e r e l e m e n t a r e n G e r ä t e . 
195 Seiten, 54 Abbildungen. 1964. (1210/1210a) 

I I I : F l i e ß b i l d e r , i h r e F u n k t i o n u n d i h r Z u s a m m e n b a u a u s 
G e r ä t e n . 224 Seiten, 67 Abbildungen. 1965. (1211/1211 a) 

Technische Thermodynamik von U. Grigull. 171 Seiten, 74 Abbildungen. 
1966. (1084/1084a) 
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T E C H N I K 

Metallkunde von H. Borchers. 3 Bände. 
I : A u f b a u d e r M e t a l l e u n d L e g i e r u n g e n . 6. Auflage. 120 Sei-

ten, 90 Abbildungen, 2 Tabellen. 1964. (432) 
I I : E i g e n s c h a f t e n , G r u n d z ü g e d e r F o r m - u n d Z u s t a n d s -

g e b u n g . 5., ergänzte und durchgesehene Auflage. 182 Seiten, 
107 Abbildungen, 10 Tabellen. 1963. (433/433a) 

I I I : D i e m e t a l l k u n d l i c h e n U n t e r s u c h u n g s m e t h o d e n von 
E. Hanke. In Vorbereitung (434) 

Die Werkstoffe des Maschinenbaues von A. Thum f und C. M. v. Mey-
senbug. 2 Bände. 
I : E i n f ü h r u n g in d i e W e r k s t o f f p r ü f u n g . 2., neubearbeitete 

Auflage. 100 Seiten, 7 Tabellen, 56 Abbildungen. 1956. (476) 
I I : D i e K o n s t r u k t i o n s w e r k s t o f f e . 132 Seiten, 40 Abbildungen. 

1959. (936) 
Dynamik von W. Müller. 2 Bände. 2., verbesserte Auflage. 

I : D y n a m i k d e s E i n z e l k ö r p e r s . 128 Seiten, 48 Figuren. 1952. 
(902) 

I I : S y s t e m e v o n s t a r r e n K ö r p e r n . 102 Seiten, 41 Figuren. 
1952. (903 ) 

Technische Schwingungslehre von L. Zipperer. 2 Bände. 2., neube-
arbeitete Auflage. 
I : A l l g e m e i n e S c h w i n g u n g s g l e i c h u n g e n , e i n f a c h e 

S c h w i n g e r . 120 Seiten, 101 Abbildungen. 1953. (953) 
I I : T o r s i o n s s c h w i n g u n g e n in M a s c h i n e n a n l a g e n . 102 Sei-

ten, 59 Abbildungen. 1955. (961/961 a) 
Werkzeugmaschinen für Metallbearbeitung von K. P. Matthes. 2 Bände. 

I : 100 Seiten, 27 Abbildungen, 11 Zahlentafeln, 1 Tafelanhang. 
1954. (561) 

I I : F e r t i g u n g s t e c h n i s c h e G r u n d l a g e n d e r n e u z e i t l i c h e n 
M e t a l l b e a r b e i t u n g . 101 Seiten, 30 Abbildungen, 5 Tafeln. 
1955. (562) 

Das Maschinenzeichnen mit Einführung In das Konstruieren von W. 
Tochtermann. 2 Bände. 4. Auflage. 

I : D a s M a s c h i n e n z e i c h n e n . 156 Seiten, 75 Tafeln. 1 9 5 0 . ( 5 8 9 ) 
I I : A u s g e f ü h r t e K o n s t r u k t i o n s b e i s p i e l e . 130 Seiten, 58 Ta-

feln. 1950. (590) 
Die Maschinenelemente von E. A. vom Ende f . 4. , überarbeitete Auf-

!age. 184 Seiten, 179 Figuren, 11 Tafeln. 1963. (3/3a) 
Die Maschinen der Eisenhüttenwerke von L. Engel. 156 Seiten, 95 Ab-

bildungen. 1957. (583/583 a) 
Walzwerke von H. Sedlaczek t unter Mitarbeit von F. Fischer und 

M. Buch. 232 Seiten, 157 Abbildungen. 1958. (580/580a) 
Getriebelehre von P. Grodzinski f . 2 Bände. 3., neubearbeitete Auflage 

von G. Lechner. 
I : G e o m e t r i s c h e G r u n d l a g e n . 164 S. , 131 Fig. 1960. (1061) 

I I : A n g e w a n d t e G e t r i e b e l e h r e . In Vorbereitung. (1062) 
Kinematik von H. R. Müller. 171 Seiten, 75 Figuren. 1963. (584/584a) 
Gießereitechnik von H. Jungbluth. 2 Bände. 

I : E i s e n g i e ß e r e i . 126 Seiten, 44 Abbildungen. 1 9 5 1 . ( 1 1 5 9 ) 
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T E C H N I K 

Die Dampfkessel einschließlich Feuerungen und Hilfseinrichtungen. 
Physikalische und chemische Grundlagen, Berechnung und Kon-
struktion, Vorschriften und Beispiele von W. Marcard. 3., neube-
arbeitete Auflage von G. Beyer. 2 Bande. 
I : P h y s i k a l i s c h e und c h e m i s c h e G r u n d l a g e n , W ä r m e -

l e h r e , W ä r m e ü b e r t r a g u n g , V e r b r e n n u n g . 133 Seiten, 
35 Bilder, 26 Tabellen. 1964. (9/9a) 

I I : B e r e c h n u n g u n d K o n s t r u k t i o n . D a m p f k e s s e l , 
H i l f s e i n r i c h t u n g e n . F e u e r u n g e n , B e r e c h n u n g . 108 
Seiten, 45 Bilder. 1966. (521/521a) 

Die Dampfturbinen. Ihre Wirkungsweise, Berechnung und Konstruk-
tion von C. Zietemann. 3 Bände. 
I : T h e o r i e d e r D a m p f t u r b i n e n . 4. Auflage. 139 Seiten, 48 Ab-

bildungen. 1966. In Vorbereitung. (274) 
I I : D i e B e r e c h n u n g d e r D a m p f t u r b i n e n u n d d i e K o n -

s t r u k t i o n d e r E i n z e l t e i l e . 4. , verbesserte Auflage. 132 Sei-
ten, 111 Abbildungen. 1966. In Vorbereitung. (715) 

I I I : D i e R e g e l u n g d e r D a m p f t u r b i n e n , d ie B a u a r t e n , 
T u r b i n e n f ü r S o n d e r z w e c k * , K o n d e n s a t i o n s a n l a g e n . 
3., verbesserte Auflage. 126 Seiten, 90 Abbildungen. 1956. (716) 

Verbrennungsmotoren von W. Endres. 3 Bände. 
I : Ü b e r b l i c k . M o t o r - B r e n n s t o f f e . V e r b r e n n u n g im M o t o r 

a l l g e m e i n , im O t t o - u n d D i e s e l - M o t o r . 153 Seiten, 57 Ab-
bildungen. 1958. (1076/1076a) 

I I : G a s w e c h s e l v o r g a n g . A u f l a d e n . L e i s t u n g , m i t t l . D r u c k , 
R e i b u n g . W i r k u n g s g r a d e u n d K r a f t s t o f f v e r b r a u c h . 
152 Seiten, 62 Abbildungen. 1966. (1184/1184a) 

I I I : D i e E i n z e l t e i l e d e s V e r b r e n n u n g s m o t o r s . In Vorbe-
reitung. (1185/1185a) 

Autogenes Schweißen und Schneiden von H. Niese. 5. Auflage, neu-
bearbeitet von A. Küchler. 136 Seiten, 71 Figuren. 1953. (499) 

Die elektrischen Schweißverfahren von H. Niese. 2. Auflage, neube-
arbeitet von H.Dienst. 136 Seiten, 58 Abbildungen. 1955. (1020) 

Die Hebezeuge. Entwurf von Winden und Kranen von G. Tafel. 2., ver-
besserte Auflage. 176 Seiten, 230 Figuren. 1954. (414/414a) 

Vermessungswesen 
Vermessungskunde von W. Großmann. 3 Bände. 

I : S t ü c k v e r m e s s u n g u n d N i v e l l i e r e n . 12., verbesserte Auf-
lage. 156 Seiten, 122 Figuren. 1965. (468) 

I I : H o r i z o n t a l a u f n a h m e n u n d e b e n e R e c h n u n g e n . 9., ver-
besserte Auflage. 136 Seiten, 101 Figuren. 1963. (469) 

I I I : T r i g o n o m e t r i s c h e u n d b a r o m e t r i s c h e H ö h e n m e s s u n g . 
T a c h y m e t r i e und A b s t e c k u n g e n . 8., verbesserte Auflage. 
140 Seiten, 102 Figuren. 1965. (862) 

Kartographie von V. Heissler. 2. Auflage. 213 Seiten, 125 Abb. , 8 Anla-
gen. 1966. (30/30 a) 

Photogrammetrie von G. Lehmann. 2., neubearbeitete Auflage. 205 Sei-
ten, 136 Abbildungen. 1966. (1188/1188a) 
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T E C H N I K 

Wasserbau 

Wasserkraftanlagen von A. Ludin unter Mitarbeit von W. Borkenslein. 
2 Bände. 
I : P l a n u n g , G r u n d l a g e n und G r u n d z ü g e . 124 Seiten, 60 Ab-

bildungen. 1955.(665) 
I I : A n o r d n u n g und A u s b i l d u n g d e r H a u p t b a u w e r k e . 

184 Seiten, 91 Abbildungen. 1958. (666/666a) 
Verkehrswasserbau von H. Dehnert. 3 Bände. 

I : E n t w u r t s g r u n d l a g e n , F l u ß r e g e l u n g e n . 103 Seiten,53 Ab -
b i l d u n g e n . 1950. (585) 

I I : F l u ß k a n a l i s i e r u n g und S c h i f f a h r t s k a n ä l e . 94 Seiten, 
60 Abbildungen. 1950. (597) 

I I I : S c h l e u s e n und H e b e w e r k e . 98 Seiten, 70 Abbildungen. 
1950. (1152) 

Wehr- und Stauanlagen von H. Dehnert. 134 Seiten, 90 Abbildungen. 
1952. (965) 

Talsperren von F. Tölke. 122 Seiten, 70 Abbildungen. 1953. (1044) 

Hoch- und Tiefbau 

Die wichtigsten Baustoffe des Hoch- und Tiefbaus von O. Graf f . 4., ver-
besserte Auflage. 131 Seiten, 63 Abbildungen. 1953. (984) 

Baustoffverarbeitung und Baustellenprüfung des Betons von A. Klein-
logel. 2., neubearbeitete und erweiterte Auflage. 126 Seiten, 35 Ab -
bildungen. 1951. (978) 

Festigkeitslehre. 2 Bände. 
I : E l a s t i z i t ä t , P l a s t i z i t ä t und F e s t i g k e i t d e r B a u s t o f f e 

und B a u t e i l e von W.Gehlert und W. Herberg. Durchge-
sehener und erweiterter Neudruck. 159 Seiten, 118 Abbildungen. 
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859 Capelle, Griech. Philos. I I I 
862 Großmann, Vermessungs-

kunde I I I 
863 Capelle, Griech. Philos. IV 
866 Bieler, Rom. Literaturge-

schichte II 
869 Freye, Vogel 
875 Hofmann, Geschichte der 
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reich 

1140 Unger, Indukt ionsmaschine 
1141 Koller, Hormone 
1142 Meissner-Lehnert, Shake-

speare 
1144 Gehler-Herberg, Festig-

keitslehre I 
1145/U45a Herberg-Dimitrov, 

Festigkeitslehre II 
1146 Putz , Synchronmaschine 
1147 v. Waltershausen, Kunst d. 

Dirigierens 
1148 Pepping, Der polyphone 

Satz I 
1152 Dehner t , Verkehrswasser-

bau I I I 
1153/1153a Mellerowicz, Allgem. 

Betriebswirtschaftslehre 11 
1154/1154a Mellerowicz, Allgem. 

Betriebswirtschaftslehre 111 
1155 Schwartz, Mikrobiologie I 
1156/1156a Meinke, Komplexe 

Berechnungen v. Wechsel-
s t romschal tungen 

1157 Schwartz , Mikrobiologie II 
1158/1158 a Mayrhofer, Sanskrit-

Grammat ik 
1159 Jungbluth ,Gießerei techniki 
1160 Dibelius-Kümmel, Paulus 
1161 Kaestner, Spinnentiere 
1162 Seidel, Entwicklungsphy-

siologie der Tiere I 
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