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Durch sukzessive Anwendung von Satz 119, (II) unter 
Berücksichtigung der Minimaleigenschaft des Kompositums 
(1, hinter Def. 5 [21] oder 2, Satz 116, 2.)) und der Maximal-
eigenschaft des Durchschnitts (1, hinter Def. 5) ergibt sich 
ferner leicht, daß in jedem Parallelogramm unserer schema-
tischen Figur (mag es eine „Grundmasche" sein oder aus 
mehreren „Grundmaschen" zusammengesetzt) der Körper 
links unten der Durchschnitt und der Körper rechts oben das 
Kompositum der beiden Körper links oben und rechts unten 
ist. Insbesondere bestehen also neben den rekursiven Dar-
stellungen (3.) auch die alle Zwischenschritte überschlagenden 
Darstellungen 

(4.) N ^ N . Ä i } , A i = [ N , Ä i ] , 
aus denen nach Satz 119, (I) folgt, daß das sukzessive Auf-
steigen zu den Grundkörpern der Kette (1.) mit einer sukzessi-
ven Reduktion der Galoisgruppe © von N bzgl. K auf die der 
Kette (2.) nach dem Fundamentalsatz zugeordnete Unter-
gruppenkette 

(5.) © = 
verbunden ist. Nach (4.) und den Eigenschaften von Kompo-
situm und Durchschnitt ist dann und nur dann, wenn einmal 
A, = N und damit A r = Nr ist, d. h. wenn gemäß (5.) die 
Galoisgruppe © auf = ® reduziert ist, A r 2 i N, d. h. N, 
wie es als Ziel vorschwebte, durch die Kette (1.) eingefangen. 

Y. Auflösbarkeit algebraischer 
Gleichungen durch Wurzelzeichen. 
Die in IV entwickelte Theorie verdankt ihre Entstehung 

und bildet demgemäß die Grundlage für die Behandlung der 
schon zu Beginn von § 18 erwähnten, berühmten Frage, 
u n t e r welchen Bedingungen eine a lgebra i sche 
Gle ichung durch Wurze lze ichen a u f l ö s b a r ist . 
Deren Beantwortung für Grundkörper der Charakteristik 0 
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ist der vorliegende, letzte Abschnitt gewidmet. Wir präzi-
sieren dazu zunächst die Frage durch die De f in i t i on der 
A u f l ö s b a r k e i t du rch Wurze lze ichen (§ 19), ent-
wickeln sodann als notwendige Hilfsmittel die Theorie der 
K r e i s t e i l u n g s k ö r p e r (§ 20) sowie der re inen und der 
zykl i schen E r w e i t e r u n g e n von P r i m z a h l g r a d (§ 21) 
und leiten darauf durch Anwendung der in IV behandelten 
Galoisschen Theorie ein gruppentheoretisches K r i t e r i u m 
f ü r die A u f l ö s b a r k e i t du rch Wurze lze ichen her 
(§ 22). Schließlich skizzieren wir noch den durch die Galois-
sche Theorie gelieferten Beweis für die auf anderem Wege 
zuerst von A b e l gefundene N i c h t a u f l ö s b a r k e i t du rch 
Wurze lze ichen der a l lgemeinen a lgebra i schen Glei-
chung höheren als v i e r t e n Grades (§ 23). 

In § 20 fügen wir einen kurzen Abriß der Theorie der end-
lichen Körper an und beseitigen dabei insbesondere die in 
dieser Hinsicht im Beweis von Satz 90 [80] noch gebliebene 
Unvollständigkeit. 

§ 19. Definition der Auflösbarkeit durch Wurzelzeichen. 
Wir geben in diesem Paragraphen eine exakte Formu-

lierung dafür, was unter der Ausdrucksweise durch Wurze l -
zeichen a u f l ö s b a r zu verstehen ist. Der aus den Elementen 

n 
geläufige Begriff J/a, wo a ein Element eines Körpers K und 
n eine natürliche Zahl ist, wird dort bekanntlich als Lösung 
der Gleichung xn — a == 0 erklärt. Wegen der hierbei i. a. 

n 

vorliegenden Mehrdeutigkeit wollen wir die Bezeichnung ]/a 
nicht verwenden, operieren vielmehr an Stelle des Wurzel-
zeichens mit der zugehörigen Gleichung: 

Definition 38. Ein Polynom der Form xn — a he iß t 
rein. 

Damit die zu Eingang dieses Abschnitts gestellte Frage nicht 
trivial wird, hat man natürlich neben der in ihr genannten Operation 
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des Wurzelziehens auch die, von diesem Standpunkte aus unter-
geordneten, vier elementaren Rechenoperationen mit in den Kreis 
der zulässigen Operationen aufzunehmen1). Mit einer Wurzel oc 
eines reinen Polynoms gelten dann also auch alle ihre rationalen 
Funktionen über dem Grundkörper K, d. h. alle Elemente von 
K(a) als bekannt. Der Sinn unserer Frage geht aber noch weiter: 
Es wäre unsystematisch, wenn man der Operation des Wurzel-
ziehens nach e i n e m solchen Schritt Halt gebieten wollte. Viel-
mehr ist es vernünftig, weiter auch die Wurzeln reiner, dem so 
erreichten Körper K(<x) angehöriger Polynome als bekannt anzu-
sehen usf. Unsere Frage kommt dann also darauf hinaus, unter 
welchen Bedingungen man die Wurzeln, d. h. den Wurzelkörper 
eines Polynoms / (x) aus K oder allgemeiner irgendeine Erweiterung 
A von K durch von K ausgehende s u k z e s s i v e 2 ) Adjunktion von 
Wurzeln reiner Polynome erreichen oder einfangen kann. Hieraus 
ergibt sich leicht eine Reduktion bezüglich der in Betracht zu 
ziehenden Wurzelzeichen: Ist nämlich x" — a ein reines Polynom 
aus K von zusammengesetztem Grade n = n-^n^ und « eine seiner 
Wurzeln, so ist a"' = o^ eine Wurzel des reinen Polynoms xn'- — a 
aus K und weiter oc eine Wurzel des reinen Polynoms xn* — tx1 aus 
K(« j ) . Somit kann man sich auf die sukzessive Adjunktion von 
Wurzeln reiner Polynome von Primzahlgrad beschränken. J e nach 
Geschmack kann nun hierbei noch die Einschränkung hinzugefügt 
werden, daß diese Polynome in dem jeweils erreichten Körper 
irreduzibel sein sollen oder nicht. Da die irreduziblen Polynome 
die einfachsten Bausteine für die Konstruktion algebraischer Er-
weiterungen sind, erscheint es theoretisch richtiger, diese Be-
schränkung aufzunehmen3). Wir definieren demgemäß: 

* Definition 39. E i n e Erweiterung A von K h e i ß t 
rein über K, wenn sie durch A d j u n k t i o n e iner 
W u r z e l e ines i r r e d u z i b l e n re inen P o l y n o m s aus K 
h e r l e i t b a r is t . 

Sonst wären eben nur die reinen Gleichungen durch Wurzelzeichen auf-
lösbar. 

Nicht nur durch s i m u l t a n e . Das besagt liier (anders als bei Satz 62 [52]) 
mehr, denn ¡x kann sehr wohl Wurzel eines reinen Polynoms aus einer Erweite-
rung K von K sein, ohne doch Wurzel eines reinen Polynoms aus K zu sein. 

3) Tatsächlich ist die in Satz 127 [144] gegebene Antwort auf unsere Frage (für 
Grundkörper der Charakteristik 0) von dieser Beschränkung unabhängig, wie sich 
aus den späteren Sätzen 123,126 [137. 141] leicht ergibt. Gerade in Hinsicht 
auf Satz 126 erscheint es mir aber richtiger, die Irreduzibilität zu fordern, da 
die „gröbere" Fragestellung an der algebraisch interessanten „feineren" Struktur 
der Kreisteilungskörper ganz vorbeisieht. 



20. Kreisteilungskörper. Endliche Körper. 129 

•Definition 40. Eine Erweiterung endlichen Grades 
A von K heißt durch Wurzelzeichen auflösbar über K, 
wenn eine Erwei terungsket te 

K = 7 \ 0 <7 \ j_< •• • < Ä f m i t Ä r ^ A 
exist ier t , in der Aj rein und von Primzahlgrad 
über A¿_i ist. 

Ein Polynom f(x) aus K heißt durch Wurzelzeichen 
auflösbar über K, wenn sein Wurzelkörper über K es ist. 

§ 20. Kreisteilungskörper. Endliche Körper. 
Um die Frage nach der Auflösbarkeit durch Wurzelzeichen 

behandeln zu können, haben wir die Theorie des speziellen reinen 
Polynoms xn — e vorauszuschicken, dessen Wurzeln im Falle 
des rationalen Grundkörpers P, wenn man sie gemäß dem sog. 
Fundamentalsatz der Algebra als komplexe Zahlen darstellt, 
die Teilung der Peripherie des Einheitskreises in n gleiche 
Teile leisten. In Hinsicht auf unsere Anwendungen wollen wir 
uns hier nicht auf diesen Spezialfall P beschränken, sondern 
allgemeinere Grundkörper K zulassen, nennen aber in An-
lehnung an jenen Spezialfall auch allgemein xn — e = 0 die 
Kreisteilungsgleichung und ihren Wurzelkörper Tn den 
Kreisteilungskörper für n über K. Über die Wurzeln der 
Kreisteilungsgleichung für n über K, die sog. m-ten Einheits-
wurzeln über K, beweisen wir dann zunächst den folgenden 
Satz: 

Satz 120. Es sei K ein Körper, dessen Charakte-
rist ik 0 oder eine nicht in w aufgehende Primzahl 
ist. Dann bilden die n-ten Einheitswurzeln über K 
bezüglich der Mult ipl ikat ion eine zyklische Gruppe 
3 der Ordnung n. Es existieren also n verschiedene 
w-te Einheitswurzeln über K, die sich als die Po-
tenzen 

Hasse , Höhere Algebra. II. 9 
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einer u n t e r i hnen , e iner sog. primitiven n-ten Ein-
heitswurzel C> da r s t e l l en lassen. 

Beweis: Es seien f j , . . d i e Wurzeln von fn(x) = off1—e. 
Dann ist die Ableitung 

W = » 1 ^ = 1 = 0 (¿ = 1 , . . . , » ) , 
weil natürlich Ci =4= 0> a^so nach der Voraussetzung über die 
Charakteristik von K dann auch 14= 0 ist (Satz 43 [37])_ 
Nach Satz 56 [46] sind also die n Wurzeln C4 voneinander 
verschieden. Da ferner aus £* = e, f" = e folgt (££k)n = e, 
bilden die n verschiedenen n-ten Einheitswurzeln eine abel-
sche Gruppe 3 der Ordnung n (1, Satz 20 [55] angewandt 
auf die multiplikative Gruppe der Elemente =j= 0 des Kreis-
teilungskörpers T„). 

Nach Satz 34 [32] hat dann jedes Element von 3 einen 
bestimmten Teiler wi; von n als Ordnung. Es sei nun £ ein 
Element aus 3 von möglichst hoher Ordnung m. Wir haben 
zu zeigen, daß m = n ist, woraus ja folgt, daß die n Potenzen 

. . 1 verschieden sind und somit die Gruppe 3 er-
schöpfen. Sei dazu p eine beliebige Primzahl und werde (gemäß 
Satz 12, 22 [14, 22]) 

m - - p^m, rrii = p^räi mit (m, p) = 1, (m;, p) = 1 
gesetzt. Dann haben offenbar ^ d i e Ordnungen p l , m, 

also nach Satz 35 [32] v'x die Ordnung p%m. Wegen der 
Maximalauswahl von m ist somit p^m ' i p"m, d. h. (ii ^ ¡i. 
Es enthält also mj jede Primzahl p höchstens in der Potenz, 
in der p in m vorkommt, d. h. es ist m» | m (Satz 20 [22]) 
und somit tm = e. Die n verschiedenen n-ten Einheitswurzeln 
^ sind also sämtlich Wurzeln des Polynoms m-ten Grades 
xm — e. Daraus folgt m~2in (Satz 48 [41]), was mit m \ n 
zusammen m = n und damit unsere Behauptung ergibt. 

Nach Satz 37 [34] (vgl. auch das zu Satz 31 [30] Ge-
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sagte) haben wir noch ohne weiteres: 
Zusatz. I s t £ eine primit ive n- te Einheitswurzel 

über K, so sind alle und nur die Potenzen £m , die 
den (p(n) primen Restklassen m mod. n entsprechen, 
ebenfalls primitiv. 

Hierauf beruht die in folgendem Satz enthaltene Be-
stimmung der Galoisgruppe des Kreisteilungskörpers T„: 

Satz 121. I s t K ein Körper wie in Satz 120 und £ 
eine primit ive n-te Einheitswurzel über K, so ist 
das Polynom 

9n(x)^nn(x-cm), 
m=* 0 

(m, n)=l 
dessen Wurzeln die <p(n) verschiedenen primitiven 
Einheitswurzeln sind, ein Polynom in K. I s t 

gn(x) = U ( x - n m 

der zu £ gehörige irreduzible (nach Satz 59 [48] 
separable, nach Satz 99, (III) [88] normale) F a k t o r 
von gn(x), so repräsentieren diem eine Untergruppe 
9ßn der primen Restklassengruppe 9ßn mod. n. Die 
Galoisgruppe ©n des (separablen, normalen) Kreis-
tei lungskörpers T„ ist dann zu dieser Gruppe 
isomorph auf Grund der Zuordnung des durch 
£-*£ m erzeugten Automorphismus von Tn zu der 
Restk lasse m mod. n. 

Insbesondere ist also T„ abelsch (Def. 34 [95]) 
und ferner der Grad von T n über K ein Teiler von 
<p(n) (Satz 105 [96]). 

Beweis: a.) Da nach Satz 107 [98] ein Automorphismus 
von T„ bzgl. K einerseits die n verschiedenen Wurzeln £,; von 
xn — e nur untereinander vertauscht, andererseits deren 
Potenzdarstellungen £ i = £ ,—1 invariant läßt, geht £ durch ihn 
wieder in eine primitive n-te Einheitswurzel über, so daß auch 

9* 
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die <p(n) verschiedenen primitiven w-ten Einheitswurzeln 
durch ihn nur untereinander vertauscht werden. Hiernach 
sind die Koeffizienten von g (a;) bei allen Automorphismen 
von T„ bzgl. K invariant und gehören somit zu K (Satz 112, 
Zusatz [111]). 

b.) Da T„ = K ( t ° , . . £ n - 1 ) = K(C), also eine primitive 
H-te Einheitswurzel über K gleichzeitig auch primitives Ele-
ment von Tn bzgl. K ist, können (Satz 105 [96]) die Auto-
morphismen von T„ bzgl. K durch die ihnen entsprechenden 
Substitutionen von £ beschriebenw erden. Hat also gn(x) die 
Bedeutung aus dem Satze, so wird die Galoisgruppe ©„ von T„ 
bzgl. K durch die Substitutionen £ - *£ m dargestellt, und ihre 
Elemente sind hierdurch der Menge der durch die m reprä-
sentierten primen Restklassen mod. n eineindeutig zu-
geordnet. Da nun £-• £"" und £->-£"" nacheinander ausgeführt 
£—>• (C'p = C"11"1' ergeben, kommt bei dieser Zuordnung die 
Multiplikation in ©„ auf die Multiplikation der Restklassen in5ß„ 
hinaus. Daher ist diese Zuordnung isomorph und eine zu 
©n isomorphe Untergruppe von 9ßre. 

Bei der Untersuchung der Auflösbarkeit durch Wurzel-
zeichen spielen gemäß Def. 40 [129] die Einheitswurzeln von 
Primzahlordnung n = p eine besondere Rolle. Wir beweisen 
für diesen Fall in Erweiterung des Satzes 121: 

Satz 122. Es sei p eine Pr imzahl und K ein Kör-
per mit von p verschiedener Charakter is t ik . Dann 
ist der Kreis te i lungskörper Tp zyklisch über K von 
einem in p — 1 aufgehenden Grade. 

Beweis: Nach Satz 121 ist der Grad vonT p über K ein 
Teiler von <p(p) und die Galoisgruppe ©p von T p bzgl. K 
isomorph zu einer Untergruppe der primen Restklassen-
gruppe Nun bilden die Restklassen mod. p nach Satz 28 
[27] sogar einen Körper, den Primkörper Pp (Def. 13 [35], 
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Satz 41 [36]). Die <p(p) Elemente von sind dann die 
p — 1 von Null verschiedenen Elemente von Pp (Satz 17 [20]) 
und sind als solche Wurzeln der Kreisteilungsgleichung 
zP- i — e ^ O (Satz 29 [29]), also die sämtlichen (p — l)-ten 
Einheitswurzeln über Pp. Nach Satz 120 [129] bilden sie 
somit bezüglich der Multiplikation eine zyklische Gruppe. 
Daher ist nach Satz 36 [33] also auch die Untergruppe 
f P, d. h. & p zyklisch und also Tp zyklisch über K (Def. 34 [95]) 
von einem in p — 1 aufgehenden Grade. 

Trivialerweise folgt übrigens aus Satz 44 [37]: 
Zusatz. Hat K die Charakter is t ik p, so ist 

xv — e={x — e f , also e die einzige p-te Einheitswurzel 
über K, und Tp = K. 

Es ist bemerkenswert, wie die abstrakte Körpertheorie, 
durch die ohne weitere Schwierigkeiten mögliche Ausdehnung 
des in der Zahlentheorie gewöhnlich nur für den Grundkörper 
P bewiesenen Satzes 120 [129] auch auf Pp, auf einfachste 
Weise zu dem Schluß führt, daß die prime Restklassengruppe 

zyklisch ist, oder, wie man in der Zahlentheorie sagt, daß 
eine primitive Wurzel mod. p existiert, nämlich eine solche 
ganze Zahl r, daß für jedes zu p prime ganze m eine Potenz-
darstellung 

m= r? mod. p {¡j, = 0 , . . . , p — 2) 
besteht. 

Wir fügen noch eine Bemerkung über den Spezialfall des Kreis-
teilungskörpers Tp über dein rationalen Grundkörpei* P an. Mit 
zahlentheoretischen Hilfsmitteln (Eisenstein-Schönemann-
scher Satz, siehe 3, § 20, Aufg. 6) zeigt man, daß das Polynom 

gJx) ^ s x " - 1 + x" - 2 + • • • + x + 1 p x — 1 
aus Satz 121 in P irreduzibel ist, also Tp den Grad <p{p) = p — 1 
über P hat. Ist nun p — 1 = 2'' (v 0) eine Potenz von 2, so 
kann nach Satz 109 [101] Tp von P aus durch sukzessive Adjunktion 
quadratischer Irrationalitäten erreicht werden, weil dann die nach 
Satz 122 zyklische Galoisgruppe von Tp bzgl. P die Ordnung 2" 
hat und folglich nach Satz 36 [33] eine Untergruppenkette 
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derar t besitzt, daß Untergruppe vom Index 2 von ist . K a n n 
umgekehr t ~TV von P aus durch sukzessive Adjunkt ion quadra-
tischer Irrat ional i tä ten erreicht (oder auch nur eingefangen) werden, 
so enthäl t die Gruppe @ nach den Ausführungen in § 17, 2.) [108] 
und § 18, 3.) [124] eine Untergruppenket te der eben beschriebenen 
Art1) , und somit ist dann ihre Ordnung p — 1 eine Potenz von 2. 
Daraus ergibt sich das berühmte 

Resul ta t von Gauß. D a s r e g u l ä r e p - E c k f ü r e i n e 
P r i m z a h l p i s t d a n n u n d n u r d a n n m i t Z i r k e l u n d 
L i n e a l k o n s t r u i e r b a r , w e n n p e i n e P r i m z a h l v o n d e r 
F o r m 2" + 1 i s t . 

Man weiß bis heute nicht, ob die mi t p = 2, 3, 5 , 17 , 257, 65537 
beginnende Folge der Primzahlen dieser Form abbricht oder nicht. 
(Siehe hierzu auch 3, § 20, Aufg. 14 .15. ) 

Auf analoge Weise werden wir aus Satz 122 im nächsten Para-
graphen als das hauptsächlichste Ziel der Digression dieses Para-
graphen die Auflösbarkeit von Tp durch Wurzelzeichen über be-
s t immten Grundkörpern K folgern. 

Auf Grund von Satz 120 [129] kann je tz t mi t Leichtigkeit 
gegeben werden: 

Kurzer Abriß der Theorie der endl ichen Körper. 
A. Wir haben bereits endliche Körper , d. h. solche aus nur 

endlich vielen Elementen, kennengelernt, nämlich fü r jede Prim-
zahl p den Pr imkörper Pp (Restklassenkörper mod. p) aus genau 
p Elementen (§ 4). 

Sei jetzt E ein beliebiger endlicher Körper. Dann ist auch der 
in E enthal tene Pr imkörper endüch, also nicht zum rationalen 
Zahlkörper isomorph. Daher gilt (Satz 41 [36]): 

(I) D i e C h a r a k t e r i s t i k v o n E i s t e i n e P r i m z a h l p. 
Nach dem im Anschluß an Satz 41 Gesagten kann dann E 

als Erwei terung des Pr imkörpers Pp angesehen werden. Trivialer-
weise ist dabei E von endlichem Grade über Pp (Def. 25 [57]). 
Aus der eindeutigen Darstel lung <% = a1tx1 + • • • + am<xm der Ele-
mente ot aus E durch eine Basis oclt..., cxm von E bzgl. Pp mi t 
Koeffizienten alt..., am aus Pp folgt dann : 

( I I ) I s t [ E : P p ] = m, so h a t E g e n a u pm E l e m e n t e . 
Wir verallgemeinern je tz t die fü r den Pr imkörper Pp selbst im 

Beweis zu Satz 122 angewandte Schlußweise auf E. Die multi-
plikative Gruppe der von Null versclriedenen Elemente von E 
(1, § 6, Beisp. 1 [53]) h a t nach ( I I ) die Ordnung pm — 1. Diese 

>) Für den allgemeinen Fall des Einfangens siehe den ausführlichen 
Beweis zu dem späteren Satz 127. Teil a)f Änm. 1 [145]. 
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pm — 1 von Null verschiedenen Elemente genügen daher der Glei-
chung xpm~~1 — e =s= 0 (Satz 34 [32]), sind also die sämtlichen 
(pm— l)-ten Einheitswurzeln über Pp, und daher ist die aus ihnen 
gebildete Gruppe zyklisch (Satz 120): 

(III) I s t [ E : P p ] = m, so is t E der Kre i s t e i l ungs -
kö rpe r T p m ^ über Pp. 

Die von Nul l ve r sch iedenen E l e m e n t e von E sind 
die Wurze ln der Gle ichung xp ~1 — e i O , die sämt l i chen 
E l emen te von E also die Wurze ln der Gle ichung 
xpW—x = Q. 

In E ex i s t i e r t ein p r im i t i ve s E l e m e n t g d e r a r t , daß 
die pm—1 von Nul l ve r sch iedenen E l e m e n t e von E 
als die Po t enzen 

e° = e, e\...,QPm-2 
d a r s t e l l b a r sind. 

Umgekehrt gilt: 
(IV) F ü r bel iebiges m i s t der Kre i s t e i l ungskö rpe r 

Tptn_1 über Pp ein endl icher Körpe r mi t [Tpm_i:Pj,] = »». 
Denn T ist als Erweiterung endlichen Grades des endlichen 

Körpers Pp (Satz 83 [70]) selbst ein endlicher Körper (Def. 25, 
Zusatz [57]). Dieser hat genau pm Elemente; seine Elemente 
werden nämlich bereits durch Null und die pm — 1 Wurzeln von 
xvm—l— ^ (1. Ii. durch die pm Wurzeln von xpm—x erschöpft; denn 
diese pm Wurzeln bilden bereits einen Körper, weil aus oJ'm = <x, 
ßpm = ß nicht nur (wie im Beweis zu Satz 120) folgt <aßfm = aß 

/<x\pm 

und (falls ß 4= 0) =°ß' s o n d e r n n a c h Satz 44 [37] auch 

(a ± ßfm = oc±ß. Nach (II) folgt daher p [ T p n L 1 : PP] = pm, 
d. h. in der Tat [T : Pp] = m. 

Da durch die Elementanzahl pm die Charakteristik p und der 
Grad m eindeutig bestimmt sind, gilt nach (III) und (IV): 

(V) F ü r jede E l e m e n t a n z a h l der Form pm g ib t es 
genau einen endl ichen K ö r p e r t y p u s , näml ich den 
Kre i s t e i l ungskö rpe r T »»_! ü b e r P . 

Ferner gilt: 
(VI) Die Te i lkörper von Tp»>—i sind alle und nur die 

Körper T p / i _ j mi t n \ m , und es is t dabei 

[T pm_i: T ^ ^ ] = --. 



136 V. Auflösbarkeit algebr. Gleichungen durch Wurzelzeichen. 

Denn einerseits ist, wenn T ^ ^ g j Tp»»_i ¡st, nach Satz 71 [59] 
fn 

<« = = Pp] I [Tpm- i : P J = und [T : T / 1_1] = -- • 
Andererseits ist, wenn ^ | m ist und dementsprechend m = p/i' 
gesetzt wird, 

p m _ l = p « ' ' _ l = (p" —1) (p^i" ' -1) + • • • + ^ + 1), 
also p*1 — 1 | p m — 1, und daher T p i i _ 1 T p m _ 1 , da dann die 

— l)-ten Einheitswurzeln unter den (pm — l)-ten vorkommen. 
Durch (V) und (VI) ist eine vollständige Übersicht über alle 

endlichen Körpertypen und ihre gegenseitigen Beziehungen ge-
wonnen. 

B. Sei jetzt E = T m _ j ein endlicher Grundkörper und H eine 
endliche Erweiterung von E. Trivialerweise ist dann zunächst H 
von endlichem Grade n über E (Def. 25 [57]) und daher wieder 
ein endlicher Körper (Def. 25, Zusatz [57]), der nach (VI) die 
Form H = T p m n _ 1 hat. Ist dann q ein primitives Element von H 
im Sinne von (III), so ist g erst recht primitives Element im Sinne 
von Def. 19 [52] von H bzgl. jedes Teilkörpers. Also: 

(VII) H i s t e i n f a c h übe r E. 
Hiermit ist die im Beweis von Satz 90 [80] zurückgebliebene 

Unvollständigkeit beseitigt. 
Da die Charakteristik p von H in der Ordnungszahl pm" — 1 

der Einheitswurzeln, die H bilden, nicht aufgeht, gilt ferner nach 
dem in Satz 121 [131] Bemerkten: 

(VIII) H is t s e p a r a b e l übe r E. 
Schließlich gilt nach Satz 94 [85]: 
(IX) H i s t n o r m a l über E. 
Daher sind die Sätze der Galoisschen Theorie auf die Er-

weiterung H von E anwendbar. Wenn auch eine Übersicht über 
die Körper zwischen H und E durch (VI) bereits ohne Verwendung 
der Galoisschen Theorie gewonnen ist — es sind alle und nur die 
T p m v _ i mit v | ii —, so interessiert doch theoretisch die Fest-
stellung: 

(X) H is t zyk l i s ch über E. 
Die G a l o i s g r u p p e von H bzgl. E b e s t e h t n ä m l i c h 

aus den P o t e n z e n des A u t o m o r p h i s m u s 
A\a.-+oPm f ü r j edes <x aus H, 

m i t A" = E, d .h . aus den n A u t o m o r p h i s m e n 
A:a -+oipm" f ü r j edes tx aus H (v = 0,1,..., n — 1). 
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Nach Satz 44 [37] [siehe auch schon die Schlußweise im 
Beweis zu (IV)] sind das nämlich in der Tat Automorphismen von 
H, bei denen jedes Element von E als Wurzel von xpm—x in-
variant bleibt, also Automorphismen von H bzgl. E. Diese n 
Automorphismen von H bzgl. E sind ferner voneinander ver-
schieden, weil für ein primitives Element Q von H (im Sinne von 
(III)) die sämtlichen Potenzen Q1 (i = 1 , . . . , pmn — 1), also ins-
besondere die n Potenzen Qpmv (v — 0 , 1 , . . . , n — 1) voneinander 
verschieden sind. Also sind es alle n = [ H : E] Automorphismen 
der Galoisgruppe von H bzgl. E (Satz 105 [96]). 

§ 21. Reine und zyklische Erweiterungen von Prim-
zahlgrad. 

Zur Behandlung der Frage nach der Auflösbarkeit durch 
Wurzelzeichen haben wir den speziellen Entwicklungen des 
vorigen Paragraphen noch die Theorie der irreduziblen reinen 
Polynome von Primzahlgrad an die Seite zu stellen, auf die 
sich ja die Def. 40 [129] der Auflösbarkeit durch Wurzelzeichen 
stützt. Wir beweisen zunächst den folgenden Satz über die 
Irreduzibilität eines reinen Polynoms von Primzahlgrad: 

Satz 123. E s sei p e i n e P r i m z a h l u n d xp— a e in 
r e i n e s P o l y n o m m i t a=j=0 a u s K. D a n n e n t h ä l t de r 
W u r z e l k ö r p e r W d i e s e s P o l y n o m s d e n K r e i s t e i -
l u n g s k ö r p e r TP ü b e r K, u n d es s i n d n u r d ie f o l g e n -
d e n b e i d e n F ä l l e m ö g l i c h : 

a.) v? — a h a t e i n e W u r z e l in K, d. h. a i s t e ine 
p - t e P o t e n z in K. D a n n i s t xP — a r e d u z i b e l in K 
u n d W = T„. 

b.) s? — a h a t k e i n e W u r z e l in K, d. h. a i s t k e i n e 
p - t e P o t e n z in K. D a n n i s t & — a i r r e d u z i b e l in K 
u n d s o g a r in T p , u n d ü b e r d i e s n o r m a l ü b e r T p , 
a l so W r e i n v o m G r a d e p ü b e r TP . 

B e w e i s : Es s e i e n « ! , . . ,,ocP die Wurzeln von x'p — a und 
« eine von ihnen. Aus a? = a folgt dann, weil a 4= 0, also 
auch (* 4= 0 ist. 
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X \r 0? iXP X X Xr, 
- e = 

V « / OiP Oi Ot 
x oCjN Ix «p\ 

> cn ex, 1 \ oc oc } 
Nach dem Einsetzungsprinzip (1, Satz 12 [40], angewandt 
auf I [x'] mit I = W[a;] und die Einsetzung x' — ax) darf 
hierin ixx für x gesetzt werden, so daß 

(x— — ) • • • (x — 

\ (XI \ <x 

resultiert. Die Quotienten — sind also die p-ten Einheits-
oc 

wurzeln über K, d. h. es ist W ^ Tp. Ist ferner £ eine primitive 
p-te Einheitswurzel (Satz 120 [129]; — falls K die Charakte-
ristik p hat, f = e [Satz 122, Zusatz]), so gilt bei geeigneter 
Reihenfolge 

oit = f l « (i = 1 , . . . , p). 
a.) Liegt nun « in K, so liegen hiernach die «i in Tp , d. h. 

es ist W Tp und somit nach obigem W = T,,. 
b.) Liegt aber keins der « in K, und wäre dann 

h(x)=x'-\ h«0 ( l ^ r ^ p —1) 
ein irreduzibler Faktor von xP — «in K, so hätte £ a0 als Pro-
dukt von gewissen v Faktoren a ; eine Darstellung 

+ a0 = fo?. 
Wird nach Satz 14, 17 [18, 20] vv' = 1 + kp gesetzt, so 
folgte wegen ocp = a 

( ± 0») = f « « , 

so daß wegen a 4= 0 die Wurzel tx„' = « = ¡.° 
a" 

doch in K läge. Also ist dann xP — a irreduzibel in K und 
somit K(«) vom Grade p über K. Wird nun in den gemachten 
Schlüssen h(x) als irreduzibler Faktor von xp — « i n Tp ange-
nommen, so folgte, daß oc und somit K(«) in T p enthalten 
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wäre. Tp hätte also ein Multiplum von p zum Grade über K, 
während doch nach Satz 121 [131] dieser Grad ein Teiler von 
p — 1 ist. Somit ist dann xP — a auch in Tp irreduzibel und 
nach Satz 99, (III.) [88]) überdies normal über Tp, also nach 
Satz 99, (I.) W = Tv{oi) und daher rein vom Grade p über 
Tp (Def. 39 [128]). 

Für die Frage nach der Auflösbarkeit durch Wurzelzeichen 
hat uns naturgemäß der Fall b.) des Satzes 123 besonders zu 
interessieren. Wenn K die Charakteristik p hat, ist dann 
& —a ein inseparables irreduzibles Polynom (Def. 17 [47]). 
Seine einzige Wurzel ot ist p-fach. Im Sinne unserer durch-
gängigen Beschränkung auf separable Erweiterungen schließen 
wir diese Möglichkeit im folgenden aus, indem wir bei der Be-
trachtung reiner Erweiterungen vom Primzahlgrad p die 
Charakteristik von K als von p verschieden voraussetzen. 
Dann ist xP — a (und allgemeiner jedes irreduzible Polynom 
aus K vom Grade p) a fortiori separabel (Def. 17). 

Ferner ist xP — a im Falle b.) i. a. nicht über K, wohl aber 
über Tp normal, so daß es für die beabsichtigte Anwendung 
zweckmäßig erscheint, vor der Adjunktion einer Wurzel eines 
reinen Polynoms xp •— a vom Primzahlgrad p jeweils erst eine 
primitive p-te Einheitswurzel £ zu K zu adjungieren, also 
zunächst zu dem erweiterten Grundkörper K = K(£) = Tp 
überzugehen, der mit dem Körper Tp = {Tp, K} (Def. 37, 
Zusatz [118]) der p-ten Einheitswurzeln über K zusammen-
fällt. 

In dieser Hinsicht ist der nachstehende, aus Satz 123 ohne 
weiteres folgende Satz für uns von Interesse (in dem K so-
zusagen mit dem eben genannten K zu identifizieren ist): 

Satz 124. Is t p eine Primzahl und K ein Körper 
mit von p verschiedener Charakter is t ik , der die 
p-ten Einheitswurzeln über K enthä l t , so ist jede 
reine Erweiterung p-ten Grades A von K normal 
(separabel und zyklisch) über K. 
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Daß A als separable normale Erweiterung vom Primzahlgrade 
p z y k l i s c h über K ist, ist trivial. Denn seine Galoisgruppe 
bzgl. K hat nach Satz 105 [96] die Primzahlordnung p und muß 
daher nach Satz 34 [32] mit der Periode jedes ihrer von E ver-
schiedenen Elemente zusammenfallen. 

In Umkehrung zu Satz 124 beweisen wir nun den für 
unsere Anwendung grundlegenden Satz: 

Satz 125. I s t p eine P r i m z a h l und K ein Körper 
mit von p versch iedener C h a r a k t e r i s t i k , der die 
p - t e n E i n h e i t s w u r z e l n über K e n t h ä l t , so ist j e d e 
normale E r w e i t e r u n g ¡o-ten Grades A von K 
(a f o r t i o r i separabe l , zykl i sch und) rein über K. 

Beweis : Es sei A ein primitives Element der zyklischen 
Galoisgruppe von A bzgl. K, # ein primitives Element von 
A bzgl. K und £ eine primitive p-te Einheitswurzel über K 
Dann bilden wir die sog. Lagrangesche Resolvente von />: 

* = öx+r1^ + • • • + • 
Wenn dies Element« aus A von Null verschieden ist, schließen 
wir folgendermaßen: 

Durch Anwendung von A auf tx entstellt wegen Av = E, 
CP = e und der Invarianz des Elements f aus K bei A 

= +• • •+r(r~1}#AP 
= +r1^ + • • • + i ) c = « c , 

also durch wiederholte Anwendung von A 
ciÄ v = 

Hiernach sind die infolge der Annahme « 4= 0 voneinander 
verschiedenen Elemente « , « £ , . . 1 die konjugierten zu 
« bzgl. K, d. h. es ist 

g(x) = (x—a) (%—ocfl • • • (x—a£p_1) 
das zu « gehörige irreduzible Polynom aus K, und o, ist ein 
primitives Element von A (Satz 111, 112 [109, 110] nebst 
Zusatz). Aus 

xp-e = (x-e)(x-£)- • -ix-t"-1) 
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folgt nun wie im Beweis zu Satz 123 
g ( x ) = aP — <xv, 

und somit ist 
g ( x ) = x? — a 

mit a = ocp in K, also cc Wurzel des irreduziblen reinen Poly-
noms o f f l — a aus K. Dalier ist dann in der Tat A = K(<%) rein 
über K (Def. 39 [128]). 

Wir zeigen nun, daß man durch passende Wahl der primitiven 
p-ten Einheitswurzel 'Q erreichen kann, daß a 0 ist. Wäre 
nämlich für jede der p — 1 primitiven p-ten Einheitswurzeln 'C 
(v = 1 , . . . , p — 1) die zugehörige Lagrangesche Resolvente 
{*v = 0, so bestände das Gleichungssystem 

« , = S V r " v = 0 (*- = i 
/1=0 

Multipliziert man dessen v-te Gleichung mit f " und summiert 
über v, so folgte nach Vertauschung der Summationsfolge 

®—l / p—1 \ 

f!=0 J 

Da nun 
P y 1 ( t : f ' ~ l ' Y = 1 — e t ¿ ' P v 

" ' \ p e — e für n ' = f i mod. p 

ist, weil im ersteren Falle ** primitive p-te Einheitswurzel, also 

Wurzel von — • -— = xp~1 + xp~2 + • • • + x + e ist, während 
x — e 

im letzteren Falle (p — l)-mal der Summand e steht, so resul-
tierten auf diese Weise die Relationen 

5 = (<"' = 0 , 1 , . . p — 1). 
o 

Da K nicht die Charakteristik p hat, wären also alle é A p ' einander 
gleich, was für ein primitives Element # von A nach Satz 112, 
Zusatz [111] nicht der Fall ist. 

Wir wenden zum Schluß noch die vorstehenden Resultate 
an, um die Auflösbarkeit durch Wurzelzeichen von T P über 
bestimmten Grundkörpern K zu beweisen: 

Satz 126. E s se i p e i n e P r i m z a h l u n d K ein 
K ö r p e r , d e s s e n C h a r a k t e r i s t i k 0 oder e i n e P r i m -
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zahl > p ist. Dann ist der Kreisteilungskörper Tp 
durch Wurzelzeichen auflösbar über K, und über-
dies existiert sogar eine Körperket te 

K = Ä„ < Äx < • • • < Ä, mit Ä, ^ T p , 
in der Ai nicht nur (gemäß Def. 40 [129]) rein von 
Primzahlgrad, sondern auch normal über A,-_i ist. 

Beweis: Wir wenden vollständige Induktion an und 
setzen dazu die Behauptungen für alle Primzahlen < p (und 
alle dabei nach der Formulierung des Satzes zulässigen Grund-
körper) als bereits bewiesen voraus. Es sei nun d der nach 
Satz 122 [132] in p — 1 aufgehende Grad von Tv über K und 
^ = Vi"" " Vr die Zerlegung von d in (nicht notwendig ver-
schiedene) Primzahlen pk. Weil nach Voraussetzung die 
Charakteristik von K, wenn =f= 0, auch größer als jede dieser 
Primzahlen ist, existiert dann nach der Induktionsannahme 
zunächst eine Körperkette 

K = A0 < Äj < • • • < Äri mit Ari ^ T p ^ 
in der A* rein und normal von Primzahlgrad über A,_i ist, 
ferner (jetzt von Ari statt K als Grundkörper ausgehend) eine 
Körperkette 

Är±< Ä,1+1 < • • • < Ä r , mit T P j i ) , 
in der A,1+l- rein und normal von Primzahlgrad über A,1+i_i 
ist, usf., zusammengenommen also eine Körperkette 

K = Ä 0 < Ä 1 < - - - < \ mit Arv ^ T P i , . . . , ~YPv, 
in der durchweg Aj rein und normal von Primzahlgrad über 
A»_i ist. Es sei nun Tv der Kreisteilungskörper für p über 
t\Tv und d sein nach Satz 119 [120] in d aufgehender Grad 
über Ar„. Dann existiert nach ganz entsprechenden Schlüssen 
wie beim Eesultat von Gauss [133/34] (Satz 36,109,122 [33, 

l) Der Krelßteilungskörper T^ für p, über A f j enthält natürlich den Kreis-
teilungskörper T_ für pt über K. 
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101, 132]) eine_Körperkette 
7\rv < Ä r H_i < • • • < Ä r = Tp, 

in der A,„+» normal von Primzahlgrad über ATv+i—i ist. Die 
sukzessiven Grade in dieser letzten Kette sind als Teiler 
von d gewisse der Primzahlen pk. Da nun in den Arv+i nach 
Konstruktion die p^-ten Einheitswurzeln enthalten sind, ist 
nach dem — wegen der Voraussetzung über die Charakte-
ristik von K — (vgl. auch Satz 42 [37]) anwendbaren 
Satz 125 ATv+i rein über A r v +{_i. Die volle Kette 

K = Ä0 < • • • < Ä r = T p 

rat somit, wenn man noch bedenkt, daß Tp iS T p ist, alle für 
die Behauptungen des Satzes erforderlichen Eigenschaften. 

Da für die kleinste Primzahl p = 2 die Behauptungen 
wegen T 2 = K trivialerweise zutreffen, ist hiermit der Satz 
durch vollständige Induktion bewiesen. 

§ 22. Kriterium für die Auflösbarkeit durch Wurzel-
zeichen. 

Um das in diesem Paragraphen herzuleitende Kriterium 
für die Auflösbarbeit durch Wurzelzeichen bequem aus-
sprechen zu können, stellen wir die folgende Definition voran: 

*Definition 41. E i n e s e p a r a b l e n o r m a l e E r w e i t e -
r u n g N von e n d l i c h e m Grade eines K ö r p e r s K h e i ß t 
metazyklisch ü b e r K, wenn eine Z w i s c h e n k ö r p e r -
K e t t e 

K = A0 < A j < • • • < ÄT = N 
d e r a r t e x i s t i e r t , d a ß Aj n o r m a l von P r i m z a h l g r a d 
übe r Af_i i s t , oder — was n a c h dem F u n d a m e n t a l -
sa t z der G a l o i s s c h e n Theo r i e das se lbe b e s a g t —, 
wenn die G a l o i s g r u p p e © von N bzgl. K eine 
O n t e r g r u p p e n k e t t e 

® = §0 > & > • • • > = e 
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d e r a r t e n t h ä l t , d a ß N o r m a l t e i l e r v o n P r i m z a h l -
i n d e x v o n i i s t . 

Ein sepa rab le s Polynom f(x) aus K h e i ß t m e t a -
zykl isch übe r K, wenn sein Wurze lkö rpe r metazyklisch 
über K i s t . 

Der Ausdruck me tazyk l i s ch rührt daher, daß dann die 
einzelnen Schritte A¡ über A ¿_1 bzw. zyklisch sind. Man 
nennt übrigens Gruppen ® von der in Def. 41 angegebenen Art 
ebenfalls metazyklisch. 

Wir beweisen nun das folgende Kriterium für die Auflös-
barkeit durch Wurzelzeichen normaler Erweiterungen end-
lichen Grades, wobei wir uns wegen der im vorigen Para-
graphen für Primzahlcharakteristiken zutage getretenen Kom-
plikationen auf Grundkörper der Charakteristik O beschränken, 
so daß also insbesondere die Voraussetzung der Separabilität 
trivialerweise stets erfüllt is t : 

Satz 127. E i n e n o r m a l e E r w e i t e r u n g N v o n e n d -
l i c h e m G r a d e ü b e r e i n e m K ö r p e r K d e r C h a r a k t e -
r i s t i k 0 i s t d a n n u n d n u r d a n n d u r c h W u r z e l z e i c h e n 
a u f l ö s b a r , w e n n sie m e t a z y k l i s c h i s t . 

Ein Polynom f(x) aus K i s t also dann und n u r dann 
durch Wurze lze ichen a u f l ö s b a r , wenn es m e t a z y k l i s c h 
ist . 

B e w e i s : a.) Es sei N durch Wurzelzeichen auflösbar über 
K. Gemäß Def. 40 [129] existiert dann eine Körperkette 

_ K = < Ä ; < • • • < Ä ; mit Ä ; ^ N , 
jn der A< rein vom Primzahlgrade p¿ über A¡_ i ist. Nach 
Satz 126 existiert (ähnlich wie im Beweise jenes Satzes) eine 

Körperkette 
K = Ä0 < 7 \ x < • • • < Ä s mit T P i , . . . , TVT , 

in der A¿ (rein und) normal von Primzalilgrad über A j _ i ist. 
Es sei nun «,• eine Folge von Elementen aus den AI derart, daß 
«i Wurzel eines reinen irreduziblen Polynoms xVi — aus 
Ä/—i, also A¿ = A¿_i(a<) und A'r = K ( « 1 , . . . , « , ) ist. En t -
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weder ist a?1 — auch irreduzibel in As; dann ist sein Wurzel-
körper A 8 + i über A, nach Satz 123 [137] und wegen TVl A, 
(rein und) normal vom Primzahlgrade p1 über As und zudem 
A s + i = A«(«i). Oder es ist xP1 — % reduzibel in As; dann ist 
nach demselben Satze Ag + i = A, und zudem A,+i = As(«i). 
Ebenso schließt man, daß der Wurzelkörper As+2 von a?» — a2 

über A s + i entweder (rein und) normal vom Primzahlgrade p2 

über A»+i oder = A s + i und beidemal zudem As+2 = As+i(öc2) 
ist, usf. So ergibt sich bei Fortgehen bis zu As+r bei nur 
einmaliger Zählung mehrfach hintereinander auftretender 
Körper eine Körperkette 

K== Äq_< Ai < • • • < Ä ? mit N _ 
(letzteres wegen A 7 = A,^,...,^) ^ K ( a 1 , . . . , a r ) = A ^ N ) , 
in der durchweg Ai (rein und) normal von Primzahlgrad über 
Ai_i ist. Dieser Kette entspricht nach den Ausführungen in 
§ 18, 3.) (vgl. Fig. 5 [125]) eine Zwischenkörperkette 

in der Ai normal über Aj_i ist, und zwar von Primzahlgrad, 
falls nicht Ai = Ai_i ist (und somit Aj ausgelassen werden 
kann); denn der Grad [Aj: A,-_i] ist als Teiler des Primzahl-
grades [A»: Aj_i] entweder 1 oder eben diese Primzahl1) 
Gemäß Def. 41 ist dann N metazyklisch über K. 

b.) Es sei N metazyklisch über K. Gemäß Def. 41 existiert 
dann eine Zwischenkörperkette 

K = A 0 < A 1 < - - < A r = N , 
in der Ai normal vom Primzahlgrad p,- über At-_i ist. Wie 
unter a.) existiert eine Körperkette 

K = A0 < Ä j < • • • < Ä, mit Ä„ ̂  T P i , . . T P r , 
*) Derselbe Schluß wurde übrigens — ohne daß es ausdrücklich hervor-

gehoben wurde — schon in dem Beweise des Resultats von Gauß in § 20 1134] 
für die dort auftretenden Primzahlgrade 2 gemacht. 

B a s s e , Höhere Algebra. I I . 1 0 
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in der Ai rein (und normal) von Primzahlgrad über A;_ i ist. 
Es sei nun eine Folge von Elementen aus den A» derart, daß 

Wurzel eines normalen Polynoms gt(x) vom Primzahlgrad 
Pi a u s A I _ i , a lso A< = A I _ 1 ( I ? I ) u n d N = A , = K ( ? ? 1 , . . . , dr) 

ist. Entweder ist g±{x) irreduzibel und somit auch normal in 
AS; dann ist sein Wurzelkörper A S + I = AS(I?1) über A» wegen 
TPL 5S A„ nach Satz 125 [140] rein (und normal) vom Prim-
zahlgrad über AS. Oder es ist g^x) reduzibel in AS; dann 
is t A > + I = AS(I91) = AS , wei l d a n n [ A S + I : A S ] e inerse i t s 

< pL ( iS wegen der Normalität von gt(x) in A0 und sogar 
< wegen der Reduzibilität in A,), andererseits ein Teiler von 
p1 (nach Satz 119 [120], angewandt auf K = A0, N = A1; 

Ä = ÄS , N = A S + I ) , a l so [ A S + I : A„] = 1 jst. E b e n s o 

schließt man, daß der Wurzelkörper A s + 2 = A s + i ( $ 2 ) von 
g.z(x) über A S + I entweder rein (und normal) vom Primzahl-
grad über A S + I oder = A S + I ist, usf. So ergibt sich durch 
Fortgehen bis zu AS + R bei nur einmaliger Zählung mehrfach 
hintereinander auftretender Körper eine Körperkette 

K = 7\,< • • • < Ä ? mit Ä ? ^ N 

(letzteres wegen Ä? = . . 0 , ) ^ . . . , #R) = N), 
in der durchweg Aj rein (und normal) von Primzahlgrad über 
AJ_i ist. Gemäß Def. 40 [ 129] ist dann N durch Wurzelzeichen 
auflösbar über K. 

Wie aus jedem der beiden Teilbeweise ersichtlich ist, gilt auch 
allgemein eine entsprechende Verschärfung, wie sie schon in dem 
speziellen Satz 126 [141] erhalten wurde: 

Zusatz . I s t u n t e r den V o r a u s s e t z u n g e n v o n S a t z 
127 N d u r c h W u r z e l z e i c h e n a u f l ö s b a r ü b e r K, so 
e x i s t i e r t s o g a r e i n e K ö r p e r k e t t e 

K = X0 < \ < • • • < Ä r m i t A r ^ N , 
i n der A4 n i c h t n u r ( g e m ä ß D e f . 40) r e i n v o n P r i m z a h l -
g r a d , s o n d e r n a u c h n o r m a l ü b e r A<—l i s t . 
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Durch Satz 127 in Verbindung mit dem schon in Def. 41 Ge-
sagten wird unsere zu Beginn dieses Abschnitts gestellte Frage 
entschieden, unter welchen Bedingungen eine algebraische Gleichung 
(x) = 0 in einem Grundkörper K der Charakteristik 0 durch 
Wurzelzeichen auflösbar ist1), wann also ihre Wurzeln durch 
Rechenausdrücke darstellbar sind, die mittels der vier elementaren 
Rechenoperationen und der Operation des Wurzelziehens gebildet 
sind. Stellt man die etwas andere Frage, wann eine Wurzel eines 
irreduziblen Polynoms f{x) aus K auf diese Weise darstellbar ist, 
so kommt das auf die Frage nach der Auflösbarkeit durch Wurzel-
zeichen einer beliebigen Erweiterung A endlichen Grades von K 
hinaus, die umgekehrt auch nicht allgemeiner ist, weil jede solche 
Erweiterung A als Stammkörper eines irreduziblen Polynoms f(x) 
aufgefaßt werden kann. Wir führen in dieser Hinsicht an, daß die 
Bedingungen hierfür genau dieselben sind, wie für die oben be-
handelte Frage, daß nämlich eine beliebige Erweiterung 
endlichen Grades A von K dann und nur dann durch 
Wurzelzeichen auf lösbar is t , wenn dies für die zu-
gehörige normale Erweiterung N (den Wurzelkörper 
irgendeines irreduziblen Polynoms j(x), für das A Stammkörper 
ist) der F a l l ist. Daß mit N auch A durch Wurzelzeichen auf-
lösbar ist, ist klar. Umgekehrt zeigt man durch Übergang von 
einer Körperkette gemäß Def. 41 für A zu deren konjugierten, daß 
mit A auch alle konjugierten Erweiterungen durch Wurzelzeichen 
auflösbar sind, woraus sich dann leicht die Auflösbarkeit durch 
Wurzelzeichen von N ergibt. 

Beispiele durch Wurzelzeichen auflösbarer algebraischer 
Gleichungen über Grundkörpern der Charakteristik 0. 
1.) Alle Gleichungen zweiten, dr i t t en , vierten 

Grades. 
Deren Galoisgruppen sind nämlich isomorph zu Untergruppen 

der symmetrischen Gruppen ©2, ©3, ©4 (Satz 107 [98]). Die 
letzteren erweisen sich aber (samt ihren sämtlichen Untergruppen) 
leicht als metazyklisch. 

2.) Alle zyklischen und allgemeiner abelschen Glei-
chungen, speziell also nach Satz 121 [131] die al lgemeine 
Kreiste i lungsgleichung xn—1 = 0. 

Nach Satz 36 [33] ist nämlich jede endliche zyklische Gruppe 
metazyklisch. Auf die allgemeine Theorie der endlichen abelschen 

1) Genau genommen liegt übrigens keine E n t s c h e i d u n g der Frage 
Bondern nur eine Z u r ü c k f ü h r u n g auf die Aufstellung und Untersuchung der 
Galoisgruppe vor. 

10«" 
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Gruppen, aus der insbesondere leicht folgt, daß diese Gruppen 
sämtlich metazyklisch sind, können wir hier nicht näher eingehen1). 

§ 23. Existenz nicht durch Wurzelzeichen auflösbarer 
algebraischer Gleichungen. 

Die Existenz nicht durch Wurzelzeichen auflösbarer Glei-
chungen wurde durch Abel entdeckt, der zuerst die U n m ö g -
l i c h k e i t bewies, die a l l geme ine G l e i c h u n g h ö h e r e n 
als v i e r t e n Grades d u r c h W u r z e l z e i c h e n a u f z u -
lösen. Wir wollen in diesem letzten Paragraphen einen 
modernen Beweis dieses Abelschen Satzes skizzieren. 

Zunächst definieren wir: 
Definition 42. I s t K„ = K(a;1 , . . . , xn) der K ö r p e r 

der r a t i o n a l e n F u n k t i o n e n von n U n b e s t i m m t e n 
xv . . x n ü b e r K, so h e i ß t das P o l y n o m 

(1.) fn{x)=xn + x1xn~1-] \-xn 
über K„ das allgemeine Polynom n-ten Grades über K. 

Dieses a l l g e m e i n e Polynom w-ten Grades über K ist als 
eine „unbestimmte" Zusammenfassung aller spez ie l l en 
Polynome n-ten Grades über K anzusehen, die ja aus ihm 
durch E i n s e t z u n g irgendwelcher E l e m e n t s y s t e m e 
av...,an aus K f ü r die U n b e s t i m m t e n xv..., x„ 
über K gewonnen werden können. 

Wir betrachten nun die Zerlegung in Linearfaktoren 
(2.) Ux)=xn + x ^ - 1 + • • • + Xn= (x - f j ) • • • (x — £„) 
des allgemeinen Polynoms w-ten Grades über K in seinem 
Wurzelkörper W n = K ^ f j , . . | „ ) . Denkt man sich die n 
Linearfaktoren rechts ausmultipliziert, so müssen nach 1, 
Satz 11 [32] die Koeffizienten gleich hoher Potenzen von x 
links und rechts übereinstimmen. So erhält man das Formel-
system 2) 

1) Wir verweisen deswegen auf 3, § 3 Aufg. 9—20 und bezüglich weiterer 
Sätze über metazyklische Gruppen auf das Buch von S p e i s e r (1, Lit.-Verz. 16). 

s) Wir bezeichnen hier, abweichend von der Festsetzung in 1, S. 42 die 
Gleichheit in K n = K(zv xn) und in der algebraischen Erweiterung 
Wn = KM(£1( . . . , i n ) nur mit = , um = der Gleichheit bei Hinzunahme weiterer 
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'®i = - ( f i + • • • + f . ) 

(3.) + in—1in 

= ( - ! ) " I i •in 
oder zusammengefaßt 

x, = (— 1)" 2J & • • • (v = l , . . . , n), 

wo die Summe rechts über alle ^ W j Kombinationen r-ter Ord-
nung (1, §16 [108]) der Ziffern 1 , . . . , n zu erstrecken ist. Nach 
diesen Formeln ist speziell 

(4.) WM = K „ ( l ! , . . . , £n) = K f o , . . x n ; Slt..., |„) 
= K ( f x , . . £ „ ) • 

Neben der bisherigen von (1.) über (2.) zu (3.) und (4.) 
führenden Auffassungsweise kann man aucli umgekehrt von 
(4.), d. h. dem Körper W „ = K ( £ j , . . . , £„) der rationalen 
Funktionen von n jetzt als Unbestimmte vorausgesetzten 
I i , . . . , f B über K ausgehen, dann xv ..., xn durch die 
Formeln (3.) als Elemente dieses Körpers WM und fn(x) durch 
die Formel (2.) als Polynom in dem Teilkörper 
K» = K f o , . . . , xn) von W , = K d u . . . , I») definieren, wo-
bei dann W„ wieder der Wurzelkörper zu fn(x) über Kn ist 
und die Darstellungen (4.) besitzt. Allerdings steht bei dieser 
letzteren Auffassungsweise die Frage offen, ob das so ge-
bildete Polynom fn(x) das allgemeine Polynom n-ten Grades 
über K ist. Da die genannte zweite Auffassungsweise für die 
beabsichtigte Anwendung handlicher ist, ist es für uns von 
Bedeutung, diese Frage in bejahendem Sinne zu beantworten: 

Satz 128. I s t = K f o , . . . , f . ) der K ö r p e r der 
r a t i o n a l e n F u n k t i o n e n von n U n b e s t i m m t e n 

ü b e r K, so h a b e n die d u r c h die F o r m e l n 
(3.) d e f i n i e r t e n E l e m e n t e xv . . x n au s W„ e b e n f a l l s 

Unbestimmten (etwa x in (].) und (2.) sowie x v . . x n im Beweise des folgenden 
Satzes 128) vorzubehalten. 
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den C h a r a k t e r von n U n b e s t i m m t e n ü b e r K 1 ) , d. h. 
der T e i l k ö r p e r K„ = K ^ , . . . , xn) v o n W „ = K G ^ , . . . , £„) 
is t e b e n f a l l s vom E r w e i t e r u n g s t y p u s des K ö r p e r s 
der r a t i o n a l e n F u n k t i o n e n von n U n b e s t i m m t e n 
über K. I n s b e s o n d e r e i s t dann also das durch (2.) 
d e f i n i e r t e Polynom/„(a; ) über K„ das a l l g e m e i n e P o l y -
nom n - t e n Grades über K. 

B e w e i s : Es ist zu zeigen, daß die Normaldarstellungen 
(1, Def. 9 [38]) der Elemente des Integritätsbereiches 
«[KJ, ..., xn] durch xv...,xn eindeutig sind, und dazu 
genügt es nachzuweisen, daß aus einer Relation 

(50 _ g{x1,..Xn) = 0 , 
wo g(xv ..., xn) eine ganze rationale Funktion von n Unbe-
stimmten x v . . . , x n über K ist, die Relation 

(6.) g(xv . . . , xn)= 0 
folgt. Diesen Nachweis führen wir durch doppelte voll-
ständige Induktion2), erstens nach der Anzahl n der Unbe-
stimmten, zweitens nach dem Grade vn von g in xn. 

Für n = 1 ist xt = — £ v also die Behauptung ersichtlich 
auf Grund des vorausgesetzten Unbestimmtencharakters von 
I i richtig. Sei sie schon bis n — 1 bewiesen. Dann sei 

vn _ 
(7.) g(xv ..., xn) = 2x\ gk(xv . . x n _ x ) 

die (aus der Normaldarstellung durch Zusammenfassung fol-
gende) Darstellung von g als ganze rationale Funktion von 
xn über K [ i 1 5 . . . , also speziell 

(8.) g(xv ..., xn_t, 0) = g0{xv ..., xn_{). 
Setzt man nun in (5.) £ n = 0, so entsteht nach dem Ein-
setzungsprinzip (1, Satz 12 [40]), das wegen des Unbe-
stimmtencharakters von $ n anwendbar ist, die Relation 

(9.) g(xi, 0) = 0 , 

Vgl. 1, Def. 9 [38] nebst anschließender Erläuterung. 
*) Den Gedanken, In diesem Beweise d o p p e l t e vollständige Induktion 

anzuwenden, verdanke ich einer brieflichen Hitteilung von P h . F u r t w ä n g l e r . 
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wo x[,..x'n—i aus x n _ i durch die Einsetzung 
= 0 in (3.) hervorgehen; setzt man dann in (8.) 

( S j , . . x n — i ) = {¡¡ei,. • . , «n—i), so folgt aus (9.) nach dem 
Einsetzungsprinzip weiter die Relation 

(10.) • • •> %h—i) = 0. 
Da nun x'v ..., nach ihrer Erklärung für £ v . . . , 
die entsprechende Bedeutung haben, wie xv ..., x„ für 
Si, • •. , so ergibt sich aus (10.) nach der gemachten 
ersten Induktionsannahme die Relation 

?o(®i> •• - , » „ _ ! ) = 0 , 
also nach (7.) weiter die Relation 

(11.) g(xv ..., xn)= xn 2'ax*ngk+1 (xv ..., x ^ ) 

= xng^{xv..., xn), 
wo . . . , x„) wieder eine ganze rationale Funktion von 
xv . . . ,xn über K ist, die (falls vn > 0) in xn den Grad 
vn — 1 hat. 

Ist nun der Grad vn = 0, so ist <7(1)(%) • • •> = 0 und 
also die Behauptung (6.) nach (11.) richtig. Sei sie (für das 
betrachtete feste n) schon bis zum Grade v„ — 1 bewiesen, 
so ist, weil aus (11.) durch die Einsetzung (5^, . . . , « „ ) = 
( » j , . . . , xn) die Relation 

g(xj,..xn) = xng(xv ..., x„) 
und aus dieser nach (5.) und wegen xn =f= 0 weiter die Relation 

gm(xv . . . , z„) = 0 
folgt, nach dieser zweiten Induktionsannahme 

gtVfc,.. .,xn)=0, 
woraus die Behauptung (6.) nach (11.) folgt. Hiermit ist die 
Behauptung des Satzes durch doppelte vollständige Induk-
tion bewiesen. 

Aus Satz 128 läßt sich übrigens auch leicht die umgekehrte 
Tatsache folgern, daß die ausgehend 

von Unbestimmten . . . , xn 
durch (2.) definierten Elemente f , . . ,,|n den Charakter von 
Unbestimmten über K haben. Wir brauchen das jedoch hier nicht. 
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Wir beweisen nunmehr: 
Satz 129. Das a l lgemeine P o l y n o m w-ten Grades 

über K is t s e p a r a b e l und seine G a l o i s g r u p p e bzgl. 
K„ is t zur s y m m e t r i s c h e n G r u p p e <&„ i somorph . 

Beweis: Gemäß Satz 128 denken wir uns das allgemeine 
Polynom n-ten Grades fn (x) über K nach der vor Satz 128 be-
sprochenen zweiten Auffassungsweise, d.h. vom Wurzelkörper 
W„ = K ( £ l t . . a u s g e h e n d durch die Formeln (3.), 
(2.) gebildet. Daß zunächst fn (x) separabel ist, folgt dann 
ohne weiteres aus der Verschiedenheit seiner als n Unbe-
stimmte über K gewählten Wurzeln . . . , £ „ (Satz 59, Zu-
satz [481). Es sei ferner ( 1 ' ' ' " \ irgendeine Permutation 

W - • • h l 
aus <S„. Nach 1, Satz 10, 11 [26, 32] ist dann K ( £ f l , . . £ „ ) 
zu K ( f j , . . . , ¿„) auf Grund der Zuordnungen 

£1 * iii> • • • •! in " * 
isomorph bzgl. K. Da aber die Formeln (3.) symmetrisch in 
£ v . . . ,£„ sind, entsprechen bei dieser Zuordnung die Elemente 
x l t . . . , xn und somit alle Elemente von K„ = !<(%,.. . , x„) 
sich selbst, so daß die genannte Isomorphie sogar bzgl. K„ 
gilt. Da 

W„ = K ( i 1 , . . . , i M ) = K ( i i l , . . „ £«J 
ist, erzeugt also jede Permutation aus <Bn einen Auto-
morphismus von W n bzgl. Kn und wird daher umgekehrt 
durch einen solchen Automorphismus im Sinne von Satz 
107 [98] geliefert. Aus diesem Satz ergibt sich daher mit 
Rücksicht auf die bereits hervorgehobene Verschiedenheit 
der Wurzeln . . . , daß die Galoisgruppe von W n , d.h. 
die von fn(x) bzgl. Kn zur symmetrischen Gruppe ©„ iso-
morph ist. 

Aus Satz 129 ergibt sich übrigens speziell: 
Satz 130. Das a l l g e m e i n e P o l y n o m w- ten G r a d e s 

ü b e r K i s t i r r e d u z i b e l in Kn. 
Bewe i s : Ist fn(x) das zu einer Wurzel | von fn(x) gehörige 
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irreduzible Polynom in K„, so ist einerseits f n ( x ) \ f n ( x ) (Satz 63 
[43]), andererseits /n( i () = 0 für jede Wurzel von f n ( x ) (Satz 73 
]61 "1, 129), also wegen der Verschiedenheit der Wurzeln auch 

f n ( x ) | t n ( x ) (Satz 47 [40]). Beides zusammen ergibt/„(x)=/ J 1(x), 
wie behauptet. 

Wir verweilen noch einen Augenblick bei den Formeln (3.), wieder 
unter der vor Satz 128 [149] besprochenen zweiten Auffassungs-
weise. Man nennt dann die Elemente x l t . . . , x n aus K ( | x , . . . , f r e) 
die symmetrischen Grundfunktionen der Unbestimmten 
S l t . . . , I«. Allgemein nennt man ferner eine rationale Funktion 
über K der U n b e s t i m m t e n . . . , £ „ s y m m e t r i s c h in . . . , 
wenn sie bei allen Permutationen der n Elemente f j , . . . , £ „ in 
sich übergeht. Durch Anwendung der Sätze 107, 112 [98, 110] 
nebst Zusatz ergibt sich dann aus Satz 129 unmittelbar: 

Satz 131. E ine r a t i o n a l e F u n k t i o n übe r K der Un-
b e s t i m m t e n £ v [d.h. ein E l e m e n t aus K ^ , . . . , f r e)] 
i s t d a n n u n d n u r d a n n s y m m e t r i s c h , wenn sie r a t i o n a l e 
F u n k t i o n übe r K der s y m m e t r i s c h e n G r u n d f u n k t i o n e n 
x l t . . . , x n von . . i s t [d.h. ein E l e m e n t aus dem 
T e i l k ö r p e r K ^ , . . . , x n ) von . . . , f „ ) ist]. 

Die tiefer liegende Aussage dieses Satzes, nämlich die durch 
„nur dann" ausgedrückte, die also aussagt, daß jede symmetrische 
rationale Funktion über K von . . . , £ „ eine rationale Funktion 
über K von x x , . . . , x n ist, ist eine Teilaussage des unter dem Namen 
Satz von den symmetrischen Funktionen bekannten Theorems, 
das bisher fast immer der Galoisschen Theorie zugrunde gelegt wurde 
(vgl. die erste Anm. zum Bew. von Satz 90 [80]). Dieses Theorem 
geht insofern noch über die Aussage von Satz 131 hinaus, als es 
weiterhin behauptet: 

1.) Jede ganze rationale symmetrische Funktion über K von 
f j , . . . , ist eine ganze rationale Funktion von x x , . . . , x n . 

2.) Das letztere gilt auch noch, wenn an Stelle des K ö r p e r s K 
ein I n t e g r i t ä t s b e r e i c h I steht. 

Diese weiteren Aussagen können aber nicht, wie Satz 131, aus 
der Galoisschen Theorie gefolgert werden1). 

Wir kehren nunmehr zu der eigentlichen Aufgabe dieses 
Paragraphen zurück, die wir jetzt auf Grund von Satz 129 in 

Auf einen — mir von Ph. Furtwängler mitgeteilten — Beweis der Aus-
sagen 1), 2.), der ganz analog, wie der Beweiß von Satz 128, mit doppelter voll-
ständiger Induktion geführt wird, kann hier nicht eingegangen werden: siehe 
3, § 23, Aufg. 3. 
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Angriff nehmen können. Da die symmetrische Gruppe <5„ für 
n > 1 stets den Normalteiler %n vom Index 2 hat (1, Satz 63 
[113]), ergibt sich eine Reduktion des Wurzelkörpers 
W„ = K n d i , . . . , in) vom Grade nl über K„ auf einen 

m! 
Körper vom Grade —- über einem aus K„ durch Adjunktion 

¿i 
einer Quadratwurzel entstehenden Körper V„: 

Satz 132. Der W u r z e l k ö r p e r W„ = K « ^ , . . . , £„) 
des a l lgemeinen Po lynoms w-ten Grades (w > 1) 
über K bes i t z t einen Te i lkörper V„ vom Grade 2 über 
K,j. Dieser wi rd , fa l l s K n ich t die C h a r a k t e r i s t i k 2 
h a t , du rch A d j u n k t i o n des E l emen te s 

zu K„ gewonnen, das Wurzel eines r e inen Poly-
noms x2 — d vom zwei ten Grade aus K„ ist1) . 

Beweis : Daß V„ = Kn(<5) der %, zugeordnete Körper 
zwischen Kn und W„ ist, folgt gemäß Satz 112,129 [110,152] 
daraus, daß <3 bei den geraden Permutationen von . . . , S„ 
invariant ist, bei den ungeraden dagegen sein Vorzeichen 
ändert (1, Satz 65 [116]), und daß <5 =# 0 (siehe 3, Teil 1, 
§ 19, Aufg. 4), also nach der Annahme über die Charakteristik 
ö =|= — 6 ist. Hiernach ist ferner d2 = d bei allen Permuta-
tionen von £ v . . . , £ n invariant, also Element aus K„ (Satz 112, 
Zusatz [111]). 

Das Element d = d 2 , das natürlich sogar zu K [ | x , . . . , f«] 
gehört, also eine ganze rationale Funktion über K der Wurzeln 
in ..., Sn ist, heißt die Diskriminante von f»(x) . 

Nun beweist man in der Gruppentheorie, daß f ü r w=j= 4 
die a l t e r n i e r e n d e Gruppe 2tn ke inen e c h t e n Normal -
t e i l e r b e s i t z t 2 ) , u n d d a ß % l d e r e i n z i g e N o r m a l -

' ) Hinsichtlich des Falles, daß K die Charakteristik 2 hat, siehe 3, § 23, 
Aufg. 20. 

') Speiser , 1. c. (1, Lit.-Verz. 16), Satz 94. Siehe auch 3, § 23, Aufg. 13, 14. 

«5 
i s , i i • • • i r 1 

1 £ t 2 . . . t " - 1 
J- sn bw sn 

.n—1 
n 
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n\ 
te i ler von i s t 1 ) . Da—- f ü r n ^ 4 keine Primzahl ist, 

& 

kann also für w > 4 keine Untergruppenkette von <5„ der in 
Def. 41 [143] genannten Art existieren, so daß dann ©„ nicht 
metazyklisch ist. Nach Satz 127 [144] ergibt sich so das 

Resultat von Abel. Das a l lgemeine Po lynom 
w-ten Grades über einem Körper K der C h a r a k t e r i -
s t ik 0 is t f ü r n > 4 n ich t durch Wurzelzeichen auf -
lösbar. 

Durch diesen Satz ist die Existenz nicht durch Wurzel-
zeichen auflösbarer Gleichungen zunächst nur für die beson-
deren Grundkörper K„ von Def. 42 [148] sichergestellt. Eine 
weitere Frageist dann, ob es in einem gegebenen Grund-
körper K speziel le , d.h. in K selbst gelegene n ich t durch 
Wurze lze ichen a u f l ö s b a r e Gle ichungen j eden Gra-
des w > 4 gibt . Diese Frage beantwortet sich für den 
Spezialfall des rationalen Grundkörpers P bejahend durch den 

Irreduzibilitätssatz von Hilbert2). I s t g{x\ xv ..., xn) 
eine ganze r a t i o n a l e F u n k t i o n der U n b e s t i m m t e n 
x\ xv ..., xn über P, die ein in Pn= P(xv ..., x„) 
i r reduz ib les Po lynom von x i s t , so g ib t es unend l i ch 
viele E l e m e n t s y s t e m e av..., a„ aus P, so daß 
g(x; av ..., an) in P i r r eduz ibe l ist . 

Aus diesem Satz ergibt sich die Lösung der zuvor aufge-
worfenen Frage für den Grundkörper P folgendermaßen: 
Sind I j , . . . , die Wurzeln des allgemeinen Polynoms 
w-ten Grades f„(x) = xn + x1xn~1 + • — b xn über P, so ist 
nach Satz 112, Zusatz [111] und Satz 129 [152] 

# = b c„!„ 
primitives Element des Wurzelkörpers WM = . . ., 

1) Das folgt dann aus dem sog. J o r d a n s c h e n S a t z ( S p e i s e r , ebenda 
Satz 27) in Verbindung mit der evidenten Nichtexistenz von Normalteilern von 
<&n der Ordnung 2. Siehe auch i , §23, Aufg. 16. 

' ) D. H i l b e r t , Über die Irreduzibilität ganzer rationaler Funktionen mit 
ganzzahligen Koeffizienten, Journ. f. d. reine u. angew. Math. 110, 1892. 
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bzgl. P„ = P(a ; 1 , . . . , xn), wenn die Koeffizienten cv aus P„ 

so gewählt werden, daß alle Permutationen ^ j der f v ver-

schiedene konjugierte 
•&i = H h cn£in 

ergeben. Wir denken uns die cv in dieser Weise gewählt, und 
zwar, was nach Satz 49 [41] möglich ist, sogar als Elemente 
aus dem Integritätsbereich I~n = P f « ! , . . . , xn]. Dann ist 

n i 
g(x; X i , . . x n ) = I I (x — l - l 

eine Galoissche Resolvente von W „ bzgl. P„ und genügt den 
Voraussetzungen des Hilbertschen Irreduzibilitätssatzes. Es 
gibt also unendlich viele Elementsysteme av ..., an aus P 
derart, daß g(x\ a l 7 . . a n ) irreduzibel in P ist. Die Wurzel-
körper W über P der diesen Systemen ..., an entsprechen-
den speziellen }(x) haben dann, weil es in ihnen je ein Element 
& des Grades n! gibt, den höchstmöglichen Grad w! über P 
(Satz 108 [100]) und somit eine zu <5n selbst isomorphe 
Galoisgruppe (Satz 107 [98]). Nach den Ausführungen 
dieses Paragraphen sind also diese f(x) für w > 4 nicht durch 
Wurzelzeichen auflösbar. Wir haben daher: 

Korol lar . Es g i b t in P f ü r j e d e n G r a d n u n e n d -
l i ch v i e l e a l g e b r a i s c h e G l e i c h u n g e n , d e r e n Ga lo i s -
g r u p p e zu i s o m o r p h i s t (sog. G l e i c h u n g e n o h n e 
Affekt), i n s b e s o n d e r e a l so f ü r j e d e n G r a d n > 4 
u n e n d l i c h v i e l e n i c h t d u r c h W u r z e l z e i c h e n a u f l ö s -
b a r e a l g e b r a i s c h e G l e i c h u n g e n . 

Ob dies Resultat auch für allgemeine Grundkörper K, so-
wie für irgendwelche Untergruppen von ©» als vorgeschriebene 
Galoisgruppen gilt, ist bis heute, abgesehen von einfachen 
Fällen, unentschieden. 


