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Durch sukzessive Anwendung von Satz 119, (II) unter
Beriicksichtigung der Minimaleigenschaft des Kompositums
(1, hinter Def. 5 [21] oder 2, Satz 116, 2.)) und der Maximal-
eigenschaft des Durchschnitts (1, hinter Def. 5) ergibt sich
ferner leicht, dal in jedem Parallelogramm unserer schema-
tischen Figur (mag es eine ,,Grundmasche sein oder aus
mehreren ,,Grundmaschen® zusammengesetzt) der Korper
links unten der Durchschnitt und der Korper rechts oben das
Kompositum der beiden Korper links oben und rechts unten
ist. Insbesondere bestehen also neben den rekursiven Dar-
stellungen (3.) auch die alle Zwischenschritte iiberschlagenden
Darstellungen

4.) Ni={N,As},  Ai=[N,AJ,
aus denen nach Satz 119, (I) folgt, daB das sukzessive Auf-
steigen zu den Grundkérpern der Kette (1.) mit einer sukzessi-
ven Reduktion der Galoisgruppe & von N bzgl. K auf die der
Kette (2.) nach dem Fundamentalsatz zugeordnete Unter-
gruppenkette

(6.) B=9=HD=9=--=95=C
verbunden ist. Nach (4.) und den Eigenschaften von Kompo-
situm und Durchschnitt ist dann und nur dann, wenn einmal

A, = N und damit A, = N, ist, d. h. wenn gemil (5.) die
Galoisgruppe & auf $, = € reduziert ist, A,= N, d.h. N,
wie es als Ziel vorschwebte, durch die Kette (1.) eingefangen.

V. Auflosbarkeit algebraischer
Gleichungen durch Wurzelzeichen.
Die in IV entwickelte Theorie verdankt ihre Entstehung

und bildet demgem&f die Grundlage fiir die Behandlung der
schon zu Beginn von § 18 erwihnten, beriilhmten Frage,
unter welchen Bedingungen eine algebraische
Gleichung durch Wurzelzeichen auflésbar ist.
Deren Beantwortung fiir Grundkdrper der Charakteristik 0
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ist der vorliegende, letzte Abschnitt gewidmet. Wir prézi-
sieren dazu zundchst die Frage durch die Definition der
Auflosbarkeit durch Wurzelzeichen (§ 19), ent-
wickeln sodann als notwendige Hilfsmittel die Theorie der
Kreisteilungskorper (§ 20) sowie der reinen und der
zyklischen Erweiterungen von Primzahlgrad (§ 21)
und leiten darauf durch Anwendung der in IV behandelten
Galoisschen Theorie ein gruppentheoretisches Kriterium
fiir die Auflésbarkeit durch Wurzelzeichen her
(§ 22). SchlieBlich skizzieren wir noch den durch die Galois-
sche Theorie gelieferten Beweis fiir die auf anderem Wege
zuerst von Abel gefundene Nichtauflésbarkeit durch
Wurzelzeichen der allgemeinen algebraischen Glei-
‘chung héheren als vierten Grades (§ 23).

In § 20 fiigen wir einen kurzen Abri der Theorie der end-
lichen Korper an und beseitigen dabei insbesondere die in
dieser Hinsicht im Beweis von Satz 90 [80] noch gebliebene
Unvollstandigkeit.

§ 19. Definition der Auflésharkeit durch Wurzelzeichen,

Wir geben in diesem Paragraphen eine exakte Formu-
lierung dafiir, was unter der Ausdrucksweise durch Wurzel-
zeichen aufldsbar zu verstehen ist. Der aus den Elementen

n
gelaufige Begriff [/a, wo a ein Element eines Korpers K und
n eine patiirliche Zahl ist, wird dort bekanntlich als Lisung

der Gleichung a® —a ==0 erkldrt. Wegen der hierbei i. a.
n

vorliegenden Mehrdeutigkeit wollen wir die Bezeichnung }/a
nicht verwenden, operieren vielmehr an Stelle des Wurzel-
zeichens mit der zugehérigen Gleichung:

Definition 38. Ein Polynom der Form 2" —a heiBt
rein.

Damit die zu Eingang dieses Abschnitts gestellte Frage nicht
trivial wird, hat man natiirlich neben der in ihr genannten Operation
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des Wurzelziehens auch die, von diesem Standpunkte aus unter-
geordneten, vier elementaren Rechenoperationen mit in den Kreis
der zuldssigen Operationen aufzunehmen?!). Mit einer Wurzel o
eines reinen Polynoms gelten dann also auch alle ihre rationalen
Funktionen uber dem Grundkérper K, d.h. alle Elemente von
K(o) als bekannt. Der Sinn unserer Frage geht aber noch weiter:
Es wire unsystematisch, wenn man der Operation des Wurzel-
ziehens nach einem solchen Schritt Halt gebieten wollte. Viel-
mehr ist es verniinftig, weiter auch die Wurzeln reiner, dem so
erreichten Kdrper K(«) angehoriger Polynome als bekannt anzu-
schen usf. Unsere Frage kommt dann also darauf hinaus, unter
welchen Bedingungen man die Wurzeln, d. h. den Wurzelkérper
eines Polynoms /(x) aus K oder allgemeiner irgendeine Erweiterung
A von K durch von K ausgehende sukzessive 2) Adjunktion von
Wurzeln reiner Polynome erreichen oder einfangen kann. Hieraus
ergibt sich leicht eine Reduktion beziiglich der in Betracht zu
ziehenden Wurzelzeichen: Ist ndmlich 2" — a ein reines Polynom

aus K von zusammengesetztem Grade n = n,n, und « eine seiner

Wurzeln, so ist o™ = o, eine Wurzel des reinen Polynoms z™ — a

aus K und weiter o eine Wurzel des reinen Polynoms 2™ — «, aus
K(e;). Somit kann man sich auf die sukzessive Adjunktion von
Wurzeln reiner Polynome von Primzahlgrad beschranken. Je nach
Geschmack kann nun hierbei noch die Einschrinkung hinzugefiigt
werden, daB diese Polynome in dem jeweils erreichten Korper
irreduzibel sein sollen oder nicht. Da die irreduziblen Polynome
die einfachsten Bausteine fiir die Konstruktion algebraischer Er-
weiterungen sind, erscheint es theoretisch richtiger, diese Be-
schrankung aufzunehmen 3). Wir definieren demgemiB:

*Definition 39. Eine Erweiterung A von K heilit
rein iiber K, wenn sie durch Adjunktion einer
Wurzel eines irreduziblen reinen Polynoms aus K
herleitbar ist.

1) Sonst wiren eben nur die reinen Gleichungen durch Wurzelzeichen auf-
losbar.

2) Nicht nur durchsimultane. Das besagt hier (ande:s als bei Satz 62 [52])
mehr, denn & kann sehr wohl Wurzel eines reinen Polynoms aus einer Erweite-

rung K von K sein, ohne doch Wurzel ¢ines reinen Polynoms aus K zu sein.

3) Tatsdchlich ist die in Satz 127 [144] gegebene Antwort auf unsere Frage (fiir
Grundkorper der Charakteristik 0) von dieser Beschrinkung unabhingig, wie sich
aus den spiteren Sitzen 123,126 [137. 141] leicht ergibt. Gerade in Hinsicht
auf Satz 126 erscheint es mir aber richtiger, die Irreduzibilitit zu fordern, da
die ,,grobere* Fragestellung an der algebraisch interessanten ,,feineren'* Struktur
der Kreisteilungskérper ganz vorbeisieht.
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*Definition 40. Eine Erweiterung endlichen Grades
A von K heiBt durch Wurzelzeichen auflosbar iiber K,
wenn eine Erweiterungskette

K=A <A< <A mit A=A
existiert, in der A; rein und von Primzahlgrad
iiber A;_; ist.

Ein Polynom f(x) aus K heifit durch Wurzelzeichen
auflosbar iber K, wenn sein Wurzelkorper iiber K es ist.

§ 20. Kreisteilungskorper. Endliche Korper.

Um die Frage nach der Auflosbarkeit durch Wurzelzeichen
behandeln zu kénnen, haben wir die Theorie des speziellen reinen
Polynoms 2" — e vorauszuschicken, dessen Wurzeln im Falle
des rationalen Grundkérpers P, wenn man sie gemiB dem sog.
Fundamentalsatz der Algebra als komplexe Zahlen darstellt,
die Teilung der Peripherie des Einheitskreises in = gleiche
Teile leisten. In Hinsicht auf unsere Anwendungen wollen wir
uns hier nicht auf diesen Spezialfall P beschrinken, sondern
allgemeinere Grundkérper K zulassen, nennen aber in An-
lehnung an jenen Spezialfall auch allgemein 2™ — e =0 die
Kreisteilungsgleichung und ihren Wurzelkorper T, den
Kreisteilungskorper fiir # iiber K. Uber die Wurzeln der
Kreisteilungsgleichung fiir » iiber K, die sog. n-ten Einheits-
wurzeln iiber K, beweisen wir dann zunichst den folgenden
Satz:

Satz 120. Es sei K ein Kérper, dessen Charakte-
ristik 0 oder eine nicht in n aufgehende Primzahl
ist. Dann bilden die n-ten Einheitswurzeln iiber K
beziiglich der Multiplikation eine zyklische Gruppe
8 der Ordnung n. Es existieren also # verschiedene
n-te Einheitswurzeln iiber K, die sich als die Po-
tenzen

Co =, Cly reey Cn—l

Hasse, Hohere Algebra. II. 9
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einer unter ihnen, einer sog. primitiven n-ten Ein-
heitswurzel {, darstellen lassen.

Beweis: Esseien(;, . . ., £, die Wurzeln von fn(a:)z " —e.
Dann ist die Ableitung

LE)=niTH0  @=1,...,m),
weil natiirlich {;== 0, also nach dér Voraussetzung iiber die
Charakteristik von K dann auch nZ} " == 0ist (Satz 43 [37]).
Nach Satz 56 [46] sind also die n Wurzeln £; voneinander
verschieden. Da ferner aus {7 =e,; = ¢ folgt ((2,)" =e¢,
bilden die # verschiedenen n-ten Einheitswurzeln eine abel-
sche Gruppe 8 der Ordnung = (1, Satz 20 [55] angewandt
auf die multiplikative Gruppe der Elemente == 0 des Kreis-
teilungskérpers T,).

Nach Satz 34 [32] hat dann jedes Element {; von 3 einen
bestimmten Teiler m; von » als Ordnung. Es sei nun ¢ ein
Element aus 8 von mdoglichst hoher Ordnung m. Wir haben
zu zeigen, daf m = n ist, woraus ja folgt, dal die n Potenzen
%%, ..., verschieden sind und somit die Gruppe § er-
schopfen. Sei dazu p eine beliebige Primzahl und werde (gemi8
Satz 12, 22 [14, 22])

m= pﬂmr m; = Puimi mit ("T’L, p) =1, (mi’ p) =1
gesetzt. Dann haben offenbar C:”i, £*"die Ordnungen p'*, 7,

also nach Satz 35 [32] C:"iC * die Ordnung p”%. Wegen der
Maximalauswahl von m ist somit p*im < p“m, d. h. u, < p.
Es enthilt also m; jede Primzahl p hiochstens in der Potenz,
in der p in m vorkommt, d.h. es ist m; | m (Satz 20 [22])
und somit C;” = e. Die n verschiedenen n-ten Einheitswurzeln

{; sind also simtlich Wurzeln des Polynoms m-ten Grades

™ —e. Daraus folgt m = n (Satz 48 [41]), was mit m|n

zusammen m = # und damit unsere Behauptung ergibt.
Nach Satz 37 [34] (vgl. auch das zn Satz 31 [30] Ge-
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sagte) haben wir noch ohne weiteres:

Zusatz. Ist { eine primitive n-te Einheitswurzel
iiber K, so sind alle und nur die Potenzen {7, die
den @(n) primen Restklassen m mod. n entsprechen,
ebenfalls primitiv.

Hierauf beruht die in folgendem Satz enthaltene Be-
stimmung der Galoisgruppe des Kreisteilungskérpers T,:

Satz 121. Ist K ein Kérper wie in Satz 120 und ¢
eine primitive n-te Einheitswurzel iiber K, so ist

das Polynom
n—1
(m, n)=1
dessen Wurzeln die ¢(n) verschiedenen primitiven
Einheitswurzeln sind, ein Polynom in K. Tst
i) = I @ —")
der zu { gehorige irreduzible (nach Satz 59 [48]
separable, nach Satz 99, (IIT) [88] normale) Faktor
von g,(x), so reprisentieren die m eine Untergruppe
B, der primen Restklassengruppe P, mod. n. Die
Galoisgruppe ®, des (separablen, normalen) Kreis-
teilungskorpers T, ist dann zu dieser Gruppe %P,
isomorph auf Grund der Zuordnung des durch
{—~¢™ erzeugten Automorphismus von T, zu der
Restklasse m mod. n.

Insbesondere ist also T, abelsch (Def. 34 [95])
und ferner der Grad von T, iiber K ein Teiler von
@(n) (Satz 105 [96]).

Beweis: a.) Da nach Satz 107 [98] ein Automorphismus
von T, bzgl. K einerseits die n verschiedenen Wurzeln {; von
2® — e nur untercinander vertauscht, andererseits deren
Potenzdarstellungen ¢; = " invariant 148t, geht ¢ durch ihn

wieder in eine primitive n-te Einheitswurzel iiber, so daB auch
9*
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die @(n) verschiedenen primitiven n-ten Einheitswurzeln
durch ihn nur untereinander vertausecht werden. Hiernach
sind die Koeffizienten von g,(z) bei allen Automorphismen
von T, bzgl. K invariant und gehoren somit zu K (Satz 112,
Zusatz [111]).

b.) Da Tn=K(’,....5" ") = K(¢), also eine primitive
n-te Einheitswurzel iiber K gleichzeitig auch primitives Ele-
ment von T, bzgl. K ist, konnen (Satz 105 [96]) die Auto-
morphismen von T, bzgl. K durch die ihnen entsprechenden
Substitutionen von ¢ beschriebenw erden. Hat also g,(x) die
Bedeutung aus dem Satze, so wird die Galoisgruppe &, von T,
bzgl. K durch die Substitutionen £—{™ dargestellt, und ihre

Elemente sind hierdnrch der Menge S8, der durch die 7 repri-
sentierten primen Restklassen mod. »n eineindeutig zu-

geordnet. Da nun{— £ und £ — ™ nacheinander ausgefithrt
C— (™)™ = "™ ergeben, kommt bei dieser Zuordnung die
Multiplikationin @, auf die Multiplikation der Restklassen in‘j3,,

hinaus. Daher ist diese Zuordnung isomorph und B, eine zu
&,, isomorphe Untergruppe von Ra.

Bei der Untersuchung der Auflosbarkeit durch Wurzel-
zeichen spielen gemilB Def. 40 [129] die Einheitswurzeln von
Primzahlordnung » = p eine besondere Rolle. Wir beweisen
fiir diesen Fall in Erweiterung des Satzes 121:

Satz 122. Es sei p eine Primzahl und K ein Kor-
per mit von p verschiedener Charakteristik. Dann
ist der Kreisteilungskorper T, zyklisch iiber K von
einem in p —1 aufgehenden Grade.

Beweis: Nach Satz 121 ist der Grad von T, iiber K ein
Teiler von ¢(p) und die Galoisgruppe ®, von T, bzgl. K
isomorph zu einer Untergruppe P, der primen Restklassen-
gruppe ‘B,. Nun bilden die Restklassen mod. p nach Satz 28
[27] sogar einen Korper, den Primkérper P, (Def. 13 [35],
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Satz 41 [36]). Die ¢(p) Elemente von ‘B, sind dann die
p—1 von Null verschiedenen Elemente von P, (Satz 17 [20])
und sind als solche Wurzeln der Kreisteilungsgleichung
gP—1—¢==0 (Satz 29 [29]), also die sémtlichen (p —1)-ten
Einheitswurzeln itber P,. Nach Satz 120 [129] bilden sie
somit beziiglich der Multiplikation eine zyklische Gruppe.
Daher ist $3,, nach Satz 36 [33] also auch die Untergruppe

Ry, d. 1. ®, zyklisch und also T, zyklisch iiber K (Def. 34 [95])
von einem in p — 1 aufgehenden Grade.

Trivialerweise folgt iibrigens aus Satz 44 [37]:

Zusatz. Hat K die Charakteristik p, so ist

o’ —e= (z—e)?, also ¢ die einzige p-te Einheitswurzel
iiber K, und Tp= K.

Es ist bemerkenswert, wie die abstrakte Korpertheorie,
durch die ohne weitere Schwierigkeiten mogliche Ausdehnung
des in der Zahlentheorie gewdhnlich nur fiir den Grundkérper
P bewiesenen Satzes 120 [129] auch auf P,, auf einfachste
Weise zu dem Schluf fiihrt, daB die prime Restklassengruppe
Bp zyklisch ist, oder, wie man in der Zahlentheorie sagt, daf
eine primitive Wurzel mod. p existiert, nimlich eine solche
ganze Zahl 7, daB fiir jedes zu p prime ganze m eine Potenz-
darstellung

besteht.

Wir fiigen noch eine Bemerkung fiber den Spezialfall des Kreis-
teilungskorpers Tp liber dem rationalen Grundkorper P an. Mit
zahlentheoretischen Hilfsmitteln (Eisenstein-Schénemann-
scher Satz, siehe 3, § 20, Aufg. 6) zeigt man, daf das Polynom

P
gp(x) = 2_113 1P 2. 4 24+1
aus Satz 121 in P irreduzibel ist, also Tp den Grad ¢(p)=p—1

itber P hat. Ist nun p — 1 = 2" (» = 0) eine Potenz von 2, so
kann nach Satz 109 [101] T, von P aus durch sukzessive Adjunktion
quadratischer Irrationalititen erreicht werden, weil dann die nach

Satz 122 zyklische Galoisgruppe @p von Tp bzgl. P die Ordnung 2*
hat und folglich nach Satz 36 [33] eine Untergruppenkette

G =9>H>--->9,=¢

m=rtmod. p (u=0,...,p—2)
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derart besitzt, daB §; Untergruppe vom Index 2 von £, _; ist. Kann

umgekehrt T, von P aus durch sukzessive Adjunktion quadra-
tischer Irrationalititen erreicht (oder auch nur eingefangen) werden,
so enthilt die Gruppe ® nach den Ausfithrungen in §17, 2.) [108]
und §18, 3.) [124] eine Untergruppenkette der eben beschriebenen
Art!), und somit ist dann ihre Ordnung p — 1 eine Potenz von 2.
Daraus ergibt sich das beriihmte

Resultat von GauB., Das reguldire p-Eck fiir eine
Primzahl p ist dann und nur dann mit Zirkel und
Lineal konstruierbar, wenn p eine Primzahl von der
Form 2° + 1 ist.

Man weiB bis heute nicht, ob die mit p = 2, 3, 5, 17, 257, 65537
beginnende Folge der Primzahlen dieser Form abbricht oder nicht.
(Siehe hierzu auch 3, § 20, Aufg.14.15.)

Auf analoge Weise werden wir aus Satz 122 im néichsten Para-
graphen als das hauptsdchlichste Ziel der Digression dieses Para-
graphen die Auflosbarkeit von Tp durch Wurzelzeichen iiber be-
stimmten Grundkérpern K folgern.

Auf Grund von Satz 120 [129] kann jetst mit Leichtigkeit
gegeben werden:

Kurzer Abrifl der Theorie der endlichen Korper.

A. Wir haben bereits endliche Korper, d. h. solche aus nur
endlich vielen Elementen, kennengelernt, nimlich fiir jede Prim-
zahl p den Primkorper Pp (Restklassenkorper mod. p) aus genan
p Elementen (§ 4).

Sei jetzt E ein beliebiger endlicher Korper. Dann ist auch der
in E enthaltene Primkérper endlich, also nicht zum rationalen
Zahlkorper isomorph. Daher gilt (Satz 41 [36]):

(I) Die Charakteristik von E ist eine Primzahl p.

Nach dem im Anschluf an Satz 41 Gesagten kann dann E
als Erweiterung des Primkérpers Pp angesehen werden. Trivialer-
weise ist dabei E von endlichem Grade iiber Pp (Def. 25 [57]).
Aus der eindeutigen Darstellung o« = a,, + + - + + @y, der Ele-
mente « aus E durch eine Basis &y, ..., 0, von E bzgl. Pp mit
Koeffizienten a,, ..., a,, aus Pp folgt dann:

(II) Ist [E:Py]=m, so hat E genau p™ Elemente.

Wir verallgemeinern jetzt die fiir den Primkérper Pp selbst im
Beweis zu Satz 122 angewandte SchluBweise auf E. Die multi-
plikative Gruppe der von Null verschiedenen Elemente von E
(1, §6, Beisp. 1 [53]) hat nach (II) die Ordnung p™ — 1. Diese

1) Fiir den allgemeinen Fall des Einfangens siehe den ausfiihrlichen
Beweis zu dem spiteren Satz 127, Teil a), Anm. 1 [145].
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p™ — 1 von Null verschiedenen Elemente geniigen daher der Glei-
chung 2P™ 1 _ e~ 0 (Satz 34 [32]), sind also die simtlichen
(p™ — 1)-ten Einheitswurzeln iiber Pp, und daher ist die aus ihnen
gebildete Gruppe zyklisch (Satz 120):

(III) Ist [E:Pp]l=m, so ist E der Kreisteilungs-
kérper Tym_; iber P,

Die von Null verschiedenen Elemente von E sind
die Wurzeln der Gleichung 2?1 _ ¢ 0, die simtlichen
Elemente von E also die Wurzeln der Gleichung
" —z 2 0.

In E existiert ein primitives Element ¢ derart, daBl
die p™—1 von Null verschiedenen Elemente von E
als die Potenzen

g®=e, o,...0r"2
darstellbar sind.

Umgekehrt gilt:

(IV) Fiir beliebiges m ist der Kreisteilungskérper
Tpm_1 iiber Pp ein endlicher Kérper mit [Tpm_lsz] =m.

Denn T,m_, ist als Erweiterung endlichen Grades des endlichen
Korpers Pp (Satz 83 [70]) selbst ein endlicher Kérper (Def. 25,
Zusatz [57]). Dieser hat genau p™ Elemente; seine Elemente
werden nimlich bereits durch Null und die p™ — 1 Wurzeln von
zP™—1_¢, d.h. durch die p™ Wurzeln von 2" —z erschopft; denn
diese p™ Wurzeln bilden bereits einen Kérper, weil aus o™ = «,

BP™ = B nicht nur (wie im Beweis zu Satz 120) folgt (xB)"" = of

pm
und (falls g + 0) (%) =§, sondern nach Satz 44 [37] auch

(x+ BP™ =+ B. Nach (II) folgt daher plT?"—1:Fpl— ym
d.h. in der Tat [Tym_4: Pp]=m.

Da durch die Elementanzahl p™ die Charakteristik p und der
Grad m eindeutig bestimmt sind, gilt nach (III) und (IV):

(V) Fir jede Elementanzahl der Form p™ gibt es
genau einen endlichen Korpertypus, namlich den
Kreisteilungskérper Tpm_1 iiber Pp-

Ferner gilt:

(VI) Die Teilkdérper von Tpm—1 sind alle und nur die
Kérper Ty, ; mit u|m, und es ist dabei

m
[Tpm_s: Tpual =~
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Denn einerseits ist, wenn T’,,l_1 < Tp,,.__1 ist, nach Satz71[569)

m
o= {Tpu g Pl [ Tpm_y: Pyl=m, und [Tpm_4:Tpu_q]= "

Andererseits ist, wenn u |m ist und dementsprechend m = uu’
gesetzt wird,

P l= 1= (1) (T 1),
also p#—1|p™—1, und daher Tp#_1 = Tpm—p da dann die
(p* — 1)-ten Einheitswurzeln unter den (p™ — 1)-ten vorkommen.

Durch (V) und (VI) ist eine vollstindige Ubersicht iiber alle
endlichen Kdrpertypen und ihre gegenseitigen Beziehungen ge-
wonnen.

B. Sei jetzt E= T m_, ein endlicher Grundkdrper und H eine
endliche Erweiterung von E. Trivialerweise ist dann zundchst H
von endlichem Grade » iiber E (Def. 25 {57]) und daher wieder
ein endlicher Kérper (Def. 25, Zusatz [57]), der nach (VI) die
Form H = Tpmn_y hat. Ist dann g ein primitives Element von H
im Sinne von (III), so ist g erst recht primitives Element im Sinne
von Def. 19 [562] von H bzgl. jedes Teilkorpers. Also:

(VII) H ist einfach iiber E.

Hiermit ist die im Beweis von Satz 90 [80] zuriickgebliebene
Unvollstindigkeit beseitigt.

Da die Charakteristik p von H in der Ordnungszahl p™" —1
der Einheitswurzeln, die H bilden, nicht aufgeht, gilt ferner nach
dem in Satz 121 [131] Bemerkten:

(VIII) H ist separabel iiber E.

SchlieBlich gilt nach Satz 94 [85]:

(IX) H ist normal iiber E.

Daher sind die Sitze der Galoisschen Theorie auf die Er-
weiterung H von E anwendbar. Wenn auch eine Ubersicht iiber
die Korper zwischen H und E durch (VI) bereits ohne Verwendung
der Galoisschen Theorie gewonnen ist — es sind alle und nur die

Tpm,,_.1 mit ¥ |n —, so interessiert doch theoretisch die Fest-
stellung:

(X) H ist zyklisch iiber E.
Die Galoisgruppe von H bzgl. E besteht nédmlich
aus den Potenzen des Automorphismus

Aia—oP™ fiir jedes o aus H,
mit A" =E, d.h. aus den » Automorphismen
Ao —»aP™ fiir jedes « aus H (»=0,1,...,n—1).
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Nach Satz 44 [37] [siehe auch schon die Schlufiweise im
Beweis zu (IV)] sind das nimlich in der Tat Automorphismen von

H, bei denen jedes Element von E als Wurzel von ™ — g in-
variant bleibt, also Automorphismen von H bzgl. E. Diese n
Automorphismen von H bzgl. E sind ferner voneinander ver-
schieden, weil fiir ein primitives Element ¢ von H (im Sinne von
(IIT)) die simtlichen Potenzen ¢* (t=1,..., p™* —1), also ins-

besondere die » Potenzen g”"w (»v=20,1,...,2—1) voneinander
verschieden sind. Also sind es alle n= [H: E] Automorphismen
der Galoisgruppe von H bzgl. E (Satz 105 [96]).

§ 21. Reine und zyklische Erweiterungen von Prim-
zahlgrad.

Zur Behandlung der Frage nach der Auflgsbarkeit durch
Wurzelzeichen haben wir den speziellen Entwicklungen des
vorigen Paragraphen noch die Theorie der irreduziblen reinen
Polynome von Primzahlgrad an die Seite zu stellen, auf die
sich ja die Def. 40 [129] der Aufldsbarkeit durch Wurzelzeichen
stiitzt. Wir beweisen zuniichst den folgenden Satz iiber die
Irreduzibilitit eines reinen Polynoms von Primzahlgrad:

Satz 123. Es sei p eine Primzahl und 2?2 —a ein
reines Polynom mit a=0 aus K. Dann enthglt der
Wurzelkorper W dieses Polynoms den Kreistei-
lungskérper T, iiber K, und es sind nur die folgen-
den beiden Falle méglich:

a.) #» —a hat eine Wurzel in K, d. h. ¢ ist eine
p-te Potenz in K. Dann ist 22 —a reduzibel in K
und W=T,.

b.} 22 —a hat keine Wurzel in K, d.h. a ist keine
p-te Potenz in K. Dann ist 2? —a irreduzibel in K
und sogar in T,, und iiberdies normal iiber T,,
also W rein vom Grade p iiber T,.

Beweis: Es seien «y, . . ., «p die Wurzeln von 2? — ¢ und
o eine von ihnen. Aus o = a folgt dann, weil a == 0, also
auch o == 0 ist,
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(w)” & —aof z—a, z—0p
—_— __eE g PERENY

oP & &

]

Nach dem Einsetzungsprinzip (1, Satz 12 [40], angewandt
auf | [#'] mit | =W/[z] und die Einsetzung 2’ = ox) darf
hierin oz fiir # gesetzt werden, so daB

p— (z—%) (x__‘:f‘z’)

resultiert. Die Quotienten 2 ¢ind also die p-ten Einheits-
o

&

wurzeln iiber K, d. h. esist W =T, Ist ferner( eine primitive
p-te Einheitswurzel (Satz 120 [129]; — falls K die Charakte-
ristik p hat, { = e [Satz 122, Zusatz)]), so gilt bei geeigneter
Reihenfolge )
i =Co0 (t=1,...,D0).
a.) Liegt nun & in K, so liegen hiernach die «; in T, d. h.
es ist W= T, und somit nach obigem W = T,.
b.) Liegt aber keins der o in K, und wire dann
ho)y=a 4 +a (<r=p—1)
ein irreduzibler Faktor von 2 — a in K, so hitte 4 a, als Pro-
dukt von gewissen » Faktoren o; eine Darstellung
+ ag ="
Wird nach Satz 14, 17 [18, 20] »»' =1 + kp gesetzt, so
folgte wegen o = a
(j: ao)v’ _ Cuv’“ ak , ’
so daB wegen a=£0 die Wurzel o, — ™ o = Lia:ol
doch in K lige. Also ist dann 2 — a irreduzibel in K und
somit K(or) vom Grade p iiber K. Wird nun in den gemachten
Schliissen A(x) als irreduzibler Faktor von 2P — a in T, ange-
nommen, so folgte, dal « und somit K(x) in T, enthalten
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wire. T, hétte also ein Multiplum von p zum Grade iiber K,
wihrend doch nach Satz 121 [131] dieser Grad ein Teiler von
p—1ist. Somit ist dann 2 — @ auch in T, irreduzibel und
nach Satz 99, (IIL.) [88]) iiberdies normal iiber T,, also nach
Satz 99, (1) W = T,(«x) und daher rein vom Grade p iiber
T, (Def. 39 [128]).

Fiir die Frage nach der Auflésbarkeit durch Wurzelzeichen
hat uns naturgemaB der Fall b.) des Satzes 123 besonders zu
interessieren. Wenn K die Charakteristik p hat, ist dann
2? —aeininseparablesirreduzibles Polynom (Def. 17 [47]).
Seine einzige Wurzel « ist p-fach. Im Sinne unserer durch-
gingigen Beschrinkung auf separable Erweiterungen schlieSen
wir diese Moglichkeit im folgenden aus, indem wir bei der Be-
trachtung reiner Erweiterungen vom Primzahlgrad p die
Charakteristik von K als von p verschieden voraussetzen.
Dann ist 22 — a (und allgemeiner jedes irreduzible Polynom
aus K vom Grade p) a fortiori separabel (Def. 17).

Ferner ist 4? — a im Falle b.) i. a. nicht iiber K, wohl aber
iiber T, normal, so da es fiir die beabsichtigte Anwendung
zweckmiBig erscheint, vor der Adjunktion einer Wurzel eines
reinen Polynoms 2P — a vom Primzahlgrad p jeweils erst eine
primitive p-te Einheitswurzel { zu K zu adjungieren, also
zunichst zu dem erweiterten Grundkérper K=K({)=T
iiberzugehen, der mit dem Kérper T, = {T,, K} (Def. 37,
Zusatz [118]) der p-ten Einheitswurzeln iiber K zusammen-
fallt.

In dieser Hinsicht ist der nachstehende, aus Satz 123 ohne
weiteres folgende Satz fiir uns von Interesse (in dem K so-

zusagen mit dem eben genannten K zu identifizieren ist):

Satz 124. Ist p eine Primzahl und K ein Kirper
mit von p verschiedener Charakteristik, der die
p-ten Einheitswurzeln iiber K enthalt, so ist jede
reine Erweiterung p-ten Grades A von K normal
(separabel und zyklisch) iber K.
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DaB A als separable normale Erweiterung vom Primzahlgrade
p zyklisch iber K ist, ist trivial. Denn seine Galoisgruppe
bzgl. K hat nach Satz 105 [96] die Primzahlordnung p und muB
daher nach Satz 34 [32] mit der Periode jedes ihrer von E ver-
schiedenen Elemente zusammenfallen.

In Umkehrung zu Satz 124 beweisen wir nun den fiir
unsere Anwendung grundlegenden Satz:

Satz 126. Ist p eine Primzahl und K ein Korper
mit von p verschiedener Charakteristik, der die
p-ten Einheitswurzeln iiber K enthiilt, so ist jede
normale Erweiterung p-ten Grades A von K
(a fortiori separabel, zyklisch und) rein iiber K

Beweis: Es sei 4 ein primitives Element der zyklischen
Galoisgruppe von A bzgl. K, & ein primitives Element von
A bzgl. K und { eine primitive p-te Einheitswurzel iiber K
Dann bilden wir die sog. Lagrangesche Resolvente von 9:

=g+l b+ LTy
Wenn dies Element « aus A von Null verschieden ist, schlicBen
wir folgendermaBen:
Durch Anwendung von A auf « entsteht wegen A" = E,
{? = e und der Invarianz des Elements ¢ aus K bei 4
a, =0, +0 0+ +T VY,
=@+ L0, Ty ) =0,

also durch wiederholte Anwendung von 4

xar=ol’.
Hiernach sind die infolge der Annahme « == 0 voneinander
verschiedenen Elemente v, af, . . ., a7 " die konjugierten zu

o bzgl. K, d.h. es ist
g(@)= (¢ —a) (z —al) - (—al")

das zu « gehorige irreduzible Polynom aus K, und « ist ein
primitives Element von A (Satz 111, 112 [109, 110] nebst
Zusatz). Aus

o’ —e=(z—e)(a—L)  (e—L")
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folgt nun wie im Beweis zu Satz 123

g(z)= 2? —oP,
und somit ist

g(z)= 2P —a
mit ¢ = o? in K, also « Wurzel des irreduziblen reinen Poly-
noms 2P — a aus K. Daher ist dann in der Tat A = K(x) rein
iiber K (Def. 39 [128]).

Wir zeigen nun, daB man durch passende Wahl der primitiven
p-ten Einheitswurzel { erreichen kann, daf o # 0 ist. Wire

nimlich fiir jede der p — 1 primitiven p-ten Einheitswurzeln £*
(v=1,...,p—1) die zugehtrige Lagrangesche Resolvente
x, = 0, so bestinde das Glelchunvssystem

Z(Cv)_"ﬁy 0 (»=1,..,p—1).

Multipliziert man dessen »-te Gleichung mit ¢** und summiert
iber », so folgte na,ch Vertauschung der Summationsfolge

z:) 2 é-t'(# —#)>0A,, =0.
Da nun .

p.—] , . 7
S eu—pw__ J—e fir w4’ ==y mod. p
él(c y= pe—e fir u'=p mod. p
ist, weil im ersteren Falle £* ™ primitive p-te Einheitswurzel, also
P_
Wurzel von % ~~e—e =Pl 4 oP~2 L ... 4 z + e ist, wihrend

im letzteren Falle (p — 1)-mal der Summand e steht, so resul-
tierten anf diese Weise d11e Relationen

”2 Bgu=pdgw (W=01,..,p—1).
Da K nicht die Charaktenstlk p hat, wiren also alle & 4, einander
gleich, was fiir ein primitives Element ¢ von A nach Satz 112,
Zusatz [111)] nicht der Fall ist.

Wir wenden zum SchluB noch die vorstehenden Resultate
an, um die Auflésbarkeit durch Wurzelzeichen von T, iiber
bestimmten Grundkérpern K zu beweisen:

Satz 126. Es sei p eine Primzahl und K ein
Kérper, dessen Charakteristik 0 oder eine Prim-
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zahl >p ist. Dann ist der Kreisteilungskérper T,
durch Wurzelzeichen auflésbar iiber K, und iiber-
dies existiert sogar eine Korperkette

K=N<A<--<A mit A,=T,,
in der A; nicht nur (gem&B Def. 40 [129]) rein von

Primzahlgrad, sondern auch normal iiber A;_; ist.

Beweis: Wir wenden vollstindige Induktion an und
setzen dazu die Behauptungen fiir alle Primzahlen < p (und
alle dabei nach der Formulierung des Satzes zuldssigen Grund-
korper) als bereits bewiesen voraus. Es sei nun d der nach
Satz 122 [132] in p — 1 aufgehende Grad von T, iiber K und
d=1p, - p, die Zerlegung von d in (nicht notwendig ver-
schiedene) Primzahlen p,. Weil nach Voraussetzung die
Charakteristik von K, wenn == 0, auch groBer als jede dieser
Primzahlen ist, existiert dann nach der Induktionsannahme
zunichst eine Korperkette

K= /\</\1 </\, mit /\_T,,l,
in der A; rein und normal von Primzahlgrad iiber Ai_y ist,
ferner (jetzt von 7\-,l statt K als Grundkorper ausgehend) eine
Korperkette
My <A1 < <A, mit A=T,, Ty,
in der K, _+i rein und normal von Primzahlgrad iiber Krl.*_i_]
ist, usf., zusammengenommen also eine Korperkette

K=A <A< </\ mit /\,ZT,,,.. I P

in der durchweg A\; rein und normal von Primzahlgrad iiber
/\1__1 ist. Es sei nun T der Kreisteilungskorper fiir p iiber
A, und 4 sein nach Satz 119 [120] in @ aufgehender Grad

iiber A, r» Dann existiert nach ganz entsprechenden Schliissen
wie beim Resultat von Gauss [133/34] (Satz 36, 109, 122 [33,

1) Der Krelsteilungskdrper Tp’ fiir p, ber K’: enthilt natiirlich den Kreis-
teilungskorper Tp. fiir p, iiber K.
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101, 132]) eine Korperkette

_ /\,,</\,,+1<--~</\,:T£,
in der A,,4;normal von Primzahlgrad itber A, ;3 ist. Die
sukzessiven Grade in dieser letzten Kette sind als Teiler

von d gewisse der Primzahlen p,. Da nun in den A,,,; nach
Konstruktion die p,-ten Einheitswurzeln enthalten sind, ist
nach dem — wegen der Voraussetzung iiber die Charakte-
ristik von K — (vgl. auch Satz 42 [37]) anwendbaren
Satz 126 A, 4; rein iiber A, ;3. Die volle Kette
K=A < < N=T,
hat somit, wenn man noch bedenkt, da8 T, = T, ist, alle fiir
die Behauptungen des Satzes erforderlichen Eigenschaften.
Da fiir die kleinste Primzahl p = 2 die Behauptungen
wegen T, = K trivialerweise zutreffen, ist hiermit der Satz
durch vollstindige Induktion bewiesen.

§ 22. Kriterinm fiir die Auflosbarkeit durch Wurzel-
zeichen.

Um das in diesem Paragraphen herzuleitende Kriterium

fiir die Auflosbarbeit durch Wurzelzeichen bequem aus-

sprechen zu konnen, stellen wir die folgende Definition voran:

*Definition 41. Eine separable normale Erweite-
rung N von endlichem Grade eines Kérpers K heifit
metazyklisch iiber K, wenn eine Zwischenkérper-
Kette

K=Aj<Aj<--- <A, =N
derart existiert, dal /A; normal von Primzahlgrad
fiber A;_; ist, oder — was nach dem Fundamental-
satz der Galoisschen Theorie dasselbe besagt —,
wenn die Galoisgruppe & von N bzgl. K eine
Untergruppenkette

@=5§0>S§1>"'>®r=@
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derart enthdlt, dal $; Normalteiler von Primzahl-
index von ;3 ist.

Ein separables Polynom f(z) aus K heiBt meta-
zyklisch iiber K, wenn sein Wurzelkdrper metazyklisch
iiber K ist.

Der Ausdruck metazyklisch riihrt daher, dafl dann die
einzelnen Schritte A; iiber A;_; bzw. §,; /9, zyklisch sind. Man

nennt iibrigens Gruppen & von der in Def. 41 angegebenen Art
ebenfalls metazyklisch.,

‘Wir beweisen nun das folgende Kriterium fiir die Auflos-
barkeit durch Wurzelzeichen normaler Erweiterungen end-
lichen Grades, wobei wir uns wegen der im vorigen Para-
graphen fiir Primzahlcharakteristiken zutage getretenen Kom-
plikationen auf Grundkérper der Charakteristik O beschriinken,
so daf also insbesondere die Voraussetzung der Separabilitét
trivialerweise stets erfiillt ist:

Satz 127, Eine normale Erweiterung N von end-
lichem Grade liber einem Korper K der Charakte-
ristik 0 ist dann und nur dann durch Wurzelzeichen
auflésbar, wenn sie metazyklisch ist.

Ein Polynom f(z) aus K ist also dann und nur dann
durch Wurzelzeichen auflésbar, wenn es metazyklisch
ist.

Beweis: a.) Es sei N durch Wurzelzeichen auflésbar iiber
K. GemiB Def. 40 [129] existiert dann eine Korperkette

K=MN<A < - <A mit 7 =N,
in der A{ rein vom Primzahlgrade p; iiber Ai_; ist. Nach
Satz 126 existiert (dhnlich wie im Beweise jenes Satzes) eine
Korperkette

K_z N <A<+ < A mit As_z_Tpl,...,Ipr,
in der A; (rein und) normal von Primzahlgrad iiber A;_; ist.
Es sei nun &; eine Folge von Elementen aus den A} derart, da
&; Wurzel eines reinen irreduziblen Polynoms z* — a; aus

Ay, also N = /—\2_1(04,-) und A, = K(eyy « - «pxp) ist. Ent-
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weder ist 2P — ¢, auch irreduzibel in As; dann ist sein Wurzel-
kirper A,41 iiber A, nach Satz 123 [137] und wegen Tp, < A,
(rem und) normal vom Primzahlgrade p, iiber A, und zudem
Aer1 = Ay(oy). Oder es ist 2P+ — a, reduzibel in A,; dann ist
nach demselben Satze Agpq = A, und zudem A, 41 = Ag(oy)-
Ebenso schlieBt man, da der Wurzelkérper /—\-3+2 von zPs — a,
iiber /\,,+1 entweder (rein und) normal vom Prlmzahlgrade Py
{iber /\,+1 oder = /\s+1 und beidemal zudem A3+2 = /\s+1(0¢2)
ist, usf. So ergibt sich bei Fortgehen bis zu /\s+, bei nur
einmaliger Zihlung mehrfach hintereinander auftretender
Kérper eine Korperkette
Ke=Ag <A<+ <A; mit A;ZN
(letzteres wegen As= A\ (le, o 07) ZK (o, 03 ) =N 2 N),
in der durchweg /; (rein und) normal von Primzahlgrad iiber
Ki_l ist. Dieser Kette entspricht nach den Ausfithrungen in
§ 18, 3.) (vgl. Fig. 5 [125]) eine Zwischenkorperkette
= 0§A1§"‘§A;=N,
in der A; normal iiber A;_; ist, und zwar von Primzahlgrad,

falls nicht A; = A;_; ist (und somit A; ausgelassen werden
kann); denn der Grad [A;: /A;—] ist als Teiler des Primzahl-
grades [A;: Ai_1] entweder 1 oder eben diese Primzahl?)
GemilB Def. 41 ist dann N metazyklisch iiber K.

b.) Es sei N metazyklisch iiber K. GemB Def. 41 existiert
dann eine Zwischenkorperkette

K=A <A < <A, =N,

in der A; normal vom Primzahlgrad p; iiber A;_; ist. Wie
unter a.) existiert eine Korperkette

K=A <A < <A, mn;/\>T,,,...,T,,r,

') Derselbe SchluB wurde iibrigens — ohne daB es ausdriicklich hervor-
gehoben wurde — schon in dem Beweise des Resultats von Gauf in § 20 [134)
fiir die dort auftretenden Primzahlgrade 2 gemacht.

Hasse, Hohere Algebra. II. 10
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in der A; rein (und normal) von Primzahlgrad iiber A;_ ist.
Es sei nun 9; eine Folge von Elementen aus den A; derart, daB
©#; Wurzel eines normalen Polynoms g,(x) vom Primzahlgrad
p; aus Nig, also Ay = Ai_1(8;)) und N= A, =K(&,, ..., 8,)
ist. Entweder ist g,(z) irreduzibel und somit auch normal in
A,; dann ist sein Wurzelkirper Ks_*_l = /_\3(191) iiber 7\, wegen
T,, <A, nach Satz 125 [140] rein (und normal) vom Prim-
zahlgrad py iber A, Oder es ist g,(v) reduzibel in A,; dann
ist Agp1=Ay(¥)=A,, weil dann [A3+1 As] einerseits
< p; (= wegen der Normalitit von g,(z) in /Ay und sogar
< wegen der Reduzibilitit in A,), andererseits ein Teiler von
py (nach Satz 119 [120], angewandt auf K= Ao, N= A,
A =Ny N=1~Ng1), also [Ayg1:A]=1 ist. Ebenso
schlieBt man, daB der Wurzelkérper /\s+2 = é,+1(192) von
g,(x) iiber A,y entweder rein (und normal) vom Primzahl-
grad p, iiber Ks+1 oder = A1 ist, usf. So ergibt sich durch
Fortgehen bis zu A, bei nur einmaliger Zahlung mehrfach
hintereinander auftretender Korper eine Korperkette
K= A0<A <---<N; mit A;=N

(letzteres wegen Ay = A (191, w3 =K@y, ?,)=N),
in der durchweg A; rein (und normal) von Primzahlgrad iiber
/_\i—l ist. Gem&B Def. 40[129] ist dann N durch Wurzelzeichen
auflosbar iber K.

Wie aus jedem der beiden Teilbeweise ersichtlich ist, gilt auch
allgemein eine entsprechende Verschirfung, wie sie schon in dem
speziellen Satz 126 [141] erhalten wurde:

Zusatz. Ist unter den Voraussetzungen von Satz
127 N durch Wurzelzeichen auflésbar iiber K, so
existiert sogar eine Korperkette _

_K=A< A <o <Ay mit A2 N,
in der A; nicht nur (gem&8 Def. 40) rein von Primzahl-
grad, sondern auch normal iber Ai—1 ist.
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Durch Satz 127 in Verbindung mit dem schon in Def. 41 Ge-
sagten wird unsere zu Beginn dieses Abschnitts gestellte Frage
entschieden, unter welchen Bedingungen eine algebraische Gleichung
(x) ==0 in einem Grundkérper K der Charakteristik 0 durch
Wurzelzeichen aufldsbar ist'), wann also ihre Wurzeln durch
Rechenausdriicke darstellbar sind, die mittels der vier elementaren
Rechenoperationen und der Operation des Wurzelziehens gebildet
sind. Stellt man die etwas andere Frage, wann eine Wurzel eines
irreduziblen Polynoms f(z) aus K auf diese Weise darstellbar ist,
so kommt das auf die Frage nach der Auflasbarkeit durch Wurzel-
zeichen einer beliebigen Erweiterung A endlichen Grades von K
hinaus, die umgekehrt auch nicht allgemeiner ist, weil jede solche
Erweiterung A als Stammkdrper eines irreduziblen Polynoms f(z)
aufgefalt werden kann. Wir fiihren in dieser Hinsicht an, dal die
Bedingungen hierfiir genau dieselben sind, wie fiir die oben be-
handelte Frage, daB némlich eine beliebige Erweiterung
endlichen Grades A von K dann und nur dann durch
Wurzelzeichen auflésbar ist, wenn dies fir die zu-
gehérige normale Erweiterung N (den Wurzelkérper
irgendeines irreduziblen Polynoms f(z), fiir das A Stammkérper
ist) der Fall ist. DaB mit N auch A durch Wurzelzeichen auf-
losbar ist, ist klar. Umgekehrt zeigt man durch Ubergang von
einer Korperkette geméll Def. 41 fiir A zu deren konjugierten, dafl
mit A auch alle konjugierten Erweiterungen durch Wurzelzeichen
auflosbar sind, woraus sich dann leicht die Auflésbarkeit durch
Wurzelzeichen von N ergibt.

Beispiele durch Wurzelzeichen auflosbarer algebraiseher
Gleichungen iiber Grundkérpern der Charakteristik O,

1.) Alle Gleichungen zweiten, dritten, vierten
Grades.

Deren Galoisgruppen sind namlich isomorph zu Untergruppen
der symmetrischen Gruppen &,, S;, &, (Satz 107 [98]). Die
letzteren erweisen sich aber (samt ihren sémtlichen Untergruppen)
leicht als metazyklisch.

2.) Alle zyklischen und allgemeiner abelschen Glei-
chungen, speziell also nach Satz 121 [131] die allgemeine
Kreisteilungsgleichung 2 —1=0.

Nach Satz 36 [33] ist namlich jede endliche zyklische Gruppe
metazyklisch. Auf die allgemeine Theorie der endlichen abelschen

1) Genau genommen liegt ibrigens keine Entscheldung der Frage
sondern nur eine Zuriickfithrung auf die Aufstellung und Untersuchung der
Galoisgruppe vor.

16%
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Gruppen, aus der insbesondere leicht folgt, daf diese Gruppen
samtlich metazyklisch sind, kénnen wir hier nicht niher eingehen 1).

§ 23. Existenz nicht durch Wurzelzeichen auflosbarer
algebraischer Gleichungen.

Die Existenz nicht durch Wurzelzeichen auflésbarer Glei-
chungen wurde durch Abel entdeckt, der zuerst die Unmog-
lichkeit bewies, die allgemeine Gleichung héheren
als vierten Grades durch Wurzelzeichen aufzu-
losen. Wir wollen in diesem letzten Paragraphen einen
modernen Beweis dieses Abelschen Satzes skizzieren.

Zundchst definieren wir:

Definition 42. Ist K,=K(z,..., #,) der Kérper
der rationalen Funktionen von n Unbestimmten
T -« &, liber K, so heit das Polynom

) [o(#)= &+ 32 - - - - 1,
iiber K, das allgemeine Polynom n-ten Grades iiber K.

Dieses allgemeine Polynom #-ten Grades iiber K ist als
eine ,unbestimmte” Zusammenfassung aller speziellen
Polynome n-ten Grades iiber K anzusehen, die ja aus ihm
durch Einsetzung irgendwelcher Elementsysteme
Ay .-, aus K fiir die Unbestimmten z,..., 2,
iiber K gewonnen werden konnen.

Wir betrachten nun die Zerlegung in Linearfaktoren
Q) @)y=ar 4 zpar 14 G = (s — &) - (8—&)
des allgemeinen Polynoms #-ten Grades iiber K in seinem
Wurzelkérper W, = Ku(&,, .. ., &). Denkt man sich die »
Linearfaktoren rechts ausmultipliziert, so miissen nach 1,
Satz 11 [32] die Kocffizienten gleich hoher Potenzen von z
links und rechts iibereinstimmen. So erhalt man das Formel-
system 2)

1) Wir verweisen deswegen anf 3, § 3 Aufg. 9—20 und beziiglich welterer
Sitze iiber metazyklische Gruppen auf das Buch von Speiser (1, Lit.-Verz. 16).
%) Wir bezeichnen hier, abweichend von der Festsetzung in 1, 8. 42 die
Gleichheit in K, = K(a:l,..., Z,) und in der algebraischen Erweiterung

Wy, = Kn(é,,. .., &) nur mit =, um = der Gleichheit bei Hinzunahme weiterer
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(3.) =58+ + & ba
o= (—1)" & &n

oder zusammengefaBt
= (—1y X & ---& (v=1,...,n),
[T

wo die Summe rechts iiber alle (n) Kombinationen »-ter Ord-
»

nung (1, §16 [108]) der Ziffern1, . . . , nzuerstreckenist. Nach
diesen Formeln ist speziell

4y Wy=Ky(&n,.. . &) =K@y -y @y Epy e -0y En)

oo En)e

Neben der bisherigen von (1.) iiber (2.) zu (3.) und (4.)
fithrenden Auffassungsweise kann man auch umgekehrt von
(4.), d.h. dem Korper W, = K(&,,...,&,;) der rationalen
Funktionen von n jetzt als Unbestimmte vorausgesetzten
&,..., & iber K ausgehen, dann z,,..., 2, durch die
Formeln (3.) als Elemente dieses Korpers W, und f,(z) durch
die Formel (2.) als Polynom in dem Teilkdrper
Ko =Kz, . . ., 2) von W, = K(&,, ..., &,) definieren, wo-
bei dann W,, wieder der Wurzelkdrper zu f,(2) iiber K, ist
und die Darstellungen (4.) besitzt. Allerdings steht bei dieser
letzteren Auffassungsweise die Frage oflen, ob das so ge-
bildete Polynom f,(z) das allgemeine Polynom #-ten Grades
iiber K ist. Da die genannte zweite Auffassungsweise fiir die
beabsichtigte Anwendung handlicher ist, ist es fiir uns von
Bedeutung, diese Frage in bejahendem Sinne zu beantworten:

Satz 128. Ist W, =K(&, ..., &,) der Korper der
rationalen Funktionen von % Unbestimmten
£ &y iiber K, so haben die durch die Formeln
(3.) definierten Elemente z, ..., 2, aus W,, ebenfalls

Unbestimmten (etwa z in (1.) und (2.) sowie 51, -+« T, Im Bewelse des folgenden
Satzes 128) vorzubehalten.
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den Charakter von n Unbestimmten itber K1), d. h.
der TeilkorperK, = K(zy,..., 2,) von Wy = K(&,,..., &)
ist ebenfalls vom Erweiterungstypus des Kdérpers
der rationalen Funktionen von # Unbestimmten
iiber K. Insbesondere ist dann also das durch (2.)
definierte Polynom/,(z)iiber K, das allgemeine Poly-
nom n-ten Grades iiber K.

Beweis: Es ist zu zeigen, daB die Normaldarstellungen
(1, Def.9 [38]) der Elemente des Integrititsbereiches

K[z ..., 2z] durch @,..., z, eindeutig sind, und dazu
geniigt es nachzuweisen, daB auvs einer Relation

(5.) 9@y, %) =0, )
wo ¢(y, . . ., Z) eine ganze rationale Funktion von » Unbe-
stimmten ,, .. ., &, ilber K ist, die Relation

(6.) G(Zyy oo By)=0

folgt. Diesen Nachweis fithren wir durch doppelte voll-
standige Indulktion 2), erstens nach der Anzahl n der Unbe-
stimmten, zweitens nach dem Grade », von ¢ in ,.

Fiir n = 1ist 2, = — &, also die Behauptung ersichtlich
auf Grund des vorausgesetzten Unbestimmtencharakters von
&, richtig. Sei sie schon bis # — 1 bewiesen. Dann sei

’n

1) g@,...z)= kéfowﬁ 9, (@, ...z, )
die (aus der Normaldarstellung durch Zusammenfassung fol-
gende) Darstellung von ¢ als ganze rationale Funktion von
z, liber K[z, ..., 2,—1], also speziell

B) 9@y -y Tn1, 0)=go(Zy - - -y Tn1).
Setzt man nun in (5.) £, =0, so entsteht nach dem Ein-
setzungsprinzip (1, Satz 12 [40]), das wegen des Unbe-
stimmtencharakters von £, anwendbar ist, die Relation
9.) gzt .. . Tp—,0)=0,
1) Vgl. 1, Def. 9 {38] nebst anschlieBender Erlduterung.

%) Den Gedanken, In diesem Beweise doppelte vollstindige Induktion
anzuwenden, verdanke ich einer brieflichen Mitteilung von Ph. Furtwingler.
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WO Z3,..., Th_1 BUS Tyye.. %y durch die Einsetzung
E,=0 in (3.) hervorgehen; setzt man dann in (8.)
(Zyy e v vy Tu—a) = (@1, « « +» Tn—1), S0 folgt aus (9.) nach dem
Einsetzungsprinzip weiter die Relation

(10.) 9o(Z1y e« oy Zp3) = 0.
Da nun ), ..., 2, , nach ihrer Erklarung fiir &,..., ¢, |
die entsprechende Bedeutung haben, wie z,,..., z, fiir
&... &, so ergibt sich aus (10.) nach der gemachten
ersten Induktionsannahme die Relation

gO(El’ ooy En—l)_:—: 0,
also nach (7.) weiter die Relation
Yn—1

(L) ¢@,,...5)=7, & &g, Fp--oF,_,)

" k=0
= B g(@y, . - - Tn),
wo g()(z,, . .., T,) wieder eine ganze rationale Funktion von
Zyy ..., T, iiber K ist, die (falls »,>0) in z, den Grad
v, — 1 hat.

Ist nun der Grad v, =0, so ist ¢gM)(z,, .. ., Z,)= 0 und
also die Behauptung (6.) nach (11.) richtig. Sei sie (fiir das
betrachtete feste n) schon bis zum Grade v, — 1 bewiesen,
so ist, weil aus (11.) durch die Einsetzung (..., %,)=
(24, ..., 2,) die Relation

9@y, « - o Tn) = Tpg (@, « ., Tn)

und aus dieser nach (5.) und wegen x, 5= 0 weiter die Relation

9Oz, ., T) = 0
folgt, nach dieser zweiten Induktionsannahme

gV(Ey, . . ., Tp) =0,
woraus die Behauptung (6.) nach (11.) folgt. Hiermit ist die
Behauptung des Satzes durch doppelte vollstandige Induk-
tion bewiesen.

Aus Satz 128 1iBt sich iibrigens auch leicht die umgekehrte
Tatsache folgern, daB die ausgehend von Unbestimmten z,, .. ., =,
durch (2.) definierten Elemente Er ey den Charakter von

Unbestimmten iiber K haben. Wir brauchen das jedoch hier nicht.
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Wir beweisen nunmehr:

Satz 129. Das allgemeine Polynom n-ten Grades
iiber K ist separabel und seine Galoisgruppe bzgl
K, ist zur symmetrischen Gruppe &, isemorph.

Beweis: Gem4B Satz 128 denken wir uns das allgemeine
Polynom n-ten Grades f, (z) iilber K nach der vor Satz 128 be-
sprochenen zweiten Auffassungsweise, d. h. vom Wurzelkorper
W, =K, ..., &) ausgehend durch die Formeln (3.),
(2.) gebildet. DaB zunichst f, (x) separabel ist, folgt dann
ohne weiteres aus der Verschiedenheit seiner als # Unbe-
stimmte iiber K gewahlten Wurzeln &, . . ., &, (Satz 59, Zu-

1... '
satz [48]). Es sei ferner ( n irgendeine Permutation
%

cet
aus ©,. Nach 1, Satz 10, 11 [26, 32] ist dann K (£, . . ., &)
zuK(&,, . . ., &,) auf Grund der Zuordnungen

51*—’5’51, ‘e -,En"—’gin
isomorph bzgl. K. Da aber die Formeln (3.) symmetrisch in
&1, ..., &, sind, entsprechen bei dieser Zuordnung die Elemente
Zyy .+« . &, und somit alle Elemente von K, =K(zy, .. ., z,)
sich selbst, so dafl die genannte Isomorphie sogar bzgl. K,

gilt. Da
Wn = K(En T En) = K(Eil, [ Ein)

ist, erzeugt also jede Permutation aus &, einen Auto-
morphismus von W, bzgl. K, und wird daher umgekehrt
durch einen solchen Automorphismus im Sinne von Satz
107 [98] geliefert. Aus diesem Satz ergibt sich daher mit
Riicksicht auf die bereits hervorgehobene Verschiedenheit
der Wurzeln &, .. ., &,, daBl die Galoisgruppe von W, d.h.
die von f,(x) bzgl. K, zur symmetrischen Gruppe &, iso-
morph ist.
Aus Satz 129 ergibt sich ibrigens speziell:

Satz 180. Das allgemeine Polynom n-ten Grades
iiber K ist irreduzibel in K,.

Beweis: Ist f,(z) das zu einer Wurzel £ von f,(z) gehorige
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irreduzible Polynom in Kp, so ist einerseits f2(2) | f2(x) (Satz 63
[43]), andererseits f,(&;) = O fiir jede Wurzel , von f,(z) (Satz 73
1617, 129), also wegen der Verschiedenheit der Wurzeln &; auch

fa(@)|fn(x) (Satz 47 [40]). Beides zusammen ergibt f,(z)=f.(2),
wie behauptet.

Wir verweilen noch einen Augenblick bei den Formeln (3.), wieder
unter der vor Satz 128 [149] besprochenen zweiten Auffassungs-
weise. Man nennt dann die Elenente z,,.. ., 2, aus K(&,..., &,)
die symmetrischen Grundfunktionen der Unbestimmten
&1y s oo &y Allgemein nennt man ferner eine rationale Funktion
tiber K der Unbestimmten &,,...,&, symmetrischin &,..., E,,,
wenn sie bei allen Permutationen der n Elemente £,,...,&,
sich iibergeht. Durch Anwendung der Sitze 107, 112 [98, 110]
nebst Zusatz ergibt sich dann aus Satz 129 unmittelbar:

Satz 131, Eine rationale Funktion iber K der Un-
bestimmten &,...,&, [d.h. ein Element aus K(&,..., &,)]
ist dann und nur dann symmetrisch, wenn sie rationale
Funktion iiber K der symmetrischen Grundfunktionen
Tyyeo oy VOO &, ..., &, 18t [d.h. ein Element aus dem
Teilkorper K(zy, ..., z,) von K(&,...,&,) ist].

Die tiefer liegende Aussage dieses Satzes, namlich die durch
nnur dann‘‘ ausgedriickte, die also aussagt, dafl jede symmetrische
rationale Funktion iiber K von §&,.. ., &, eine rationale Funktion
iiber K von z;, . . ., &, ist, ist eine Teilanssage des unter dem Namen
Satz von den symmetrischen Funktionen bekannten Theorems,
das bisher fast immer der Galoisschen Theorie zugrunde gelegt wurde
(vgl. die erste Anm. zum Bew. von Satz 90 [80]). Dieses Theorem
geht insofern noch iiber die Aussage von Satz 131 hinaus, als es
weiterhin behauptet:

1.) Jede ganze rationale symmetrische Funktion iiber K von
&, - .. &y ist eine ganze rationale Funktion von zy,..., ;.

2.) Das letztere gilt auch noch, wenn an Stelle des Korpers K
ein Integritdatsbereich 1 steht.

Diese weiteren Aussagen kénnen aber nicht, wie Satz 131, aus
der Galoisschen Theorie gefolgert werden ).

Wir kehren nunmehr zu der eigentlichen Aufgabe dieses
Paragraphen zuriick, die wir jetzt auf Grund von Satz 129 in

1) Auf einen — mir von Ph. Furtwingler mitgeteilten — Beweis der Aus-
sagen 1), 2.), der ganz analog, wie der Beweig von Satz 128, mit doppelter voll-
stindiger Induktion gefiihrt wird, kann hier nicht eingegangen werden: siehe
3, § 23, Aufg. 3.
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Angriff nehmen kénnen. Da die symmetrische Gruppe &, fiir
n > 1 stets den Normalteiler 90, vom Index 2 hat (1, Satz 63
[113]), ergibt sich eine Reduktion des Wurzelkorpers
W, = Ku(&, ..., &) vom Grade n! iiber K, auf einen

Korper vom Grade %l iiber einem aus K, durch Adjunktion

einer Quadratwurzel entstehenden Korper V,,:

Satz 132. Der Wurzelkdorper W, =K, (&, - - -, &n)
des allgemeinen Polynoms n-ten Grades (n>1)
iiber Kbesitzt einen Teilkérper V, vom Grade2iiber
K,. Dieser wird, falls K nicht die Charakteristik 2
hat, durch Adjunktion des Elementes

1 & £ q—l‘

1 &y &
zu K, gewonnen, das Wurzel eines reinen Poly-
noms 22 —d vom zweiten Grade aus K, ist?).

Beweis: DaB V, = K,(5) der %, zugeordnete Korper
zwischen K, und W, ist, folgt gemiB Satz 112, 129 [110, 152]
daraus, daB J bei den geraden Permutationen von &, .. ., &,
invariant ist, bei den ungeraden dagegen sein Vorzeichen
dndert (1, Satz 656 [116]), und daB d==0 (siehe 3, Teil 1,
§ 19, Aufg. 4), also nach der Annahme iiber die Charakteristik
0 &= — 0 ist. Hiernach ist ferner 62 = d bei allen Permuta-
tionen von &, ..., &, invariant, also Element aus K,, (Satz112,

Zusatz [111]).

Das Element d = 62, das natiirlich sogar zu K[&, ..., &]
gehort, also eine ganze rationale Funktion iiber K der Wurzeln
&)+ oo &p ist, heiBit die Diskriminante von In(x).

Nun beweist man in der Gruppentheorie, da fiir n==4
die alternierende Gruppe %, keinen echten Normal-
teiler besitzt?), und daB 9, der einzige Normal-

1) Hinsichtlich des Falles, daB K die Charakteristik 2 hat, siehe 3, § 23,
20

2. 20.
) Spelser, 1. c. (1, Lit.-Verz. 16), Satz 94. Siehe auch 3, § 23, Aufg. 13, 14,
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teiler von &, ist?). Da’: 5 fur 7= 4 keine Primzahl ist,

kann also fiir n > 4 keine Untergruppenkette von &, der in
Def. 41 [143] genannten Art existieren, so daB dann &, nicht
metazyklisch ist. Nach Satz 127 [144] ergibt sich so das

Resultat von Abel. Das allgemeine Polynom
n-ten Grades iiber einem Korper K der Charakteri-
stik 0 ist fiir » > 4 nicht durch Wurz:lzeichen auf-
lésbar.

Durch diesen Satz ist die Existenz nicht durch Wurzel-
zeichen auflosbarer Gleichungen zunichst nur fiir die beson-
deren Grundkorper K, von Def. 42 [148] sichergestellt. Eine
weitere Frage ist dann, ob es in einem gegebenen Grund-
korper K spezielle, d.h. in K selbst gelegene nicht durch
Wurzelzeichen auflésbare Gleichungen jeden Gra-
des n >4 gibt. Diese Frage beantwortet sich fiir den
Spezialfall des rationalen Grundkorpers P bejahend durch den

Irredunzibilititssatz von Hilbert?). Istg(z; 2y,..., 2,)
eine ganze rationale Funktion der Unbestimmten
T; %y ..., 2y, Uber P, die ein in P,=P(z,..., z,)
irreduzibles Polynom von z ist, so gibt es unendlich
viele Elementsysteme a,...,a, aus P, so da8
g(z; ay, ..., a,) in P irreduzibel ist. '

Aus diesem Satz ergibt sich die Losung der zuvor aufge-
worfenen Frage fiir den Grundkérper P folgendermaBen:
Sind §&,...,&, die Wurzeln des allgemeinen Polynoms
n-ten Grades f,(z) = o™ + z 2" 1+ - - - + x, iiber P, so ist
nach Satz 112, Zusatz [111] und Satz 129 [152]

d=cé + +65
primitives Element des Wurzelkorpers =P, - .. &n)
1) Das folgt dann aus dem sog. Jordanschen Satz (Speiser, ebenda

Satz 27) in Verbindung mjt der evidenten Nichtexistenz von Normalteilern von
€,, der Ordnung 2. B8iehe auch 3, §23, Autg. 16.

) D. Hilbert, Uber die Irreduzibilitit ganzer rationaler Funktionen mit
ganzzahligen Koeffizienten, Journ. f. d. reine u. angew. Math. 110, 1892.
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bzgl. P, = P(x,,.. ., £,), wenn die Koeffizienten ¢, aus P,
so gewihlt werden, dafl alle Permutationen (:) der &, ver-

schiedene konjugierte

=i, + -+ ki,
ergeben. Wir denken uns die ¢, in dieser Weise gewihlt, und
zwar, was nach Satz 49 [41] moglich ist, sogar als Elemente
aus dem Integrititsbereich I, = P[z,,..., 2,]. Dann ist

n!
glz; 2y .. - a:,,)EiI__I1 (. — %)

eine Galoissche Resolvente von W, bzgl. P, und geniigt den
Voraussetzungen des Hilbertschen Irreduzibilititssatzes. Es
gibt also unendlich viele Elementsysteme ay,...,a, aus P
derart, daB g(x; a,, .. ., a,) irreduzibel in P ist. Die Wurzel-
korper W iiber P der diesen Systemen g, ..., @; entsprechen-
den speziellen f(x) haben dann, weil es in ihnen je ein Element
© des Grades n! gibt, den hichstmoglichen Grad n! iiber P
(Satz 108 [100]) und somit eine zu &, selbst isomorphe
Galoisgruppe (Satz 107 [98]). Nach den Ausfithrungen
dieses Paragraphen sind also diese f(z) fiir » > 4 nicht durch
Wurzelzeichen auflsbar. Wir haben daher:

Korollar. Es gibt in P fiir jeden Grad » unend-
lich viele algebraische Gleichungen, deren Galois-
gruppe zu &, isomorph ist (sog. Gleichungen ohne
Affekt), insbesondere also fiir jeden Grad » >4
unendlich viele nicht durch Wurzelzeichen auflds-
bare algebraische Gleichungen.

Ob dies Resultat auch fiir allgemeine Grundkérper K, so-
wie fiir irgendwelche Untergruppen von &, als vorgeschriebene
Galoisgruppen gilt, ist bis heute, abgesehen von einfachen
Fillen, unentschieden.



